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The Heisenberg spin-1/2 chain
Exact computations of correlation functions

The Heisenberg spin chain

Model for magnetism in solids (Heisenberg, 1928)
? Crystals with effective one-dimensional magnetic properties
? Can be tested via inelastic neutron scattering experiments

Archetype of quantum integrable models
? Spectrum resolution via Bethe ansatz (1931) and its developments
? Links to two-dimensional statistical mechanics (vertex models
generalizing Ising)

Very rich (non-commutative) algebraic structures
? Yang-Baxter algebras, R-matrices, Quantum groups
? They appear in different situations eventually far from magnetism
(Gauge and String theories and AdS/CFT correspondence)
? Link to combinatorics in special point (ice model)
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The Heisenberg spin-1/2 chain
Exact computations of correlation functions

The spin-1/2 XXZ Heisenberg chain

The XXZ spin-1/2 Heisenberg chain in a magnetic field is a quantum
interacting model defined on a one-dimensional lattice with M sites, with
Hamiltonian, H = H(0) − hSz ,

H(0) =
M∑

m=1

{
σx

mσ
x
m+1 + σy

mσ
y
m+1 + ∆(σz

mσ
z
m+1 − 1)

}
,

Sz =
1

2

M∑
m=1

σz
m, [H(0),Sz ] = 0.

Quantum space of states : H = ⊗M
m=1Hm, Hm ∼ C2 , dimH = 2M .

σx,y ,z
m are the local spin operators (in the spin- 1

2 representation) at site
m: they act as the corresponding Pauli matrices in the space Hm and as
the identity operator elsewhere.

+ periodic boundary conditions
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Correlation functions of Heisenberg chain

Free fermion point ∆ = 0: Lieb, Shultz, Mattis, Wu, McCoy, Sato,
Jimbo, Miwa, . . .

From 1984: Izergin, Korepin,... (first attempts using Bethe ansatz
for general ∆)

General ∆: multiple integral representations
? 1992-96 Jimbo and Miwa → from q-vertex op. and qKZ eq.
? 1999 Kitanine, Maillet, Terras → from Algebraic Bethe Ansatz

Several developments since 2000: Kitanine, Maillet, Slavnov, Terras;
Boos, Korepin, Smirnov; Boos, Jimbo, Miwa, Smirnov, Takeyama;
Göhmann, Klümper, Seel; Caux, Hagemans, Maillet . . .
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Exact computations of correlation functions

Correlation functions

〈 O 〉 =
trH

(
O e−H/kT

)
trH

(
e−H/kT

)
= 〈ψg | O |ψg 〉 at T = 0

where |ψg 〉 is the state with lowest eigenvalue.

Why is it so difficult? (Bethe ansatz already 75 years old...!)

Main problems to be solved to achieve this :

• Compute exact eigenstates and energy levels of the Hamiltonian
(Bethe ansatz)

• Obtain the action of local operators on the eigenstates: main
problem since eigenstates are highly non-local!

• Compute the resulting scalar products with the eigenstates
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Exact computations of correlation functions

The methods...

q-KZ and q-vertex operators :
? Valid (with some hypothesis) for infinite (and semi-infinite) chains,
zero magnetic field and zero temperature
? Elementary blocks of correlation functions (static) and form
factors (massive case)
? Multiple integrals and recently algebraic solutions of q-KZ

Bethe ansatz
? Valid for finite and infinite chains, with magnetic field and
temperature, and with impurities or with integrable boundaries
(open chain)
? Determinant representation of form factors (finite chain), multiple
integrals for correlation functions (infinite chain), master formula for
spin-spin correlation functions.
? Some results for a continuum model (NLS)
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A simple example: the emptiness formation probability

Algebraic Bethe ansatz and correlation functions

Compute 〈ψg |
∏

j σ
αj

j |ψg 〉 ?

