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What is the BEST thing to do?

Most studies approach the problem as: Given that I have these 4-

vectors {pµi } that came out of my Monte Carlo or Experiment, what

function f({pµi }|λ) can I write down which will tell me some hypothesis
(parameter) λ?

The answer is that every function f({pµi }|λ) depends on the parame-

ters λ, and I'm left with the question: Which f({pµi }|λ) is \best" for

my purpose?

I approach this from the other side: the most powerful statistic for

di�erentiating two hypotheses λ and λ′ is the ratio of two Likelihoods
(Neyman-Pearson Lemma). Our Likelihood for n = 1..N events is

L(λ|{{pµj }n}) =
N∏
n=1

Pn({pµj }n|λ).
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Now let me make systematic approximations to this ideal situation.



Polynomial Systems

In a hadron collider with missing energy, the PDF is de�ned as

P (p
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Now let us go into the narrow width approximation by replacing

1
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∣∣∣2, for some hypothesis diagram (valid for ��M).

Alternatively, one can simply insert the appropriate delta functions

corresponding to a diagram, and view this as a variable change.

Note that this integral is 4 dimensional at a hadron collider. There-

fore, by specifying 4 masses, the integral is reduced to a discrete set

of solutions for the missing momenta.

A pair of simultaneous quadratics is not guaranteed to have a solution!



The General Recipe for using Polynomial Systems

• Write down a hypothesis diagram describing the visible �nal state

particles and missing energy you see.

• Combine resonances with entirely visible decay products and call

it a single �nal state particle.

• Count the missing particles N and the intermediate, on-shell par-

ticles M with missing particles \down-stream".

• M < 3N − 2: (\underconstrained") use kinks or edges.

• M = 3N − 2: (\exactly constrained") one can change variables

from the missing momenta into these masses. Each event de-

�nes a volume in mass space. See JHEP 0712:076,2007 and

arXiv:0811.2138

• M > 3N−2: (\overconstrained") it is possible to solve for discrete
values of the masses, by constructing a larger polynomial system

from multiple events, under the assumption that they contain the

same physics. See: Phys.Rev.Lett.100:252001,2008.



The General Recipe for using Polynomial Systems

Once your polynomial system is constructed, one can ask the question

if M = 3N − 2 (exactly constrained):

Is the Probability Density P zero or nonzero

for a given set of hypothesis masses?

The nonzero answer de�nes a volume in mass space, which one must

then devise an algorithm to extract the true mass from by combining

events.

If M > 3N − 2 (overconstrained):

Is the n-event likelihood Ln =
N∏
i=1

Pi zero or nonzero?

If these are nonzero, in the narrow width approximation, you have

just solved for a set of 4-momenta consistent with the event (and

therefore, all the intermediate masses too).



The General Recipe for using Polynomial Systems

These are systematic approximation to the \best" Likelihood method,

accurate to O
(
�
M

)
and ignoring spin. The only thing better is to use

a true Matrix Element Method, which also includes o�-shell e�ects.

The overconstrained case is the best option for small data. In prin-

ciple it works for as few as two events in SPS1a.

These methods need long chains: at least 5 on-shell intermediate

particles is overconstrained, 4 is exactly constrained.

These methods are probably not useful with 3 or more missing par-

ticles: this needs 7 on-shell intermediate resonances.

The intermediate particles must be on-shell.



Exactly constrained example

This topology can be applied

to many processes with 4

visible and 2 invisible particles.

For simplicity in analysis we

will further assume MY =MY ′,

MX =M ′X, and MN =M ′N .
Examples that �t this:

tt → bW+bW− → bl+νbl−�ν
~χ02~χ

0
2 → l~ll~l→ ll~χ01ll~χ

0
1

~q~q → q ~χ02q~χ
0
2 → ql~lql~l→ qll~χ01qll~χ

0
1

~t~t → b~χ+b~χ− → bW+~χ01bW
−~χ01







Graphical Algorithm
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Fixing two of the masses, we scan in the third mass. Unfortunately an

analytic expression for these curves is probably intractable to derive.

For a large number of events, we want the largest MN compatible

with the event. Large pT cuts o� the zero mass solution, but the

high mass solution converges to the correct value faster, and our

understanding of pT in hadron colliders is poor. (e.g. MT used to

measure MW is designed to be pT insensitive)

But! Features are simple. We �t a line to the \corner" to determine

its location.



Iterate
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Iterate in each mass, �tting for each mass successively.

This procedure \walks up" the mass space, increasing the over mass

scale, and is not convergent. (e.g. there still exists a solution at

MN =∞ for most events)

But! We have not yet used the total number of events �t.



MN vs. Number of Events
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M3C

A re�nement was recently provided by Barr, Pinder and Serna,

(arXiv:0811.2138) in which they use this topology, assume the mass

di�erences are known, and perform a constrained min/max-imization

over the missing energy.

This provides an upper/lower bound on the overall mass scale, and

is a simple 1D variable.



