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Introduction

The Heisenberg spin chain

@ Model for magnetism in solids (Heisenberg, 1928)
* Crystals with effective one-dimensional magnetic properties
* Can be tested via inelastic neutron scattering experiments

@ Archetype of quantum integrable models
* Spectrum resolution via Bethe ansatz (1931) and its developments
* Links to two-dimensional statistical mechanics (vertex models
generalizing lIsing)

@ Very rich (non-commutative) algebraic structures
* Yang-Baxter algebras, R-matrices, Quantum groups
* They appear in different situations eventually far from magnetism
(Gauge and String theories and AdS/CFT correspondence)
* Link to combinatorics in special point (ice model)
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Introduction

The XXZ spin-1/2 Heisenberg chain in a magnetic field is a quantum
interacting model defined on a one-dimensional lattice with M sites, with
Hamiltonian, H = H© — hS,,

Quantum space of states : H = @M _H,,, Hpm ~ C? , dimH = 2M.

0%V are the local spin operators (in the spin—% representation) at site
m: they act as the corresponding Pauli matrices in the space H,, and as
the identity operator elsewhere.

+ periodic boundary conditions
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Introduction The H rg spin-1/2 chain

Exact computa’tions of correlation functions

Correlation functions of Heisenberg chain

@ Free fermion point A = 0: Lieb, Shultz, Mattis, Wu, McCoy, Sato,
Jimbo, Miwa, ...

@ From 1984: lzergin, Korepin,... (first attempts using Bethe ansatz
for general A)

@ General A: multiple integral representations
* 1992-96 Jimbo and Miwa — from g-vertex op. and qKZ eq.
* 1999 Kitanine, Maillet, Terras — from Algebraic Bethe Ansatz

@ Several developments since 2000: Kitanine, Maillet, Slavnov, Terras;
Boos, Korepin, Smirnov; Boos, Jimbo, Miwa, Smirnov, Takeyama;
Gohmann, Klumper, Seel; Caux, Hagemans, Maillet . ..
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Introduction The Heis g spin-1/2 chain

Exact computa’tions of correlation functions

Correlation functions

try (O e /T
tre, (efH/kT)

= (6|OlUg) at T=0

where |1)g) is the state with lowest eigenvalue.
Why is it so difficult? (Bethe ansatz already 75 years old...!)
Main problems to be solved to achieve this :

e Compute exact eigenstates and energy levels of the Hamiltonian
(Bethe ansatz)

e Obtain the action of local operators on the eigenstates: main
problem since eigenstates are highly non-locall!

e Compute the resulting scalar products with the eigenstates

Algebraic Bethe ansatz approach to correlation functions



Introduction
in-1/2 chain

ns of correlation functions

The methods...

@ g-KZ and g-vertex operators :
* Valid (with some hypothesis) for infinite (and semi-infinite) chains,
zero magnetic field and zero temperature
* Elementary blocks of correlation functions (static) and form
factors (massive case)
* Multiple integrals and recently algebraic solutions of g-KZ

@ Bethe ansatz
* Valid for finite and infinite chains, with magnetic field and
temperature, and with impurities or with integrable boundaries
(open chain)
* Determinant representation of form factors (finite chain), multiple
integrals for correlation functions (infinite chain), master formula for
spin-spin correlation functions.
* Some results for a continuum model (NLS)
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Basis of the method

Algebraic Bethe ansatz and correlation functions

Compute (| [1; 07 [vg) ?

@ Diagonalise the Hamiltonian using ABA
(Faddeev, Sklyanin, Takhtajan, 1979)
— key point : Yang-Baxter algebra A(\), B(A), C()\), D(X)
— eigenstates: B(\1)...B(A\,)[0)

@ Act with local operators on eigenstates
— problem: relation between B (creation) and o}"
complicated !
— solve the quantum inverse problem (Kitanine, Maillet, V.T., 1999):
aj'-” = G“"(A, B,C,D)=TI(A,B,C,D)
— use Yang-Baxter commutation relations

a priori very

© Compute the resulting scalar products
(Slavnov; Kitanine, Maillet, V.T.)

