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Recent work on the construction of lattice integrable models corresponding to the SU(N) coset confoi-,-al 

field theories is reviewed. 

1 . 1 N T R O D U C T I O N  

One of the most striking features in the recent 

developments in two-dimensional field theory has 

been the convergence of concepts and methods in 

two a priori disconnected areas: conformal field the- 

ory which deals with continuous massless (critical) 

fields, and integrable lattice models, which are con- 

cerned with critical or non-critical discrete systems. 

That  these two fields overlap is not a complete sur- 

prise: lattice models at criticality are described by 

some conformal field theory (c.f.t.). Conversely, as 

will be illustrated in this talk, and much more sur- 

prisingly, it seems that most, if not all, rational c.f.t. 

may be realized by some integrable lattice model. 

The convergence between the two areas is actually 

much deeper. Many concepts which looked proper 

to one approach turn out to appear in some way 

in the other. This is the case of the Yang-Baxter 

equation and quantum group ideas, developped in 

the framework of integrable models [I] which play 

also an important role in rational c.f.t. [2]. On the 

other hand, the Feigin-Fuchs construction and its 

screening operators seem to have analogues within 

quantum algebras [3] (see also [4]) and the charac- 

ters of infinite dimensional algebras appear in ~nte- 

grable models [5]. 

The classification of rational c.f.t, must thus 

have much in common with the classification of in- 

tegrable models. Adrn;ttedly, the former looks a 

better posed problem than the latter. On the one 

hand, one has to classify modular invariant combi- 

nations of characters, or fusion algebras, whereas 

the construction of integrable models relies on a se- 

ries of Ausgtze: solutions of the Yang-Baxter equa- 

tion, with a certain group-theoretic structure, for 

face models of a certain type, etc... It is my be- 

lief, however, that we have much to learn about the 

classification of c.Lt. from the study of these lattice 

models. 

In this talk, I would like to illustrate this by 

reviewing some recent developments in the con- 

struction of lattice realizations of the coset cLt .  

SU(N)k-I x SU(N)/SU(N)k. The general stat- 

egy is due to Pasquier [6] who has introduced height 

models based on graphs, which encode which config- 

urations of heights are admissible. Thro-ghout this 

discussion, there will be two types of algebras at- 

tached to these graphs in two different senses. On 
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the one hand, a representation of the Hecke alge- 

bra (or of its specialization, the Temperley-Lieb al- 

gebra), basic in the =Baxterization" procedure [7], 

is built on the space of paths on the graph. On 

the other hand, fusion algebras play a central role 

in c.f.t. These algebras are particular cases of so- 

called =c-algebras ~ [8] or =hypergroups ~ [9] which 

are associative and commutative algebras with a 

basis z= and relations Z=Zb = ~"~.= N=beZ= satisfying 

some additional axioms. Whenever the real struc- 

ture constants are non negative integers, one may 

regard the matrices Na of entries Nab ¢ as the adja~ 

cency matrices of a collection of graphs. Conversely 

given a graph, one may wonder if one may use its 

adjacency matrix to generate a c-algebra with non 

negative structure constants. 

These considerations will be recurrent in the 

following. The simplest models for the SU(N) 

cosets involve the graphs that represent the fu- 

sion by the fundamental representation in the Kac- 

Moody algebra SU(N) at some level. This is natu- 

ral since the configurations appear in the truncated 

Bratteli diagram, the slices of which are precisely 

building this graph [10], [1]. There are, however, 

more complicated patterns of heights, correspond- 

ing to more general graphs, for which the c-algebra 

may or may not have non negative structure con- 

stants. 

After a short review of what is known about the 

classification of the coset c.f.t. (sect.2), of integrable 

height models (sect.3) and of the Pasquier construc- 

tion in the case of SU(2) (sect.4), I shall introduce 

a class of graphs which seem relevant for the con- 

struction of SU(3) integrable models (sect.5), dis- 

cuss some of their algebraic properties (sect.6) and 

their associated c-algebra and what it says about 

the continuum limit (sect.7). 

