Combinatorics of Bethe ansatz and fusion products

Rinat Kedem
University of Illinois Urbana-Champaign

La londe les maures, October 2007
(1) A strange identity
(2) Various conjectures
(3) The Kirillov-Reshetikhin conjecture
(4) HKOTY conjecture
(5) The Feigin-Loktev conjecture
(6) Proof of HKOTY conjecture

Binomial coefficients

- The binomial coefficient $(m \geq 0)$

$$
\binom{m+p}{m}=\frac{(p+m)(p+m-1) \cdots(p+1)}{m!}
$$

is defined for any $p \in \mathbb{Z}$.

- If $p \geq 0$, the binomial coefficient counts the number of ways of choosing m distinct elements out of $p+1$ choices.
- If $p<0$, there is an identity,

$$
\binom{m+p}{m}=(-1)^{m}\binom{-p-1}{m} .
$$

Can be negative.

Strange identity

- For choice of non-negative integers $n_{i}, m_{i}(i>0)$ and l, define

$$
p_{i}=\sum_{i} \min (i, j)\left(n_{j}-2 m_{j}\right) .
$$

There is an identity

$$
\sum_{m_{i} \geq 0} \prod_{i}\binom{m_{i}+p_{i}}{m_{i}}=\sum_{m_{i} \geq 0: p_{i} \geq 0} \prod_{i}\binom{m_{i}+p_{i}}{m_{i}}
$$

The sum is taken over all m_{i} such that $0 \leq l=\sum_{i} i\left(n_{i}-2 m_{i}\right)$.

- Nontrivial combinatorial identity!
- There is such an identity for any simple Lie algebra \mathfrak{g}.
- Right hand side is a combinatorial object: Each term in the sum over m_{i} :

$$
\prod_{i}\binom{m_{i}+p_{i}}{m_{i}}, \quad p_{i} \geq 0
$$

counts the number of ways to choose m_{i} distinct integers from the interval $\left[0, p_{i}\right]$ for each $i \geq 1$.

Completeness of Bethe ansatz states

- The inhomogeneous Heisenberg spin chain transfer matrix:

$\left(V_{i}\left(z_{i}\right)\right.$: irreducible reps of the Yangian $Y\left(\mathfrak{s l}_{2}\right) ; n_{j}=$ number of $j+1$-dimensional reps).
- The Hilbert space is

$$
\mathcal{H}_{\mathbf{n}}=\stackrel{N}{i=1} \underset{\otimes_{1}}{N} V_{i}\left(z_{i}\right) \underset{\mathfrak{s l}_{2}-\bmod }{\simeq} \underset{l \geq 0}{\oplus} V(l)^{\oplus M_{l ; \mathbf{n}}}
$$

- Completeness hypothesis: There are as many Bethe vectors as the dimension of ($\mathfrak{S l}_{2}$-highest weight vectors in) $\mathcal{H}_{\mathbf{n}}$.

Completeness conjecture

- Hilbert space:

$$
\mathcal{H}_{\mathbf{n}} \simeq \underset{l \geq 0}{\oplus} V(l)^{\oplus M_{l ; \mathbf{n}}}
$$

- Solutions to Bethe equations are parametrized by Bethe integers:

Given $M=\left(\sum_{i} i n_{i}-l\right) / 2$ choose any partition of $M=\sum_{i} i m_{i}$. Pick m_{i} distinct integers in the interval $\left[0, p_{i}\right]$.

$$
p_{i}=\sum_{j} \min (i, j)\left(n_{j}-2 m_{j}\right)
$$

- Completeness conjecture:

$$
M_{l, \mathbf{n}}=\sum_{\substack{m_{i}: \Sigma_{i} i\left(n_{i}-2 m_{i}\right)=l \\ p_{i} \geq 0}} \prod_{i}\binom{m_{i}+p_{i}}{m_{i}}
$$

- This conjecture was made by Kirillov-Reshetikhin; Proved.
- The left hand side (unrestricted sum) is a solution to a recursion relation. It is an alternating sum.
- Let $\mathfrak{g}=\mathfrak{s l}_{2}$ and $V(i)$ its $i+1$-dimensional irreducible representation.

