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Université Paris-Sud, Bâtiment 100, F-91405 Orsay Cedex, France

pzinn@lptms.u-psud.fr

JEAN-BERNARD ZUBER

Service de Physique Théorique, CEA/DSM/SPhT,
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ABSTRACT

Virtual links are generalizations of classical links that can be represented by links
embedded in a “thickened” surface Σ× I, product of a Riemann surface of genus h with
an interval. In this paper, we show that virtual alternating links and tangles are natu-
rally associated with the 1/N2 expansion of an integral over N × N complex matrices.
We suggest that it is sufficient to count the equivalence classes of these diagrams modulo
ordinary (planar) flypes. To test this hypothesis, we use an algorithm coding the corre-
sponding Feynman diagrams by means of permutations that generates virtual diagrams
up to 6 crossings and computes various invariants. Under this hypothesis, we use known
results on matrix integrals to get the generating functions of virtual alternating tangles
of genus 1 to 5 up to order 10 (i.e. 10 real crossings). The asymptotic behavior for n large
of the numbers of links and tangles of genus h and with n crossings is also computed for
h = 1, 2, 3 and conjectured for general h.
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Mathematics Subject Classification: 57M15, 05C30, 57M25

0. Introduction

Virtual knots have been introduced by Kauffman [1] as an extension of classical
knots. They may be defined as equivalence classes of 4-valent (“4-regular”) diagrams
with the ordinary under- or over-crossings of knot theory, plus a new type of virtual
crossing, depicted with a small circle around the intersection, see Fig. 1.

Fig. 1. Ordinary and virtual crossings.
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Two such diagrams are equivalent if they may be connected by a sequence of
generalized Reidemeister moves, see Fig. 2. An example of a virtual link is provided
by the following

Fig. 2. Ordinary and virtual Reidemeister moves.

(b) (c)(a)

Fig. 3. A virtual link (a) in the previous notation; (b) as drawn on a genus 1 surface; (c) alter-
native representations, see below.

In this paper, we also use a different standpoint and notation, closer to graph
theory: the ordinary crossings are regarded as vertices of a graph, the latter are
regarded as rigid, i.e. the cyclic order of lines emanating from them cannot be
changed, which essentially defines a (combinatorial) map, and the virtual crossings
are artefacts forced in the planar representation by the connections between vertices.
In this picture, the meaning of these new Reidemeister moves is clear: lines involving
virtual crossings may be freely moved across the diagram, while keeping their end-
points attached to vertices. Also natural in this picture is the impossibility for a
virtual crossing to pass a line between two ordinary crossings, cf. Fig. 4.
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Fig. 4. A forbidden Reidemeister move.

Virtual knots (or links) may also be thought of as drawn in the vicinity of a
connected compact orientable Riemann surface Σ of genus h, (h for “handles”),
i.e. embedded into the “thickened” surface Σ× I, with I an interval. The ordinary
over-/under-crossings represent the projection of this knot on Σ, while the virtual
ones represent the crossing of strands on different faces of Σ as seen in perspective.
See Fig. 3(b) for an example. To obtain virtual knots, we must consider equivalence
classes of such embedded knots modulo isotopy in Σ × I, and modulo orientation-
preserving homeomorphisms of Σ, and addition or subtraction of empty handles,
see [2, 3, 4]. This means that we are interested in virtual link diagrams as drawn
on “abstract” Riemann surfaces, i.e. independently of the actual embedding and
without any preferred choice of homology basis (See for example in Figs. 3(b)–(c)
three equivalent representations of the virtual link (a) obtained from one another by
various modular transformations). As we shall see, this is precisely what Feynman
diagrams of a matrix integral do for us.

We shall use for virtual objects the same terminology of knots, links and tangles
as for classical objects: a link has several connected components, while a knot has
only one. Tangles, more precisely 4-tangles, have four open ends.

Fig. 5. The flype of a tangle.

In the same way as alternating knots/links/tangles constitute an important
subclass of the classical knotted objects, it is natural to define alternating virtual
knots/links/tangles: they are simply described by diagrams of the previous type,
with the condition that along any strand, one encounters alternatingly under- and
over-crossings, ignoring possible virtual crossings. Of course, these diagrams have
to be divided by the equivalence under Reidemeister moves or some combinations
thereof. For classical alternating links/knots, it is a famous result, conjectured long
ago by Tait and finally proved by Menasco and Thistlethwaite [5], that it is sufficient
to consider reduced diagrams and act on them with flypes. Flypes are combinations
of Reidemeister moves that preserve the alternating character, see Fig. 5.
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In a previous work [6], we have shown that the integral

ZN (g, α) =
∫

dM exp−N tr
(
αMM † − g

2
(MM †)2

)
(0.1)

over N × N complex matrices is well suited for the counting of alter-
nating links and tangles: for an appropriate choice of α(g), see below,
2 ∂

∂g limN→∞ 1
N2 logZN (g, α(g)) is the generating function of the numbers of al-

ternating tangle diagrams with n 4-valent crossings, and eliminating the equiva-
lence under the flypes just amounts to a “coupling constant renormalization” [7],
as recalled below. In that way the results of [8] were reproduced.

It has been known to physicists since the pioneering work of ’t Hooft [9] that
the large N limit of the previous integral may be organized in a topological way.
While the leading term corresponds to so-called planar diagrams (in fact, drawn
on a sphere), the subdominant terms of order N−2h of 1

N2 logZ(g) are described
by graphs drawn on a Riemann surface of genus h. It is thus quite natural to
expect that they will be in correspondence with virtual link diagrams, (or after
differentiation with respect to g, with virtual tangle diagrams) and this is what we
shall discuss and prove in the following.