2. T H E  C .F .T .  S T A N D P O I N T  

~.I. Cl~sifieation o.f SU(2) theories 

We consider a torus of modular ratio (ratio of 

its two complex periods) ~, with Im~ > 0 and let 

q - exp 2i~rT. The partition function Z of a c.f.t, on 

this torus may be expressed in terms of the Virasoro 

generators as 

z = tr~q~°-~ qLo-~ (2.1) 

By definition the Hilbert space of a =rational c.f.t. ~ 

splits into a sum of products of representation 

spaces of the left and right chiral algebras with mul- 

tiplicities N ~  

Thus Z reads 

-- e N',~ ~ "~. ®'~X. (2.2) 

A-'- ~ NxxX),(q)xx(q) (2.3) 

The characters X~,(q) = tr~xq r ' ° - '~  are generat- 

ing functions for the number of states with a given 

eigenvalue of Lo in the representation space ~x and 

are explicitly known functions for a variety of chiral 

algebras. As a function of ~, Z must be modular 

invariant, which expresses the independence of this 

physical quantity with respect to the choice of coor- 

dinates on the torus. This fundamental observation 

[11] opens the route to a classification of families of 

rational c.f.t.'s. Given a certain set of characters 

of some chiral algebra (Virasoro, Kac-Moody,...), 

what are all the modular invariant combinations 

with non negative integer coefficients that may be 

formed with them? This is a well posed problem 

because it turns out that (for some not very well 

understood reason) all these characters form finite 

dimensional representations of the modular group. 

In particular, under r --. - l / r ,  there is a unitary 

matrix S such that 

1 X~(-'~) = ~ S;~'X;~'(~'). (2.4) 



J.-B. Zuber / Graphs, algebras, conformal field theories 315 

This classification program has so far been car- 

rled out completely only for theories with a SU(2)k 

Kac-Moody algebra (of level k) and some associ- 

ated coset theories. In particular, the coset theories 

SU(2)k-x x SU(2)I /SU(2)k  are the only unitary 

conforn~l theories with a central charge c < 1. In 

fact 

6 
c = 1 - k = 2 , 3 , - . .  (2.,5) (k ÷ 1)(k + 2) 

The classification is simpler to describe for the Kac- 

Moody theories for which A labels an integrable 

weight of level k, (or =altitude" n = k + 2) i.e. cor- 

respo:tds to an integer or half-integer SU(2) spin j ,  

0 < j  < -~k by A = 2 j ÷  1, hence 1 < ), < k-I-1 = 

n - 1. For a given n = k + 2, modular invariant so- 

lutions turn out to be in one-to.one correspondence 

with simply laced Lie algebras (ADE)  of Caxeter 

n-tuber n [12]. The correspondence is particularly 

manifest on the diagonal terms (A = ),) of the par -  

t i t i o n  function 

z=  ~ N~lx~12+o~diagonalterms (=.e) 
I < X < n - I  

where N ,  is the multiplicity of A as an exponent of 

the A , D , E  Lie algebra. 

n _ _ 2  

n = 4 p + 2 > 6  

n = 4 p > _ 8  

n =  12 

n =  18 

n =  30 

Table I: List of SU(2)k-I  x SU(2)I /SU(2)k coset modular invaxiants, 

with n' = n -4-1, k + 2 = max(n,n') .  
n ' - - I  n - - I  

½ E E Ix .l' 
A = I  p = l  

½ ~ Ix~, + x~, ,+=- . l '  + 21xx,,+. I = 
a----1 ~ t t  odd =1 

A----I ~#odd----1 p even ----2 

rtl--I  

1-= ~ { I x ~  + x,  ,1' + Ix~, + x~ sl' + Ix , ,  + x~ - I ' }  
A----I 
ne_l  

1-= ~ {Ix~, ÷ x .  1712 ÷ Ix, s + x~ lsl 2 + Ix~, + x~ zxl 2 
A=I  

+ Ix~,l ~ + [(x~ s + x,  .s )x l ,  + c.c.l} 
nw--1 

A=I  

(A. -1)  

(D2p+=) 

(Es) 

In Table I, is presented the parallel classifica- 

tion of the co~et theories of central charge (2.5), 

which also exhibits the exponents of the A D E  al- 

gebras. Characters axe labelled by a pair of weights 

A and/z  of respective altitude n '  = n + 1 and n, 

k + 2 = max(n, n ') .  I recall that the exponents are 

defined as the integers that  label the eigenvalues of 

the Caftan matrix C, or what is more suited for 

our future purposes, of the adjacency matrix G of 

the corresponding Dynkln diagram: C = 21  - G. 

The eigenvalues of G are 2cos~rm/n, m tak~-E 

r (=  rank of the algebra) values ran~ing between 1 

and n - 1: the exponents. (Table ]I) 
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Table II 

List of Dynkin diagrams and of their exponents 

An-, 

Dk 

E7 

Es 

Graph 

O, : ~  . ' '  " " 4 n - - 1  

~ r - - - - - = 2  ' ' "  _~_ (k-,) 
u(k--1)' 

I 

¢ ¢, ! : : 

T 

Coxeter number n 

2(k- 1) 

Exponents 

1 , 2 , . . . , n - -  1 

1 , 3 , . . . , 2 k -  3 ; k -  1 

12 

18 

30 

1,4,5, 7,8,11 

1, 5, 7, 9 ,11 ,13 ,17  

1, 7 ,11 ,13 ,17 ,19 ,  23, 29 

~.~. The ease of SU(N), N > 2. 

