On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain

V. Terras

CNRS \& ENS Lyon, France

People involved: N. Kitanine, J.M. Maillet, N. Slavnov and more recently: J. S. Caux, K. Kozlowski, G. Niccoli...

ENIGMA School 07 - Lalonde les Maures

Outline

(1) Introduction

- The Heisenberg spin-1/2 chain
- Exact computations of correlation functions
(2) Basis of the method
- Correlation functions in the finite chain
- Elementary blocks in the thermodynamic limit
- A simple example: the emptiness formation probability
(3) Further analysis: the two-point function
- Analytical + Numerical methods
- Analytical resummations for the two-point function

The Heisenberg spin chain

- Model for magnetism in solids (Heisenberg, 1928)
* Crystals with effective one-dimensional magnetic properties
\star Can be tested via inelastic neutron scattering experiments
- Archetype of quantum integrable models
\star Spectrum resolution via Bethe ansatz (1931) and its developments
\star Links to two-dimensional statistical mechanics (vertex models generalizing Ising)
- Very rich (non-commutative) algebraic structures
\star Yang-Baxter algebras, R-matrices, Quantum groups
\star They appear in different situations eventually far from magnetism (Gauge and String theories and AdS/CFT correspondence) * Link to combinatorics in special point (ice model)

The spin-1/2 XXZ Heisenberg chain

The $X X Z$ spin- $1 / 2$ Heisenberg chain in a magnetic field is a quantum interacting model defined on a one-dimensional lattice with M sites, with Hamiltonian, $H=H^{(0)}-h S_{z}$,

$$
\begin{aligned}
& H^{(0)}=\sum_{m=1}^{M}\left\{\sigma_{m}^{x} \sigma_{m+1}^{x}+\sigma_{m}^{y} \sigma_{m+1}^{y}+\Delta\left(\sigma_{m}^{z} \sigma_{m+1}^{z}-1\right)\right\}, \\
& S_{z}=\frac{1}{2} \sum_{m=1}^{M} \sigma_{m}^{z}, \quad\left[H^{(0)}, S_{z}\right]=0 .
\end{aligned}
$$

Quantum space of states: $\mathcal{H}=\otimes_{m=1}^{M} \mathcal{H}_{m}, \mathcal{H}_{m} \sim \mathbb{C}^{2}, \operatorname{dim} \mathcal{H}=2^{M}$.
$\sigma_{m}^{x, y, z}$ are the local spin operators (in the spin- $\frac{1}{2}$ representation) at site m : they act as the corresponding Pauli matrices in the space \mathcal{H}_{m} and as the identity operator elsewhere.

+ periodic boundary conditions

Correlation functions of Heisenberg chain

- Free fermion point $\Delta=0$: Lieb, Shultz, Mattis, Wu, McCoy, Sato, Jimbo, Miwa, ...
- From 1984: Izergin, Korepin,... (first attempts using Bethe ansatz for general Δ)
- General Δ : multiple integral representations
\star 1992-96 Jimbo and Miwa \rightarrow from q-vertex op. and qKZ eq.
$\star 1999$ Kitanine, Maillet, Terras \rightarrow from Algebraic Bethe Ansatz
- Several developments since 2000: Kitanine, Maillet, Slavnov, Terras; Boos, Korepin, Smirnov; Boos, Jimbo, Miwa, Smirnov, Takeyama; Göhmann, Klümper, Seel; Caux, Hagemans, Maillet ...

Correlation functions

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{\operatorname{tr}_{\mathcal{H}}\left(\mathcal{O} e^{-\mathbf{H} / k T}\right)}{\operatorname{tr}_{\mathcal{H}}\left(e^{-\mathbf{H} / k T}\right)} \\
& =\left\langle\psi_{g}\right| \mathcal{O}\left|\psi_{g}\right\rangle \quad \text { at } \quad T=0
\end{aligned}
$$

where $\left|\psi_{g}\right\rangle$ is the state with lowest eigenvalue.
Why is it so difficult? (Bethe ansatz already 75 years old...!)
Main problems to be solved to achieve this:

- Compute exact eigenstates and energy levels of the Hamiltonian (Bethe ansatz)
- Obtain the action of local operators on the eigenstates: main problem since eigenstates are highly non-local!
- Compute the resulting scalar products with the eigenstates

The methods...