Theorem (Kirillov)

The LHS is equal to the dimension of the space of $\mathfrak{s l}_{2}$-linear homomorphisms:

$$
\sum_{\substack{m_{i} \\ \sum_{i} i\left(n_{i}-2 m_{i}\right)=l}}\binom{m_{i}+p_{i}}{p_{i}}=\operatorname{dimHom}_{\mathfrak{s l}_{2}}\left(\otimes_{i \geq 1}^{\otimes}(V(i))^{\otimes n_{i}}, V(l)\right)
$$

- HKOTY showed that this follows from the following interesting fact: The characters $Q_{i}=$ ch $V(i)$ of the irreducible representations of $\mathfrak{s l}_{2}$ satisfy the Q-system: (Kirillov-Resthikhin)

$$
Q_{m+1}=\frac{Q_{m}^{2}-1}{Q_{m-1}}, \quad Q_{0}=1, \quad Q_{1}=t
$$

(aka Chebyshev polynomials).

Aside: Discrete Hirota

For A_{n}, the characters $Q_{m, \alpha}$ of the irreducible module with highest weights $m \omega_{\alpha}$ satisfy

$$
Q_{m+1, \alpha} Q_{m-1, \alpha}+Q_{m, i+\alpha} Q_{m, i-\alpha}=Q_{m, \alpha}^{2}
$$

which is the combinatorial limit of the fusion relation for transfer matrices

$$
T_{m+1, \alpha}(u) T_{m-1, \alpha}(u)+T_{m, \alpha+1}(u) T_{m, \alpha-1}(u)=T_{m, \alpha}(u+1) T_{m, \alpha}(u-1) .
$$

$T_{m, \alpha}(u)$: Transfer matrix with the auxiliary space a Yangian module with \mathfrak{g}-highest weight $m \omega_{\alpha}$ and spectral parameter u.

Define: $\tau_{i}(l, m)=T_{i, l+m}(l-m-i)$. Then:
$\tau_{i}(l+1, m) \tau_{i}(l, m+1)+\tau_{i+1}(l+1, m) \tau_{i-1}(l, m+1)=\tau_{i}(l, m) \tau_{i}(l+1, m+1)$.

The various conjectures

- The Kirillov-Reshetikhin conjecture:
- (KR1) Combinatorial version: The Bethe equations (with String hypothesis) for inhomogeneous, generalized Heisenberg spin chain give a complete set of solutions for the eigenvectors of the Hamiltonian.
- (KR2) Representation theoretical version: The Q-system is satisfied by the characters of KR-modules for any Lie algebra \mathfrak{g}. PROVED
- The HKOTY conjecture: $(K R 1)=(K R 2)$.
- (FL): The Feigin-Loktev conjecture:

The dimension of the fusion (graded tensor) product of localized $\mathfrak{g}[t]$-modules is independent of the localization parameters.

Theorem: [Ardonne-Kedem, 2007]: $(\mathrm{KR1}) \Longrightarrow(\mathrm{FL})$
(for the fusion product of KR-modules).

Today: How to prove HKOTY?