The generalization of these considerations to 

SU(N) for arbitrary N follows a well known route. 

One considers conformal theories with a SU(N) 

Kac-Moody algebra [13]. At level k, the only admis- 

sible representations are associated with "integrable 

weights", i.e. with points of the Weyl alcove: 

N - 1  

A = Z AiAi' 
i-I 

with Ai ___ l, E A i ~ n - I  (2.7) 

hence may be associated with Young tableaux with 

at most k columns (and N - 1 rows). In this ex- 

pression, Ai, i = 1 , . . . ,  N - 1 are the N - 1 funda- 

mental weights of SU(?'i, and we have introduced 

the =altitude" n = k Jr .V. In fig. 1, the edges are 

oriented along the vectors ei, j = 1 , . . . , N ,  that 

are the weights of the fundamental representation 

0: el = At, e i = A i - A i - x  for 1 < 2' < N, 

eN = - -AN-I .  

.~(6) I 

FIGURE 1 

The Weyl alcove of SU(3) at level 3 or altitude 6. 

A 

From these theories with a SU(N) Kac-Moody 

alga" ra, the coset construction produces more con- 

formal theories, in particular the so-called SU(N) 

minimal models 

SU(N)k_I X SU(N) (2.8) 
SU(IV)k 

of central charge 

N ( N  + 1) 
e = ( N - 1)(1 (2.9) n(n- I) / 

that will be realized as critical lattice models in the 

following. 



J.-B. Zuber /Graphs, algebras, conforma! field theories 317 

Table TU. List of some known $U(3)k_] x SU(3)~/SU(3)/= coset modular invaziants, 

denoted (O(n)); ~ = k + 3. 

(A(")) 

(~(-)) 

(D(-)*) 

(E(~)) 

(~(~)~ 

(~_(t=)*~ "~'M$ / 

(E(24)) 

2 

,~EQNP~ k----O " " k----O " 

z = ~ ~ [Ix~,o,~) + x~,(8,s)l 2 + Ix~,(s.=) + x~,0,e)] 2 + Ix:~,(2~) + x~,ce,~)l = 
~D(7) 

+ Ix:~,C4.~) + x~,0,4)l 2 + Ix~,0.3) + x~,(4.s)l ~ + Ix:~,(s,~) + x~,(s.,)[ =] 

Z = ~ ~ []x~,0,~) + x~,(]o.~) + xx.o.~o) + x~.(s,s) + xx,(5=) + x:~,(=,5)l = 

+ 21Xx.(3.8) + X~,(a.6) + Xx,(¢.3)I ~] 

z = ~ ~ [Ix~.(~.,) + x~.oo.,) + x~.(,.,o)l = + Ixx.(3.3) + xx.(3.~) + x~.(o~)l = 

+ IXx.{6.~) + XX.(5,2) + XX,(2.5)l = + IXX,(4.~) + X~.(7.z) + X:~,(1,4)1 ~ 

Jr IXX,(7,4) Jr XX,(1,7) 4" X;~,(4,1)12 ~- 21XX,(4,4)12 

+ (x~,(2,2) + x:~,(s,~) + x~,(~,s))x~,(4,4) + c.c.] 

z = ½ ~ [Ixx.o.~) + x~.(~o.~) + x~.o.~o)l ~ + Ix~.(~.~) + x~.(-%~) + xx.(~)t = 

+ IXX,(s,s) + Xx,(s,~) + xx.(=.s)l ~ + ~[xx.(~.~)[ ~ 

+ (x~.C,.~) + x~.(,.,) + x~.0.,)) (x~.(~.,) + x~.(,.,) + x~.(,.,))" + ~-¢- 

+ (x~.(=.~) + x~.(s.~) + x~.(~.~))x;,.(~..~) + c.c.] 