- q-KZ and q-vertex operators:
\star Valid (with some hypothesis) for infinite (and semi-infinite) chains, zero magnetic field and zero temperature \star Elementary blocks of correlation functions (static) and form factors (massive case)
\star Multiple integrals and recently algebraic solutions of q-KZ
- Bethe ansatz
\star Valid for finite and infinite chains, with magnetic field and temperature, and with impurities or with integrable boundaries (open chain)
* Determinant representation of form factors (finite chain), multiple integrals for correlation functions (infinite chain), master formula for spin-spin correlation functions.
\star Some results for a continuum model (NLS)

Algebraic Bethe ansatz and correlation functions

Compute $\left\langle\psi_{g}\right| \prod_{j} \sigma_{j}^{\alpha_{j}}\left|\psi_{g}\right\rangle$?
(1) Diagonalise the Hamiltonian using ABA
(Faddeev, Sklyanin, Takhtajan, 1979)
\rightarrow key point: Yang-Baxter algebra $A(\lambda), B(\lambda), C(\lambda), D(\lambda)$
\rightarrow eigenstates: $B\left(\lambda_{1}\right) \ldots B\left(\lambda_{n}\right)|0\rangle$
(2) Act with local operators on eigenstates
\rightarrow problem: relation between B (creation) and σ_{j}^{α} a priori very complicated!
\rightarrow solve the quantum inverse problem (Kitanine, Maillet, V.T., 1999):

$$
\sigma_{j}^{\alpha_{j}}=f_{j}^{\alpha_{j}}(A, B, C, D)=\prod(A, B, C, D)
$$

\rightarrow use Yang-Baxter commutation relations
(3) Compute the resulting scalar products (Slavnov; Kitanine, Maillet, V.T.)

- Thermodynamic limit
\rightarrow elementary building blocks of correlation functions as multiple integrals (2000)
© Two-point function : further analysis. . . (since 2002)

Diagonalization of the Hamiltonian via ABA

$\sigma_{n}^{\alpha} \longrightarrow$ monodromy matrix $T(\lambda)=\left(\begin{array}{ll}A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda)\end{array}\right)_{[a]}$
with

$$
\begin{aligned}
& T(\lambda) \equiv T_{a, 1 \ldots M}(\lambda)=L_{a M}\left(\lambda-\xi_{N}\right) \ldots L_{a 2}\left(\lambda-\xi_{2}\right) L_{a 1}\left(\lambda-\xi_{1}\right) \\
& L_{a n}(\lambda)=\left(\begin{array}{cc}
\sinh \left(\lambda+\eta \sigma_{n}^{z}\right) & \sinh \eta \sigma_{n}^{-} \\
\sinh \eta \sigma_{n}^{+} & \sinh \left(\lambda-\eta \sigma_{n}^{z}\right)
\end{array}\right)_{[a]} \quad \begin{array}{c}
a \rightarrow \text { auxiliary space } \simeq \mathbb{C}^{2} \\
n \rightarrow \text { local quantum space } \\
\text { at site } n
\end{array}
\end{aligned}
$$

\hookrightarrow Yang-Baxter algebra: \circ generators A, B, C, D

- commutation relations given by the R-matrix of the model

$$
R_{a b}(\lambda, \mu) T_{a}(\lambda) T_{b}(\mu)=T_{b}(\mu) T_{a}(\lambda) R_{a b}(\lambda, \mu)
$$

\rightarrow commuting conserved charges: $\quad t(\lambda)=A(\lambda)+D(\lambda) \quad[t(\lambda), t(\mu)]=0$

$$
H=\left.2 \sinh \eta \frac{\partial}{\partial \lambda} \log t(\lambda)\right|_{\lambda=\frac{\eta}{2}}+c \text { for all } \xi_{j}=0
$$

\rightarrow construction of the space of states by action of B (creation) and C (annihilation) on a reference state $|0\rangle \equiv|\uparrow \uparrow \ldots \uparrow\rangle$ eigenstates: $|\psi\rangle=\prod_{k} B\left(\lambda_{k}\right)|0\rangle$ with $\left\{\lambda_{k}\right\}$ solution of the Bethe equations.

Action of local operators on eigenstates

Solution of the quantum inverse scattering problem $\left(\sigma_{n}^{\alpha} \longleftarrow T(\lambda)\right)$

$$
\begin{aligned}
\sigma_{n}^{-} & =\prod_{k=1}^{n-1} t\left(\xi_{k}\right) \cdot B\left(\xi_{n}\right) \cdot \prod_{k=1}^{n} t^{-1}\left(\xi_{k}\right) \\
\sigma_{n}^{+} & =\prod_{k=1}^{n-1} t\left(\xi_{k}\right) \cdot C\left(\xi_{n}\right) \cdot \prod_{k=1}^{n} t^{-1}\left(\xi_{k}\right) \\
\sigma_{n}^{z} & =\prod_{k=1}^{n-1} t\left(\xi_{k}\right) \cdot(A-D)\left(\xi_{n}\right) \cdot \prod_{k=1}^{n} t^{-1}\left(\xi_{k}\right)
\end{aligned}
$$

