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The Bethe approximation as defined for general lattice gauge theories It amounts to solving 
the model on an mfimte Cayley latnce of cubes The approxlmataon xs tested on the 4-d Z4 model, 
where at as shown to reproduce accurately most of the phase dmgram It also suggests which mass 
vamshes in the Coulomb phase 

1. Introduct ion 

Lattice gauge theories have achieved remarkable results, in particular through 
Monte  Carlo simulations [1]. In the pure gauge sector, things are almost settled. 
However, the nature of the U(1) phase transition and of the nearby singularities in 
S U ( N )  theories and their possible influence on the onset of scaling are not yet fully 
understood; a6curate determinations of all the mass scales are still the object of 
controversies. Analytical methods adequate to study these problems are not avail- 
able. Strong coupling and mean field methods are not appropriate or accurate 
enough, at least in their current state [2], while the approximate renormalizatlon 
group - h la Migda l -Kadano f f -  has not yet reached its full predictive capability. 
This leaves some room for other approximation schemes, or resummation methods. 
The purpose of this paper  is to study such a method, an extension of the Bethe 

approximation [3]. 
The Bethe approximation is well known and has been extensively studied m spin 

models [4], but, surprisingly, has not been applied to lattice gauge systems until 
recently [5]. There, it was defined in the Z 2 theory and shown to reproduce correctly 
its phase structure in 3 and 4 dimensions. It was not totally clear, however, whether 
it would generalize to more compficated models, and account for their richer 
structure. 

In sect. 2, the Bethe approximation is defined and basic equations are derived for 
a general gauge group and action in arbitrary dimension. Sect. 3 discusses how 
singularities and phase transitions may arise, and sect. 4 shows how to compute the 
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correlation lengths. Sect. 5 discusses the applicaUon of this approximation to the 
general 4 - d Z 4 model. The latter has been recently studied numerically [6], and an 
unexpected new (Coulomb?) phase, bounded by second-order transition hnes, found 
in the lower-half plane of the two-constant phase diagram. This makes this model a 
good testing ground of the Bethe approximation, simple enough to make the 
equations manageable, but still with a rather complex phase structure. We shall see 
that the Bethe approximation reproduces quite accurately most of the phase din- 
gram, including one of the phase boundaries of the Coulomb phase, although it fads 
to describe consistently the latter phase. It also suggests a finer characterization of 
that phase. These results are summarized and the outlook of the Bethe approxima- 
tion discussed in sect. 6. 

2. General formalism 

In the context of spin models, the Bethe approximation may be introduced in 
various ways. The low-temperature expansion may be reorganized as an irreducible 
cluster expansion. Truncated to lowest order (cluster = single spin), it gives the 
mean-field approximation, whereas truncation to the next order (cluster = pairs of 
neighboring spins) yields the so-called Bethe-Peierls approximation [4]. Alterna- 
tively, one may, for a given spin, keep the direct interaction terms with its neighbors, 
but replace the interactions of the latter by a self-consistent field. It may be seen that 
these procedures amount to solving the model on an infinite Cayley tree, i.e. a lattice 
with no loop, where each spin has the same number q of neighbors. The subtle 
boundary effects [7] on such a lattice are thus discarded in this approach (for a 
discussion of those effects in lattice gauge theories see ref. [8]). 

In the generalization of this method to lattice gauge theories, one may try to 
follow several routes: reorganization of the low-temperature expansion, or self-con- 
sistent introduction of two-link interactions, or consideration of a Cayley tree of 
plaquettes. However, all these methods either are restricted to discrete groups or 
have at some stage to introduce a non-gauge invariant couphng to an external field, 
and to compute the response of the system in the limit of a vanishing field, therefore 
m blatant contradiction with Elitzur theorem [9]. It is not clear whether such a Bethe 
approximation may be regarded as a saddle point method, as is the case of mean 
field where averaging over gauge degeneracies removes the conflict with Elitzur 
theorem (see ref. [2] and further references therein). 

For these reasons, it seems better to introduce a Cayley latuce of cubes which 
allows a consistent gauge-invariant treatment. This is suggested by the case of the 
3-dimensional Z 2 model, where such a tree lattice of cubes is the dual of the ordinary 
Cayley tree of sites. In d dimensions, this abstract lattice is made by piling up 
"cubes" on top of each other, with the same coordination number (each face is 
common to 2 ( d -  2) "cubes"), but in such a way that there is no cycle nor cluster of 
cubes. For both visualizing the resulting pattern and solving the model, it ~s useful to 
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J - I  

Fig 1 Cross sectxon of a Cayley tree of cubes m the case d = 3 each plaquette is shared by two cubes, 
l, 1 + 1, are the generation labels 

construct the lattice in a sequential way: a cube of generation I will support (2d - 5) 
cubes of generation l + 1 on each of its five free faces: see fig. 1 for a cross section of 
thas lattice. We then introduce a gauge theory of group G in the ordinary way: to 
each link is attached a group element U~, and each plaquette carries a Boltzmann 
weight that we character expand [2] as 

exps(Up)= fioEartrXr(Up). (2.1) 

The sum runs over all irreducible representations r of dimension d r and character Xr, 
including the mvial one for which t o - 1, d o = 1, X0 - 1. 