This paper is organized as follows. We first recall (Sec. 1) the dictionary be-
tween link/tangle diagrams and the “Feynman diagrams” of the matrix integral
(0.1), and the necessary steps to eliminate the redundancy in the counting. First
remove spurious diagrams, non-prime or “nugatory” in the knot terminology, by
a suitable choice of the function α(g). Then we must address the burning ques-
tion of eliminating the remaining redundancies. We argue — but this remains a
heuristic argument — that the same planar flypes as for classical alternating links
and tangles (that is, substitutions of the form of Fig. 5, where the depicted tangle
has no virtual crossings) are still sufficient to remove the redundancies of alter-
nating virtual diagrams. We call this the “generalized flype conjecture” and defer
until Sec. 4 arguments in favor of this conjecture. We also conjecture that the no-
tion of prime links and of reduced alternating diagrams extend naturally to virtual
links, and in particular that reduced alternating diagrams have minimal crossing
number and minimal genus. The redundancies in the diagrammatic expansion are
then taken into account by “renormalization” of the coefficients in the action. In
particular, the flypes are implemented by a redefinition of the coupling constant:
g → g0(g). In Sec. 2 we apply these ideas to the case N = 1, which corresponds to
the enumeration irrespective of the genus; this serves as a sum rule in what follows.
In Sec. 3 the explicit expressions of the first four terms in the large N expansion
of F (g,N) are presented, corresponding to genus h = 0, 1, 2 and 3 respectively:
while the leading term is well known (and has been used in [6]) and the second one
(h = 1) has been derived by Morris [10], the genus 2 and 3 contributions computed
by Akemann and by Adamietz [11, 12] from the work of [13] may be less known.
Using the results of previous section and computing the lowest contributions of a
given genus (Appendix A) gives us enough information to completely determine
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the numbers of all virtual diagrams up to 11 crossings for the links, or 10 for the
tangles, and up to genus 5. We also give tables of virtual alternating links up to
four (real) crossings. The rate of growth of the number of virtual diagrams of genus
1, 2 and 3 is also derived from these expressions, and a general Ansatz is proposed
for generic h, following what is regarded as standard lore by physicists. Using the
generalized flyping conjecture, we then obtain the generating functions of virtual
alternating 4-tangles for genus 0 to 3. Their asymptotic behaviors for large number
of (real) crossing are, up to a larger radius of convergence, the same as the previous
ones, and under the very plausible assumption (proved in [14] for classical links)
that generic links have no symmetry, we can also estimate the asymptotic number
of virtual alternating links of a given genus.

Finally, in Sec. 4, we recall that there exists a way to encode the relevant Feyn-
man diagrams by means of permutations. This is presumably an old idea; in the
present context, it seems to be due to Drouffe, it was used in [15], and more re-
cently in related topics by combinatorialists [16, 17]. Here we use it to set up an
algorithm which is able to build all virtual link/tangle diagrams (up to six/five
crossings). We have used this to test the “generalized flype conjecture” by con-
structing as many invariants as possible, to make sure that the objects that cannot
be obtained by flypes from each other are indeed topologically distinct. We provide
samples of the data thus produced (the full output being accessible on the web:
http://ipnweb.in2p3.fr/∼lptms/membres/pzinn/virtlinks), and discuss the
conclusions one can draw from them.

1. Matrix Integrals and Virtual Links

1.1. Feynman rules for matrix integrals

We first recall the diagrammatic techniques to derive a series expansion in g of the
integral (0.1): see [15, 18] for a general introduction and [6] for a discussion in the
present context. The integration measure in (0.1) is

dM =
∏

1≤i,j≤N

d�eMij d�mMij . (1.1)

We shall be mostly interested in the “free energy”

F (g, α) = lim
N→∞

1
N2

log
Z(α, g)
Z(α, 0)

(1.2)

and its derivatives. The constant α can be absorbed in a rescaling M → α− 1
2M :

Z(g, α) = α− N2
2 Z

(
g

α2
, 1

)
(1.3a)

F (g, α) = F

(
g

α2
, 1

)
(1.3b)

but it is useful to keep it.
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Define the “propagator” as the inverse of the quadratic form in (0.1), represented

as j
i

k
l = 1

Nαδilδjk and the 4-vertex as the tensor
j

i
k
l

mnp
q

= gNδqiδjkδlmδnp. This

four-vertex is to be considered as a rigid crossing, which cannot be flipped and in
which the cyclic order of the lines cannot be changed. In both the propagator
and the 4-vertex, the small arrows distinguish the row and column indices of the
matrices, while the wide one distinguishes M from M †.

The prescriptions to compute the nth order of the g-expansion of F , known
as Feynman rules, are as follows: draw n four-vertices, then draw all the topo-
logically distinct connected graphs obtained by joining by propagators the dou-
ble lines emerging from these n 4-vertices, while respecting the orientations, and
sum over the matrix indices i, j, . . . = 1, . . . , N . Each graph then comes with a
weight gnN#/α2n, where the power of N will be computed below, and a “symmetry
factor”, which is the inverse of the order of the group of permutations of the lines
and vertices which leave the structure of the graph unchanged (see below an alter-
native characterization of this factor).

When drawing these Feynman diagrams on a plane, one usually encounters
topological obstructions which force one to introduce additional crossings (over- or
under-, it is immaterial). Alternatively, these diagrams may be drawn on a higher
genus Riemann surface as can be seen as follows. The identification of matrix indices
by the Kronecker delta’s of the propagators and 4-vertices leaves us with a number
#F of index loops. By pasting a domain homeomorphic to a disk to each such loop,
we build a discretized Riemann surface with n edges, 2n edges and #F faces.

Thus Feynman diagrams for F (g, α) may be regarded as discretized orientable
Riemann surfaces Σ. Their faces are oriented by the small arrows carried by the
propagators. In addition their edges carry the orientation of the big arrows. Accord-
ing to the argument of ’t Hooft [9] and following the rules above, if a diagram has
#V = n vertices, hence #E = 2n edges (propagators), and #F faces, it carries a
power of N equal to n−2n+#F = χE(Σ) = 2−2h, the Euler-Poincaré characterics
expressed in terms of the genus h.

To summarize, we have obtained a topological expansion (which is an asymptotic
expansion in 1/N2)

F (g, α) =
∞∑

h=0

1
N2h

F (h)(g, α) (1.4)

where F (h) is the sum over Feynman diagrams of genus h weigthed as explained
above. Now that this property has been established, we abandon the double line
notation and return to more conventional notations for Feynman diagrams: we
erase the small arrows of matrix indices but retain the big ones that encode the
distinction between M and M †.

We are now ready to build a dictionary with virtual links: due to the
“contraction” of M and M † through the propagators, Feynman diagrams of the
type just discussed are naturally endowed with the properties of alternating virtual



May 12, 2004 9:59 WSPC/134-JKTR 00317

Generation and Counting of Virtual Tangles and Links 331

link diagrams. Thus 4-vertices are in one-to-one correspondence with over/under-
crossings ⇔ , while the virtual crossings admit the alternative representation:

. (Beware! a virtual crossing is depicted in the graph theoretic
way as an under- or over-crossing in the Feynman diagram representation; as men-
tioned above, it is immaterial to draw it either way.) Note that in this represen-
tation, it is quite natural that these virtual crossings can be freely moved around,
thus enforcing the virtual Reidemeister moves. Note also that this correspondence
gives an operative way to compute the genus on which to draw a given virtual link
diagram, which may not have been obvious in their original presentation (whether
or not this is the minimal genus on which one can draw the link itself is a sub-
tle matter due to the existence of the “real” Reidemeister moves, and it will be
discussed again in Sec. 4).