1 Diagonalise the Hamiltonian using ABA
(Faddeev, Sklyanin, Takhtajan, 1979)

→ key point : Yang-Baxter algebra A(λ), B(λ), C (λ), D(λ)
→ eigenstates: B(λ1) . . .B(λn)|0〉

2 Act with local operators on eigenstates
→ problem: relation between B (creation) and σαj a priori very
complicated !
→ solve the quantum inverse problem (Kitanine, Maillet, V.T., 1999):

σ
αj

j = f
αj

j (A,B,C ,D) =
∏

(A,B,C ,D)
→ use Yang-Baxter commutation relations

3 Compute the resulting scalar products
(Slavnov; Kitanine, Maillet, V.T.)

4 Thermodynamic limit
→ elementary building blocks of correlation functions as multiple
integrals (2000)

5 Two-point function : further analysis. . . (since 2002)
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Elementary blocks in the thermodynamic limit
A simple example: the emptiness formation probability

Diagonalization of the Hamiltonian via ABA

σαn −→ monodromy matrix T (λ) =

(
A(λ) B(λ)
C (λ) D(λ)

)
[a]

with T (λ) ≡ Ta,1...M(λ) = LaM(λ− ξN) . . . La2(λ− ξ2)La1(λ− ξ1)

Lan(λ) =

(
sinh(λ+ ησz

n) sinh η σ−n
sinh η σ+

n sinh(λ− ησz
n)

)
[a]

a →auxiliary space ' C2

n →local quantum space
at site n

↪→ Yang-Baxter algebra: ◦ generators A, B, C , D

◦ commutation relations given by the R-matrix of the
model

Rab(λ, µ) Ta(λ)Tb(µ) = Tb(µ)Ta(λ) Rab(λ, µ)

→ commuting conserved charges: t(λ) = A(λ) + D(λ) [t(λ), t(µ)] = 0

H = 2 sinh η ∂
∂λ log t(λ)

∣∣
λ= η

2

+ c for all ξj = 0

→ construction of the space of states by action of B (creation) and C (annihilation)
on a reference state |0〉 ≡ |↑↑ . . . ↑〉
eigenstates : |ψ〉 =

∏
k B(λk)|0〉 with {λk} solution of the Bethe equations.
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Action of local operators on eigenstates

Solution of the quantum inverse scattering problem (σαn←−T (λ))

σ−n =
n−1∏
k=1

t(ξk) · B(ξn) ·
n∏

k=1

t−1(ξk)

σ+
n =

n−1∏
k=1

t(ξk) · C (ξn) ·
n∏

k=1

t−1(ξk)

σz
n =

n−1∏
k=1

t(ξk) · (A− D)(ξn) ·
n∏

k=1

t−1(ξk)

→ use the Yang-Baxter commutation relations for A,B,C ,D to get
the action on arbitrary states:

〈0|
N∏

k=1

C (λk) ·
m∏

j=1

Tεj ,ε′j
(λN+j) =

∑
P⊂{λ}

ΩP({λ}, {εj , ε′j}) 〈0|
∏

b∈P
C (λb)

→ correlation functions = sums over scalar products
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A simple example: the emptiness formation probability

Computation of scalar products

Scalar product

〈0|
N∏

l=1

C (µl)︸ ︷︷ ︸
arbitrary state

·
N∏

k=1

B(λk)|0〉︸ ︷︷ ︸
eigenstate

=
det U({µl}, {λk})
det V ({µl}, {λk})

,

with Uab = ∂λaτ(µb, {λk}), Vab =
1

sinh(µb − λa)
, 1 6 a, b 6 N,

where τ(µb, {λk}) is the eigenvalue of the transfer matrix t(µb).