Z = ~ ~ [Ix~,0,~) + x:~,(22,~) + x~,(~,~2) + x~,(s,~) + x~,(s,~4) + x~,(~4,s) 

Jr XX,(II,11) Jr XX,{u,2) Jr XX,(2,11) Jr XX,(7,7) -~-X~,(7,10) Jr XX,(lO,7)l 2 

-~ IX~,(7,1) Jr X~,(16,?) ~- X~,(I,16) -~ X~,(I,7) Jr Xx=(~,;.6) "~ X~,(16,1) 

+ X:~.(s.s) + Xx.0~,s) + Xx,(s.~]) + Xx,(s.s) + X~,(s.~) + X:~,(]~.s)l ~] 
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In spite of numerous and vigorous efforts, 

no complete classification has been achieved for 

SU(N),  N _> 3 theories as yet. The full descrip- 

tion of the commutant of the action of the modular 

group on SU(N) characters, i.e. the general form of 

the modular invariants with arbitrary (complex or 

rational) coefficients has been obtained [14] but the 

effect of imposing the positivity of these coefficients 

has not yet been mastered. Infinite series of modu- 

lar invariants have been constructed [15], some ex- 

ceptional cases have been exhibited [16], and a theo- 

rem asserting that these cases exhaust the possibili- 

ties for N - 3 whenever k+3  is a prime number has 

been established [17]. Finally the case of SU(N)k=I 

has been completely analyzed in [18]. (For further 

comments and a different approach to this problem, 

see Alvarez-Gaum~'s contribution at this meeting.) 

From the modular invariants presently known for 

the SU(3) Kac-Moody theories, one can manufac- 

ture a subfamily of modular invariants pertaining to 

the cosets (2.8) which are diagonal in the weights 

relative to level k - 1 and 1: this results in Table 

IT[. It involves the following notations: Q denotes 

the root lattice of SU(3), p(n) is the Weyl alcove ++ 

(2.7), a is the Z3 automorphism 

G~ : ~2~,1 -~- ( I t -  ~1 -- )t2)~2 (2.10) 

and all the weights are represented by their compo- 

nents A,, A2. 

#.3. Fusion algebra. 

An internal associative and commutative oper- 

ation on the representations of chiral algebras (or 

~chiral vertex operators ") has been introduced re- 

cently [19],[2]. In Kac-Moody theories, it amounts 

to a tensor product of the representations of the fi- 

nite dimensional algebra, truncated by the altitude. 

(A) * (/~) -- (gvN~Cu) (2.11) 

Most remarkably, Verlinde [19] found a close expres- 

sion for the integer fusion coefficients N ~  in terms 

of the unitary matrix S implementing the modular 

transformation (2.4): 

N~; = ~ S~p$~pS~,p. (2.12) 
Sip P 

Here and in what follows, "1" refers to the identity 

representation of ,.qU(N), i.e. to the apex of the 

graph of fig. 1. If N~ denotes the matrix of entries 

N~'~, it is readily seen that the matrices N satisfy 

the fusion algebra 

- -  (2.13) 

Hence, these matrices form the regular representa- 

tion of the fusion algebra. 

It is natural to encode the fusion rules in a col- 

lection of graphs: each matrix N~ is regarded as 

the adjacency matrix of a graph. In particular, if 

we take A - (3, the fundamental representation of 

dimension N, the resulting graph is nothing else 

than the graph of fig. 1. Thus conversely, the for- 

mula (2.12) tells us everything about the spectrum 

of the adjacency matrix of that graph: its orthonor- 

realized eigenvectors are S~p, corresponding to the 

eigenvalues S[:lp / Sl p. 

3. H E I G H T  M O D E L S  

We now introduce a family of lattice inte- 

grable models. The degrees of freedom are attached 

to the sites of the lattice and interact through 

~interactions-round-a-face" (IRF) around each pla- 

quette. The Boltzmann weights are thus of the form 

w(al, a2, as, a4) _a ,  D= (3.1) 

In the simplest model of this type, the a's are in- 

tegers (on a finite or infinite range) that may be 

regarded as describing the height of a discrete fluc- 

tuating surface, and heights at neighbouring sites 

must differ by +1. We can generalize this to a more 
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abstract situation where the a 's  belong to general 

discrete set, and are subject to some constraint. Ac- 

cordingly, these models are called ~height models *, 

or SOS (solid-on-solid), or IRF (or face) models. 

In order to construct integrable models, one 

seeks a one-parameter family of commuting row-to- 

row transfer matrices, and this may be found if the 

Boltzmann weights satisfy the YB equation 

Eff)(~iQi+I; t l  I t  I t  n .  I t t b a i [u)w(a,b , = , + , , , , l u  ) 
b "  

w(b"a i+ l ;  " ' I I , =  a , l =  ) ai.[.l~i.t. 1 u ~ u t l  I I I  

b tt 

• I t  I t  l I I  I I  I I to(aiai+1,ai+lb [u )w(b ai+t;ai+xailu ) (3.2) 

with u"  = u I -  u, which is represented diagrammat- 

ically as follows: 

a i  a i - 1  ~ ~ - i . i  i'@a'-.. a i a i +  ! = a ! 

a i a i .  1 a i a i .  I 

One also introduces the face transfer matrix 

acting on configurations attached to diagonals 

, I ( 3 . 3 )  < a la2- - -  IX, C )lal'-- a L  > 

= ]--[ ~ja~ t0(ai--l(Z/; ai+la'lu) 
t 

a 1 . a i at. 

and eq. (3.2) amounts to 

X i ( u ) X i + l ( U t ) X i ( t t  0) : X i+l (un)XiCun)Xi+l (U) .  