For  a plaquette P belonging to a cube C of generation l (see fig. 1), let us consider 
the sum x~ t) of contributions to 

f x*(Vp)e~"'~"DU, 

from strong coupling diagrams made of plaquettes of C excluding P or of plaquettes 
of subsequent generations; let y~t) be the sum of contributions to the same quantity 
made possibly with P and all its descendants. Notice that contributions to y~{~) come 
from the 2 d -  5 cubes above P (and their descendants), whereas those to x~ z) come 
from only one cube. One may write 

X~ 1)= [ yr(l+ 1)] 5 . ( 2 . 2 a )  

The power 5 in eq. (2.2a) comes from the five plaquettes of generation (l + 1) above 
the plaquette P, and this factonzatlon reflects the fact that on a Cayley lattice, 
diagrams constructed on these plaquettes have no further contact. To lowest order in 
the strong coupling expansion, y ,")= tr, and x~ 1) = t~ represents the open box C 
above P. In general, using the rules of strong coupling expansions of ref. [2], one 
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may write in d = 3 dimensions 

d~ d t l 
yr ( / )=~ N - - t x  () (2.2b) 1-.t rst dr s t , 

X,t 

where Nrs t is the number of times the trivial representation occurs in the direct 
product r ® s ® t ® .. .  This relation expresses yr (t) in terms of all possible representa- 
tion assignments on the cube above P. In four dimensions there are 2d - 5 = 3 cubes 
above P and the relation reads: 

y ( l ) =  ~ Nr, t.o d , d  t d  u d  o t y(l)y(l)y(t) (2.2c) 
s ,  t, u, v dr -s.~t .~u ~vv • 

Eqs. (2.2b,c) together with (2.2a) form a system of exact recursive relations on the 
Cayley lattice. 

One then assumes that the infinite lattice is homogeneous, Le. that the ratio 
x~t)/X(o I) takes a value independent of l, denoted Or- They satisfy: 

Y~Nrsu, u2a 5 d s d u l ' " d u 2 a  5tsPul'"Pu2a_5 15, 

Or= drY~Nsul U2d 5 d s d u l " ' d u 2 a  5tsPul"''Puzd-5 ) 
Oo - 1, (2.3) 

m d dimensions. 
As the action satisfies s ( U ) =  s(Ut) ,  the character coefficients corresponding to 

conjugate representations are equal: 

t r = te, (2 4) 

and it seems natural to impose the same condition on the O's: 

We then introduce new notations: 

Or = Oe. (2.5) 

Or =,05, (2.6) 

An= E Nrsl s, drd,1...ds,td)sl...Os,. (2.7) 
F,S 1 , S n 

In words, Or represents the contribution of an open box of five dressed plaquettes 
with a boundary in the representation r and Pr is the contributmn of each plaquette. 
It is easy to show that A n satisfies 

1 0 
E  Or A. = A° -  A° 1, 

r4:0 

(2.8) 
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a relation to be used soon. For example, for the gauge group Z2: 

n 
A.= ~ t i s l (n)p s, (2.9) 

s=O 

where [s] = 0, 1 if s is even, odd. In that particular case, one has a symmetry 

i { , ( p , t ) = n +  l Op A n + l ( o ' t ) = t A  n p, t ' 

as a consequence of t (1 / t )  EsI = t E'-II, and eq. (2.8) implies 

A n - An_ 1 = p~n_l,  

~{n - ~{n-1 = oAn-l" (2.11) 

In general eq. (2.3) may be recast as 

( 1 10A2a-4 /OOP)  5 
. ( 2 . 1 2 )  

Or=P~= 2 d - 4  dZ A2a_ s 

Simple diagrammatic arguments show that the average plaquette in the r representa- 
tion is, in d = 4: 

ENrst.ow d s d, d u d o dwt sPtPuPvP w (2.13) 
( X r ( U p ) )  = drENst.vwd~dtd, dvdwtsPtp.pvp w , 

or more generally, in d dimensions: 

