## Revisiting $\operatorname{SU}(N)$ integrals

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 J. Phys. A: Math. Theor. 50015203
(http://iopscience.iop.org/1751-8121/50/1/015203)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 134.157.10.75
This content was downloaded on 30/11/2016 at 14:21

Please note that terms and conditions apply.

## Revisiting $\mathbf{S U}(\mathbf{N})$ integrals

Jean-Bernard Zuber<br>Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France<br>CNRS, UMR 7589, LPTHE, F-75005, Paris, France<br>E-mail: jean-Bernard.Zuber@upmc.fr

Received 7 July 2016, revised 13 October 2016
Accepted for publication 3 November 2016
Published 30 November 2016


#### Abstract

In this note, I revisit integrals over $\mathrm{SU}(N)$ of the form $\int D U U_{i_{1} j_{1}} \cdots U_{i_{p} j_{p}} U_{k_{1} l_{1}}^{\dagger} \cdots U_{k_{n} l_{n}}^{\dagger}$. While the case $p=n$ is well known, it seems that explicit expressions for $p=n+N$ had not appeared in the literature. Similarities and differences, in particular in the large $N$ limit, between the two cases are discussed.


Keywords: matrix integrals, group integration, lattice QCD
(Some figures may appear in colour only in the online journal)

## 1. Introduction and results

In this note, we consider the $\operatorname{SU}(N)$ integrals

$$
\begin{equation*}
\int D U U_{i_{1} j_{1}} \cdots U_{i_{p} j_{j}} U_{k_{l_{1}}}^{\dagger} \cdots U_{k_{n} l_{n}}^{\dagger}, \tag{1}
\end{equation*}
$$

with $D U$ the normalized Haar measure, or their generating functions

$$
\begin{equation*}
Z_{p, n}(J, K)=\int D U(\operatorname{tr}(K U))^{p}\left(\operatorname{tr}\left(J U^{\dagger}\right)\right)^{n} \tag{2}
\end{equation*}
$$

where $J$ and $K$ are arbitrary $N \times N$ matrices.
Such integrals, mainly over the group $\mathrm{U}(N)$, have been the object of numerous publications in the past, in the context of lattice gauge theories [1-4], or in the large $N$ limit [5, 6], or for their connections with combinatorics [7, 8]. Integrals over $\operatorname{SU}(N)$ seem to have received less attention, see, however, [2, 9]. Recent work by Rossi and Veneziano [10] has prompted this new investigation.

Let us first recall the physical motivations for studying the $\mathrm{SU}(N)$ integrals (1) or (2). Such integrals appear in the context of lattice calculations of baryon spectrum. Indeed, consider a $\mathrm{SU}(N)$ lattice gauge theory, with link variables denoted $U_{\ell} \in \mathrm{SU}(N)$, Wilson action


Figure 1. A book observable for $N=3$.
$\mathcal{S}=\beta \sum_{\text {plaquettes }} \operatorname{tr} U_{P}$, and lattice averages $\langle\cdot\rangle:=\int \prod_{\ell} D U_{\ell}(\cdot) \mathrm{e}^{\mathcal{S}} / \int \prod_{\ell} D U_{\ell} \mathrm{e}^{\mathcal{S}}$. Following [10], introduce the baryonic Wilson loop or 'book observable'

$$
\langle\mathcal{B}\rangle:=\left\langle\epsilon_{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \prod_{a=1}^{N} U_{i_{j_{d}}}^{(a)}\right\rangle
$$

where the ordered products $U^{(a)}=\prod_{\ell \in \mathcal{C}^{(a)}} U_{\ell}, a=1, \cdots N$, stand for $N$ (static) quark lines joining two points A and B , a distance $r$ apart, see figure $1 . \mathcal{B}$ represents a baryon made of $N$ quarks, created at A and annihilated at B . To lowest order in a small $\beta$ (strong coupling) expansion, $\langle\mathcal{B}\rangle=\beta^{\mathcal{A}} \epsilon_{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} \int D V \prod_{a=1}^{N} V_{i_{j_{a}}}$, with $\mathcal{A}$ the total area of the $N$ 'sheets' of the book, and the last $V$-integration is carried out on the 'junction' of these sheets and is given by $Z_{N, 0}$. Higher order corrections in $\beta$ may involve some other integrals $Z_{n+N, n}$.

By $\mathbb{Z}_{N}$ invariance, it is clear that the above integrals vanish if

$$
\begin{equation*}
p-n \neq 0 \quad \bmod N . \tag{3}
\end{equation*}
$$

From a representation theoretic point of view, the number of independent terms in (2), (i.e. of independent tensors with the right symmetries in (1)), is given by the number of invariants in $(N)^{\otimes p} \otimes(\bar{N})^{\otimes n}$, where $(N)$ and $(\bar{N})$ denote the fundamental $N$-dimensional representation of $\mathrm{SU}(N)$ and its complex conjugate.
$Z_{n, n}(J, K)$ is a well known function of (traces of powers of) $J K$, ('Weingarten's function' [1]), at least for $n<N$, and one may collect all $Z_{n, n}$ 's into

$$
\begin{equation*}
Z_{W}(J, K)=\sum_{n \geqslant 0} \frac{\kappa^{2 n}}{(n!)^{2}} Z_{n, n}(J, K) \tag{4}
\end{equation*}
$$

For the convenience of the reader, a certain number of known results on these integrals and their generating function are recalled in the appendix. This case $n=p$ in equations (1) and (2) will be referred to as 'the ordinary case'.