From the relations n = #F + 2h − 2 and #F ≥ 1, we might have expected
contributions of genus h to occur first at order n = 2h − 1, for diagrams with
a single face. This is indeed what happens with diagrams related to hermitian
matrix integrals. Here, however, the orientation of edges by the big arrows induces
an additional constraint: adjacent faces have opposite orientations with respect to
these arrows. This forbids the possibility to have #F = 1 and as a result, genus
h > 0 occurs first at order

nmin(h) = 2h , (1.5)

i.e. F (h)(g, α) starts at order g2h, or said otherwise, there is no virtual link of genus
h with less than 2h (real) crossings. One checks that the bound is saturated by
computing the coefficient,

F
(h)
2h =

(4h− 1)!!
4h(2h+ 1)

(1.6)

and it is also possible to determine without much further effort the next term, i.e.
the coefficient of g2h+1

F
(h)
2h+1 =

(4h+ 1)!!
(2h+ 1)2

2h∑
s=0

(−1)�
s+1
2 �(

4h+1
s

) (
2h
	 s

2

) 4h+1−s∑

p=s+1

1
p
, (1.7)

see Appendix A for details.

1.2. Correlation functions

We are also interested in the “2p-point functions” G2p(g, α) := 〈 1
N tr(MM †)p〉, in

particular

G4(g, α) = 2
∂F (g, α)

∂g
(1.8)

and

G2(g, α) =
1
α
− ∂

∂α
F (g, α) =

1
α
(1 + gG4) , (1.9)
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where use has been made of the homogeneity property (1.3). This same property
implies that

G2p(g, α) =
1
αp

G2p

( g

α2

)
G2p(g) : = G2p(g, 1) .

(1.10)

These functions too admit a graphical representation, with similar Feynman rules
and Feynman graphs with 2p external lines. These graphs are natural candidates
for 2p-tangle diagrams. For the four-point function G4, we adopt the following
convention of orientation: external lines may be extended to a circle surrounding
the diagram, and the four lines are drawn in the NW, NE, SE and SW directions,
with the outcoming arrow (i.e. first crossing is over-) on NW and SE external lines.

1.3. Nugatory crossings and non-prime diagrams

The two-point function G2 is in particular useful to dispose of all composite links
and tangles. Irrelevant “nugatory” crossings and non prime diagrams appear as
graphs with a subgraph which may be disconnected by cutting transversely two
distinct edges. Such a subgraph is called a “self-energy” by physicists. To remove
all nugatory crossings and non prime configurations, i.e. to retain only diagrams
with no self-energy, it suffices to choose α = α(g) so as to make G2(g, α(g)) = 1
or equivalently in view of (1.10), G2(g/α(g)2) = α, and to plug it into F (g, α) or
G2p(g, α). Then the “connected four-point function with no self-energy” defined as

Γ(g) = G4(g, α(g))− 2 (1.11)

is easily seen to satisfy

gΓ(g) = α(g)− 1− 2g (1.12)

as a consequence of (1.9). (The appearance of −2 in (1.11) is due to the subtrac-
tion of disconnected contributions to the 4-tangle by two parallel non-intersecting
strands.)

1.4. Flypes

We now want to argue that dividing only by the planar flypes suffices to get the
equivalence classes of virtual alternating tangles and links. This claim is based
partially on our intuition that other types of moves, such as flypes of higher genus,
are not permitted by the structure of the thickened surface, and partially on the
study of low order virtual links and tangles. But our best evidence comes from
the analysis, explained in Sec. 4, of several classes of invariants applied to links
and tangles up to order 6 (six real crossings), which indicates that the remaining
objects are indeed topologically inequivalent. Still this remains an assumption. . .

For classical (genus 0) tangles, Sundberg and Thistlethwaite have shown how
to construct the generating function of flype-equivalence classes of tangles Γ̃(0)(g)
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from the planar generating function Γ(0)(g) ≡ limN→∞ Γ(g) [8]. The operations
leading from Γ(0)(g) to Γ̃(0)(g) have subsequently been shown by one of us [7]
to be simply expressible in terms of a “coupling constant renormalization” in the
language of physicists, i.e. of a redefinition of the expansion variable, determined
in a self-consistent way. Let g0(g) be the solution of

g0 = g

(
−1 +

2
(1− g)(1 + Γ(0)(g0))

)
. (1.13)

Then we recover the result of Sundberg and Thistlethwaite by writing that Γ̃(0)(g) =
Γ(0)(g0(g)). According to our conjecture, we must generalize this to all genera. If
Γ̃(g) =

∑∞
h=0 N

−2hΓ̃(h)(g) is the full generating function of virtual prime alternat-
ing tangles, then we are led to

Γ̃(g) = Γ(g0(g)) . (1.14)

2. Sum Over All Genera

For N = 1 the integral over a single real variable is readily computed. One finds
for Z the asymptotic expansion

Z(g, α = 1)
∣∣
N=1

=
∞∑
0

(g
2

)n (2n)!
n!

. (2.1)

Its logarithm

F (g, α = 1)
∣∣
N=1

= g + 5
2 g

2 + 37
3 g3 + 353

4 g4 + 4081
5 g5 + 55205 g6

6 g6 + 854197
7 g7

+ 14876033
8 g8 + 288018721

9 g9 + 1227782785
2 g10 + 142882295557

11 g11

+O(g12) (2.2)

is the sum of F (h) for all genera h and will provide a sum rule over the contributions
of the different genera to be discussed in the next section. By differentiation one
gets the 4-point function

G4(g) = 2 + 10 g + 74 g2 + 706 g3 + 8162 g4 + 110410 g5

+1708394 g6 + 29752066 g7 + 576037442 g8

+12277827850 g9 + 285764591114 g10 +O(g11) (2.3)

and after determination of α(g) as explained in Sec. 1.3, one gets the connected
four-point function with no self-energy

Γ(g) = 2 g + 10 g2 + 82 g3 + 898 g4 + 12018 g5

+187626 g6 + 3323682 g7 + 65607682 g8

+1424967394 g9 + 33736908874 g10 +O(g11) . (2.4)
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Expanding Eq. (1.13) to the required order, we find

g0 = g − 2 g3 − 4 g4 − 10 g5 − 30 g6 − 108 g7 − 436g8

− 1890g9 − 8588g10 + O(g11) (2.5)

and therefore

Γ̃(g) = 2 g + 10 g2 + 78 g3 + 850 g4 + 11426 g5

+179238 g6 + 3187002 g7 + 63095526 g8

+1373767142 g9 + 3259401885 g10 +O(g11) . (2.6)

The three expansions G4(g), Γ(g) and Γ̃(g) have the same asymptotic be-
havior up to a multiplicative constant, with their n-th order of the form
const. 2n

√
n+ 1 (n+ 1)!