1 aa2d_3/OPr (2.14) 
(xr (Ue) )  2 d - 3  drA2a , 

Now, using (2.8), (2.12), this may be rewritten as 

(Xr(Up)) ~s'tNrstdsdtPsPt (2.15) 
1 + Es.O d2p~Os ' 

which fits the previous interpretation of pr, namely the value of a dressed plaquette 
in the representation r: to compute (Xr(Up)) for some plaquette, it is sufficient to 
consider the diagrams on a single cube above the plaquette, made of these dressed 
plaquettes with all possible representation assignments, and to divide them by a 
similar contribution to the partition function, namely 1 + ~ . 0  d2p~p~ • 

If the action reads s(Ui. ) =/3iRe xI(Up) + --- we must integrate 

1 Of ( 2 . 1 6 )  
d~ (x I (Up) )  = 081 
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to get the free energy per plaquette f .  It is not difficult to show that 

f =  In/~0 + ~(d - 2)ln A2a_ , - ½(5d - 13)ln A2d_ 4 + c o n s t a n t  (2.17) 

is the solution to (2.16). First, differentiating (2.17) and using (2.12), one shows that 

Of dtr ~t 
Off 1 = q +  ~[] d/31 r lnA2a-4 

r:~0 

EN~s 1 s2a_4du(lull W ~ l  ) dSl""ds2a ,PsC"Ps2a 4 

A2d-4 
(2.18) 

But the character coefficients satisfy 

dto]=½Ets(Ulr,+N ,s) < d ld~ tut I + dB1 ] (2.19) 

and (2.16) then follows from (2.18), (2.19). We notice that the Bethe approximation 
yields an unambiguous answer for the internal energy but determines the free energy 
up to a constant. We shall return to the choice of this constant in sect. 3. 

At this point, several remarks are in order. 
(i) So far the derivations have been very formal. For finite groups, which possess 

only a finite number of representations, the expressions certainly make sense. For 
example, in the 3 - d Z 2 model, the whole construction is equivalent, by duality, to 
the Bethe approximation for the Ismg model, and all the expressions (2.3)-(2.17) 
reduce to well-known results [3, 4]. The case of continuous groups with infinitely 
many representations, should require more care, since the convergence of expres- 
sions like A n in (2.7) is not guaranteed. At strong coupling, i.e. small 13 or t, 
convergence is ensured by the power law behavior of tt and &. For example, for the 
U(1) Wilson theory, with s(Ue)=/3cosUp,  

i,(/3) t; 
tt = 10(/3 ) l! ' P ' -  t/5" 

At larger values of/3, however, divergences of these series might correspond to phase 
transitions of the system. We shall not address any longer this question in the 
present paper. 

(ii) For abelian groups, irreducible representations form a group. As a conse- 
quence, & = 1 for all l is always a solution. For example, for d = 4, in eq. (1.3), 

F'Nrstuvts 1, 
EN~,~vts 
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(assuming again the convergence of the numerator and denominator). This is 
because for any r, s, t, u, there is one and only one v such that Nrstu . = Nstuv = 1, and 
terms in the numerator and denominator are in one-to-one correspondence. For that 
trivial solution, the plaquette expectation value is one: ( X r ( U p ) )  = 1. 

(iii) Physically, we expect the solution to eqs. (2.3)-(2.13), i.e. the solution on the 
Cayley tree, to give a good description of the strong coupling regime of the original 
model. Indeed, it amounts to summing up a large fraction of the strong couphng 
diagrams, namely those diagrams which are trees of cubes (with, however, some 
overcounting, see ref. [5] for more details). On the other hand, the weak coupling 
phase (if not the analytic continuation of the strong coupling one) is expected to be 
represented for discrete abelian groups by the seemingly crude approximation p = 1. 
However it is well known from numerical simulations (see ref. [1] and further 
references therein) that the low-temperature phase of discrete group models is 
essentially frozen, with plaquette energies very close to one. This suggests that p = 1 
may be a reasonable approximation after all, and explains why the phase structure 
of the simple model with Z 2 symmetry is well reproduced by the Bethe approxima- 
tion [5]. The more complicated case of Z 4 will be examined below. 

(iv) The large dimension, strong coupling limit of lattice gauge theories has been 
studied by Drouffe, Pansi and Sourlas (DPS) [10]. When d ~  ~ ,  fl-~ 0 with 
d/~ 4 ~ 0 ( 1 ) ,  they showed that only diagrams made of trees of cubes survive. This is 
of course apparent in the previous equations. In the limit fl ~ 0, d--, o0, Pu - t~, 
only two terms survive in the numerator of eq. (2.3) and the triwal one (s = u . . . .  
= 0) in the denominator. Hence the dressed plaquette satisfies the self-consistent 
equation: 

Pr = ~/5 = t r + ( 2 d _  5)p~ 5 + "-- 

= t r + 2dp~, 

which was the key equation of ref. [10]. In this limit, DPS found that the gauge 
system has a singularity at some/3, but they had to resort to a different larger d 
approximation (mean field) to describe the weak coupling phase. Here, in contrast, 
we work at finite dimension, and want to see to which extent the Bethe approxima- 
tion is capable of describing the low-temperature phase(s). 

