Combinatorics of Bethe ansatz and fusion products

Rinat Kedem

University of Illinois Urbana-Champaign

La londe les maures, October 2007

Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007

- A strange identity
- Various conjectures
- The Kirillov-Reshetikhin conjecture
- 4 HKOTY conjecture
- **5** The Feigin-Loktev conjecture
- 6 Proof of HKOTY conjecture

Rinat Kedem (UIUC)

Binomial coefficients

• The binomial coefficient $(m \ge 0)$

$$\binom{m+p}{m} = \frac{(p+m)(p+m-1)\cdots(p+1)}{m!}$$

is defined for any $p \in \mathbb{Z}$.

- If $p \ge 0$, the binomial coefficient counts the number of ways of choosing m distinct elements out of p+1 choices.
- If p < 0, there is an identity,

$$\binom{m+p}{m} = (-1)^m \binom{-p-1}{m}.$$

Can be negative.

Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007

Strange identity

ullet For choice of non-negative integers $n_i, m_i \ (i>0)$ and l, define

$$p_i = \sum_{i} \min(i, j)(n_j - 2m_j).$$

There is an identity

$$\sum_{m_i \ge 0} \prod_i \binom{m_i + p_i}{m_i} = \sum_{m_i \ge 0: p_i \ge 0} \prod_i \binom{m_i + p_i}{m_i}.$$

The sum is taken over all m_i such that $0 \le l = \sum_i i(n_i - 2m_i)$.

- Nontrivial combinatorial identity!
- There is such an identity for any simple Lie algebra g.
- Right hand side is a **combinatorial object**: Each term in the sum over m_i :

$$\prod_{i} \binom{m_i + p_i}{m_i}, \quad p_i \ge 0$$

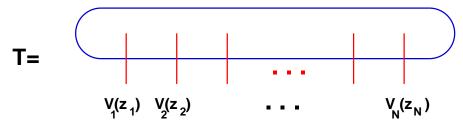
counts the number of ways to choose m_i distinct integers from the interval $[0, p_i]$ for each $i \ge 1$.

Rinat Kedem (UIUC)

Proof of KR conjecture

Completeness of Bethe ansatz states

• The inhomogeneous Heisenberg spin chain transfer matrix:



($V_i(z_i)$: irreducible reps of the Yangian $Y(\mathfrak{sl}_2)$; n_j =number of j+1-dimensional reps).

The Hilbert space is

$$\mathcal{H}_{\mathbf{n}} = \underset{i=1}{\overset{N}{\otimes}} V_i(z_i) \underset{\mathfrak{sl}_2-\text{mod }l>0}{\simeq} \underset{l>0}{\oplus} V(l)^{\oplus M_{l;\mathbf{n}}}$$

• Completeness hypothesis: There are as many Bethe vectors as the dimension of (\mathfrak{sl}_2 -highest weight vectors in) $\mathcal{H}_{\mathbf{n}}$.

Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007

Completeness conjecture

• Hilbert space:

$$\mathcal{H}_{\mathbf{n}} \simeq \bigoplus_{l>0} V(l)^{\oplus M_{l;\mathbf{n}}}$$

• Solutions to Bethe equations are parametrized by Bethe integers: Given $M = (\sum_i i n_i - l)/2$ choose any partition of $M = \sum_i i m_i$. Pick m_i distinct integers in the interval $[0, p_i]$.

$$p_i = \sum_{j} \min(i, j)(n_j - 2m_j)$$

• Completeness conjecture:

$$M_{l,\mathbf{n}} = \sum_{\substack{m_i: \sum_i i(n_i - 2m_i) = l \\ n_i \ge 0}} \prod_i \binom{m_i + p_i}{m_i}$$

• This conjecture was made by Kirillov-Reshetikhin; Proved.

- The left hand side (unrestricted sum) is a solution to a **recursion** relation. It is an alternating sum.
- Let $\mathfrak{g} = \mathfrak{sl}_2$ and V(i) its i+1-dimensional irreducible representation.