Q@ Thermodynamic limit
— elementary building blocks of correlation functions as multiple
integrals (2000)

@ Two-point function : further analysis. .. (since 2002)
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Correlation ctlons in the finite chain
Basis of the method Elementary cks in the the dynamic limit
A simple example: the emptiness formation probability

Diagonalization of the Hamiltonian via ABA
A(N)  B(M)
>[1

0% — monodromy matrix T(\) = (

c(A) DN/,
with  T(A) = T m(A) = Lam(A —&n) ... Lao(A — &) Laa (A — &)
- Sinh(/\ + I)O'ﬁ) sinh no, a —auxiliary space ~ C?
Lan(/\) = ( sinh n O’;r smh()\ N 7]Uﬁ) . n ﬂﬁcsailtglj]antum space

— Yang-Baxter algebra: o generators A, B, C, D

o commutation relations given by the R-matrix of the
model

Rab(As 1) Ta(A) To(p) = To(p) To(A) Ran(A, 12)

— commuting conserved charges: t(\) = A(\) + D()\) [t(N), t(n)] =0

H*2S|nhr]0 log t(A }/\ ,,+cforallfj—0

— construction of the space of states by action of B (creation) and C (annihilation)
on a reference state [0) = (17 ... 1)

eigenstates : [¢) =[], B(\«)|0) with {\(} solution of the Bethe equations.
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Basis of the method

Action of local operators on eigenstates

Solution of the quantum inverse scattering problem (c%«—T()))

1:[ gn Ht gk
ot =] 1) cle) T+
k=1

n

o :H t(&) - (A= D)(&) - [T 71 (&)

k=1 k=1
4

On

S X
Il
==

— use the Yang-Baxter commutation relations for A, B, C, D to get
the action on arbitrary states:

(0 H C(Ax) - H T () = 22 Qp({A}{e€)) <0\b£[P C(Ab)

PC{}

— correlation functions = sums over scalar products
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Basis of the method

Computation of scalar products

Scalar product

N N det U({ui}, { «})
<O"1:[1C(M’ l];[l (Ae)[0) = det V({u}, {\c})’

arbitrary state eigenstate

1

with  Usp = Ox,7(1tbs {Ac}), Vab =

sinh(up — As)’

<a,b<N,

where 7(1up, {Ak}) is the eigenvalue of the transfer matrix t(up).

— “m-point” elementary blocks for the correlation functions in the
finite chain:

(Ve HEE )=

m sums

> Qm({A} {e,€}) det, M

with (EF/’G)/k = 0/,¢/0k,c
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For example :

of T ) oz [T 80w 10

k=1
N n—1 n N
=0 [T ct) Tt (A-D)E) - Tt H (M) [0)
j=1 k=1 k=1 k=1

Here the sets {\«} and {1} are both solutions of Bethe equations —
N N N N
Of [T €Gy) o7 TT 8w 10) = @4 (0] ] 1) (A~ D)) [T B0) 10)
=1 k=1 j=1 k=1

=&, (| [] BOW) [0)

~~ determinant representations of matrix elements (using the scalar
product formula)
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Correlation functions in the finite chain
Basis of the method Elementary blocks in the thermodynamic limit
A simple example: the emptiness formation probability

Elementary blocks in the thermodynamic limit

Sums become integrals:

1 {\j}— solution of Bethe eq. for the ground state
— E f(/\J) — f(/\)p(/\)d)\ p(X)— density of the ground state

M— oo Ch solution of a linear integral eq.

— multiple integral representation for the “m-point” elementary
building blocks of the correlation functions

ol TLE " 106) = [ 4™ (00} ) det SulA)
j=1 :

where Q,({A\«}, {€), €;}) is purely algebraic and Sy({\«}), Cj depend on
the regime and on the magnetic field h.

— Proof of the results and conjectures of Jimbo, Miwa et al. +
extension to non-zero magnetic field; more recently, extension to time
dependent (KMST) and non zero temperature (Géhmann, Kliimper, Seel)
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Correlation functions in the finite chain
Basis of the method Elementary blocks in the thermodynamic limit
A simple example: the emptiness formation probability

What about this result ?