3. Singularities and transitions for finite gauge groups 

We now turn to the search of singularities of the solutions to eqs. (2.12). For a 
finite group, we look for singularities of the mapping (t I . . . .  , t n ) ~  (Pl , . . . ,  0n) where 
n is the number of inequlvalent irreducible nontrlvial representations. Singularities 
are associated with vanishing of the jacobian: 

D( t i  . . . . .  tn) 

D(pI  . . . . .  on) 
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For example, in the particular case of Z 2, the equation for singularities d t / d p  = O, 
leads, by logarithmic differentiation of 

^ 
A2d-5 

with respect to O, to the condition: 

1 = 5 ( 2 d -  5) A2d-6 Azd-6 (3.1) 
A2d- 5 A2d_ 5 ' 

where use has been made of (2.11). The two ratios in the bracket may be ehminated 
between (2.11) and (2.12), 1.e. p = (,d2d_5)/(A2d_5), to give the equation: 

1 +p2  +p4  +p6 +p8 = 5 ( 2 d -  5)p 4. (3.2) 

In general, if the p's are given by implicit equations: F~(( p }, ( t  }) = 0, r = 1 . . . . .  n, 
then the equation for singularities is 

D( F 1 . . . . .  Fn) 
J =  D ( P l  . . . .  ,On) 0 .  (3.3) 

In our case, F r = Or - Rr({P}, ( t})  and 

J = det(Srs - O R r  
-~Os ) " (3.4) 

How to solve the equation for O, in practice? The form of the equation: 

P r = R r ( { P ) , { t } )  

suggests an iterative procedure: 

t)2n+ 1) = Rr(  { p(")}, {t }).  

Of course, O~ ") converges to the solution Or as long as the elgenvalues of the 
linearized mapping at the fixed point are of modulus less than one. These eigenval- 
ues satisfy the equation: 

d e t ( - ~ - p -  ORr ~Srs ) =0 .  (3.5) 

Comparing (3.4) and (3.5), we see that singularities are to be found among the points 
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where the lterative mapping turns from convergent to divergent. This is a very useful 
method m practice to locate points or lines (or, in general, manifolds) of singularities 
in the t-space. For small t, the iteratlve mapping converges to the tight solution 
P -  t5 because the eigenvalues are small. At some larger t, the fixed point may 
become unstable, and an additional study is required to determine whether it is an 
actual singularity. 

These singularities are, of course, algebraic and genetically square-root branch 
points. In most cases, two real solutions, P and p', merge at the critical t c. The 
solution p picked by the system beyond the singularity may be continuous at t c, or 
discontinuous. Accordingly, the system undergoes a second- or a first-order transi- 
tion. An example of the former case may be found in the 3 - d Z 2 theory, where the 
critical value of P turns out to be 1 (cp. eq. (3.2) for d =  3, p = 1): the strong 
coupling and weak coupling phases connect continuously. The second instance, 
(first-order transition) is more common in gauge theories of dimension d >/4: see 
e.g. Z 2 m d = 4 in ref. [5]. Notice that if p is discontinuous at t c, the actual 
transition point of the system is given by the thermodynamic criterion that free 
energies of the two phases be equal. This usually occurs at a smaller value t I of t, 
and the region t I < t < t c is the metastable region of the strong coupling phase. In 
this comparison of free energies, the yet undetermined constant of eq. (2.17) 
becomes of some relevance. When a first-order transition takes place, we choose to 
fix this constant independently in each phase by looking at some appropriate small 
or large coupling-limit and adjusting the constant to match the behavior of the 
original model. For example, in the d = 4 Z 2 theory, the free energy per plaquette 
reads: 

f =  In/~0 + ~ ln(1  + 3pt + 3p 2 + p3t) - 71n(1 + 4pt + 602 + 4p3t + p4) + C.  

At strong coupling, O - t 5 and f must match the true behavior: 

f -  In/~o, hence C,t = 0. 

For large fl, t = P = 1, In/~o = In cosh/3 - / 3  - In 2, 

f -  3 -  ln2 +21n2 + Cw, 

C w = - -~ ln2 .  