\rightarrow use the Yang-Baxter commutation relations for A, B, C, D to get the action on arbitrary states:

$$
\langle 0| \prod_{k=1}^{N} C\left(\lambda_{k}\right) \cdot \prod_{j=1}^{m} T_{\varepsilon_{j}, \varepsilon_{j}^{\prime}}\left(\lambda_{N+j}\right)=\sum_{\mathcal{P} \subset\{\lambda\}} \Omega_{\mathcal{P}}\left(\{\lambda\},\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}\right)\langle 0| \prod_{b \in \mathcal{P}} C\left(\lambda_{b}\right)
$$

\rightarrow correlation functions $=$ sums over scalar products

Computation of scalar products

Scalar product

$$
\underbrace{\langle 0| \prod_{l=1}^{N} C\left(\mu_{l}\right)}_{\text {arbitrary state }} \cdot \underbrace{\prod_{k=1}^{N} B\left(\lambda_{k}\right)|0\rangle}_{\text {eigenstate }}=\frac{\operatorname{det} U\left(\left\{\mu_{l}\right\},\left\{\lambda_{k}\right\}\right)}{\operatorname{det} V\left(\left\{\mu_{l}\right\},\left\{\lambda_{k}\right\}\right)}
$$

with $\quad U_{a b}=\partial_{\lambda_{a}} \tau\left(\mu_{b},\left\{\lambda_{k}\right\}\right), \quad V_{a b}=\frac{1}{\sinh \left(\mu_{b}-\lambda_{a}\right)}, \quad 1 \leqslant a, b \leqslant N$,
where $\tau\left(\mu_{b},\left\{\lambda_{k}\right\}\right)$ is the eigenvalue of the transfer matrix $t\left(\mu_{b}\right)$.
\longrightarrow "m-point" elementary blocks for the correlation functions in the finite chain:

$$
\text { with }\left(E^{\epsilon^{\prime}, \epsilon}\right)_{l k}=\delta_{l, \epsilon^{\prime}} \delta_{k, \epsilon}
$$

Matrix elements of local operators

For example :

$$
\begin{aligned}
& \langle 0| \prod_{j=1}^{N} C\left(\mu_{j}\right) \sigma_{n}^{z} \prod_{k=1}^{N} B\left(\lambda_{k}\right)|0\rangle \\
& =\langle 0| \prod_{j=1}^{N} C\left(\mu_{j}\right) \prod_{k=1}^{n-1} t\left(\xi_{k}\right) \cdot(A-D)\left(\xi_{n}\right) \cdot \prod_{k=1}^{n} t^{-1}\left(\xi_{k}\right) \prod_{k=1}^{N} B\left(\lambda_{k}\right)|0\rangle
\end{aligned}
$$

Here the sets $\left\{\lambda_{k}\right\}$ and $\left\{\mu_{j}\right\}$ are both solutions of Bethe equations \longrightarrow

$$
\begin{aligned}
\langle 0| \prod_{j=1}^{N} C\left(\mu_{j}\right) \sigma_{n}^{z} \prod_{k=1}^{N} B\left(\lambda_{k}\right)|0\rangle & =\Phi_{n}\langle 0| \prod_{j=1}^{N} C\left(\mu_{j}\right)(A-D)\left(\xi_{n}\right) \prod_{k=1}^{N} B\left(\lambda_{k}\right)|0\rangle \\
& =\Phi_{n}\langle\tilde{\psi}| \prod_{k=1}^{N} B\left(\lambda_{k}\right)|0\rangle
\end{aligned}
$$

\rightsquigarrow determinant representations of matrix elements (using the scalar product formula)

Elementary blocks in the thermodynamic limit

Sums become integrals:

$$
\frac{1}{M} \sum_{j=1}^{N} f\left(\lambda_{j}\right) \underset{M \rightarrow \infty}{\longrightarrow} \int_{C_{h}} f(\lambda) \rho(\lambda) d \lambda
$$

$\left\{\lambda_{j}\right\} \rightarrow$ solution of Bethe eq. for the ground state $\rho(\lambda) \rightarrow$ density of the ground state solution of a linear integral eq.
\longrightarrow multiple integral representation for the "m-point" elementary building blocks of the correlation functions

$$
\left\langle\psi_{\boldsymbol{g}}\right| \prod_{j=1}^{m} E_{j}^{\epsilon_{j}^{\prime}, \epsilon_{j}}\left|\psi_{\boldsymbol{g}}\right\rangle=\int_{C_{h}} d^{m} \lambda \Omega_{m}\left(\left\{\lambda_{k}\right\},\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}\right) \operatorname{det}_{m} S_{h}\left(\left\{\lambda_{k}\right\}\right)
$$

where $\Omega_{m}\left(\left\{\lambda_{k}\right\},\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}\right)$ is purely algebraic and $S_{h}\left(\left\{\lambda_{k}\right\}\right), C_{h}$ depend on the regime and on the magnetic field h.
\longrightarrow Proof of the results and conjectures of Jimbo, Miwa et al. + extension to non-zero magnetic field; more recently, extension to time dependent (KMST) and non zero temperature (Göhmann, Klümper, Seel)

What about this result ?