(3.4) 

For the diagonal-to-diagonal transfer matrix xicu), 

we introduce the following Ansatz: 

= sin - , , ) ) i  + sin u , .  (3.5) 

Then the model is : 

i) critical, i.e. undergoes a second order phase 

transition, if $, is real: in the following, ~ will turn 

out to be equal to the inverse of a positive integer 

l/n; 
ii) integrable if the Ui satisfy the Heclm algebra 

UiUj = UjUi for [i-Jl -> 2 (3~z) 

iii) related to SU(N) if the U's  satisfy am ad- 

ditional N-dependen t  relation [20]. 

In fact, the jnstJfication of the Ansatz (3.5) comes 

from the discu~ion of a different family of lattice 

models: the SU(N) vertex models, in which the de- 

grees of freedom live on the I~=l~ of the lattice and 

ir._t~_ =..ct at vertices. For those models, the d i ~  

to-diagonal transfer matrix Xi(u) comrrmtes with 

the quantum algebra Uq s t (N) .  Moreover these ver- 

tex models ~]m~t a reinterpretation in terms of 

height models of the previous type. If  we try to 

construct mor~ genera] height models, it is there- 

fore natural to demand that  their transfer matrix 

Xi(u) commutes with the qn~ntuIn algebra. Now 

the commutant of ~q d ( N )  (in the tensor space of 

two fundamental representations) has been shown 

by Reshetlkhln [20] to be described by the factor of 

the Hecke algebra (3.6), with q = e i=I, by the addi- 

tional condition that  the q-analogue of the N - t h  

Young antisymm~tri~er vanishes. 

We are thus loo)dng for new representations of 

the Hecke algebra. Following an idea of Pasquier 

[6], it is suggested tc regard the heights as eZtached 

to the vertices of a g ~ p h  9- The allowed configura- 

tions are encoded in the adjacency matrix G of this 

graph in the sense that two heights on two neigh- 

bouring sites of the lattice must be neighbours on 

the graph. In other words, we are seeking represen- 

tations of the Hecke algebra on the set of paths on 

the graph .0. 
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4. CAS . OF s (2) 

Ill the case of ,.qU(2) we only consider unori- 

ented graphs ~ (their adjacency matrix G is sym- 

metric).  This is related to the reality of represen- 

tat ions of ~'U(2). As any matrix with non nega- 

tive entries, the matr ix  G has an eigenvector ~bO) 

of largest eigenvalue .~0) with non negative compo- 

nents: ~ 1 )  _> 0 (Perron- Frobenius theorem). Then 

[6] 

a 1 

Q i  

(4.1) 

satisfies the Hecke algebra with 

.y(1) = 2 cos ~r~. (4.2) 

(In the case of SU(2) ,  the additional condition 

mentioned above reduces the Hecke algebra to the 

Temperhy-Lieb algebra, in which the two sides of 

eq. (3.6c) vanish separately.) Since we impose that  

~, be real, we look for unoriented graphs such tha t  

their  largest eigenvalue be less or equal to 2. The 

case .~0) = 2 corresponds to conformal theories 

with c - 1 and ~ l l  not concern us here. The clas- 

sification of graphs with 

~(l) <= 2 (4.3) 

is a well known problem [21]: the solutions are ei- 

ther the A, D, E Dynkin diagrams or the quotients 

A2e/Z2. The latter  graphs actually lead to the same 

lattice models as the A2t ones and are therefore dis- 

carded. It is thus quite gratifying to see the same 

A D E  classification as in sect. 2.1 emerging in this 

very different approach. The identification of the 

continuum limit of the critical lattice models with 

the SU(2)n_3 × SU(2)1/SU(2),_2 coset theories is 

completed by the determination of their part i t ion 

function on a torus [22] and of their operator alge- 

bra [23]. 