A sinnlar procedure will be used below in the Z 4 model. 
Besides this class of singularities, a different mechanism is also observed in some 

cases: a solution that exists in a subspace of the O-space may become unstable under 
fluctuations in orthogonal directions. For example, a real solution may tend to 
develop an imaginary part beyond a critical point. This creates a second-order 
transition in the system. This mechanism will be illustrated below in the Z 4 model. 
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4. Correlation length 

We now turn to the computation of the correlation length in the Bethe approxima- 
tion. The general idea, adapted from similar computations in spin models [12], is to 
write that m the long-distance hmlt, the plaquette-plaquette connected correlation 
function satisfies an equation of the form: 

- = o ,  (4.1) 

where Ap is some equivalent on the Cayley lattice of the laplaclan. It turns out to be: 

ApX(  Up ) = E [ x (  Up, ) -- X(  Up ) ] -]- X(  Up,, ) - X(  Up ) , 
p, 

(4.2) 

where the sum runs over the 5(2d - 5) "daughter" plaquettes P' ,  i.e. belonging to the 
( 2 d -  5) cubes of the next generation, and P"  is the "mother"  of P (see fig. 2). The 
advantage of the formulation (4.1) is that it avoids a direct computation of (XX)c, 
and only deals with its local variations, which are calculable in the Bethe approxima- 
tion by simple diagrammatic considerations. 

For the sake of simplicity, we only present here this computation in the case of the 
Z 2 theory; the extra complications arising in a more complex case like Z 4 will be 
mentioned below. 

If P0 is taken as a plaquette of the first generation and P of t h e / t h  generation, 
there is a unique tree of cubes of minimal length connecting them: let us denote ~- 
the corresponding set of plaquettes, excluding P0 and P, and all their descendants. 
Let X, Y0, Y and W be the sum of diagrams, connected or not, built from ~-, hence 
containing neither P0 nor P and whose boundary is respectively: 

3 X  = ~ , OYo = Po, OY = P ,  O W  = Po U P ,  (fig. 3). 

By the homogeneity assumption explained in sect. 2, we have Y0 = Y. We also 
introduce the ratios Y = Y / X ,  I;V = W / X .  It is then a pure matter of combinatorics 
to express the partition function and various plaquette averages in terms of contribu- 
tions of plaquettes "between" P0 and P, viz. X, Y, W and of contributions "below" 

Fig. 2 

-~p5 daughter 
plaquettes P~ 

mother plaquette p" 

A plaquette P, its "mother"  P", and its five daughters P' (in d = 3) 
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(a) (b) (c) 

Fig 3 ArUst's view of typical contributions to. (a) X, (b) Y, (c) W 

Po or "above" P, viz. Xo, x I =pSxo, A2a 5 and A2d-5 =PA2a-5 (cp. sect. 2). 

Z=x~(2a-5)[XA22a-5 + 2YAzd-sA2a 5 + W-'t2a-5], 

<v~>= Z-~x~(~"-~[(x+ w)A2~_,~i~_, + r(A~ ~+~_,)] 

_ (1 + l,V)p + Y(1 +p2)  
1 + 2~-p + lYVp2 ' 

(UpUp> = Z-Xx~ (2a 5)[X,~2 a 5 + 2YA2a-sAzd-5 + WAZa-5] 

p2 + 2Yp + I,V 
- 1 + 2f'p + l, Vp 2" (4.3) 

By identifying the above expression for <Up) with (2.15)= < U p ) = ( p  + p S ) /  
(1 + p2), one derives a relation between fz and I,V: 

p '  = f'(1 - p6) + l~p. (4.4) 

The connected correlation function may be expressed in terms of Y only as. 

<upU~o>c = <u~U~o ) - <up> ~ 

( 1 - p 2 ) 2 ( 0 -  Y) 
- p(1 + p6)2(1 + p f") (4.5) 

Now It is easy to write the relation between X, Y, W, and X', Y', W' relative to a 
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daughter plaquette P': 

X '  = - 10 d -26 A 4  r v.t  YA2d 6]  "~0 /'12d- 5[ Az'12d-6 + 

y '  = xlOa 26A4 r YA WJ~2d- 6 ] 0 2 d - 5 L  2 d - 6  + 

- 10 d -26  .~4 I ' v A  XA2d_6 ] : ' ~ 0  l"12d-511/12d 6 + 

W '  -~ x lOd 26~zl 4 r W A  + YA2d_6] ( 4 . 6 )  0 2d 5L 2 d - 6  

where the factors Aaa_5 or A~a_ 5 come from the four "sisters" of P'  belonging to 
the same cube, and A2a_ 6 and -42a-6 from the "step sisters" belonging to other 
cubes built on P. 

The consistency of (4.4) and (4.6) is readily checked and it is easy to see that the 
fixed point of the transformation (~', W ) ~  (~", IYV') is ~'= p, W= p 2. This is the 
long-distance limit of ~" and IYV, with the obvious consequence that (UpUp0)c 
vanishes at large separation. To compute the inverse correlation length squared/~2, it 
is thus sufficient to form the same combination as in (4.1)-(4.2) with A~'= ~ ' -  p. 
One finds 

^ 

A y '  - - p 4 A 2 d - 6  - -pA2d-6  A y  + O ( A }  " 2 )  

A2a-5 

= aza~" + O(Ay2) ,  (4.7) 

and for the mother plaquette 

,a i~ , ,  = c ~ - I , a ?  + . . . .  