\rightarrow A priori, the problem is solved:

- expression of all elementary blocks $\left\langle\psi_{g}\right| E_{1}^{\epsilon_{1}^{\prime}, \epsilon_{1}} \ldots E_{m}^{\epsilon_{m}^{\epsilon_{m}}, \epsilon_{m}}\left|\psi_{g}\right\rangle$
- any correlation function $=\sum$ (elementary blocks)
\rightarrow From a practical point of view, there are two main problems:
(1) physical correlation function $=$ HUGE sum of elementary blocks at large distances
Example: two-point function

$$
\begin{aligned}
\left\langle\psi_{g}\right| \sigma_{1}^{z} \sigma_{m}^{z}\left|\psi_{g}\right\rangle & \equiv\left\langle\psi_{g}\right|\left(E_{1}^{11}-E_{1}^{22}\right) \underbrace{\prod_{j=2}^{m-1}\left(E_{j}^{11}+E_{j}^{22}\right)}_{\text {propagator }}\left(E_{m}^{11}-E_{m}^{22}\right)\left|\psi_{g}\right\rangle \\
& =\sum_{2^{m} \text { terms }}(\text { elementary blocks }) \underset{m \rightarrow \infty}{\sim} ?
\end{aligned}
$$

\rightsquigarrow re-summation ?
(2) each block has a complicated expression

Example: emptiness formation probability for $h=0$ in the massless regime $(-1<\Delta=\cosh \zeta<1$)

$$
\begin{aligned}
& \tau(m) \equiv\left\langle\psi_{\boldsymbol{g}}\right| \prod_{k=1}^{m} \frac{1-\sigma_{k}^{z}}{2}\left|\psi_{\boldsymbol{g}}\right\rangle \\
&=(-1)^{m}\left(-\frac{\pi}{\zeta}\right)^{\frac{m(m-1)}{2}} \int_{-\infty}^{\infty} \frac{d^{m} \lambda}{2 \pi} \prod_{a>b}^{m} \frac{\sinh \frac{\pi}{\zeta}\left(\lambda_{a}-\lambda_{b}\right)}{\sinh \left(\lambda_{a}-\lambda_{b}-i \zeta\right)} \\
& \times \prod_{j=1}^{m} \frac{\sinh ^{j-1}\left(\lambda_{j}-i \zeta / 2\right) \sinh ^{m-j}\left(\lambda_{j}+i \zeta / 2\right)}{\cosh ^{m} \frac{\pi}{\zeta} \lambda_{j}}
\end{aligned}
$$

\rightsquigarrow dependence on m ?
$(1)+(2) \Rightarrow$ need further analysis!

A simple example: the emptiness formation probability

Integral representation as a single elementary block but previous expression not symmetric
\longrightarrow symmetrisation of the integrand:

$$
\begin{aligned}
\tau(m)=\lim _{\xi_{1}, \ldots \xi_{m} \rightarrow-\frac{i 匕}{2}} & \frac{1}{m!} \int_{-\infty}^{\infty} d^{m} \lambda \prod_{a, b=1}^{m} \frac{1}{\sinh \left(\lambda_{a}-\lambda_{b}-i \zeta\right)} \\
& \times \prod_{a<b}^{m} \frac{\sinh \left(\lambda_{a}-\lambda_{b}\right)}{\sinh \left(\xi_{a}-\xi_{b}\right)} \cdot Z_{m}(\{\lambda\},\{\xi\}) \cdot \operatorname{det}_{m}\left[\rho\left(\lambda_{j}, \xi_{k}\right)\right]
\end{aligned}
$$

where $Z_{m}(\{\lambda\},\{\xi\})$ is the partition function of the 6 -vertex model with domain wall boundary conditions and $\rho(\lambda, \xi)=\left[-2 i \zeta \sinh \frac{\pi}{\zeta}\left(\lambda_{j}-\xi_{k}\right)\right]^{-1}$ is the inhomogeneous version of the density for the ground state (massless regime $\Delta=\cos \zeta, h=0$).
$\longrightarrow \quad(1)$ Exact computation for $\Delta=1 / 2$
(2) Asymptotic behaviour for $m \longrightarrow \infty$

Exact computation for $\Delta=1 / 2$

The determinant structure combined with the periodicity properties at $\Delta=1 / 2$ enable us to separate and compute the multiple integral :

$$
\begin{aligned}
\tau_{i n h}\left(m,\left\{\xi_{j}\right\}\right)=\frac{(-1)^{\frac{m^{2}-m}{2}}}{2^{m^{2}}} & \prod_{a>b}^{m} \frac{\sinh 3\left(\xi_{b}-\xi_{a}\right)}{\sinh \left(\xi_{b}-\xi_{a}\right)} \\
& \times \prod_{\substack{a, b=1 \\
a \neq b}}^{m} \frac{1}{\sinh \left(\xi_{a}-\xi_{b}\right)} \cdot \operatorname{det}_{m}\left(\frac{3 \sinh \frac{\xi_{j}-\xi_{k}}{2}}{\sinh \frac{3\left(\xi_{j}-\xi_{k}\right)}{2}}\right) .
\end{aligned}
$$