Let us summarize some of the features of the 

SU(2) case. All the graphs have eigenvalues (of 

their adjacency matrix) of the form 

~(P) = 2 cos ~rp (4.4) 

where p runs over the exponents of the  Dynkin dia- 

gram, as recalled above (see Table ]I) and n stands 

for the Coxeter number. 

i) The A, t - i  case may be regarded as self-dual: 

the heights (configuration variables) may  be taken 

as ranging from I to n -  1 and the  exponents (which 

label the eigenstates hence play the role of mo- 

menta) run on the same set. This model is nothing 

but  the RSOS model introduced originally in [24]. 

ii) The spectrum of the exponents of the other 

o vL E ~,l..t,~,,,~ :- _L.. . . . .  

of the A graph of same Coxeter number  n. 

5. FROM SU(2) TO SU(N) 

We want to at tach a representat ion of the 

Hecke algebra to some graph. The graph may a 

priori be oriented and have multiple edges between 

two nodes. 

There is a known solution [251,[10], tha t  we call 

basic and denote jl(n), by analogy with the case 

of 8U(2).  The graph is the Weyl alcove at  level 

k = n - N introduced above (2.7). The elements of 

matrix of Ui read: 

([o .][o .']) 
Ui = ~ v =  [a.~] (5.1) 

where the root a = 2 / z  - ~ - • is assumed to be non 

vanishing, otherwise the matr ix element of Ui van- 
- z ~ z  

ishes; q = e ~ ,  and [z] = ~ is the  q-analogue 

of the number z. This Ui satisfies the Hecke algebra 

for ), = 1/n. 
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In addition to this basic solution, other solu- 

tions exist whenever n and N have a common divi- 

sot N *. Then one may construct the orbifold graph 

0c-);N' = A(")IZN, (S.2) 

and determine the Boltzmann weights in accordance 

with the Hecke algebra [27]. 

Besides these infinite series of solutions, one ex- 

pects some exceptional solutions. By analogy with 

the case of SU(2), it has been suggested [28] to  re- 

place the original problem: 

• find graphs that  support a representation of 

the Hecke algebra 

by a different problem: 

• find graphs ~ with definite spectral proper- 

ties. namely such that  their elgenvalues be ~mong 

those of some A("). 

To be more precise, and tak;.~ the case of 

SU(3) for definiteness, we postulate: 

• ~ must be 3-colourable: to each node, we 

attach a triality r(a) ,  and G.~ ~ 0 only if r(b) = 

r(a) + 1 mod 3. 

• G is norm-! (i.e. [a, G t] = O) hence diagonal- 

izabie, and its spectrum of eigenva].es is included in 

that of A("), for some n. The latter is (by Verlinde 

formula and the explicit form of the S -ma t r~  for 

SU(N) Kac-Moody theories, see above sect. 1.3) 

~v=3 2i~r 
= 

For the j~(.), al] the values of p b]side the Wey| 

alcove are reached: this is again the se~-duality of 

this A-case. For the other cases, only a subset of 

these values, with possible multiplicities, called the 

%xponents" of the graph, gives the eigenvalues by 

assumption. The value o f .  defines the "altitude ~ 

of the graph. 

• The graph ~ possesses an involution a ~ ~, 

generalizing the complex conjugation of represeuta- 

tlons of the A case, that r e v ~ s  the u'ia~ty and 

the direction of arrows.- 

• ( a )  = 

= ( s . 4 )  

On top of that,  we may add some condithm to 

card the redundancies of the type eacoua te r~  

the case of SU(2) (a .  A ~ / ~ ) .  

It ls an open problem to ¢Issslfy all |~aplm ~ 

these properties, and the best I can do k to prese~ 

on fig. 2 some of the solutions that  we f o ~ d  in [ ~ .  

6. P R O P E R T I E S  OF ~ E  G R A P H S  

First one should stress again that  we have ~ 

ceeded so far in a very heuristic way:. based on ~ e  

experience with SU(2), we have assumed that 

relevant graphs for the construction of ~ l s  

models are to be found anmng those sagsfying the 

conditions listed in the previous section. There are 

indications that some of the graphs s a t ~  t ~ s e  

conditions are inappropriate. Only "good g graphs 

which seem relevant are shown on fig. 2. The fact 

that these graphs support a representation of the 

Hecke algebra has been checked in a certain nan~ 

her of cases by direct computation [28],[29]. TI~se 

graphs are marked ~H" on fig. 2. 

Algebraic properties ~ inter~an'ners. 

Consider a general graph ~(n) and the graph 

4 (") with the same altitude. Call ~(~P) and ~(~P) 

their respective orthonormalized eigenvectors for 

the eigenvalue (5.3). By Verlinde formula, ~(~P) = 

S~p. Construct the set of numbers 

.(p) . . ,  
VA - _ ~ ~ .r,O').,'J.P' (6.1) 

Formula (6.1) is an extension of (2.12) to which it 

reduces for G = A. 