3. Genus 0, 1, 2 and 3

We now return to the matrix integral (0.1) and its 1/N2 expansion. Let a2(g) be
the solution of

a2 = 1 + 3g(a2)2 (3.1)

with a2(g) = 1+O(g). (Its interpretation is that it characterizes the support of the
limiting distribution of eigenvalues of MM †.) Then one finds

F (0)(g) := F (0)(g, 1) = log a2 − 1
12

(a2 − 1)(9− a2)

= 2
∞∑

n=1

(3g)n
(2n− 1)!!
n!(n+ 2)!

. (3.2)

(As a side-remark, we recall that this is twice the result for the Hermitian matrix
integral as in (0.1) but with tr

(
α
2M

2 − g
4M

4
)
in the exponential). Explicitly, one

gets the expansion

F (0)(g) = g + 9
4 g

2 + 9 g3 + 189
4 g4 + 1458

5 g5 + 8019
4 g6 + 104247

7 g7

+ 938223
8 g8 + 966654 g9 + 82648917

10 g10 + 801058734
11 g11 +O(g12) . (3.3)

For genus 1, Morris gives [10]

F (1)(g) = − 1
24

log
(2 − a2)(2 + a2)3

27

=
1
24

∞∑
n=0

(3g)n+1

n+ 1

n∑
p=0

(2n+ 2)!
(n− p)!(n+ 2 + p)!

(
1− (−3)−p

)
= 1

4g
2 + 10

3 g3 + 307
8 g4 + 428 g5 + 28457

6 g6 + 52612 g7 + 9370183
16 g8

+ 58911256
9 g9 + 734641583

10 g10 + 827733428 g11 +O(g12) . (3.4)
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For higher genus, the expressions are more and more complicated. Akemann
and Adamietz [11, 12] have found that in terms of I1 = 1−6ga2 and M0 = 1−2ga2

F (2)(g) =
21a2g3

40I5
1

− 69g2

640I4
1

+
53g

2560a2I3
1

+
g

256a2I2
1M0

− 3g
512a2M3

0

− 1
512a4I1M0

− 3
1024a4M2

0

− 53
15360a4I2

1

(3.5)

whence

F (2)(g) = 21
8 g4 + 483

5 g5 + 4659
2 g6 + 46434 g7 + 6635991

8 g8

+13798410 g9 + 1091610282
5 g10 + 3328687092 g11 + O(g12) (3.6)

and the expression of F (3)(g) is too cumbersome to be given here but leads to the
expansion

F (3)(g) = 495
4 g6 + 56628

7 g7 + 2504115
8 g8 + 9322668 g9

+ 472138479
2 g10 + 5345163216 g11 +O(g12) . (3.7)

We check that these F (h) start at an order in g consistent with (1.5). Moreover
the sum of these four first contributions differ from the sum over all genera (2.2) by
terms of order g8 as it should. Using the additional information of (1.6) and (1.7),
one may extract the first terms of F (4) and F (5)

F (4) = 225225
16 g8 + 1368653 g9 + 1495900107

20 g10 + 3023618067 g11 +O(g12)

F (5) = 11904165
4 g10 + 4304016990

11 g11 +O(g12) . (3.8)

By differentiating with respect to g, one gets G
(h)
2 (g, 1) and G

(h)
4 (g, 1) according

to (1.9) and (1.8). One then determines the double expansion in powers of g and
1/N2 of α(g) so as to remove the self-energies, as explained at the end of Sec. 1.
We do not display the corresponding expansion of α(g) as it may be recovered from
Eq. (1.12) and the expressions of Γ(h) below. Using the additional data of (3.8) we
may provide the g-expansion up to order g10 of Γ(h)(g) for h = 0, . . . , 5.

Γ(0)(g) = g + 2 g2 + 6 g3 + 22 g4 + 91 g5 + 408 g6 + 1938 g7 + 9614 g8

+49335 g9 + 260130 g10 +O(g11)
Γ(1)(g) = g + 8 g2 + 59 g3 + 420 g4 + 2940 g5 + 20384 g6 + 140479 g7 + 964184 g8

+6598481 g9 + 45059872 g10 +O(g11)
Γ(2)(g) = 17 g3 + 456 g4 + 7728 g5 + 104762 g6 + 1240518 g7 + 13406796 g8

+135637190 g9 + 1305368592 g10 +O(g11)
Γ(3)(g) = 1259 g5 + 62072 g6 + 1740158 g7 + 36316872 g8

+627368680 g9 + 9484251920 g10 +O(g11)
Γ(4)(g) = 200589 g7 + 14910216 g8 + 600547192 g9 + 17347802824 g10 +O(g11)
Γ(5)(g) = 54766516 g9 + 5554165536 g10 +O(g11)

(3.9)

are the generating functions of the numbers of connected graphs of genus 0 to
3 with no self-energy; they are not yet the generating functions of the number
of tangle diagrams, due to the flype equivalence and possible other redundancies.
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One may integrate these expressions according to (1.8) to obtain the corresponding
generating functions F (h)(g) of virtual alternating link diagrams with no self-energy.

In Figs. 6–10 we depict the corresponding diagrams of F (h), h = 0, 1, 2 up to
order 4: the corresponding diagrams of Γ are obtained by removing in all possible
non equivalent ways one vertex, thus opening the link diagram into a tangle. In these
figures, we list in parallel the two notations of Feynman diagrams and of links. In
the latter, colors have been introduced only to distinguish the different connected
components. Each link of order n (n crossings) comes with an integer, whose inverse
gives its weight in F (h). Alternatively, the number of distinct contributions that this
link gives to Γ(h) after removal of one vertex equals 2n divided by this integer.