KR conjecture: Version 1 (\mathfrak{g} simply-laced)

- Kirillov and Reshetikhin (1989): For any \mathfrak{g} define generalized, inhomogeneous Heisenberg spin chain:

$V_{i}\left(z_{i}\right)$: irreducible KR-reps of the Yangian $Y(\mathfrak{g})$; Specified by $\mathbf{n}=\left\{n_{\alpha, i}\right\}_{1 \leq \alpha \leq r ; i \in \mathbb{N}}$
- Hilbert space

$$
\mathcal{H}_{\mathbf{n}}=\otimes_{i} V_{i}\left(z_{i}\right) \underset{\mathfrak{g}}{\simeq} \underset{\lambda}{\oplus} V(\lambda)^{\oplus M_{\lambda ; \mathbf{n}}}
$$

- KR: The number of Bethe states is the number of ways to pick $m_{\alpha, i}$ distinct integers from the interval $\left[0, p_{\alpha, i}\right]$

$$
p_{\alpha, i}=\sum_{j} \min (i, j) n_{\alpha, j}-\sum_{j, \beta} C_{\alpha, \beta} \min (i, j) m_{\beta, j}
$$

such that for fixed $\lambda=\sum_{\alpha} l_{\alpha} \omega_{\alpha}$

$$
q_{\alpha}:=l_{\alpha}+\sum_{i, \beta} C_{\alpha, \beta} i m_{\beta, i}-\sum_{i} i n_{\alpha, i}=0 .
$$

- Completeness conjecture (KR1): The Bethe ansatz gives a complete set of solutions:

$$
M_{\lambda ; \mathbf{n}}=\sum_{\substack{m_{\alpha, i} \\ p_{\alpha, i} \geq 0, q_{\alpha}=0}} \prod_{\alpha, i}\binom{m_{\alpha, i}+p_{\alpha, i}}{m_{\alpha, i}} .
$$

where

$$
\otimes V_{i}\left(z_{i}\right) \underset{\mathfrak{g}}{\simeq} \underset{\lambda}{\oplus} V(\lambda)^{\oplus M_{\lambda ; \boldsymbol{n}}}
$$

The Q-system (Kirillov-Reshetikhin 89)

- Define the family $\left\{Q_{\alpha, i}: 1 \leq \alpha \leq \operatorname{rank}(\mathfrak{g}), i \in \mathbb{Z}_{+}\right\}$by the recursion relation

$$
Q_{\alpha, i+1}=\frac{Q_{\alpha, i}^{2}-\prod_{\beta \neq \alpha} Q_{\beta, i}^{\left|C_{\alpha, \beta}\right|}}{Q_{\alpha, i-1}}, Q_{\alpha, 0}=1, Q_{\alpha, 1}=t_{\alpha}
$$

(\mathfrak{g} simply-laced)

Theorem (Nakajima, Hernandez)

(Kirillov-Reshetikhin conjecture, version 2) The characters of $K R$-modules for any \mathfrak{g} satisfy the Q-system.

- Corollary: $Q_{\alpha, i}$ is a polynomial in t_{β} !

Theorem (HKOTY)

The Q-system theorem implies

$$
N_{\lambda ; \mathbf{n}}:=\sum_{\substack{m_{\alpha, i} \\ q_{\alpha}=0}} \prod_{\alpha, i}\binom{m_{\alpha, i}+p_{\alpha, i}}{m_{\alpha, i}}=\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(\otimes V_{i}, V(\lambda)\right)
$$

HKOTY conjecture

HKOTY conjectured that

$$
\sum_{m_{\alpha, i}} \prod_{\alpha, i}\binom{m_{\alpha, i}+p_{\alpha, i}}{m_{\alpha, i}}=N_{\lambda ; \mathbf{n}}=M_{\lambda ; \mathbf{n}}=\sum_{\substack{m_{\alpha, i} \\ p_{\alpha, i} \geq 0}} \prod_{\alpha, i}\binom{m_{\alpha, i}+p_{\alpha, i}}{m_{\alpha, i}} .
$$

(both sums restricted to $q_{\alpha}=0$)

- It is true in the cases where (KR1) was proved (very indirect argument, only proved in special cases).
- We need to prove this to have completeness of Bethe states.
- We also need this to prove the Feigin Loktev conjectures...