Theorem (Kirillov)

The LHS is equal to the dimension of the space of \mathfrak{sl}_2 -linear homomorphisms:

$$\sum_{\substack{m_i \\ \sum_i i(n_i - 2m_i) = l}} \binom{m_i + p_i}{p_i} = \dim \operatorname{Hom}_{\mathfrak{sl}_2} \left(\bigotimes_{i \ge 1} \left(V(i) \right)^{\otimes n_i}, V(l) \right).$$

• HKOTY showed that this follows from the following interesting fact: The characters $Q_i = \operatorname{ch} V(i)$ of the irreducible representations of \mathfrak{sl}_2 satisfy the Q-system: (Kirillov-Resthikhin)

$$Q_{m+1} = \frac{Q_m^2 - 1}{Q_{m-1}}, \qquad Q_0 = 1, \qquad Q_1 = t.$$

(aka Chebyshev polynomials).

Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007

Aside: Discrete Hirota

For A_n , the characters $Q_{m,\alpha}$ of the irreducible module with highest weights $m\omega_{\alpha}$ satisfy

$$Q_{m+1,\alpha}Q_{m-1,\alpha} + Q_{m,i+\alpha}Q_{m,i-\alpha} = Q_{m,\alpha}^2$$

which is the combinatorial limit of the fusion relation for transfer matrices

$$T_{m+1,\alpha}(u)T_{m-1,\alpha}(u) + T_{m,\alpha+1}(u)T_{m,\alpha-1}(u) = T_{m,\alpha}(u+1)T_{m,\alpha}(u-1).$$

 $T_{m,\alpha}(u)$: Transfer matrix with the auxiliary space a Yangian module with \mathfrak{g} -highest weight $m\omega_{\alpha}$ and spectral parameter u.

Define: $\tau_i(l,m) = T_{i,l+m}(l-m-i)$. Then:

$$\tau_i(l+1,m)\tau_i(l,m+1) + \tau_{i+1}(l+1,m)\tau_{i-1}(l,m+1) = \tau_i(l,m)\tau_i(l+1,m+1).$$

The various conjectures

- The Kirillov-Reshetikhin conjecture:
 - **(KR1) Combinatorial version**: The Bethe equations (with String hypothesis) for inhomogeneous, generalized Heisenberg spin chain give a complete set of solutions for the eigenvectors of the Hamiltonian.
 - (KR2) Representation theoretical version: The Q-system is satisfied by the characters of KR-modules for any Lie algebra g. PROVED
- The HKOTY conjecture: (KR1)=(KR2).
- **(FL)**: The Feigin-Loktev conjecture:

 The dimension of the fusion (graded tensor) product of localized g[t]-modules is independent of the localization parameters.

Theorem: [Ardonne-Kedem, 2007]: $(KR1) \Longrightarrow (FL)$ (for the fusion product of KR-modules).

Today: How to prove HKOTY?

Rinat Kedem (UIUC)

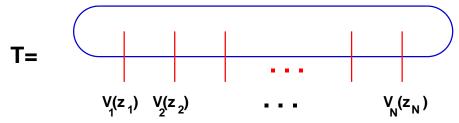
Proof of KR conjecture

La londe les maures, October 2007

0 / 2

KR conjecture: Version 1 (g simply-laced)

• Kirillov and Reshetikhin (1989): For any g define generalized, inhomogeneous Heisenberg spin chain:



 $V_i(z_i)$: irreducible KR-reps of the Yangian $Y(\mathfrak{g})$; Specified by $\mathbf{n}=\{n_{\alpha,i}\}_{1<\alpha< r;i\in\mathbb{N}}$

Hilbert space

$$\mathcal{H}_{\mathbf{n}} = \underset{i}{\otimes} V_i(z_i) \simeq \underset{\lambda}{\cong} V(\lambda)^{\oplus M_{\lambda;\mathbf{n}}}$$