The n.mhers V~ have the following propertie~: 
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i) E .  = Eo v ao , i.e. for a, 
the rectangular matrix Y~ intertwines between the 

matrices A and G: AV = VG. 

ii) V~b = 6.b V~ = a=b 

ill) V~ are non negative integers. 

iv) The square matrices V ~ = (V='~) satisfy 

v v" = N ;V" (6.2) 

Only property iii) is non trivial to prove: it is rel- 

atively easy to see that these numhers are integers 

[28], their positivity, however, requires a proof. It 

may be checked by inspection of all the cases rel- 

ative to SU(2) and of the various known cases of 

BU(3) (the case A is already proved by (2.12)). 

Property iv), on the other hand, means that these 

matrices form a representation of the BU'(N)n_ N 

fusion algebra for which the fusion coefRcients N ~  

are the regular representation (see (2.13)). This 

suggests yet another possible reformulation of our 

problem: the classification of all non-negative inte- 

ger valued representations of the fusion algebra of 

the Kac-Mcody algebras B ~ ' N )  might have much 

to do with the classification of the desired graphs. 

In the case of BU(2), the problem may bc ~hcv~ to 

be equivalent to condition (4.3) and therefore leads 

again to ADE.  

Why are the coefficients ~'~ integers and what 

is the algebraic interpretation of these numbers? 

It has been shown some time ago [30] that in a 

conformal field theory, the partition function on an 

annulus, with fixed or free boundary conditions on 

the edges, is a linear form in the characters of the 

chiral algebra. In particular, in our height models, 

if we fix the height on the two sides to take fixed 

values I and A on the A graph, resp. a and b on 

the ~ graph, there are strong indications that the 

corresponding partition functions are 

z(A) = ×~,~0) (6.3a) I x  

A 

= ~ • =5ZalA 
A 

in terms of the eoset characters labelled by two 

weights of levels k - 1 and k. This has been proved 

in detail in the case of SU(2) in [31]. Moreover 

Cardy [32] has proved that for the A models, the 

coefl~clents in (6.3b) must be the fusion coe~Jents .  

The reason why for a general graph ~ the ¢oe~a- 

cionts in ( 6 ~ )  must form a representation of the 

("thermal", i.e. relative to the (I,A) oper~om ) 

fusion algebra is still mysterious. Could it be even 

more general and hold in an asbitrary c£t .?  For 

"good" boundary conditions, the coelficient~ of the 

partition function as a linear fo,,., in the c h ~ c t e r s  

would correspond to a repr~entat ion of some fusion 

algebra? 

Property (6.3c) actually holds already on a dis- 

crete and finite lattice. One may show that the 

partition functions with fixed boundary conditions 

on the ~ and A graphs are related by (6.3@ This 

has been established in the case of SU(2) by map- 

ping the lattice models onto one another in [31] or 

by making use of algebraic properties of the repre- 

sentations of the Temperley-Lieb algebra attached 

to these graphs in [1]. It is very likely to extend 

to general BU(N) [33],[29]. In the case of SU(2), 

this reflects the reducibility of these repr~=~mtations 

of the Temperley-Lieb algebra. It has been argued 

in [3] that the only irreducible representations of 

this algebra are those corresponding to paths run- 

ning from the end point 1 of the A,  graph to the 

generic point A. The representations attached to 

other paths on A,  or to paths on other graphs are 

non irreducible and traces over such representations 

decompose as indicated by (6.3). 
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7. C O N T I N U U M  L I M I T  

To make the connection between the integrable 

lattice models and their continuum limit described 

by some c.f.t., one can appeal to statistical mechan- 

ics techniques as the Coulomb gas formA|1.~m. The 

lattice model is rephrased in terms of excitations 

with logarithmic interactions, i.e. in terms of a free 

boson field. Boundary conditions make the field 

compactified on a circle, the radius of which is de- 

retrained by comparing some exact results obtained 

in the integrable model with the free field computa- 

tion (see for example [34] for a review and further 

references.) 

This has been successfully applied to the the- 

ories based on BU(2) [22]. The case of BU(N), 

N > 2, however, seems less tractable. The free 

field acquires several components, it is compacti- 

fled on a torus of dimension N - 1 equal to the 

rank of ~qU(N), and its action may contain a "tor- 

sion n term antisymmetric in the components. This 

means that  two parameters, compactification radius 

and coefBcient of the antisymmetric term, have to 

be determined. For height models of the type dis- 

cussed above, which are expected to be expressible 

in terms of combinations of free fields with different 

radii and couplings, the task appears almost insu- 

perable. 