The first flypes occur at order 3 for genus 0 or genus 1 in Γ, see Fig. 11. The
generating functions of flype equivalence classes of classical links is

Γ̃(0)(g) = Γ(0)(g0) = g + 2 g2 + 4 g3 + 10 g4 + 29 g5

+98 g6 + 372 g7 + 1538g8 + 6755g9 + 30996 g10 +O(g11)

(which is the result of [8]).
Then, according to our assumption,

Γ̃(1)(g) = Γ(1)(g0) = g + 8 g2 + 57 g3 + 384 g4 + 2512 g5 + 16158 g6

+102837 g7 + 649862 g8 + 4086137 g9 + 25597900 g10 +O(g11)
Γ̃(2)(g) = Γ(2)(g0) = 17 g3 + 456 g4 + 7626 g5 + 100910 g6 + 1155636 g7

+11987082 g8 + 115664638 g9 + 1056131412 g10 +O(g11)
Γ̃(3)(g) = Γ(3)(g0) = 1259 g5 + 62072 g6 + 1727568 g7 + 35546828 g8

+601504150 g9 + 8854470134 g10 +O(g11)
Γ̃(4)(g) = Γ(4)(g0) = 200589 g7 + 14910216 g8

+597738946 g9 + 17103622876 g10 +O(g11)
Γ̃(5)(g) = Γ(5)(g0) = 54766516 g9 + 5554165536 g10 +O(g11)

(3.10)

are the generating functions of flype-equivalence classes of virtual tangles with up
to 10 real crossings. For example, the reduction from 59 to 57 of the number of
genus 1 tangles of order 3 is in accordance with the equivalence of Fig. 11.

The large order behavior of the g-expansions of F (h) is dominated by the leading
singularity of a2(g), which occurs at g = gc = 1/12, a2(gc) = 2. One finds

F (0)(g, 1) ≈ (gc − g)5/2

F (1)(g, 1) ≈ log (gc − g) .
(3.11)

The leading singularity of the expression of F (2) comes from the term proportional
to I−5

1 , as I1 vanishes like (gc − g)1/2. Similarly F (3) has a pole of order 10 in I1.
This is typical of what is expected for generic genus [19]

F (h)(g) ≈ (gc − g)5/2(1−h)
. (3.12)

Thus one expects

f (h)
n ≈ 1

gn
c

n5/2(h−1)−1 , (3.13)
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2

2

Fig. 6. The genus 0 and 1 2-crossing alternating virtual link diagrams in the two representations,
the Feynman diagrams on the left, the virtual diagrams on the right: for each, the inverse of the
weight in F is indicated.

66

2 2

6 6

Fig. 7. Same for order 3, genus 0 and 1.

2

8 8

Fig. 8. Same for order 4, genus 0.

and correspondingly, for Γ(h)(g) =
∑

n γ
(h)
n gn

γ(h)
n ≈ 1

gn
c

n5/2(h−1) . (3.14)

The subsequent reductions that we perform to eliminate the redundancies, change
the value of gc (enlarging it so as to increase the radius of convergence) but do
not affect the value of the “critical exponents” 5/2, 0,−5/2, . . . Thus, removing the
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2

1

4

2

22

2

2

4

11

4

2

8

Fig. 9. Ibid. for genus 1.

self-energies has the effect that the closest singularity is now for g/α2(g) = 1/12
which gives [6] g′c = 4/27. Similarly, taking care of the flype equivalence increases
the radius of convergence of Γ̃(g) to the value g′′c = (−101 +

√
21001)/270, see [8],

but does not affect the general form (3.14).
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1

1

8

Fig. 10. Ibid. for genus 2.

~~

Fig. 11. First occurences of flype equivalence in tangles with 3 crossings.

Finally, note that the function F̃ (g) obtained by integrating Γ̃ is not exactly
the generating function of flype-equivalence classes of links (due to the issue of
symmetry factors) but should have the same asymptotic behavior: intuitively, this
reflects the fact that the number of link diagrams with a non trivial symmetry
factor is subleading and does not contribute to the asymptotic behavior of the form
(3.13) (this fact has now been proved for classical links [14]).

4. An Algorithm to Classify Virtual Alternating Links

In this section we describe the encoding we used to represent virtual alternating
link diagrams, and the subsequent algorithm that allowed us to generate prime
alternating virtual links. Due to the factorial growth of their number, we only
describe the result up at order 4; but we have obtained data up to order 6 in order
to check our generalized flype conjecture.
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4.1. Alternating link diagrams and permutations

Our encoding of virtual alternating link diagrams is based on a well-known corre-
spondence between bicolored maps and permutations. An alternating link diagram
can be equivalently described as a (not necessarily planar) map whose vertices have
valence 4 and whose faces are bicolored, according to the pattern of under/over
crossings as one moves around the face, see Fig. 12.

��
��
��
��
��
��

��
��
��
��
��
��������

���
���
���
���
���

���
���
���
���
���0

3
6

4

1

7 5 2

Fig. 12. Bicoloration and labelling of an alternating link diagram.

Let us now label the edges of the diagram (or of the map): the set of edge labels
will be called E, and its permutation group S(E). In the implementation, E is
chosen to be E = {0, 1, . . . , 2n−1}. It is known that general face-bicolored maps (i.e.
duals of bipartite maps) are in one-to-one correspondence to pairs of permutations
(σ, τ) ∈ S(E) according to the following recipe: the cycles of σ (resp. τ) are the
labels of the edges in their cyclic order as one turns clockwise around white faces
(resp. counterclockwise around black faces).a Define additionally ρ = σ−1τ and
ρ̃ = στ−1. The cycles of ρ (or of ρ̃) are easily seen to be in one-to-one correspondence
with vertices of the map.

Finally a relabelling of the map is a permutation g ∈ S(E) of the labels acting
by conjugation:

σ′ = gσg−1, τ ′ = gτg−1 . (4.1)

An unlabelled map can therefore be described as a conjugacy class of pairs of
permutations.

Here we require various additional properties of the map, which must be trans-
lated combinatorially into properties of the permutations:

(1) First and foremost, all vertices must have valence 4. This implies that ρ

(resp. ρ̃) only has 2-cycles, i.e. is a fixed point-free involution, exchanging edges at
overcrossings (resp. undercrossings). Here we decide to focus on ρ rather than ρ̃.
The situation at each vertex is described on Fig. 13; the figure can be considered
as the defining rule to build σ and τ .

aIn terms of the Feynman diagrams of the matrix model, σ and τ correspond to following either
of the two lines of an edge in the direction of its (big) arrow.
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α

τ(α)

ρ(α)

σ(α)
Fig. 13. Configuration at a vertex. If β = ρ(α), consistency implies that σ(α) = τ(β) and
τ(α) = σ(β) i.e. that ρ = τ−1σ = σ−1τ is an involution.