Feigin-Loktev Fusion products

- Let $\mathfrak{g}=$ Lie algebra
$\mathfrak{g}[t]=\mathfrak{g} \otimes \mathbb{C}[t]$ the Lie algebra of polynomials with coefficients in \mathfrak{g}. The generators of $\mathfrak{g}[t]$ are $x[n]:=x \otimes t^{n}$ with $x \in \mathfrak{g}$.
- $V=$ a finite-dimensional $\mathfrak{g}[t]$-module.

Define $V(z)\left(z \in \mathbb{C}^{*}\right)$: the module "localized at z ":

$$
x \otimes t^{n} v_{z}=x \otimes\left(t_{z}+z\right)^{n} v_{z}, \quad v_{z} \in V(z)
$$

where $x \otimes t_{z}^{n}$ acts on v_{z} in the same way that $x[n]$ acts on $v \in V$.

- Example: $\mathfrak{g}=\mathfrak{s l}_{2}$ and V the irreducible $j+1$-dimensional rep. $V(z)=$ the evaluation module at $z: x \otimes t^{n} v=z^{n} x v$.
- Assume that V is a $\mathfrak{g}[t]$-module, cyclic with cyclic vector v :

$$
V=U(\mathfrak{g}[t]) v
$$

- Any $\mathfrak{g}[t]$-module is also a \mathfrak{g} module and $V(z) \simeq V$ as \mathfrak{g}-modules.

Lemma

Let $\left\{z_{1}, \ldots, z_{N}\right\}$ be distinct complex numbers and $\left\{V_{1}\left(z_{1}\right), \ldots, V_{N}\left(z_{N}\right)\right\}$ be $\mathfrak{g}[t]$ modules localized at z_{i} (finite-dimensional, cyclic with cyclic vectors v_{i}). Then as \mathfrak{g}-modules,

$$
V_{1} \otimes \cdots \otimes V_{N} \simeq U(\mathfrak{g}[t])\left(v_{1} \otimes \cdots \otimes v_{N}\right)
$$

This is also a finite-dimensional, cyclic $\mathfrak{g}[t]$-module, with cyclic vector $v_{1} \otimes \cdots \otimes v_{n}$.

Grading

- The algebra $U(\mathfrak{g}[t])$ is graded by degree in t.
$U \leq n=$ polynomials in generators of $\mathfrak{g}[t]$ with total degree $\leq n$ in t.
- Let $V=U(\mathfrak{g}[t]) v$
- V inherits a filtration \mathcal{F} from the action $U(\mathfrak{g}[t])$:

$$
\mathcal{F}[n]=U^{\leq n} v, \quad \mathbb{C} v \subset \mathcal{F}[0] \subset \cdots \subset \mathcal{F}[n] \subset \mathcal{F}[n+1] \subset \cdots \subset V
$$

- Define the graded module:

$$
\bar{V}=\mathrm{Gr} \mathcal{F}=\underset{n}{\oplus} \mathcal{F}[n] / \mathcal{F}[n-1] .
$$

The graded components are \mathfrak{g}-modules.

Definition (The Feigin-Loktev fusion product)

$$
V_{1} \star \cdots \star V_{N}\left(z_{1}, \ldots, z_{N}\right)=\bar{\otimes}{ }_{i} V_{i}\left(z_{i}\right)
$$

with cyclic vector $\otimes v_{i}$.

Example 1:

Let $V=2$ - dim representation of $\mathfrak{s l}_{2}$ with basis v_{1}, v_{2} where v_{1} is the highest weight vector. Then $V \star V\left(z_{1}, z_{2}\right)$ has this structure:

$$
V \star V \simeq \underset{0}{V(2)} \underset{1}{V(0)} .
$$

Example 2:

The Feigin-Loktev conjectures

- The fusion product is graded:

$$
V_{1} \star \cdots \star V_{N}\left(z_{1}, \ldots, z_{N}\right)=\bar{\otimes} \underset{i}{ } V_{i}\left(z_{i}\right) \underset{\mathfrak{g}}{\simeq} \underset{i \geq 0}{\oplus} \underset{\lambda}{\oplus} V(\lambda)^{\oplus M_{\lambda ; \mathbf{n}}[i]}
$$