We now turn to the determination of the $Z_{n+N, n}$. First, for $n=0, \int D U U_{i_{1} j_{1}} \cdots U_{i_{N} j_{N}}$ is given by the only invariant in $\otimes^{N}(N)$, namely by the totally antisymmetric tensor product, (i.e. the determinant of $U$, equal to 1 in $\operatorname{SU}(N)$ ). Hence

$$
\int D U U_{i j_{1}} \cdots U_{i_{N} j_{N}}=A \epsilon_{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}}
$$

with a constant $A$ determined by contraction with $\epsilon_{i_{1} \cdots i_{N}}$ and use of $\epsilon_{i_{1} \cdots i_{N}} U_{i_{j_{1}}} \cdots U_{i_{N j_{N}}}=\epsilon_{j_{1} \cdots j_{N}} \operatorname{det} U$, hence $\int D U \operatorname{det} U=\int D U=1=A \epsilon_{j_{1} \cdots j_{N}} \epsilon_{j_{1} \cdots j_{N}}=A N!$, and $A=1 / N!$. Thus

$$
\begin{equation*}
\int D U U_{i_{1} j_{1}} \cdots U_{i_{N} j_{N}}=\frac{1}{N!} \epsilon_{i_{1} \cdots i_{N}} \epsilon_{j_{1} \cdots j_{N}} . \tag{5}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
Z_{N, 0}(J, K)=\operatorname{det} K \tag{6}
\end{equation*}
$$

More generally, for $n<N, Z_{N+n, n}(J, K)$ is the product of $\operatorname{det} K$ by a polynomial of $M:=J K$, invariant under $M \mapsto V M V^{\dagger}$, for any $V \in \mathrm{SU}(N)$, and homogeneous of degree $n$ in $M$, hence a polynomial that may be expanded on traces of powers of $M$

$$
\begin{equation*}
Z_{N+n, n}=\int D U(\operatorname{tr}(U K))^{N+n}\left(\operatorname{tr}\left(U^{\dagger} J\right)\right)^{n}=\operatorname{det} K \sum_{\alpha \vdash n} d_{\alpha} t_{\alpha} . \tag{7}
\end{equation*}
$$

with a sum over partitions of $n$ denoted $\alpha=\left[1^{\alpha_{1}}, 2^{\alpha_{2}}, \cdots, p^{\alpha_{p}}\right], \sum_{q} q \alpha_{q}=n$, and with the notations

$$
\begin{equation*}
t_{\alpha}:=\prod_{q} t_{q}^{\alpha_{q}}, \quad t_{q}:=\operatorname{tr}(J K)^{q} . \tag{8}
\end{equation*}
$$

The coefficients $d_{\alpha}$ are determined through recursion formulae resulting from a contraction of (1) with a Kronecker delta:

$$
\begin{equation*}
\delta_{j k} \frac{\partial^{2}}{\partial J_{l k} \partial K_{j i}} Z_{N+n, n}=(N+n) n \delta_{i l} Z_{N+n-1, n-1} . \tag{9}
\end{equation*}
$$

The first coefficients are readily determined

$$
\begin{array}{ll}
n=1 & d_{[1]}=1  \tag{10}\\
n=2 & d_{[2]}=-\frac{1}{N} \quad d_{\left[2^{2}\right]}=\frac{N+1}{N} \\
n=3 & d_{[3]}=\frac{4}{N(N-1)} \quad d_{[1,2]}=-\frac{3(N+1)}{N(N-1)} \quad d_{\left[\left[^{3}\right]\right.}=\frac{(N+1)^{2}-2}{N(N-1)} \\
n=4 & d_{[4]}=-\frac{30}{N(N-1)(N-2)} \quad d_{[1,3]}=\frac{8\left(2(N+1)^{2}-3\right)}{(N+1) N(N-1)(N-2)} \quad d_{\left[2^{2}\right]}=\frac{3\left((N+1)^{2}+6\right)}{(N+1) N(N-1)(N-2)} \\
& d_{\left[1^{2}, 2\right]}=-\frac{6\left((N+1)^{2}-4\right)}{N(N-1)(N-2)} \\
d_{\left[1^{4}\right]}=\frac{(N+1)^{4}-8(N+1)^{2}+6}{(N+1) N(N-1)(N-2)}
\end{array}
$$

etc.
These coefficients are in fact simply related to the analogous coefficients $z_{\alpha}$ in the expansion of the ordinary generating function, see appendix, equation (A.3). If $z_{\alpha}, \alpha \vdash n$, is written in the form

$$
\begin{equation*}
z_{\alpha}=\frac{P_{\alpha}(N)}{N^{2}\left(N^{2}-1\right) \cdots\left(N^{2}-(n-1)^{2}\right)} \tag{11}
\end{equation*}
$$

with $P_{\alpha}(N)$ a polynomial of $N$, then

$$
\begin{equation*}
d_{\alpha}=\frac{P_{\alpha}(N+1)}{(N+1) \cdots(N-(n-2))} . \tag{12}
\end{equation*}
$$