• KR: The number of Bethe states is the number of ways to pick $m_{\alpha,i}$ distinct integers from the interval $[0, p_{\alpha,i}]$

$$p_{\alpha,i} = \sum_{j} \min(i,j) n_{\alpha,j} - \sum_{j,\beta} C_{\alpha,\beta} \min(i,j) m_{\beta,j}$$

such that for fixed $\lambda = \sum_{\alpha} l_{\alpha} \omega_{\alpha}$

$$q_{lpha}:=l_{lpha}+\sum_{i,eta}C_{lpha,eta}im_{eta,i}-\sum_{i}in_{lpha,i}=0.$$

 Completeness conjecture (KR1): The Bethe ansatz gives a complete set of solutions:

$$M_{\lambda;\mathbf{n}} = \sum_{\substack{m_{\alpha,i} \\ p_{\alpha,i} \ge 0, q_{\alpha} = 0}} \prod_{\alpha,i} \binom{m_{\alpha,i} + p_{\alpha,i}}{m_{\alpha,i}}.$$

where

$$\otimes V_i(z_i) \simeq \underset{\mathfrak{g}}{\hookrightarrow} V(\lambda)^{\oplus M_{\lambda;\mathbf{n}}}$$

Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007

11 / 0

The Q-system (Kirillov-Reshetikhin 89)

• Define the family $\{Q_{\alpha,i}: 1 \leq \alpha \leq \operatorname{rank}(\mathfrak{g}), i \in \mathbb{Z}_+\}$ by the recursion relation

$$Q_{\alpha,i+1} = \frac{Q_{\alpha,i}^2 - \prod_{\beta \neq \alpha} Q_{\beta,i}^{|C_{\alpha,\beta}|}}{Q_{\alpha,i-1}}, \ Q_{\alpha,0} = 1, \ Q_{\alpha,1} = t_{\alpha}.$$

(g simply-laced)

Theorem (Nakajima, Hernandez)

(Kirillov-Reshetikhin conjecture, version 2) The characters of KR-modules for any $\mathfrak g$ satisfy the Q-system.

• Corollary: $Q_{\alpha,i}$ is a polynomial in t_{β} !

Theorem (HKOTY)

The Q-system theorem implies

$$N_{\lambda;\mathbf{n}} := \sum_{\substack{m_{\alpha,i} \\ q_{\alpha}=0}} \prod_{\alpha,i} {m_{\alpha,i} + p_{\alpha,i} \choose m_{\alpha,i}} = \dim \operatorname{Hom}_{\mathfrak{g}} (\otimes V_i, V(\lambda))$$

Rinat Kedem (UIUC)

Proof of KR conjecture

HKOTY conjecture

HKOTY conjectured that

$$\sum_{m_{\alpha,i}} \prod_{\alpha,i} \binom{m_{\alpha,i} + p_{\alpha,i}}{m_{\alpha,i}} = N_{\lambda;\mathbf{n}} = M_{\lambda;\mathbf{n}} = \sum_{\substack{m_{\alpha,i} \\ p_{\alpha,i} \ge 0}} \prod_{\alpha,i} \binom{m_{\alpha,i} + p_{\alpha,i}}{m_{\alpha,i}}.$$

(both sums restricted to $q_{\alpha} = 0$)

- It is true in the cases where (KR1) was proved (very indirect argument, only proved in special cases).
- We need to prove this to have completeness of Bethe states.
- We also need this to prove the Feigin Loktev conjectures...

Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007

10 / 0

Feigin-Loktev Fusion products

- Let $\mathfrak{g}=$ Lie algebra $\mathfrak{g}[t]=\mathfrak{g}\otimes \mathbb{C}[t]$ the Lie algebra of polynomials with coefficients in \mathfrak{g} . The generators of $\mathfrak{g}[t]$ are $x[n]:=x\otimes t^n$ with $x\in\mathfrak{g}$.
- V= a finite-dimensional $\mathfrak{g}[t]$ -module. Define V(z) $(z\in\mathbb{C}^*)$: the module "localized at z":

$$x \otimes t^n v_z = x \otimes (t_z + z)^n v_z, \qquad v_z \in V(z),$$

where $x \otimes t_z^n$ acts on v_z in the same way that x[n] acts on $v \in V$.

- Example: $\mathfrak{g}=\mathfrak{sl}_2$ and V the irreducible j+1-dimensional rep. V(z)= the evaluation module at z: $x\otimes t^nv=z^nxv$.
- Assume that V is a $\mathfrak{g}[t]$ -module, cyclic with cyclic vector v:

$$V = U(\mathfrak{g}[t])v$$

ullet Any $\mathfrak{g}[t]$ -module is also a \mathfrak{g} module and $V(z)\simeq V$ as \mathfrak{g} -modules.

Lemma

Let $\{z_1,...,z_N\}$ be distinct complex numbers and $\{V_1(z_1),...,V_N(z_N)\}$ be $\mathfrak{g}[t]$ modules localized at z_i (finite-dimensional, cyclic with cyclic vectors v_i). Then as \mathfrak{g} -modules,

$$V_1 \otimes \cdots \otimes V_N \simeq U(\mathfrak{g}[t]) (v_1 \otimes \cdots \otimes v_N)$$

This is also a finite-dimensional, cyclic $\mathfrak{g}[t]$ -module, with cyclic vector $v_1 \otimes \cdots \otimes v_n$.

Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007

Grading

- The algebra $U(\mathfrak{g}[t])$ is graded by degree in t. $U^{\leq n}=$ polynomials in generators of $\mathfrak{g}[t]$ with total degree $\leq n$ in t.
- Let $V = U(\mathfrak{g}[t])v$
- V inherits a filtration \mathcal{F} from the action $U(\mathfrak{g}[t])$:

$$\mathfrak{F}[n] = U^{\leq n}v, \qquad \mathbb{C}v \subset \mathfrak{F}[0] \subset \cdots \subset \mathfrak{F}[n] \subset \mathfrak{F}[n+1] \subset \cdots \subset V$$

• Define the graded module:

$$\overline{V} = \operatorname{Gr} \, \mathfrak{F} = \underset{n}{\oplus} \mathfrak{F}[n]/\mathfrak{F}[n-1].$$

The graded components are \mathfrak{g} -modules.

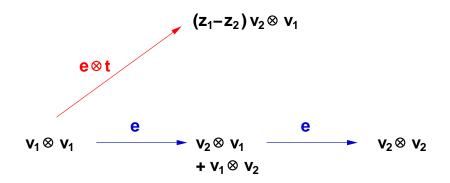
Definition (The Feigin-Loktev fusion product)

$$V_1 \star \cdots \star V_N(z_1,...,z_N) = \overline{\bigotimes_i V_i(z_i)}$$

with cyclic vector $\otimes v_i$.

Example 1:

Let V=2-dim representation of \mathfrak{sl}_2 with basis v_1 , v_2 where v_1 is the highest weight vector. Then $V\star V(z_1,z_2)$ has this structure:



$$V \star V \simeq V(2) \oplus V(0).$$

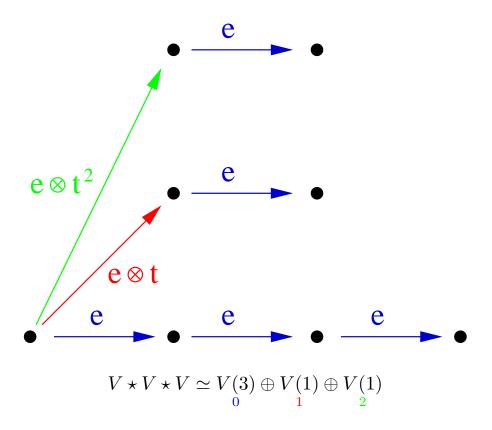
Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007