In the homogeneous limit:

$$
\tau(m)=\left(\frac{1}{2}\right)^{m^{2}} \prod_{k=0}^{m-1} \frac{(3 k+1)!}{(m+k)!}=\left(\frac{1}{2}\right)^{m^{2}} A_{m}
$$

with A_{m} - number of alternating sign matrices
\rightarrow first exact result for $\Delta \neq 0$ (and proof of a conjecture of Razumov and Stroganov)

Asymptotic Results: (saddle-point)

* massless case $(-1<\Delta=\cos \zeta \leqslant 1)$

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \frac{\log \tau(m)}{m^{2}} & =\log \frac{\pi}{\zeta}+\frac{1}{2} \int_{\mathbb{R}-i 0} \frac{d \omega}{\omega} \frac{\sinh \frac{\omega}{2}(\pi-\zeta) \cosh ^{2} \frac{\omega \zeta}{2}}{\sinh \frac{\pi \omega}{2} \sinh \frac{\omega \zeta}{2} \cosh \omega \zeta} \\
& = \begin{cases}-\frac{1}{2} \log 2 & \text { for } \Delta=0 \\
\frac{3}{2} \log 3-3 \log 2 & \text { for } \Delta=\frac{1}{2} \\
\log \left[\frac{\Gamma\left(\frac{3}{4}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{4}\right)}\right] & \text { for } \Delta=1 \text { (XXX chain) }\end{cases}
\end{aligned}
$$

* massive case $(\Delta=\cosh \zeta>1)$

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \frac{\log \tau(m)}{m^{2}} & =-\frac{\zeta}{2}-\sum_{n=1}^{\infty} \frac{e^{-n \zeta}}{n} \frac{\sinh (n \zeta)}{\cosh (2 n \zeta)} \\
& \underset{\zeta \rightarrow 0}{\longrightarrow} \log \left[\frac{\Gamma\left(\frac{3}{4}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{4}\right)}\right] \quad(X X X) \\
& \xrightarrow[\zeta \rightarrow+\infty]{\longrightarrow}-\infty
\end{aligned}
$$

Further analysis: the two-point function

Consider the correlation function of the product of two local operators at zero temperature :

$$
g_{12}=\left\langle\psi_{g}\right| \theta_{1} \theta_{2}\left|\psi_{g}\right\rangle
$$

Two main strategies to evaluate such a function:
(i) compute the action of local operators on the ground state $\theta_{1} \theta_{2}\left|\psi_{\mathrm{g}}\right\rangle=|\tilde{\psi}\rangle$ and then calculate the resulting scalar product:

$$
g_{12}=\left\langle\psi_{g} \mid \tilde{\psi}\right\rangle
$$

(ii) insert a sum over a complete set of eigenstates $\left|\psi_{i}\right\rangle$ to obtain a sum over one-point matrix elements (form factor type expansion) :

$$
g_{12}=\sum_{i}\left\langle\psi_{g}\right| \theta_{1}\left|\psi_{i}\right\rangle \cdot\left\langle\psi_{i}\right| \theta_{2}\left|\psi_{g}\right\rangle
$$

Analytical + Numerical methods for dynamical correlation functions in a field (Biegel, Karbach, Müller; Caux, Hagemans, Maillet)

Use (ii) form factor expansion over a complete set of intermediate eigenstates $\left|\psi_{i}\right\rangle$:

$$
\left\langle S_{j}^{\alpha}(t) S_{j^{\prime}}^{\beta}(0)\right\rangle=\sum_{i}\left\langle\psi_{g}\right| S_{j}^{\alpha}(t)\left|\psi_{i}\right\rangle \cdot\left\langle\psi_{i}\right| S_{j^{\prime}}^{\beta}(0)\left|\psi_{g}\right\rangle
$$

for a finite chain of length M even, and a ground state $\left|\psi_{g}\right\rangle$ depending on the magnetic field with a fixed number of reversed spins N, and $2 N \leq M$.