It has been suggested in [33] that  there may 

be more direct, algebraic connections between the 

lattice model and its continuum counterpart. This 

is based on two empiric observations: 

, For each known modular invariant Z of Ta- 

ble Ill, there exists one (or several) graph(s) of 

fig. 2, whose exponents label the diagonal terms of 

Z. This justifies the matching of notations in Ta- 

ble III and fig. 2. When there are several graphs 

with the same spectrum of exponents, there must 

exist several distinct c.f.t, with the same genus-one 

partition function but different operator algebras. 

Knowing the graph, hence the exponents, can one 

reconstruct the modular invariant? This may be 

easier when the modular invariant is a sum of blocks 

of characters squared. In that  case, the problem just 

amounts to finding the appropriate partition of the 

set of exponents. This is the object of the second 

observation. 

, For each graph marked ~I' on fig. 2, there is 

an associated c-algebra, with non negative structure 

constants, from which a partition of the set of expo. 

nents may be derived, corresponding to the blocks 

of a modular invariant. 

In addition to the axioms of associativity and 

commutativity quoted in the Introduction, a c- 

algebra must have a unit denoted I and be endowed 

with an automorphism a --, ~: N~b c = Na~e such 

that  Nab x = 6G~ . Fusion algebras of c.f.t, are ex- 

amples of c-algebras, but more general c-algebras 

may be associated with the graphs of our construc- 

tion. The generators N~ are attached to the vertices 

a of the graph and are represented by 191 x 191 ma- 

trices Nab c ([9J-number of vertices of 9).  Suppose 

there exists some vertex al ,  denoted by abuse of no- 

tation 1, extremal in the sense that  it is connected 

to only one pair of other vertices. We introduce the 

numbers 

NJ ), ~},~) (7.1) 

If some eigenvalues of G are degenerate, then the 

formula (7.1) may be ambiguous. The graph 9 is 

called type I if there exists a choice of eigenvectors 

for G yielding non negative integer N's.  The forth- 

coming discussion will only apply to these type I 

graphs. There is a dual algebra with generators 

labelled by the exponents and with structure con- 

stants 

= (7.2) ~/j(a 1) 
aEU 

These M are in general different from the N and 

take their values in the real numbers. However they 
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turn out to be non negative in all the known type I 

Cases. 

What is the physical interpretation of the N's 

and the M's? In [61, local lattice operators have 

been constructed whose algebra is given by the M 

coefllcients. To the best of my knowledge, no such 

interpretation has been found for the N's. This N 

algebra with positive structure constants turns out 

to contain as a suhalgebra the thermal fusion al- 

gebra of the corresponding c.f.t. {Conversely, this 

means that the thermal fusion algebra is contained 

in a larger algebra, whose meaning remains elu- 

sive). The generators of this subalgebra have labels 

marked by circles on fig. 2. By a non-trivial theo- 

rem [81, the existence of such a subalgebra, together 

with the positivity of the N's and the M's implies 

the existence of a dual subalgebra of the M's, thus 

of an equivalence relation between exponents: 

A ~/~ ¢=~ 3 a generator Ma in the subalgebra 

such that ]~fA~ ~ 0. (7.3) 

What we have observed in [33] is that the equiva- 

lence classes for this relation are nothing else than 

the blocks of the partition function. In other words, 

z =  i I (7.+) 
AEp+~-I) c la s s  i p E  c l a s s  i 

reproduces the block diagonal invariants of Table 

HI. 

As this sketchy discussion shows, t b ~  are 

still very empiric and mysterious but these obser- 

vations point to the existence of a novel and in- 

teresting algebraic connection between face lattice 

models and their continuum counterparts. 

Let us summarize the points which would de- 

serve more work: 

1) the precise cher~terization of the |'r~phe 

supporting a representation of the Hecke al~bra. 

Are the conditions of sect.5 sufrheient? What k the 

general form of the Boltzmann weights? 

2) the classification of them graphs and/or of 

the representations of the fusion algebra on non neg- 

ative integer valued matrices. Are the two 

equivalent or only similar? 

3) the interpretation of the N and M ai~bras 

introduced in the last section, both from the lattice 

and from the continuous point of view, and of their 

relation with modular inw~uts .  

4) the extension of these c o n s ~  to 

graphs that are not of %ype 1 ~. In c.Lt. [2], i t  is 

known thaZ non block diagonnl modular 

are obtained from block diagonal ones by the acticm 

of an automorphism of the fusion algebra, whose d- 

fect is to twist the right sector of the theory with 

respect to the left one. It is likely that there is an 

analogous m e c h ~  in the c-algebraic d~mesion. 
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