- Define the generating function for graded multiplicities

$$
M_{\lambda ; \mathbf{n}}(q)=\sum_{i} q^{i} M_{\lambda ; \mathbf{n}}[i]
$$

- The conjectures: [Feigin, Loktev 1999]
(1) $M_{\lambda ; \mathbf{n}}$ are independent of the localization parameters z_{i}.
(2) $M_{\lambda ; \mathbf{n}}$ are generalized Kostka polynomials. [Kirillov, Schilling, Shimozono, HKOTY]

The status of the conjectures:

- FJKLM 2001 (2) is true for $\mathfrak{s l}_{2}$-modules.
- Kedem (2004): (1) is true for tensor products of symmetric power representations of $\mathfrak{s l}_{n}$.
- Chari-Loktev (2005): (1) is true for tensor products of fundamental representations of $\mathfrak{s l}_{n}$.
- Ardonne-Kedem (2007): (1) and (2) are true for the tensor products of Kirillov-Reshetikhin modules of any \mathfrak{g} if the combinatorial KR conjecture (KR1) is true.
- But (KR1) has been proven only for:
- $\mathfrak{g}=A_{n}$ and $V_{i}\left(z_{i}\right)$ is the evaluation module with highest weight a rectangular Young diagram. Kirillov, Schilling, Shimozono 02
- Special cases of modules of other non-exceptional Lie algebras Schilling, Okado, Shimozono.

We need to prove (KR1) in general to prove the FL-conjecture.

Proof that $M=N$ (Joint with Di Francesco)

- To prove the identity, relax all the restrictions and define a generating function:

$$
\begin{aligned}
Z_{\mathbf{n}}^{(k)}(\mathbf{u}) & =\sum_{m_{\alpha, 1}, \ldots, m_{\alpha, k} \geq 0} \prod_{\alpha} u_{\alpha}^{q_{\alpha}} \prod_{i=1}^{k} u_{\alpha, i}^{q_{\alpha, i}}\binom{m_{\alpha, i}+q_{\alpha, i}}{m_{\alpha, i}} \\
q_{\alpha, i} & =l_{\alpha}+\sum_{j=1}^{k-i} j\left(\sum_{\beta} C_{\alpha, \beta} m_{\beta, i+j}-n_{\alpha, i+j}\right)
\end{aligned}
$$

- $q_{\alpha, i}=p_{\alpha, i}+q_{\alpha}$ with $m_{\alpha, j>k}=0=n_{\alpha, j>k}$.
- When $k \rightarrow \infty$ and $u_{\alpha, i>0}=1$ the constant term in all u_{α} is $N_{\lambda, \mathbf{n}}$.
- Taking only non-negative powers in $u_{\alpha, i>0}$ in the same limit, the constant term gives $M_{\lambda, \mathbf{n}}$.

Theorem

The generating function factorizes:

$$
Z_{\mathbf{n}}^{(k)}(\mathbf{u})=\prod_{\alpha} \frac{\mathcal{Q}_{\alpha, 1}(\mathbf{u}) \mathcal{Q}_{\alpha, k}(\mathbf{u})}{\mathcal{Q}_{\alpha, k+1}(\mathbf{u})} \prod_{i=1}^{k} u_{\alpha, i}^{-1} Q_{\alpha, i}(\mathbf{u})^{n_{\alpha, i}}
$$

$Q(\mathbf{u})$ are defined via the recursion

$$
\mathcal{Q}_{\alpha, i+1}(\mathbf{u})=\frac{\mathfrak{Q}_{\alpha, i}^{2}-\prod_{\beta \neq \alpha} Q_{\beta, i}^{\left|C_{\alpha, \beta}\right|}}{u_{\alpha, i} \mathfrak{Q}_{\alpha, i-1}}, \quad \mathcal{Q}_{\alpha, 0}=1 \text { and } \mathcal{Q}_{\alpha, 1}=1 / u_{\alpha} .
$$

A generalized Q-system!