- each form factor $=$ explicit determinant of size N, depending on two sets of parameters solutions of Bethe equations and characterizing the states $\left\langle\psi_{\boldsymbol{g}}\right|$ and $\left|\psi_{i}\right\rangle$ respectively
- Numerics are then used to compute the determinants and the (finite) sum (control of the results via sum rules)
\hookrightarrow numerical result for the dynamical spin-spin correlation functions
\hookrightarrow successful comparison to neutron scattering experiments for the structure factor (Fourier transform of the dynamical correlation function)

$$
S^{\alpha \beta}(q, \omega)=\frac{1}{N} \sum_{j, j^{\prime}=1}^{N} e^{i q\left(j-j^{\prime}\right)} \int_{-\infty}^{\infty} d t e^{i \omega t}\left\langle S_{j}^{\alpha}(t) S_{j^{\prime}}^{\beta}(0)\right\rangle
$$

- Left: Bethe ansatz data computed for a chain of 500 sites
- Right: Experimental data for KCuF3 (D.A. Tennant et al)

Analytical resummations for the two-point function

$$
\left\langle\sigma_{1}^{z} \sigma_{m}^{z}\right\rangle=\phi_{m}\left\langle\psi_{g}\right|(A-D)\left(\xi_{1}\right) \cdot \underbrace{\prod_{i=2}^{m-1}(A+D)\left(\xi_{i}\right)}_{\text {propagator }(1 \rightarrow m)} \cdot(A-D)\left(\xi_{m}\right)\left|\psi_{g}\right\rangle
$$

Use (i): compute resummed action of the "propagator" from site 1 to m on an arbitrary state:

$$
\langle\psi| \prod_{a=1}^{m} t_{\kappa}\left(x_{a}\right)=\sum_{n=0}^{m}\left\langle\psi_{n}(\kappa)\right|
$$

with $t_{\kappa}(x)=(A+\kappa D)(x)$ twisted transfer matrix
\hookrightarrow partial resummation in the thermodynamic limit:

$$
\left\langle\sigma_{1}^{z} \sigma_{m}^{z}\right\rangle=\sum_{m+1 \text { terms }} \text { (multiple integrals) } \quad \text { (instead of } 2^{m} \text { terms) }
$$

\hookrightarrow master formula for the finite chain

Example

Generating function $\left\langle Q_{1, m}^{\kappa}\right\rangle$ for σ^{z} correlation functions

$$
\frac{1}{2}\left\langle\left(1-\sigma_{1}^{z}\right)\left(1-\sigma_{m+1}^{z}\right)\right\rangle=\left.\frac{\partial^{2}}{\partial \kappa^{2}}\left\langle\left(Q_{1, m+1}^{\kappa}-Q_{1, m}^{\kappa}-Q_{2, m+1}^{\kappa}+Q_{2, m}^{\kappa}\right)\right\rangle\right|_{\kappa=1}
$$

with

$$
\begin{aligned}
Q_{1, m}^{\kappa} & =\prod_{n=1}^{m}\left(\frac{1+\kappa}{2}+\frac{1-\kappa}{2} \cdot \sigma_{n}^{z}\right) \\
& =\prod_{a=1}^{m}(A+\kappa D)\left(\xi_{a}\right) \prod_{b=1}^{m}(A+D)^{-1}\left(\xi_{b}\right)
\end{aligned}
$$

\rightsquigarrow to compute:

$$
\left\langle Q_{1, m}^{\kappa}\right\rangle=\phi_{m}\left\langle\psi_{g}\right| \prod_{a=1}^{m} t_{\kappa}\left(\xi_{a}\right)\left|\psi_{g}\right\rangle \text { with } t_{\kappa}(x)=(A+\kappa D)(x)
$$

Master equation for σ^{z} correlation functions

Let the inhomogeneities $\{\xi\}$ be generic and the set $\{\lambda\}$ be an admissible off-diagonal solution of the Bethe equations (cf.Tarasov - Varchenko). Then there exists $\kappa_{0}>0$ such, that for $|\kappa|<\kappa_{0}$:

$$
\begin{aligned}
\left\langle Q_{1, m}^{\kappa}\right\rangle=\frac{1}{N!} \oint_{\Gamma\{\xi\} \cup\ulcorner\{\lambda\}} \prod_{j=1}^{N} \frac{d z_{j}}{2 \pi i} & \cdot \prod_{a, b=1}^{N} \sinh ^{2}\left(\lambda_{a}-z_{b}\right) \cdot \prod_{a=1}^{m} \frac{\tau_{\kappa}\left(\xi_{a} \mid\{z\}\right)}{\tau\left(\xi_{a} \mid\{\lambda\}\right)} \\
& \times \frac{\operatorname{det}_{N}\left(\frac{\partial \tau_{\kappa}\left(\lambda_{j} \mid\{z\}\right)}{\partial z_{k}}\right) \cdot \operatorname{det}_{N}\left(\frac{\partial \tau\left(z_{k} \mid\{\lambda\}\right)}{\partial \lambda_{j}}\right)}{\prod_{a=1}^{N} \mathcal{Y}_{\kappa}\left(z_{a} \mid\{z\}\right) \cdot \operatorname{det}_{N}\left(\frac{\partial \mathcal{Y}\left(\lambda_{k} \mid\{\lambda\}\right)}{\partial \lambda_{j}}\right)} .
\end{aligned}
$$