17 / 21

Example 2:



The Feigin-Loktev conjectures

• The fusion product is graded:

$$V_1 \star \cdots \star V_N(z_1, ..., z_N) = \overline{\bigotimes_{i} V_i(z_i)} \simeq \bigoplus_{i>0} \bigoplus_{\lambda} V(\lambda)^{\bigoplus M_{\lambda;\mathbf{n}}[i]}$$

Define the generating function for graded multiplicities

$$M_{\lambda;\mathbf{n}}(q) = \sum_{i} q^{i} M_{\lambda;\mathbf{n}}[i]$$

- The conjectures: [Feigin, Loktev 1999]
 - **1** $M_{\lambda;\mathbf{n}}$ are independent of the localization parameters z_i .
 - ② $M_{\lambda;n}$ are generalized Kostka polynomials. [Kirillov, Schilling, Shimozono, HKOTY]

Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007

The status of the conjectures:

- FJKLM 2001 (2) is true for \mathfrak{sl}_2 -modules.
- Kedem (2004): (1) is true for tensor products of symmetric power representations of \mathfrak{sl}_n .
- Chari-Loktev (2005): (1) is true for tensor products of fundamental representations of \mathfrak{sl}_n .
- Ardonne-Kedem (2007): (1) and (2) are true for the tensor products of Kirillov-Reshetikhin modules of any g if the combinatorial KR conjecture (KR1) is true.
- But (KR1) has been proven only for:
 - $\mathfrak{g} = A_n$ and $V_i(z_i)$ is the evaluation module with highest weight a rectangular Young diagram. Kirillov, Schilling, Shimozono 02
 - Special cases of modules of other non-exceptional Lie algebras Schilling, Okado, Shimozono.

We need to prove (KR1) in general to prove the FL-conjecture.

Proof that M = N (Joint with Di Francesco)

• To prove the identity, relax all the restrictions and define a generating function:

$$Z_{\mathbf{n}}^{(k)}(\mathbf{u}) = \sum_{m_{\alpha,1},\dots,m_{\alpha,k}>0} \prod_{\alpha} u_{\alpha}^{q_{\alpha}} \prod_{i=1}^{k} u_{\alpha,i}^{q_{\alpha,i}} \binom{m_{\alpha,i} + q_{\alpha,i}}{m_{\alpha,i}}$$

$$q_{\alpha,i} = l_{\alpha} + \sum_{j=1}^{k-i} j \left(\sum_{\beta} C_{\alpha,\beta} \ m_{\beta,i+j} - n_{\alpha,i+j} \right).$$

- $q_{\alpha,i} = p_{\alpha,i} + q_{\alpha}$ with $m_{\alpha,j>k} = 0 = n_{\alpha,j>k}$.
- When $k \to \infty$ and $u_{\alpha,i>0} = 1$ the constant term in all u_{α} is $N_{\lambda,\mathbf{n}}$.
- ullet Taking only non-negative powers in $u_{lpha,i>0}$ in the same limit, the constant term gives $M_{\lambda,\mathbf{n}}$.

Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007

$\mathsf{Theorem}$

The generating function factorizes:

$$Z_{\mathbf{n}}^{(k)}(\mathbf{u}) = \prod_{\alpha} \frac{Q_{\alpha,1}(\mathbf{u})Q_{\alpha,k}(\mathbf{u})}{Q_{\alpha,k+1}(\mathbf{u})} \prod_{i=1}^{k} u_{\alpha,i}^{-1} Q_{\alpha,i}(\mathbf{u})^{n_{\alpha,i}}$$

 $Q(\mathbf{u})$ are defined via the recursion

$$Q_{\alpha,i+1}(\mathbf{u}) = \frac{Q_{\alpha,i}^2 - \prod_{\beta \neq \alpha} Q_{\beta,i}^{|C_{\alpha,\beta}|}}{u_{\alpha,i}Q_{\alpha,i-1}}, \quad Q_{\alpha,0} = 1 \text{ and } Q_{\alpha,1} = 1/u_{\alpha}.$$

A generalized Q-system!