Theorem

$Q_{\alpha, i}$ satisfy the Q-system if and only if they satisfy

$$
Q_{\alpha, i+j}(\mathbf{u})=Q_{\alpha, i}\left(\mathbf{u}^{(j)}\right)
$$

where

$$
u_{\alpha}^{(j)}=\frac{1}{Q_{\alpha, j+1}(\mathbf{u})}, u_{\alpha, 1}^{(j)}=\mathcal{Q}_{\alpha, j}(\mathbf{u}) u_{\alpha, j+1}, u_{\alpha, i}^{(j)}=u_{\alpha, j+i}(i>1)
$$

Theorem: $M=N$

- From the factorization property:

$$
Z_{\mathbf{n}}^{(k)}(\mathbf{u})=Z_{\mathbf{n}_{1}, \ldots, \mathbf{n}_{j}}^{(j)}(\mathbf{u}) Z_{\mathbf{n}_{j+1}, \ldots, \mathbf{n}_{k}}^{(k-j)}\left(\mathbf{u}^{(j)}\right) .
$$

- If we evaluate this at $u_{\alpha, i}=1(1 \leq i<j)$, the first factor is

$$
\prod_{\alpha} \frac{Q_{\alpha, 1} Q_{\alpha, j}}{Q_{\alpha, j+1}} \prod_{i} Q_{\alpha, i}^{n_{\alpha, i}}
$$

- The second factor is

$$
\sum_{m_{j+1}, \ldots, m_{k}} \prod_{\alpha}\left(\frac{u_{\alpha, j}}{Q_{\alpha, j+1}}\right)^{q_{\alpha, j}} Q_{\alpha, j}^{q_{\alpha, j+1}} \prod_{i=j+1}^{k} u_{\alpha, i}^{q_{\alpha, i}}\binom{q_{\alpha, i}+m_{\alpha, i}}{m_{\alpha, i}}
$$

- Terms with $q_{\alpha, j+1} \geq 0$ and $q_{\alpha, j}<0$ do not contribute to the constant term in u_{α}.

Theorem

There is an equality of power series in $\left\{t_{\alpha}\right\}$:

$$
\left.P S_{u_{1}, \ldots, u_{r}} Z_{\lambda ; \mathbf{n}}^{(k)}(\mathbf{u})\right|_{u_{\alpha, i}=1, \forall \alpha, i}=\left.P S_{u_{1}, \ldots, u_{r}} Z_{\lambda ; \mathbf{n}}^{(k)}(\mathbf{u})^{(+)}\right|_{u_{\alpha, i}=1, \forall \alpha, i}
$$

where $Z_{\lambda ; \mathbf{n}}^{(k)}(\mathbf{u})^{(+)}$is the generating function defined with summation restricted to $q_{\alpha, i} \geq 0$.

Corollary

The constant term of this identity and $k \rightarrow \infty$:

$$
M_{\lambda ; \mathbf{n}}=N_{\lambda ; \mathbf{n}}
$$

Corollary

For all \mathfrak{g} and for any set of KR-modules, the Bethe integers enumerate eigenstates of the transfer matrix.

Corollary

The FL conjectures hold for Chari's KR modules, and the graded multiplicities are the sums given by products of q-binomial coefficients of [HKOTY].

- Hernandez's theorem that the Q-system is solved by characters of KR-modules is essential: There is no other proof that solutions of the Q-systems are polynomials in $Q_{\alpha, 1}$. Think generalized Chebyshev polynomials.
- This is a strong version of the Laurent phenomenon in cluster algebras [Fomin, Zelevinsky]. How general is this phenomenon?
- What about other types of modules (not of KR type)?