— A priori, the problem is solved:

E L ER T )

e any correlation function = > (elementary blocks)

e expression of all elementary blocks (1

—  From a practical point of view, there are two main problems:

(1) physical correlation function = HUGE sum of elementary blocks at
large distances

Example: two-point function

m—1
(thglot omltbe) = (g (El11 - E122) I_I(EJ11 + EJZZ) (Eril - Eriz)|1i9g>
j=2
—_——
propagator
= (elementary blocks) ~ 7

m— o0
2M terms

~+ re-summation ?
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ons in the finite chain
Basis of the method Elementary blocks in the thermodynamic limit

A simple example: the emptiness formation probability

(2) each block has a complicated expression

Example: emptiness formation probability for h = 0 in the massless
regime (—1 < A = cosh( < 1)

ol
) = ¢g‘H Uk"/)

- 7 o=l i dmy sinh%()\a*)\b)
=(=1) (7Z> / 27 E}sinh()\a—)\b—’f)
] 5070 = /2™y +i¢/2

cosh™ T

.
I
-

~ dependence on m ?

(1)4+(2) = need further analysis!
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Col
Basis of the method e e the: y ic limit
A simple example: the emptiness formation probability

A simple example: the emptiness formation probability

Integral representation as a single elementary block but previous
expression not symmetric

—— symmetrisation of the integrand:

1 o0 m 1
7(m) = lim — @l )\ . :
(m) S m!_DO }gl sinh(A; — A\p — i()

m sinh(A\; — Ap) ;
X ;BEJ[; m Zm({A}{ED) - detm[p(/\ﬁfk)]

where Z,,({\}, {¢}) is the partition function of the 6-vertex model with
domain wall boundary conditions and p(, €) = [-2i¢sinh Z(\; — &)]~*
is the inhomogeneous version of the density for the ground state
(massless regime A = cos¢, h = 0).

— (1) Exact computation for A = 1/2
(2) Asymptotic behaviour for m — oo
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Correlation functions in the finite chain
Basis of the method B the thermodynamic limit

A simple example: the emptiness formation probability

Exact computation for A = 1/2

The determinant structure combined with the periodicity properties at
A =1/2 enable us to separate and compute the multiple integral :

(-1)"F" ] Sh 36 ~ &)

Tinn(m, {&;}) =

om? A sinh(&, — &)
o 1 3Sinhﬁ
X —— .dety, | ——+=+ | .
Hl sinh(& — &) (smh 3¢ Ek))
atb

In the homogeneous limit:
m?> m—1 m?
1 (3k+1)! 1
= = — ~ A
(m) <2) kI:IO (m+ K)! (2) "

with A, - number of alternating sign matrices

—  first exact result for A # 0 (and proof of a conjecture of Razumov
and Stroganov)
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Correlation in the finite chain
Basis of the method Elementary the thermodynamic limit

A simple example: the emptiness formation probability

Asymptotic Results: (saddle-point)

» massless case (—1 < A =cos( < 1)
log 7(m) T 1 / dw sinh %(w—()cosh2 %C

lim =log—-+ =
m—oo  m?2 & ¢ ZR. . w sinh%sinh%ccoshwc
—%logQ for A=0
= 3|og373|0g2 forA:%
3 1
log ["HEA | for A = 1 (XXX chain)

» massive case (A =cosh( > 1)

. logT(m) C = e "¢ sinh( sinh(n¢)
mll—>moo m2 ; n cosh(2n¢)
rG)ra)
s {ﬁ} (XXX)
T (Ising)
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: h : int function
Further analysis: the two-point function oint functi

Further analysis: the two-point function

Consider the correlation function of the product of two local operators at
zero temperature :
812 = (thg|0162|vg)

Two main strategies to evaluate such a function:

(i) compute the action of local operators on the ground state

0162|10g) = L~> and then calculate the resulting scalar product:

)

g12 = (Vg

(ii) insert a sum over a complete set of eigenstates |¢);) to obtain a sum
over one-point matrix elements (form factor type expansion) :

812 = ngwlm» ;i

1

0> W}g>
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Analytical + Numerical methods
: . : Analytical resummations for the two-point function
Further analysis: the two-point function Alytical resummations for th point functy

Analytical + Numerical methods for dynamical correlation
functions in a fleld (Biegel, Karbach, Miiller; Caux, Hagemans, Maillet)

Use (ii) form factor expansion over a complete set of intermediate
eigenstates [1);):

(S7(2) S7(0)) = D (WS ()]} - (Wil S5 (0)lere)

i

for a finite chain of length M even, and a ground state |t),) depending on
the magnetic field with a fixed number of reversed spins N, and 2N < M.