One can partially fix the freedom on the labels by noting that via conjugations,
one can reduce ρ to a given form; for E = {0, 1, . . . , 2n− 1}, we choose

ρ(2α) = 2α+ 1, ρ(2α+ 1) = 2α, α = 0, . . . , n− 1 . (4.2)

Once ρ is fixed, the data of σ alone suffices to describe the alternating link
diagram since τ = σρ. Furthermore, all relabellings must commute with ρ; they
form a group G = {g ∈ S(E) | gρ = ρg} which is isomorphic to Sn × Z

n
2 .

For example, the labelled diagram of Fig. 12 is such that ρ is of the form of
Eq. (4.2), and we find

σ =
(
0 1 2 3 4 5 6 7
3 4 1 6 2 7 0 5

)
, τ =

(
0 1 2 3 4 5 6 7
4 3 6 1 7 2 5 0

)
(4.3)

or in terms of cycles σ = (0 3 6)(1 4 2)(5 7) and τ = (0 4 7)(2 5 6)(1 3).
(2) We are interested in connected maps. This amounts to requiring that the

action on E of the group generated by σ and τ be transitive.
(3) We mostly focus on diagrams without self-energy. In order to find self-

energies (i.e. subdiagrams with 2 external legs), we look for pairs of edges (α, β)
which belong to the same cycle of σ and to the same cycle of τ . Cutting these
two edges amounts to composing with the transposition (αβ): σ′ = σ ◦ (αβ), τ ′ =
τ ◦ (αβ). The diagram has no self-energy iff for all such pairs (α, β), the modified
diagram corresponding to (σ′, τ ′) is still connected (note that in the planar case the
resulting diagram is necessarily disconnected, so that the existence of such a pair
is enough to discard the diagram).
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α β
α

β

Fig. 14. Potential self-energies and how to cut them out.
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(4) Finally, we want to consider classes of flype-equivalent diagrams. The flype
acts on a diagram as follows: consider four edges (α, β, γ, δ) in the configuration
depicted on Fig. 15(a), that is σ(α) = β, δ and γ in the same cycle of σ, α and
δ, β and γ in the same cycles of τ . Cut the tangle by composing σ and τ with
appropriate cycles, and paste its legs together in the way described on Fig. 15(b).
Proceed only if the resulting subdiagram is planar. If it is, then “flip” it by replacing
σ and τ with their inverses inside it, see Fig. 15(c). Finally, reconnect the tangle
to the rest of the diagram, see Fig. 15(d). A similar operation can be performed by
exchanging black and white colors, i.e. σ and τ in the construction above. Together
these two types of moves reproduce all possible flypes.

� � � � � � � �� � � � � � � �              
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � � �
� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �
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ν

µ

γ

δα

β

δ

γ
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µ
ν

µ

γ

δ

α

β γ

δµ

ν

flip

b)a) c) d)

Fig. 15. Performing a flype via permutations.

4.2. Calculation of link invariants

There are various quantities one may want to compute once a permutation σ has
been produced. They can be of many different types: first, they may be true in-
variants of virtual links, or they may be flype-invariant and therefore conjectured
invariants of reduced alternating virtual link diagrams, or they may be not invariant
at all (but still interesting to compute). Secondly, they may be invariants of un-
oriented or oriented links. In all that preceded we have only dealt with unoriented
objects; however many useful invariants depend on orientation and it is therefore
necessary to consider every choice of orientation (2c where c is the number of con-
nected components) of an unoriented object. We now list the quantities we have
been able to compute, and how to extract them from the permutation σ:

(i) The number of crossings n is of course not left invariant by Reidemeister
moves, but it is preserved by flypes. For reduced alternating diagrams of virtual
links it is conjectured to be the minimal number of crossings.

(ii) The genus h of the underlying surface: it is not left invariant by general
Reidemeister moves, as Fig. 16 shows (intuitively, after a Reidemeister move a
handle may become empty so that it must be removed), however it is preserved by
flypes, and once again, conjectured to be the minimal genus for virtual alternating
links. It is given by the Euler–Poincaré formula: χE = 2− 2h = #V −#E +#F ,
where #V = n is the number of vertices, #E = 2n is the number of edges, #F

is the number of faces. If #σ is the number of cycles of σ i.e. of white faces, and
similarly for τ , we have #F = #σ +#τ and then we conclude that

h = 1− 1
2
(#σ +#τ − n) . (4.4)
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Fig. 16. A genus 1 diagram which turns out to be a trivial knot

(iii) The number of connected components c is of course an invariant of unori-
ented virtual links. Moving along each connected component on the diagram can be
achieved by acting with ρ and ρ̃ alternatingly; it is easy to check that this implies

c =
1
2
#(ρρ̃) =

1
2
#(σ−2τ2) . (4.5)

(iv) The order of symmetry of the diagram: this is not an invariant at all. It is
simply the order of the group of permutations H that commute with both σ and
τ , that is

H = {g ∈ G | gσ = σg} . (4.6)

This order is a divisor of 2n (this results from the fact that for tangles — see below
— this group is trivial).

At low orders one can easily find pairs of flype-equivalent alternating reduced
diagrams with distinct symmetry factors; this observation is important because
it prevents us from computing the generating function of the number of prime
alternating links in the same way as for tangles.

(v) The set of linking numbers: for an oriented diagram, define the sign εv of a
vertex v according to Fig. 17, and

&ij =
∑

v∈Vij

εv, 1 ≤ i, j ≤ c (4.7)

Vij being the set of vertices where components labelled i and j meet.

+

Fig. 17. Sign of a vertex.

The off-diagonal elements &ij , i < j are twice the usual linking numbers between
components i and j (but they are not necessarily even for virtual diagrams). They
are invariants of oriented links (up to permutation of the labels of the connected
components). Their absolute value does not depend on orientation.
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(vi) The determinant d is an invariant of unoriented links: it is a specialization
of the usual Alexander polynomial (see below).

(vii) The bracket polynomial is defined for an unoriented diagram by a sum over
“splittings”:

〈L〉 =
∑

s

Aa(s)−b(s)(−A2 −A−2)#s−1 (4.8)

where the splitting s is described at each vertex by Fig. 18; a(s) and b(s) are the
number of vertices of type (a) and (b), and #s is the number of loops thus created.b

Alternatively, s has a simple description as a permutation: define

s(i) =
{
σ(i) if i overpasses a vertex of type (a)
τ(i) if i overpasses a vertex of type (b)

(4.9)

for all edges i ∈ E. Note that this induces an orientation of the loops (which is
associated with the bicoloration of the faces). Then #s is the number of cycles
of s.

= A + A−1

(a) (b)

Fig. 18. Splitting at a vertex.