−→ “m-point” elementary blocks for the correlation functions in the
finite chain:

〈ψg |
m∏

j=1

E
ε′j ,εj
j |ψg 〉 =

∑∑
. . .
∑

︸ ︷︷ ︸
m sums

Ωm({λ}, {εj , ε′j}) detm M̃

with (E ε
′,ε)lk = δl,ε′δk,ε
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A simple example: the emptiness formation probability

Matrix elements of local operators

For example :

〈0|
N∏

j=1

C (µj) σ
z
n

N∏
k=1

B(λk) |0〉

= 〈0|
N∏

j=1

C (µj)
n−1∏
k=1

t(ξk) ·
(
A− D

)
(ξn) ·

n∏
k=1

t−1(ξk)
N∏

k=1

B(λk) |0〉

Here the sets {λk} and {µj} are both solutions of Bethe equations −→

〈0|
N∏

j=1

C (µj) σ
z
n

N∏
k=1

B(λk) |0〉 = Φn 〈0|
N∏

j=1

C (µj)
(
A− D

)
(ξn)

N∏
k=1

B(λk) |0〉

= Φn 〈ψ̃|
N∏

k=1

B(λk) |0〉

 determinant representations of matrix elements (using the scalar
product formula)
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Elementary blocks in the thermodynamic limit

Sums become integrals:

1

M

N∑
j=1

f (λj) −→
M→∞

∫
Ch

f (λ)ρ(λ)dλ
{λj}→ solution of Bethe eq. for the ground state
ρ(λ)→ density of the ground state

solution of a linear integral eq.

−→ multiple integral representation for the “m-point” elementary
building blocks of the correlation functions

〈ψg |
m∏

j=1

E
ε′j ,εj
j |ψg 〉 =

∫
Ch

dmλ Ωm({λk}, {εj , ε′j}) det
m

Sh({λk})

where Ωm({λk}, {εj , ε′j}) is purely algebraic and Sh({λk}), Ch depend on
the regime and on the magnetic field h.

−→ Proof of the results and conjectures of Jimbo, Miwa et al. +
extension to non-zero magnetic field; more recently, extension to time
dependent (KMST) and non zero temperature (Göhmann, Klümper, Seel)
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What about this result ?

→ A priori, the problem is solved:

expression of all elementary blocks 〈ψg |E ε
′
1,ε1

1 . . .E
ε′m,εm
m |ψg 〉

any correlation function =
P

(elementary blocks)

→ From a practical point of view, there are two main problems:

(1) physical correlation function = HUGE sum of elementary blocks at
large distances

Example: two-point function

〈ψg |σz
1 σ

z
m|ψg 〉 ≡ 〈ψg |(E 11

1 − E 22
1 )

m−1Y
j=2

(E 11
j + E 22

j )

| {z }
propagator

(E 11
m − E 22

m )|ψg 〉

=
X

2m terms

(elementary blocks) ∼
m→∞

?

 re-summation ?
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(2) each block has a complicated expression

Example: emptiness formation probability for h = 0 in the massless
regime (−1 < ∆ = cosh ζ < 1)

τ(m) ≡ 〈ψg |
m∏

k=1

1− σz
k

2
|ψg 〉

= (−1)m
(
− π

ζ

)m(m−1)
2

∞∫
−∞

dmλ

2π

m∏
a>b

sinh π
ζ (λa − λb)

sinh(λa − λb − iζ)

×
m∏

j=1

sinhj−1(λj − iζ/2) sinhm−j(λj + iζ/2)

coshm π
ζ λj

 dependence on m ?

(1)+(2) ⇒ need further analysis!
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A simple example: the emptiness formation probability

Integral representation as a single elementary block but previous
expression not symmetric

−→ symmetrisation of the integrand:

τ(m) = lim
ξ1,...ξm→− iζ

2

1

m!

∞∫
−∞

dmλ

m∏
a,b=1

1

sinh(λa − λb − iζ)

×
m∏

a<b

sinh(λa − λb)

sinh(ξa − ξb)
· Zm({λ}, {ξ}) · detm[ρ(λj , ξk)]

where Zm({λ}, {ξ}) is the partition function of the 6-vertex model with
domain wall boundary conditions and ρ(λ, ξ) = [−2iζ sinh π

ζ (λj − ξk)]−1

is the inhomogeneous version of the density for the ground state
(massless regime ∆ = cos ζ, h = 0).