@ each form factor = explicit determinant of size N, depending on two
sets of parameters solutions of Bethe equations and characterizing
the states (1| and [1);) respectively

@ Numerics are then used to compute the determinants and the
(finite) sum (control of the results via sum rules)

— numerical result for the dynamical spin-spin correlation
functions

Algebraic Bethe ansatz approach to correlation functions



Analytical + Numerical methods

. P Analytical resummations for the two-point function
Further analysis: the two-point function ' ' fation F !

— successful comparison to neutron scattering experiments for the
structure factor (Fourier transform of the dynamical correlation function)

Saﬁ(q w Z efal J)/ dtelwt<5a( )SJ?(O»

JJ*

Energy o (meV)

-1 -0.5 1
Wavevector g along chain (unlts of 2x)

@ Left: Bethe ansatz data computed for a chain of 500 sites
@ Right: Experimental data for KCuF3 (D.A. Tennant et al)
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Analytical + Numerical methods

Further analysis: the two-point function Analytical resummations for the two-point function

Analytical resummations for the two-point function

m—1

(0 07) = dm (gl (A= D)(&1) - [T (A+D)(&) (A~ D)(ém) )

i=2

propagator (1—m)

Use (i): compute resummed action of the “propagator” from site 1 to m

on an arbitrary state:
m

W 1] tetxa) = > (Wnlx)]

n=0
with t.(x) = (A + kD)(x) twisted transfer matrix

— partial resummation in the thermodynamic limit:
(o] or) = Z (multiple integrals) (instead of 2™ terms)
m+1 terms
— master formula for the finite chain

Algebraic Bethe ansatz approach to correlation functions



Analytical + Numerical methods
Analytical resummations for the two-point function

Further analysis: the two-point function

Example
Generating function (Qr ) for o correlation functions

1 z z 02 K K K K
5((1 —01)(1—om1)) = @<(Ql,m+1 — Qrm— Qo my1 + QZ.m)>

k=1

with

. T 14k 1—k
Ql,m - H ( 2 + 2 : Un)

n=1
= ﬁ (A+ kD) ﬁ A+ D) (&)
a=1 b=1

~~ to compute:

<Qfm> = ¢m (gl H ta(&a)[thg) with to(x) = (A+ KkD)(x)

Algebraic Bethe ansatz approach to correlation functions



Analytical + Numerical methods
Further analysis: the two-point function Analytical resummations for the two-point function

Master equation for o correlation functions

Let the inhomogeneities {£} be generic and the set {A} be an admissible
off-diagonal solution of the Bethe equations (cf.Tarasov - Varchenko).
Then there exists kg > 0 such, that for |x| < ko:

i 1 N dz N u «(£al{z})
(QF ) = = H— H sinh?(\, — zp H
N!r{g}fu} =R =1 M

1 =
- (am(lx,v\{z})) - dety (of(za&\]{x}»

Oz

N
AV (i {A
al;[1 V(23| {2}) - detw (%)

X

Notations:
T (u|{\}) = eigenvalue of the x-twisted transfer matrix t, ()

on the eigenstate [¢,.) = [, B(A«)|0), for {A} solution of
the (twisted) Bethe equations : V. (\j|{\}) =0, j=1,...,
(k =1 — no subscript)

Algebraic Bethe ansatz approach to correlation functions
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Analytical + Numeric; hods
Analytical resummatiol the two-point function

Further analysis: the two-point function

The integration contour is such that the only singularities of the
integrand within the contour M'{{} UT{A} which contribute to the
integral are the points {{} and {\}.

2 ways to evaluate the integrals:
@ compute the residues in the poles inside

—  representation of (ofo7,,1) as sum of m multiple integrals (previous
resummation obtained with approach (i) )

@ compute the residues in the poles outside I (within strips of width
iT)
— sum over (admissible) solutions of (twisted) Bethe equations
— form factor expansion of (cic7,,1) (approach (ii))

— link between the two approaches

Algebraic Bethe ansatz approach to correlation functions



Analytical + Numerical methods
Further analysis: the two-point function Analytical resummations for the two-point function

Time-dependent master equation

(@ (1) = =

- % ﬁﬁ ﬂe't A) +im(plzs) ~p(As))