The bracket polynomial is preserved by flypes; however it is not invariant under
Reidemeister move I. It is only up to multiplication by −A that it is an invariant
of unoriented links.

One can get rid of this arbitrary power of −A by introducing

V = (−A)−3t〈L〉 (4.10)

where t =
∑

1≤i≤c &ii is the twisting number of the link (which is orientation inde-
pendent). V is (up to a power of A for multi-component links) the Jones polynomial
in the variable A = x1/4.

Furthermore, one can compute colored Jones polyonomials by using cabling, i.e.
replacing each string with k parallel strings and then adding extra “twists” to keep
constant the linking number of each new string with the original one (e.g. keep
it zero). We skip the details of the current implementation since it is clearly not
optimal: the computation time of the k-th cabling roughly grows like c n

2k where
c2k = (4k)!

(2k)!(2k+1)! , so that only k = 2 can be achieved in a reasonable amount of
time. For better results, one would need to adapt the known efficient methods of
computation of quantum link invariants to virtual links.

bIt might seem surprising that loops that have non-trivial homology are not distinguished in
Eq. (4.8); this is because homeomorphisms of Σ and addition/subtraction of handles do not pre-
serve the homology class of loops.
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(viii) The Alexander polynomials are polynomial invariants of oriented links up
to a sign and multiplication by a monomial. We refer to [1, 20–23] for details. The
(extended, multi-variable) Alexander module is defined by its generators, the edges
of the diagram, and local linear relations at each vertex, see Fig. 19. They are very
simple to build in terms of the permutation σ once an orientation has been fixed.
The 0th polynomial (which vanishes for classical links) is simply the determinant
of the matrix of relations. Further polynomial invariants are obtained as g.c.d. of
minors.

aa bb

(1) tb a + (1 − sta) b s b
(2) bab−1 b

s−1 b t−1
b a + (1 − s−1t−1

a ) b
b b−1ab

Fig. 19. The rules defining (1) the Alexander module and (2) the group of a link.

(ix) Closely related is the group π of a virtual link which is the generalization
to virtual links of the fundamental group of the complement of a link; the relations
at each vertex are described on Fig. 19. It is an invariant (up to isomorphism) of
unoriented links (the orientation only fixes the presentation). In practice it is not a
simple task (and not easy to implement by computer) to decide if two groups given
by generators and relations are isomorphic, and one uses as invariants the number
of morphisms of π into given finite groups Γ. Unfortunately this is only doable for
Γ of small order, which only uncovers a small part of the structure of π.

4.3. Generalization to tangles

The appropriate way to consider a (four-legged) tangle is a link with a marked rigid
vertex. All that has been done in Secs. 4.1 and 4.2 can therefore be adapted to the
case of tangles.

A tangle is now represented by a pair of permutations (σ, τ) in which the marked
vertex is encoded just like an ordinary crossing, except the labels must somehow
determine uniquely which vertex is marked: in the implementation we chose the
edges overcrossing at the marked vertex to be (2n− 2, 2n− 1). The actual tangle
is obtained by removing the marked vertex and drawing the external legs in such
a way that 2n − 2 is the lower left line and 2n − 1 is the upper right line (and
therefore, σ(2n− 1) is lower right and τ(2n− 1) is upper left).

The group of relabellings is now limited to those elements of g leaving the rigid
vertex, i.e. the corresponding two labels (2n − 2 and 2n − 1), invariant: it is a
subgroup G1 of G which is isomorphic to Sn−1 × Z

n−1
2 . Other operations on the
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permutations can be performed in the same spirit, that is by keeping the rigid
vertex fixed.

Tangle invariants are generically obtained by pasting an arbitrary given tangle
to the tangle under consideration and computing link invariants. In practice one
obtains only a finite number of independent invariants. For example, one gets two
Jones polynomials, and more generally c2k for the k-cabling, by pasting arbitrary
arch configurations to the tangle; five 0th Alexander polynomials obtained by setting
equal to 0 two of the four generators corresponding to external legs and computing
the resulting (n − 1) × (n − 1) determinant of the matrix of relations (there are(
4
2

)
= 6 possibilities but only 5 are independent due to a bilinear identity satisfied

by the determinants); etc.

4.4. Results

We have written a program that generates all permutations σ ∈ Sn up to conju-
gation by elements of G (or G1 for tangles), for n ≤ 6. It then selects connected
prime/reduced diagrams, creates flype equivalence classes, and finally sorts them
according to their invariants and in particular detects undistinguishable non flype-
equivalent diagrams. We have provided a sample of the output on Fig. 20.

In particular, the number of morphisms of the group π into the three
groups S3, A4 and A5 is listed, but we have occasionnaly looked at higher
groups. To save space, the variable A of the Jones polynomial is called a in
the tables, and only 0th extended Alexander polynomials, depending on c +
1 variables t0, · · · , tc−1 and s are listed. The rest can be found on the web
(http://ipnweb.in2p3.fr/∼lptms/membres/pzinn/virtlinks).

Up to order 4, we have checked that all flype-equivalence classes are distin-
guished by the invariants described in Sec. 4.2. Therefore the conjecture holds true
for links at least up to order 4.

When we go to higher orders, a new problem arises: the difficulty in distinguish-
ing links obtained from one another by discrete symmetries.

Several discrete operations may be performed within the class of alternating
virtual link diagrams. First, there is the mirror symmetry, a reflection in a plane
orthogonal to the plane of the figure. This is a well known operation on classical
knots and links, which are called achiral or chiral depending on whether the mirror
image is equivalent or not to the original. The same applies to virtual diagrams. In
terms of permutations it corresponds to σ ↔ τ . Secondly, there is the simultaneous
change of all over- into under-crossings and vice versa (which corresponds to σ →
τ−1, τ → σ−1). For classical links, this is not independent of the mirror symmetry,
as the composition of the two (σ → σ−1, τ → τ−1), which is equivalent to a global
flip of the diagram, i.e. a rotation around an axis in the plane of the figure, yields a
link equivalent to the original: this may be seen by gradually overturning the link
diagram. For virtual diagrams, this is no longer the case: there is an obstruction to
this overturning due to the virtual crossings, and the impossibility of performing the
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Fig. 21. A pair of virtual flipped knots, distinguished by their Alexander–Conway polynomial.

Fig. 22. A pair of virtual flipped knots of genus 1, conjectured to be non equivalent.

Fig. 23. A pair of virtual flipped knots of genus 2, conjectured to be non equivalent.

“forbidden Reidemeister move” of Fig. 4. Accordingly, there are now some virtual
links that are equivalent to their flip, and some that are not, the latter appearing
at order 5, see for example Fig. 21.