Notations:

$\tau_{\kappa}(\mu \mid\{\lambda\})=$ eigenvalue of the κ-twisted transfer matrix $t_{\kappa}(\mu)$ on the eigenstate $\left|\psi_{\kappa}\right\rangle=\prod_{k} B\left(\lambda_{k}\right)|0\rangle$, for $\{\lambda\}$ solution of the (twisted) Bethe equations: $\mathcal{Y}_{k}\left(\lambda_{j} \mid\{\lambda\}\right)=0, \quad j=1, \ldots, N$. ($\kappa=1 \rightarrow$ no subscript)

The integration contour is such that the only singularities of the integrand within the contour $\Gamma\{\xi\} \cup \Gamma\{\lambda\}$ which contribute to the integral are the points $\{\xi\}$ and $\{\lambda\}$.

2 ways to evaluate the integrals:

- compute the residues in the poles inside 「
\rightarrow representation of $\left\langle\sigma_{1}^{z} \sigma_{m+1}^{2}\right\rangle$ as sum of m multiple integrals (previous resummation obtained with approach (i))
- compute the residues in the poles outside Γ (within strips of width $i \pi)$
\rightarrow sum over (admissible) solutions of (twisted) Bethe equations
\rightarrow form factor expansion of $\left\langle\sigma_{1}^{z} \sigma_{m+1}^{z}\right\rangle$ (approach (ii))
\hookrightarrow link between the two approaches

Time-dependent master equation

$$
\begin{aligned}
&\left\langle Q_{1, m}^{\kappa}(t)\right\rangle=\frac{1}{N!} \oint_{\Gamma\left\{ \pm \frac{\eta}{2}\right\} \cup \Gamma\{\lambda\}} \prod_{j=1}^{N} \frac{d z_{j}}{2 \pi i} \cdot \prod_{b=1}^{N} e^{i t\left(E\left(z_{b}\right)-E\left(\lambda_{b}\right)\right)+i m\left(p\left(z_{b}\right)-p\left(\lambda_{b}\right)\right)} \\
& \times \prod_{a, b=1}^{N} \sinh ^{2}\left(\lambda_{a}-z_{b}\right) \cdot \frac{\operatorname{det}_{N}\left(\frac{\partial \tau_{\kappa}\left(\lambda_{j} \mid\{z\}\right)}{\partial z_{k}}\right) \cdot \operatorname{det}_{N}\left(\frac{\partial \tau\left(z_{k} \mid\{\lambda\}\right)}{\partial \lambda_{j}}\right)}{\prod_{a=1}^{N} \mathcal{Y}_{\kappa}\left(z_{a} \mid\{z\}\right) \cdot \operatorname{det}_{N}\left(\frac{\partial \mathcal{Y}\left(\lambda_{k} \mid\{\lambda\}\right)}{\partial \lambda_{j}}\right)}
\end{aligned}
$$

with

$$
\begin{aligned}
& E(z)=\frac{2 \sinh ^{2} \eta}{\sinh \left(z-\frac{\eta}{2}\right) \sinh \left(z+\frac{\eta}{2}\right)} \\
& p(\lambda)=i \log \left(\frac{\sinh \left(\lambda-\frac{\eta}{2}\right)}{\sinh \left(\lambda+\frac{\eta}{2}\right)}\right)
\end{aligned}
$$

Explicit results at $\Delta=\frac{1}{2}$

Generating function at $\Delta=\frac{1}{2}$
Partial resummation in the inhomogeneous case
\rightarrow multiple integrals can be separated and computed:

$$
\begin{array}{r}
\left\langle Q_{\kappa}(m)\right\rangle=\frac{3^{m}}{2^{m^{2}}} \prod_{a>b}^{m} \frac{\sinh 3\left(\xi_{a}-\xi_{b}\right)}{\sinh ^{3}\left(\xi_{a}-\xi_{b}\right)} \sum_{n=0}^{m} \kappa^{m-n} \sum_{\substack{\{\xi\}=\left\{\xi_{\gamma}\right\} \cup\left\{\xi_{\gamma_{-}}\right\} \\
\left|\gamma_{+}\right|=n}} \operatorname{det} \hat{\Phi}^{(n)} \\
\times \prod_{a \in \gamma_{+}} \prod_{b \in \gamma_{-}} \frac{\sinh \left(\xi_{b}-\xi_{a}-\frac{i \pi}{3}\right) \sinh \left(\xi_{a}-\xi_{b}\right)}{\sinh ^{2}\left(\xi_{b}-\xi_{a}+\frac{i \pi}{3}\right)},
\end{array}
$$