−→ (1) Exact computation for ∆ = 1/2
(2) Asymptotic behaviour for m −→∞

V. Terras Algebraic Bethe ansatz approach to correlation functions
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Elementary blocks in the thermodynamic limit
A simple example: the emptiness formation probability

Exact computation for ∆ = 1/2

The determinant structure combined with the periodicity properties at
∆ = 1/2 enable us to separate and compute the multiple integral :

τinh(m, {ξj}) =
(−1)

m2−m
2

2m2

m∏
a>b

sinh 3(ξb − ξa)

sinh(ξb − ξa)

×
m∏

a,b=1
a 6=b

1

sinh(ξa − ξb)
· detm

(
3 sinh

ξj−ξk

2

sinh
3(ξj−ξk )

2

)
.

In the homogeneous limit:

τ(m) =

(
1

2

)m2 m−1∏
k=0

(3k + 1)!

(m + k)!
=

(
1

2

)m2

Am

with Am - number of alternating sign matrices

→ first exact result for ∆ 6= 0 (and proof of a conjecture of Razumov
and Stroganov)
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Elementary blocks in the thermodynamic limit
A simple example: the emptiness formation probability

Asymptotic Results: (saddle-point)

? massless case (−1 < ∆ = cos ζ 6 1)

lim
m→∞

log τ(m)

m2
= log

π

ζ
+

1

2

∫
R−i0

dω

ω

sinh ω
2 (π − ζ) cosh2 ωζ

2

sinh πω
2 sinh ωζ

2 coshωζ

=


− 1

2 log 2 for ∆ = 0

3
2 log 3− 3 log 2 for ∆ = 1

2

log
[

Γ( 3
4 ) Γ( 1

2 )

Γ( 1
4 )

]
for ∆ = 1 (XXX chain)

? massive case (∆ = cosh ζ > 1)

lim
m→∞

log τ(m)

m2
= −ζ

2
−
∞∑

n=1

e−nζ

n

sinh(nζ)

cosh(2nζ)

−→
ζ→0

log
[Γ( 3

4 ) Γ( 1
2 )

Γ( 1
4 )

]
(XXX)

−→
ζ→+∞

−∞ (Ising)
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Further analysis: the two-point function

Consider the correlation function of the product of two local operators at
zero temperature :

g12 = 〈ψg |θ1θ2|ψg 〉

Two main strategies to evaluate such a function:

(i) compute the action of local operators on the ground state
θ1θ2|ψg 〉 = |ψ̃〉 and then calculate the resulting scalar product:

g12 = 〈ψg |ψ̃〉

(ii) insert a sum over a complete set of eigenstates |ψi 〉 to obtain a sum
over one-point matrix elements (form factor type expansion) :

g12 =
∑

i

〈ψg |θ1|ψi 〉 · 〈ψi |θ2|ψg 〉

V. Terras Algebraic Bethe ansatz approach to correlation functions
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Analytical + Numerical methods for dynamical correlation
functions in a field (Biegel, Karbach, Müller; Caux, Hagemans, Maillet)

Use (ii) form factor expansion over a complete set of intermediate
eigenstates |ψi 〉:

〈Sαj (t) Sβj′ (0)〉 =
∑

i

〈ψg |Sαj (t)|ψi 〉 · 〈ψi |Sβj′ (0)|ψg 〉

for a finite chain of length M even, and a ground state |ψg 〉 depending on
the magnetic field with a fixed number of reversed spins N, and 2N ≤ M.

each form factor = explicit determinant of size N, depending on two
sets of parameters solutions of Bethe equations and characterizing
the states 〈ψg | and |ψi 〉 respectively

Numerics are then used to compute the determinants and the
(finite) sum (control of the results via sum rules)

↪→ numerical result for the dynamical spin-spin correlation
functions
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↪→ successful comparison to neutron scattering experiments for the
structure factor (Fourier transform of the dynamical correlation function)

Sαβ(q, ω) =
1

N

N∑
j,j′=1

e iq(j−j′)

∫ ∞
−∞

dte iωt〈Sαj (t)Sβj′ (0)〉

Left: Bethe ansatz data computed for a chain of 500 sites

Right: Experimental data for KCuF3 (D.A. Tennant et al)
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Analytical resummations for the two-point function