Example Two: Overconstrained



Constraint Equations
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Ideal Masses (without combinatorics)
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Application of Realism

• Combinatorics: There are 16 choices of where to assign the lep-

tons/jets per event for 4µ or 4e, or 8 for 2µ2e. Combinatorics are
fundamental and must be taken into account. There is no magic

cut which gets rid of them. Combinatorics also carry information

about mass.

• Backgrounds: This signal has no real SM background. We include

all SUSY backgrounds including τ̃ decays and χ̃02 not from squark

decay, and g̃ events (which have extra hard jets).

• Finite widths: �q̃ = 5 GeV, �χ̃0
2

= 20 MeV, �˜̀
R
= 200 MeV.

• Mass splitting: Di�erent avor squarks have di�erent masses by

6 GeV. Therefore, our squark mass result is an average of these

signals.

Note that these techniques work with very few events (e.g. ten).



Ideal Masses (with combinatorics)
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Application of Realism

We simulate all events with ATLFAST running in high-luminosity

mode. We assume 300 fb−1 of luminosity. We require

• 4 isolated (�R < 0.4) leptons with pT > 10 GeV, |η| < 2.5.

(avors, charges chosen to match our χ̃02 → ˜̀→ χ̃01 topology.

• no b-jets and ≥ 2 jets with pT > 100 GeV, |η| < 2.5. The high-

est pT jets are taken to be particles 7,8 (extra jets from parton

shower/reconstruction are present).

• Missing pT > 50 GeV.



Absolute Masses
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Extra Cuts

We add new cuts to improve S/B and decrease bias

• We require that each combination c in each event i have solutions

with some combination in 75% of the other events. Npair(c, i) <

0.75Nevents

• We weight the �nal histogram by 1/N where N is the number of

solutions in a given pair.

• We cut on the mass di�erences (window de�ned by 0.6 of peak

height { e.g. Full Width at 0.6 Max)

There are many other interesting manipulations one can do, that are

quite di�erent from cutting on physical observables.



Mass Di�erences in SPS1a
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Absolute Masses SPS1a (cuts on �M)
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Absolute Masses SPS1a
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Absolute Masses UED @ SPS1a masses
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Results

We �t peaks using a gaussian+quadratic polynomial, and use the

maximum as our mass estimator. This is a biased estimator, but

can be used to estimate our statistical error by repeating the mea-

surement. Using 10 independent sets of Monte Carlo, for the SPS1a

point with masses {91.7,135.9, 175.7 558.0}

mN = 94.1± 2.8GeV,
mX = 138.8± 2.8GeV,
mY = 179.0± 3.0GeV,
mZ = 561.5± 4.1GeV.

(2)

There are 539 signal + 195 background events in this sample after

all cuts.

Precision is degraded by our \bias reduction" procedure. This is

great for getting the mass within 5% very quickly (without scanning

in masses), but �nal errors using these techniques is about a factor

2 better.



Code Availability

For the construction of the polynomial system, the problem can be

divided into two stages: a linear stage and a quadratic stage. (Don't

spend a lot of time with equations in Mathematica/Maple, there's

an easier way to do it, and it's just a matrix) Each missing particle

mass-shell constraint provides one quadratic, and any resonance with

two or more invisible particles downstream provides a quadratic.

Solving a system of 2 quadratics is straightforward (it can be reduced

to a quartic, and solved analytically).

Solving systems of n > 2 quadratics is highly nontrivial.

We have packaged up our code to solve a 2-quadratic system and

3-quadratic system, and the construction of the quadratic systems

described in our paper(s).

http://particle.physics.ucdavis.edu/hefti/projects/doku.php?id=wimpmass

I have some (un�nished) C++ classes which are very general and

could be used for any process with any number of quadratics. (I

need collaborators)



Summary

We really can make plots of mass!

Breit-Wigners appear in plots of mass, and the appearance of a Breit-

Wigner is real proof of a new particle. Edges/slopes are far less

convincing that one has discovered a new particle and not a detector

e�ect (or a misinterpretation of a resonance as an edge!)

These techniques can be thought of as answering: Is the N-particle

narrow-width likelihood LN zero or non-zero?

These techniques require ≥ 4 resonances for 2 missing particles, or

≥ 7 resonances for 3 missing particles.

These techniques use all available data, (including missing pT ) and

automatically take into account the fact that there are multiple so-

lutions and combinatorics.

If the signal nature presents us is compatible with these requirements,

this is really the the best, unambiguous variable to use.



What do I use? What needs to be done?

Variable Ref good for fails for

Meff not speci�c

HT not speci�c
MT (ancient) One missing

Cascade Edges
calorimeter
nonlinearity?

MT2 hep-ph/9906349

MT2 kink 0709.0288
large mass
di�erences

M2C 0712.0943
M3C 0811.2138√
smin 0812.1042

Overconstrained 0802.4290
≥ 5 cascade
resonances

Exactly cons. poly 0707.0030
4 cascade
resonances

??? 3 missing