In principle, mirror symmetry can be detected by the Jones polynomial since
it corresponds to the transformation A → A−1. In fact, even the usual Alexander–
Conway polynomial can distinguish mirror symmetric links in higher genus, since
it is no longer reciprocal. It is important to notice that unlike classical alternating
links, virtual alternating links do not necessarily saturate the bounds on minimum
and maximum degrees of their Jones polynomial (maximum degree minus mini-
mum degree in A4 is less than or equal to n − h). For example, there are many
virtual alternating links with trivial Jones polynomial. Therefore even detection of
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t c d morphisms Jones polynomials � h

S3 A4 A5 0 1 2 3 4 5
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1 3 4 0 2 2 2 2 108 576 18000
�a

�3
� a

1

�a
�3
� a

5 2 3 4 5 0 1 1

0 1 -1 +1�st2�st1+s
2
t1t2 0 +s�t0 +s�t0 +s�t0 +s�t0

0 -1 -1 +1�st2�st1+s
2
t1t2 0 +1�st0 +1�st0 +1�st0 +1�st0

0 1 1 +1�st2�st1+s
2
t1t2 0 +1�st0 +1�st0 +1�st0 +1�st0

0 -1 1 +1�st2�st1+s
2
t1t2 0 +s�t0 +s�t0 +s�t0 +s�t0

0 -1 1 +1�st2�st1+s
2
t1t2 0 +s�t0 +s�t0 +s�t0 +s�t0

0 1 1 +1�st2�st1+s
2
t1t2 0 +1�st0 +1�st0 +1�st0 +1�st0

0 -1 -1 +1�st2�st1+s
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0 1 1 +1�st2�st1+s
2
t1t2 0 +1�st0 +1�st0 +1�st0 +1�st0
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2 2 3 1 1 1 2 2 36 144 3600
+a5
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�3
� a
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Fig. 24. Table of prime alternating tangles with 2 crossings. t is the type of the tangles which
encodes how external legs are connected to each other, according to: NW connected to t = 1 SE,
t = 2 NE, t = 3 SW.
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mirror symmetry can be tricky in higher genus. The situation is worse for the flip
symmetry since the Jones polynomial (and cabled Jones polynomials) cannot distin-
guish flipped images at all. The group of the link or the higher Alexander–Conway
polynomials may in some cases distinguish them.

In practice, already at order 5 there are several diagrams which are not related
by flypes to their flips but for which we have not found any invariants to distinguish
them. This is the case for four pairs of links with five crossings, namely those of
Figs. 22 and 23 and their mirror images. At order 6, there are cases of undistin-
guishable flips and of undistinguishable mirror images. Based on the experience at
genus 0, we believe that these issues are probably difficult to resolve and leave them
to future work.

Let us now discuss the case of tangles, which is in fact more important for us
since it is the objects which we enumerate. Fortunately the rigid vertex destroys
any possible symmetries and the classification problem becomes easier. Figure 24
shows a very limited sample of our data.

We have compared the 13010 virtual prime reduced alternating tangle diagrams
up to order 5. We have performed the flype equivalence and checked that the number
of tangles of each genus agrees with Eq. (3.10). Our program then allows us to
assert that all the flype-equivalence classes thus obtained, irrespective of genus and
crossing number, are distinct (note that in a few cases we had to manually feed the
computer groups of fairly large order — up to 432 — to make it distinguish the
corresponding link groups via their morphisms). This we consider a strong argument
in favor of our generalized flype conjecture.

Acknowledgments

It is a pleasure to thank L. Funar, L. Kauffman, G. Kuperberg, P. Vogel for dis-
cussions, and G. Akemann for providing us with unpublished data by P. Adamietz
and himself. J.-B. Z. is partially supported by the European network HPRN-CT-
2002-00325.

Appendix A. Computation of the Lowest Order Term of Genus h

According to the description of the g expansion in terms of permutations of S2n,
the leading term with n = 2h reads

F
(h)
2h =

1
(2n− 1)!!

1
2n n!

∑
σ,τ∈§2n

δ[σ],{2n}δ[τ ],{2n}δ[σ−1τ ],{2n} (A.1)

where the factor 1
2n n! comes from the n-th order of the g expansion, and 1

(2n−1)!!

takes care of the remaining relabeling invariance of the permutations. Also [σ] de-
notes the class of the permutation σ. One then uses the orthonormalized char-
acters of the §2n symmetric group to represent the conditions on σ or τ by
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δ[σ],{α} =
∑

Y
να

(2n)!χY (α)χY ([σ]) where the sum runs over Young tableaux with
2n boxes, and να is the number of elements of the class α: if α = {1α12α2 · · ·},
να = (2n)!/

∏
j(αj !jαj ). Thus

(4h)! F (h)
2h =

∑
σ,τ∈§4h

(
ν{4h}
(4h)!

)2 (
ν{22h}
(4h)!

)

×
∑

Y1,Y2,Y3

χY1([σ])χY1 ({4h})χY2([τ ])χY2({4h})χY3([σ
−1τ ])χY1({22h})

=
ν2
{4h}ν{22h}
(4h)!

∑
Y

1
dY

(χY ({4h}))2 χY ({22h}) . (A.2)

The characters χY ({2n}) for the one-cycle class receive contributions only from the

hook Young tableaux Ys =

2n−s︷ ︸︸ ︷}
s

for which

χYs({2n}) = (−1)s ,

χYs({2n} = (−1)�
s+1
2 �

(
n− 1
	 s

2

)

dYs =
(2n− 1)!

s!(2n− s− 1)!
.

The summation in (A.2) is thus reduced to a sum over s = 0, · · · , 4h−1. After some
algebra, one finds the result (1.6).

The first subleading term F
(h)
2h+1 is given in a similar way by

F
(h)
2h+1 =

1
(2n− 1)!!

2
2n n!

∑
σ,τ∈§2n

n∑
p=1

δ[σ],{2n}δ[τ ],{p,2n−p}δ[σ−1τ ],{2n} (A.3)

with now n = 2h + 1, since F = 3 implies that either #σ = 1, #τ = 2 or the
converse. The same method as above applies, again only hook Young tableaux
contribute, and the only additional piece of information required is

χYs({2n− p, p}) =



(−1)s if s+ 1 ≤ p ≤ 2n− s− 1,
(−1)s+1 if 2n− s ≤ p ≤ s

0 otherwise
,

as we learn from the Murnaghan-Natayama formula. A little algebra then leads to
the result (1.7).
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