〈σz
1 σ

z
m〉 = φm 〈ψg | (A− D)(ξ1) ·

m−1∏
i=2

(A + D)(ξi )︸ ︷︷ ︸
propagator (1→m)

·(A− D)(ξm) |ψg 〉

Use (i): compute resummed action of the “propagator” from site 1 to m
on an arbitrary state:

〈ψ|
m∏

a=1

tκ(xa) =
m∑

n=0

〈ψn(κ)|

with tκ(x) = (A + κD)(x) twisted transfer matrix

↪→ partial resummation in the thermodynamic limit:

〈σz
1 σ

z
m〉 =

∑
m+1 terms

(multiple integrals) (instead of 2m terms)

↪→ master formula for the finite chain
V. Terras Algebraic Bethe ansatz approach to correlation functions
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Example

Generating function 〈Qκ
1,m〉 for σz correlation functions

1

2
〈(1− σz

1)(1− σz
m+1)〉 =

∂2

∂κ2
〈
`
Qκ

1,m+1 − Qκ
1,m − Qκ

2,m+1 + Qκ
2,m

´
〉
˛̨̨̨
κ=1

with

Qκ
1,m =

mY
n=1

„
1 + κ

2
+

1− κ
2
· σz

n

«

=
mY

a=1

(A + κD) (ξa)
mY

b=1

(A + D)−1 (ξb)

 to compute:

〈Qκ
1,m〉 = φm 〈ψg |

m∏
a=1

tκ(ξa)|ψg 〉 with tκ(x) = (A + κD)(x)
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Master equation for σz correlation functions

Let the inhomogeneities {ξ} be generic and the set {λ} be an admissible
off-diagonal solution of the Bethe equations (cf.Tarasov - Varchenko).
Then there exists κ0 > 0 such, that for |κ| < κ0:

〈Qκ
1,m〉 =

1

N!

∮
Γ{ξ}∪Γ{λ}

N∏
j=1

dzj

2πi
·

N∏
a,b=1

sinh2(λa − zb) ·
m∏

a=1

τκ(ξa|{z})
τ(ξa|{λ})

×
detN

(
∂τκ(λj |{z})

∂zk

)
· detN

(
∂τ(zk |{λ})

∂λj

)
N∏

a=1
Yκ(za|{z}) · detN

(
∂Y(λk |{λ})

∂λj

) .

Notations:
τκ(µ|{λ}) = eigenvalue of the κ-twisted transfer matrix tκ(µ)
on the eigenstate |ψκ〉 =

∏
k B(λk)|0〉, for {λ} solution of

the (twisted) Bethe equations : Yκ(λj |{λ}) = 0, j = 1, . . . ,N.
(κ = 1→ no subscript)

V. Terras Algebraic Bethe ansatz approach to correlation functions
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The integration contour is such that the only singularities of the
integrand within the contour Γ{ξ} ∪ Γ{λ} which contribute to the
integral are the points {ξ} and {λ}.

2 ways to evaluate the integrals:

compute the residues in the poles inside Γ

→ representation of 〈σz
1σ

z
m+1〉 as sum of m multiple integrals (previous

resummation obtained with approach (i) )

compute the residues in the poles outside Γ (within strips of width
iπ)

→ sum over (admissible) solutions of (twisted) Bethe equations
→ form factor expansion of 〈σz

1σ
z
m+1〉 (approach (ii))

↪→ link between the two approaches

V. Terras Algebraic Bethe ansatz approach to correlation functions
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Time-dependent master equation

〈Qκ
1,m(t)〉 =

1

N!