Hence, 

~z=5(2d-5)(a-1)+(a 1 - 1 )  

= (1  - _ 5 ( 2 a -  5 ) ) .  (4.8) 

From (2.11), it follows that 

p 1 - p 2  p4 
a = (4.9) 

p 1 - p  2 l+pZ+p4+p6+p 8' 

( l + p 2 ) ( l + p 6 )  (1+p2+p4+p6+p8-5(2d-5)p4). (4.10) 
/~2 = p  1 +p2 +p4 +p6 +p8 
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At d = 3, this expression agrees with the formula given in [11]. Comparing eqs. (4.10) 
and (3.2), one sees that/~2 vanishes at the singular point, as expected. As d p / d t  has 
a square root singularity at t c, # which is proportional to [(dt/dp)(1 _p2)24-511/2 
vanishes with the critical exponent u = ½ at d = 3, p = ¼ at d >/4: 

= I t -  tel" 

5. The 2 4 model in tour dimensions 

The general plaquette action of a Z 4 theory depends on two couplings/31 and/32 
[61: 

espy) = exp/31(U + U 3) +/32 U2 

=/~011 + t l ( U +  U 3) + / 2 U 2 ] ,  (5.1) 

where 

4/~ 0 = e201+~2 + 2e-B2 + e-2Bl+#2, 

4/~0tl = e201 +Bz _ e-  2ill +f12, 

4/~0t2 = e 2~1+~2 - 2e -/~ + e -2#1+42. (5.2) 

In terms of the t variables, the physical region, /31, /32 real corresponds to the 
triangle: 

t 2 < 1, 1 + t 2 -  2t 1 >/0, 1 + t 2 + 2t 1 >/0 (5.3) 

(see fig. 4). 
It is easy to define the Bethe approximation for the Z 4 model in four dimensions, 

following the lines of sect. 2. The relevant combinations A3(P) and Aa(p) read: 

)2 A4(Pl,  02) = 1 + 302/2 + 3p~ + P32t2 + 601t1(1 + P2 + 602( 1 + 02)( 1 + t2) + 8031tx, 

a4(01,  02) = 1 "~- 4P2t 2 + 60~ + 403t2 + O 4 

)3 +8pit1(1 + 02 + 1202( 1 + 02)2(1+ t2) 

+ 32p]/1( 1 + 02) + 8p~(1 + t2), (5.4) 

in terms of which may be written the equations for 01 and 02, and the expression of 
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the physical regmn), some hnes have been continued to the point X 

the  f ree  ene rgy  

I OA4/OO )5 .  

Pl = Pi = A3 , 

10A4/ /002  )5 (5.5)  
02 = A3 • 

T h e r e  are  s o m e  l imi t ing  cases  whe re  the  m o d e l  is k n o w n  to sxmplify:  

(i) for  t x = 0, i.e. fl l  = 0, the  m o d e l  r ep resen t s  a d o u b l e  cove r ing  of  Z 2. Th is  is 

c lea r  on  (5.4) whe re  A3(O 1 = 0, P2), A4(P2)  r e d u c e  to the  c o r r e s p o n d i n g  exp re s s ion  

for  Z 2. 
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(ii) for t 2 = 1, i.e./32 = oQ, only U 2 = 1 contribute in (5.1), and the model is again 
a Z 2 model. Again, this is consistent with (5.4)-(5.5). 

(iii) for the Wilson action/32 = 0, one sees that t 2 = t~, and that (5.4) and the 
resulting equations for 1Ol and P2 are consistent with P2 = P], where Pl is given again 
by the Z 2 theory. It has been noted by Creutz and Roberts [12] that the Z 4 theory 
differs from a Z 2 × Z 2 model only by the contribution of non-orientable closed 
diagrams. As the Cayley lattice does not contain any such surface, the reduction to a 
Z 2 system is natural. 

(iv) for t I = t2, i.e. for the Potts gauge model /31 = /32, the system admits a 
solution 01 = P2 which, however, is not the solution of the Z 2 model: 

(t + 3p + 3p2t + p3) + 6pt + 18p2t + 6p 2 + 6p 3 + 20tp 3 

/3 = (1 + 3pt + 3p 2 + p3t) + 6pt + 18p2t + 6p 2 + 6p 3 + 20tp 3 
(5.6) 

One can restrict the domain (5.3) to t 1 > 0, because a s  t I ~ - t l ,  Pl ~ --Pl and 
P2 ~ P2. The system (5.5) has a few simple solutions: 

(I) 01 = P2 = 1 is always a solution, as discussed in sect. 2 and will represent the 
weak couphng phase. 