with
$\hat{\Phi}^{(n)}\left(\left\{\xi_{\gamma_{+}}\right\},\left\{\xi_{\gamma_{-}}\right\}\right)=\left(\begin{array}{c|c}\Phi\left(\xi_{j}-\xi_{k}\right) & \Phi\left(\xi_{j}-\xi_{k}-\frac{i \pi}{3}\right) \\ \hline \Phi\left(\xi_{j}-\xi_{k}+\frac{i \pi}{3}\right) & \Phi\left(\xi_{j}-\xi_{k}\right)\end{array}\right), \quad \Phi(x)=\frac{\sinh \frac{x}{2}}{\sinh \frac{3 x}{2}}$.
\rightarrow If the lattice distance m is not too large, the representations can be successfully used to compute $\left\langle Q_{\kappa}(m)\right\rangle$ explicitely.
First results for $P_{m}(\kappa)=2^{m^{2}}\left\langle Q_{\kappa}(m)\right\rangle$ up to $m=9$:
$P_{1}(\kappa)=1+\kappa$,
$P_{2}(\kappa)=2+12 \kappa+2 \kappa^{2}$,
$P_{3}(\kappa)=7+249 \kappa+249 \kappa^{2}+7 \kappa^{3}$,
$P_{4}(\kappa)=42+10004 \kappa+45444 \kappa^{2}+10004 \kappa^{3}+42 \kappa^{4}$
$P_{5}(\kappa)=429+738174 \kappa+16038613 \kappa^{2}+16038613 \kappa^{3}+738174 \kappa^{4}+429 \kappa^{5}$,
$P_{6}(\kappa)=7436+96289380 \kappa+11424474588 \kappa^{2}+45677933928 \kappa^{3}$
$+11424474588 \kappa^{4}+96289380 \kappa^{5}+7436 \kappa^{6}$.
\rightarrow Two-point functions $\left\langle\sigma_{1}^{z} \sigma_{m+1}^{z}\right\rangle$ at $\Delta=\frac{1}{2}$

m	$\left\langle\sigma_{1}^{z} \sigma_{m+1}^{z}\right\rangle$ Exact		$\left\langle\sigma_{1}^{z} \sigma_{m+1}^{z}\right\rangle$ Asympt.
1	-2^{-1}	-0.5000000000	-0.5805187860
2	$7 \cdot 2^{-6}$	0.1093750000	0.1135152692
3	$-401 \cdot 2^{-12}$	-0.0979003906	-0.0993588501
4	$184453 \cdot 2^{-22}$	0.0439770222	0.0440682654
5	$-95214949 \cdot 2^{-31}$	-0.0443379157	-0.0444087865
6	$1758750082939 \cdot 2^{-46}$	0.0249933420	0.0249365346
7	$-30283610739677093 \cdot 2^{-60}$	-0.0262668452	-0.0262404925
8	$5020218849740515343761 \cdot 2^{-78}$	0.0166105110	0.0165641239

and comparison with the values given by the asymptotic prediction:

$$
\left\langle\sigma_{1}^{z} \sigma_{m+1}^{z}\right\rangle=-\frac{1}{\pi(\pi-\zeta)} \frac{1}{m^{2}}+(-1)^{m} \frac{A_{z}}{m^{\frac{\pi}{\pi-\zeta}}}+\cdots
$$

with value of A_{z} conjecture by S . Lukyanov

Some other models

- Non periodic boundary conditions

Open XXZ chain (with diagonal boundary conditions):

$$
H=\sum_{m=1}^{M-1}\left\{\sigma_{m}^{\chi} \sigma_{m+1}^{\chi}+\sigma_{m}^{y} \sigma_{m+1}^{y}+\Delta\left(\sigma_{m}^{z} \sigma_{m+1}^{z}-1\right)\right\}+h_{-} \sigma_{1}^{z}+h_{+} \sigma_{M}^{z}
$$

no translation invariance \longrightarrow revisit solution of the inverse Problem
\hookrightarrow multiple integral formulas for elementary blocks, partial resummation for 2-point correlation functions Master equation ?

- Continuum field theory

Master equation valid for all models with the same R-matrix (depend only on commutation relations of the Yang-Baxter algebra)
\hookrightarrow density-density correlation functions of the quantum non-linear Schrödinger model (or one-dimensional Bose gas):

$$
H=\int_{0}^{L}\left(\partial_{x} \psi^{\dagger}(x) \partial_{x} \psi(x)+c \psi^{\dagger}(x) \psi^{\dagger}(x) \psi(x) \psi(x)-h \psi^{\dagger}(x) \psi(x)\right) d x
$$

Some open problems...

- Asymptotic behavior of correlation functions: challenging the conformal limit from the lattice models
- Continuum (Field theory) models (NLS, ShG,...) : \star Approach from the lattice \star Inverse problem for infinite dimensional representations * Link to Q operator and SOV methods
- Even more "sophisticated" models :
\star XYZ model
\star Hubbard: needs extended Yang-Baxter and ABA or FBA understanding