∮
Γ{± η2 }∪Γ{λ}

N∏
j=1

dzj

2πi
·

N∏
b=1

e it
(
E(zb)−E(λb)

)
+im
(
p(zb)−p(λb)

)

×
N∏

a,b=1

sinh2(λa − zb) ·
detN

(
∂τκ(λj |{z})

∂zk

)
· detN

(
∂τ(zk |{λ})

∂λj

)
N∏

a=1
Yκ(za|{z}) · detN

(
∂Y(λk |{λ})

∂λj

)
with

E (z) =
2 sinh2 η

sinh(z − η
2 ) sinh(z + η

2 )

p(λ) = i log

(
sinh(λ− η

2 )

sinh(λ+ η
2 )

)
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Explicit results at ∆ = 1
2

Generating function at ∆ = 1
2

Partial resummation in the inhomogeneous case
→ multiple integrals can be separated and computed:

〈Qκ(m)〉 =
3m

2m2

m∏
a>b

sinh 3(ξa − ξb)

sinh3(ξa − ξb)

m∑
n=0

κm−n
∑

{ξ}={ξγ+}∪{ξγ−}
|γ+|=n

det
m

Φ̂(n)

×
∏

a∈γ+

∏
b∈γ−

sinh(ξb − ξa − iπ
3 ) sinh(ξa − ξb)

sinh2(ξb − ξa + iπ
3 )

,

with
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→ If the lattice distance m is not too large, the representations can be
successfully used to compute 〈Qκ(m)〉 explicitely.

First results for Pm(κ) = 2m2〈Qκ(m)〉 up to m = 9:

P1(κ) = 1 + κ,

P2(κ) = 2 + 12κ+ 2κ2,

P3(κ) = 7 + 249κ+ 249κ2 + 7κ3,

P4(κ) = 42 + 10004κ+ 45444κ2 + 10004κ3 + 42κ4

P5(κ) = 429 + 738174κ+ 16038613κ2 + 16038613κ3 + 738174κ4 + 429κ5,

P6(κ) = 7436 + 96289380κ+ 11424474588κ2 + 45677933928κ3

+ 11424474588κ4 + 96289380κ5 + 7436κ6.
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→ Two-point functions 〈σz
1σ

z
m+1〉 at ∆ = 1

2

m 〈σz
1σ

z
m+1〉 Exact 〈σz

1σ
z
m+1〉 Asympt.

1 −2−1 -0.5000000000 -0.5805187860
2 7 · 2−6 0.1093750000 0.1135152692
3 −401 · 2−12 -0.0979003906 -0.0993588501
4 184453 · 2−22 0.0439770222 0.0440682654
5 −95214949 · 2−31 -0.0443379157 -0.0444087865
6 1758750082939 · 2−46 0.0249933420 0.0249365346
7 −30283610739677093 · 2−60 -0.0262668452 -0.0262404925
8 5020218849740515343761 · 2−78 0.0166105110 0.0165641239

and comparison with the values given by the asymptotic prediction:

〈σz
1σ

z
m+1〉 = − 1

π(π − ζ)

1

m2
+ (−1)m Az

m
π
π−ζ

+ · · ·

with value of Az conjecture by S. Lukyanov
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Some other models

Non periodic boundary conditions
Open XXZ chain (with diagonal boundary conditions):

H =
M−1∑
m=1

{
σx

mσ
x
m+1 + σy

mσ
y
m+1 + ∆(σz

mσ
z
m+1 − 1)

}
+ h−σ

z
1 + h+σ

z
M

no translation invariance −→ revisit solution of the inverse Problem

↪→ multiple integral formulas for elementary blocks, partial resummation
for 2-point correlation functions
Master equation ?

Continuum field theory
Master equation valid for all models with the same R-matrix
(depend only on commutation relations of the Yang-Baxter algebra)

↪→ density-density correlation functions of the
quantum non-linear Schrödinger model (or one-dimensional Bose gas):

H =

Z L

0

“
∂xψ

†(x) ∂xψ(x) + c ψ†(x)ψ†(x)ψ(x)ψ(x)− h ψ†(x)ψ(x)
”

dx
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Some open problems...

Asymptotic behavior of correlation functions: challenging the
conformal limit from the lattice models

Continuum (Field theory) models (NLS, ShG,...) :
? Approach from the lattice
? Inverse problem for infinite dimensional representations
? Link to Q operator and SOV methods

Even more ”sophisticated” models :
? XYZ model
? Hubbard : needs extended Yang-Baxter and ABA or FBA
understanding
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