Theorem

 $Q_{\alpha,i}$ satisfy the Q-system if and only if they satisfy

$$Q_{\alpha,i+j}(\mathbf{u}) = Q_{\alpha,i}(\mathbf{u}^{(j)})$$

where

$$u_{\alpha}^{(j)} = \frac{1}{Q_{\alpha,j+1}(\mathbf{u})}, \ u_{\alpha,1}^{(j)} = Q_{\alpha,j}(\mathbf{u})u_{\alpha,j+1}, \ u_{\alpha,i}^{(j)} = u_{\alpha,j+i} \ (i > 1).$$

Proof of KR conjecture La londe les maures, October 2007

Theorem: M = N

• From the factorization property:

$$Z_{\mathbf{n}}^{(k)}(\mathbf{u}) = Z_{\mathbf{n}_1,\dots,\mathbf{n}_j}^{(j)}(\mathbf{u})Z_{\mathbf{n}_{j+1},\dots,\mathbf{n}_k}^{(k-j)}(\mathbf{u}^{(j)}).$$

• If we evaluate this at $u_{\alpha,i} = 1 (1 \le i < j)$, the first factor is

$$\prod_{\alpha} \frac{Q_{\alpha,1} Q_{\alpha,j}}{Q_{\alpha,j+1}} \prod_{i} Q_{\alpha,i}^{n_{\alpha,i}}$$

The second factor is

$$\sum_{m_{j+1},\dots,m_k} \prod_{\alpha} \left(\frac{u_{\alpha,j}}{Q_{\alpha,j+1}} \right)^{q_{\alpha,j}} Q_{\alpha,j}^{q_{\alpha,j+1}} \prod_{i=j+1}^k u_{\alpha,i}^{q_{\alpha,i}} \binom{q_{\alpha,i} + m_{\alpha,i}}{m_{\alpha,i}}$$

• Terms with $q_{\alpha,j+1} \geq 0$ and $q_{\alpha,j} < 0$ do not contribute to the constant term in u_{α} .

Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007

$\mathsf{Theorem}$

There is an equality of power series in $\{t_{\alpha}\}$:

$$\left. PS_{u_1,\dots,u_r} Z_{\lambda;\mathbf{n}}^{(k)}(\mathbf{u}) \right|_{u_{\alpha,i}=1,\forall \alpha,i} = \left. PS_{u_1,\dots,u_r} Z_{\lambda;\mathbf{n}}^{(k)}(\mathbf{u})^{(+)} \right|_{u_{\alpha,i}=1,\forall \alpha,i}$$

where $Z_{\lambda;\mathbf{n}}^{(k)}(\mathbf{u})^{(+)}$ is the generating function defined with summation restricted to $q_{\alpha,i} \geq 0$.

Corollary

The constant term of this identity and $k \to \infty$:

$$M_{\lambda;\mathbf{n}} = N_{\lambda;\mathbf{n}}$$

Corollary

For all g and for any set of KR-modules, the Bethe integers enumerate eigenstates of the transfer matrix.

Corollary

The FL conjectures hold for Chari's KR modules, and the graded multiplicities are the sums given by products of q-binomial coefficients of [HKOTY].

- ullet Hernandez's theorem that the Q-system is solved by characters of KR-modules is essential: There is no other proof that solutions of the Q-systems are polynomials in $Q_{\alpha,1}$. Think generalized Chebyshev polynomials.
- This is a strong version of the Laurent phenomenon in cluster algebras [Fomin, Zelevinsky]. How general is this phenomenon?
- What about other types of modules (not of KR type)?

Rinat Kedem (UIUC)

Proof of KR conjecture

La londe les maures, October 2007