(I') Pl = - 1, P2 = 1 is also a solution, but does not seem to play any physical role 
for t I > 0. 

(II) Pl = 0, P2 = - 1  is a solution, and will represent the "antiferromagnetic" 
phase which develops at large negative/32 . 

(III) P2 = 1, Pl non-trivial is also possible; 01 must satisfy: 

t ' +  3Pl + 302 (+  p31 )5, 

01= 1+ 301( + 302 + pIt' 
(5.7) 

i.e. is a solution of a Z 2 model with an effective inverse temperature 

t '  - 2q 
l + t  2 

(5.8) 

(IV) Finally, the system possesses, as usual, a strong coupling solution, such that 

Obviously, besides these solutions (I)-(IV), the algebraic system of equations for 
Pl, P2 has a huge number of roots, physical or unphysical. The physical solutions 
have to pass a few tests of stability (the masses/,2 computed as in sect. 4 have to be 
positive), but it is not very clear how to find all of them. 

On fig. 4, the relevant solutions in various parts of the (tx, t2) plane have been 
displayed. The solid lines indicate where the solutions (IV) and (III) become singular 
and cease to exist. Near these hnes, the system experiences a first-order transition. 
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Special cases have been indicated: P corresponds to the Potts model (t I = t 2, 0i = 02),  

W to the Wilson action (t 2 = tl 2, P2 = P])- The broken line WX deserves a particular 
discussion. It is a singular line of the system, although the strong coupling solution 
(IV), 0i, P2 real, exists on both sides and has no smgularity. To understand what 
happens there, we have to compute the correlation lengths of the model. 

The correlation functions (xr(U(O))Xs(U(R))) and their asymptotic fall off may 
be studied by the same methods as in sect. 4. They are parametrized in terms of 
functions I"r, l~rs, r, s = 1, 2, 3, three of which only are linearly independent. As a 
consequence, there are three independent correlation lengths,/~2, ~t2, t~2. Typically, if 

/~i = inf(/~I, ~ 2 )  

(ReUp(O)ReUp(R)) - e -"~R + O ( e  .2R) ,  
R---~ o~ 

(U2(O) U~(R))  -- e -~IR --~ O ( e  ]L2R) , 

(ImUv(O)ImUv( R )) - e p,3R, 

with 

/~2 = (1 - a3) (0~31- 15), 

1 - P 2  01 
O~ 3 

1 - P2 Pl " 

At special points of the phase diagram, these masses may be related. For instance, 
for both the Potts model and the Wilson action,/~1 = #3 ~/~2. But in general, ~ and 
/~ may vanish at different points. Along the broken line WX of fig. 4, the mass/z 3 
vanishes but/~2 > 0. This means that if one follows the solution (IV) across the line, 
the system will be unstable for the modes of mass/~3. In turn, this suggests that 
( ImUp)  might be nonvanishing and that the solution 01 = P i  real has to be 
abandoned in favor of a solution 01 4= O~- It seems natural to replace the condition 
(2.5) by the weaker one p~ = Pl- Indeed, if one returns to (2.3) for Pl 4: Pi, one sees 
that PI and p~ tend to develop an imaginary part beyond the line WX. Unfor-  
tunately, this solution is not physically reasonable: its free energy computed from 
(2.17) is lower than the free energy of the original real solution. This is clearly a 
paradoxical situation: on the one hand the real solution has a negative correlation 
length squared and is unstable towards a complex solution; on the other hand, the 
complex solution exists but is not thermodynarmcally favored. 

Actually, the derivation of eq. (2.3) with Pl ~ Pi assumes implicitly that a coherent 
choice of orientation of plaquettes has been done throughout the lattice. Such 
choices conflict with the assumption of homogeneity of the Cayley lattice necessary 
in eqs. (2.3) and (2.13). It seems that we have reached the limit of our model: going 
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5 The phase diagram m the fll - f 1 2  plane Full hnes are first order, the broken hne 1s second order 
and the phase boundaries found in Monte Carlo simulations [6] are indicated by dotted hnes 

beyond the broken line WX is not fully consistent. As a consequence, the description 
of that phase and its transition line to the weak coupling phase (I) are missing. This 
has been indicated by a shaded area on figs. 4 and 5. 