=1 b
r{£2yur{x} /= =

N dety (M(gék\{z})) - dety (07(3‘{”’)
X H sinh?(\, — zp) - -
b=

N o)
=1 [T Vu(zs[{2}) - detw (2G520)

with

2sinh? n
E pr—
(2) sinh(z — 4)sinh(z + %)

p(A) = ilog (smh g)

Algebraic Bethe ansatz approach to correlation functions

l\)\d SIS



Analytical + Numerical methods

Further analysis: the two-point function Analytical resummations for the two-point function

Explicit results at A =

Generating function at A = 1

Partial resummation in the inhomogeneous case
— multiple integrals can be separated and computed:

(Qi(m)) e | | sinh 3(¢ Em m=n E det d(M
’ = K
" 2m* smh3 —¢ - m

a>b n— (€} =(67s TU{Er_}

[y |=n

y H H sinh(&p — & — %)Sinh(fa*fb)’

v bery. smh fb—ﬁa—k%)
with

(G —&) | ®(g )

(e, 1, {e, ) =
O —&+ )| O - &)

Algebraic Bethe ansatz approach to correlation functions



Analytical + Numerical methods
Analytical resummations for the two-point function

Further analysis: the two-point function

— If the lattice distance m is not too large, the representations can be
successfully used to compute (Q,(m)) explicitely.

First results for Pp,(r) = 2™ (Q.(m)) up to m = 0:

Pi(k) =1+ &,

Py(k) = 2 + 12k + 2+,

P3(k) = 7 + 249k + 249x° + Tx3,

Py(k) = 42 4 10004+ + 45444k% + 10004k + 421*

Ps(k) = 429 + 738174 + 16038613x2 + 16038613x> + 738174k* + 429k°,
Ps(k) = 7436 + 96289380k + 11424474588k + 45677933928+°

+ 11424474588k + 96289380k° + 7436k°.

Algebraic Bethe ansatz approach to correlation functions



Further analysis: the two-point function

Analytical

— Two-point functions (0% ;) at A =1

Numerical methods

Analytical resummations for the two-point function

(0f0my1) Exact

(of05,1) Asympt.

—05214949 - 2731
1758750082939 - 246
—30283610739677093 - 279°
5020218849740515343761 - 278

0 ~NOOA~WN RS

-0.0443379157
0.0249933420
-0.0262668452
0.0166105110

—271 -0.5000000000 -0.5805187860
7.276 0.1093750000 0.1135152692
—401-2712 -0.0979003906 -0.0993588501
184453 .22 0.0439770222 0.0440682654

-0.0444087865
0.0249365346
-0.0262404925
0.0165641239

and comparison with the values given by the asymptotic prediction:

11 A,
r(m—C)m

(ofomi1) = —
with value of A, conjecture by S. Lukyanov
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Analytical + Numerical methods

Further analysis: the two-point function Analytical resummations for the two-point function

Some other models

@ Non periodic boundary conditions
Open XXZ chain (with diagonal boundary conditions):
M—1
— X X y -y z _z z z
H= Z {Umaerl + 0m0m+1 + A(o'mo—m+l - 1)} + h,O’l + h+UM
m=1
no translation invariance — revisit solution of the inverse Problem
— multiple integral formulas for elementary blocks, partial resummation
for 2-point correlation functions
Master equation ?

e Continuum field theory
Master equation valid for all models with the same R-matrix
(depend only on commutation relations of the Yang-Baxter algebra)

— density-density correlation functions of the
quantum non-linear Schrédinger model (or one-dimensional Bose gas):

H— /0 (axq;‘ﬁ(x) Ab(x) + c ot ()T () (x)v(x) — h UiT(X)Q/)(x)> d

Algebraic Bethe ansatz approach to correlation functions
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Further analysis: the two-point function e two-point function

open problems...

@ Asymptotic behavior of correlation functions: challenging the
conformal limit from the lattice models

o Continuum (Field theory) models (NLS, ShG,...) :
* Approach from the lattice
* Inverse problem for infinite dimensional representations
* Link to Q operator and SOV methods

@ Even more "sophisticated” models :
* XYZ model
* Hubbard : needs extended Yang-Baxter and ABA or FBA
understanding

Algebraic Bethe ansatz approach to correlation functions
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