We now return to the other transition lines (full lines of fig. 4). Across all these 
lines, the parameters tax, ta2 are discontinuous. The actual location of the first-order 
transition lines must be deduced from the comparison of free energies in the various 
phases, as explained in sect. 3. The arbitrary constant in the free energy is adjusted 
to reproduce the leading strong or weak coupling behaviour in each phase. One finds 

C i v = 0 ,  CII  = C i u  = - - ~ l n 2 ,  C I = - ~ l n 2 ,  

which is consistent with the special limiting cases mentioned above and the similar 
procedure for Z 2. In that way, the phase boundaries represented on fig. 4 (dot-dashed 
lines) and 5 (full fines) are obtained. On fig. 5, which displays the (ill - f iE)  plane, 
the results of Monte Carlo simulations [6] have also been plotted. There is clearly an 
excellent agreement, as far as the first-order hnes are concerned. One can make two 
remarks: 

(i) there is no built-in duality in the Bethe approxamation since the Cayley lattice 
is not self-dual. The transition from the weak (I) to the strong (IV) coupling phase 
does not occur along the line 2t 1 + t 2 = 1 but at slightly weaker coupling. Actually, 
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the weak coupling free energy f -  In/~0 (cp. 2.17) vanishes along the self-dual line: f i  
is lower than it should be because the system is totally frozen in our approximation. 
For example, the Potts transition point P lies at t 1 = t 2 = 0.3357, i.e. fll = r2 = 0.276 
instead of the self-dual value t 1 = t 2 = ½; the triple point C is at fll = 0.224, 
r2 = 0.397, and the transition of the Wilson model at fll = 0.450, r2 = 0. 

(i 0 in the lower half-plane, the second-order transition crosses the first-order line 
and becomes visible at the tricritlcal point T: f l l  = 0.522, r2 = - 0.09. Ttus ~s a little 
higher than the tricritical point determined by Monte Carlo simulations [6]. 

Finally, as explained before, we cannot determine within the present scheme 
where the new phase terminates. 

6. Summary and discussion 

We have shown that the Bethe approxamation may be defined in lattice gauge 
theories of arbitrary group and dimension. Although the approximation is essentially 
a resummation of (a large part of) strong coupling series, it is flexible enough to 
reproduce quite accurately phase diagrams and to describe correctly the order of 
phase transitions. This is true at least for discrete gauge groups as illustrated here by 
the 4 -  d Z 4 model. It is not the point here to compare this approach to others 
based on mean field [13] or on Migdal-Kadanoff recursion relations [12] but only to 
show that the Bethe approximation may successfully reproduce complicated phase 
patterns. Another instance, not discussed here, is the 3 -  d 3-state Potts model, 
where the approximation correctly predicts a first-order transition with a small 
latent heat. The approxamation has failed to provide a consistent description of the 
intermediate (" Coulomb;') phase. This may not be too surprising if one remembers 
that in the original model, closed monopole loops on the dual lattice play an 
important role: the dual of the Cayley lattice, however, has no closed loop. The 
approximation has been able to determine one boundary of this Coulomb phase. 
Moreover, it predicts that along this line, only the correlation length of (ImUpImUp) 
vanishes, while the others remain finite. Such a decoupllng is not uncommon and has 
been, for example, observed in the Higgs model [14]. In the present case, it should be 
easy to test in the original model. One may go further and speculate that in the 
intermediate phase, (ImUp) takes a nonvanishlng value, signaling the spontaneous 
breakdown of the discrete symmetry U t --, Ut*. A sltmlar phenomenon has been 
recently discussed in the closely related gauge Ashkin-Teller model [15]. On the other 
hand, if for other Z N models only some of the correlation lengths vanish at the 
transition point, it will be interesting to see how the U(1) limit is approached: there, 
we expect both correlation functions (cos#0cos$R) and (sin0osm0R) to have 
divergent correlation lengths at the critical point. 

Returning to the Bethe approximation, it is clear that more work is needed to see 
how valuable it is for continuous gauge groups. It might, for example, describe 
correctly the phase structure and nearby singulanties of SU(N) maxed actions. It 
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should also offer an effective way to resum strong coupling series for glueball 

masses. Notice,  however, that  the mass defined as in (4.1) or in [12] (i.e. the first 

coefficient in the low-momentum expansion of  the inverse correlation function) 
differs f rom the definition currently used [2], which is the pole in k 2 of  the 

correlat ion function:  the two definitions differ at strong coupling but, of course, 

merge at a critical point. Also, we observe that a computa t ion  of the string tension is 

a pnor i  feasible in the Bethe approxamation, al though an area-law may  hardly be 

distinguished f rom a perimeter law on a typical closed curve drawn on a Cayley 

lattice! Finally, I ment ion that the Bethe approximation,  which ultimately derives 

self-consistent equations for an effective plaquette average, might have some rela- 
t tonship with the mean-plaquet te  approximat ion [16]. 
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Note added m proof. A recent Monte  Carlo simulation of  M. Okawa (private 

communica t ion)  seems to rule out the possibility of  a nonvanishing value of  { ImUp)  
m the 4 - d Z 4 model. 
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