This follows from the comparison between the two systems of recursion formulae, see below section 2 , and may be verified on the first coefficients (10) and (A.5).

Note that the coefficients $d_{\alpha}$ decrease more slowly than the $z_{\alpha}$, for fixed $n$, as $N$ grows. This behavior has consequences on the large $N$ limit of the generating function $Z_{D}$ defined by

$$
\begin{equation*}
Z_{D}=\sum_{n \geqslant 0} \frac{\kappa^{n}}{n!} Z_{N+n, n}=\int D U \mathrm{e}^{\kappa \operatorname{tr} U K \operatorname{tr} U^{\dagger} J}(\operatorname{tr} U K)^{N}=: \tilde{Z}_{D} \operatorname{det} K . \tag{13}
\end{equation*}
$$

Note also the different summations in (4) and (13): here $\kappa$ is a homogeneity parameter for the eigenvalues of $M=J K$ while in (4), it is $\kappa^{2}$ that plays that role. In both cases, however, we take $\kappa$ of order $N$ and set $\kappa=N \tilde{\kappa}$. Then while in the ordinary case, a non trivial limit is obtained by taking the traces $t_{n}$ also of order $N$, resulting in an exponentation $Z_{W}=\exp N^{2} W_{W}$, here one finds that the traces $t_{n}$ have to be kept of order 1 and then $\tilde{Z}_{D}=\exp N W_{D}$, with $W_{D}$ a non trivial function of the $t_{n}$ 's.

Indeed one finds for the first terms
$\lim _{N \rightarrow \infty} \frac{1}{N} \log \frac{Z_{D}}{\operatorname{det} K}=\tilde{\kappa} t_{1}+\frac{\tilde{\kappa}^{2}}{2}\left(t_{1}^{2}-t_{2}\right)+\frac{\tilde{\kappa}^{3}}{3}\left(t_{1}^{3}-3 t_{1} t_{2}+2 t_{3}\right)+\frac{\tilde{\kappa}^{4}}{4}\left(t_{1}^{4}-6 t_{2} t_{1}^{2}+2 t_{2}^{2}+8 t_{3} t_{1}-5 t_{4}\right)+\cdots$
which is just the beginning of a simple formula in the large $N$ limit:

$$
\begin{equation*}
W_{D}:=\lim _{N \rightarrow \infty} \frac{1}{N} \log \frac{Z_{D}}{\operatorname{det} K}=\sum_{n \geqslant 1} \tilde{\kappa}^{n} \sum_{\alpha \vdash n}(-1)^{n-\sum \alpha_{q}} \frac{(n-1)!}{\left(n-\sum \alpha_{q}+1\right)!} \prod_{p} \frac{\left(\operatorname{Cat}(p-1) t_{p}\right)^{\alpha_{p}}}{\alpha_{p}!} \tag{15}
\end{equation*}
$$

in terms of the Catalan numbers $\operatorname{Cat}(m)=\frac{(2 m)!}{m!(m+1)!}$. This will be proved below in section 3 .

## 2. The recursion relations

Let us return to (9) and look at the action of the differential operator $\frac{\partial}{\partial K_{j i}}$ on a typical term $t_{\alpha} \operatorname{det} K$ of (7). Making use of the identities

$$
\begin{align*}
& \frac{\partial}{\partial K_{j i}} \operatorname{det}[K]=(\operatorname{Cof} K)_{j i}  \tag{16}\\
& (\operatorname{Cof} K)_{j i}(K X)_{j l}=(\operatorname{det} K) X_{i l} \tag{17}
\end{align*}
$$

one may write for each term in the expansion of $Z_{N+n, n}$

$$
\begin{align*}
& \frac{\partial^{2}}{\partial K_{j i} \partial J_{l j}}\left(t_{\alpha} \operatorname{det} K\right)=\frac{\partial}{\partial K_{j i}} \sum_{q=1}^{p} q \alpha_{q}\left(K(J K)^{q-1}\right)_{j l} t_{\widehat{\alpha}_{(q)}} \operatorname{det} K \\
= & \sum_{q=1}^{p} q \alpha_{q}\left((N+1)(J K)_{i l}^{q-1}+\sum_{s=1}^{q-1} t_{s}(J K)_{i l}^{q-s-1}\right) t_{\widehat{\alpha}_{(q)}} \operatorname{det} K \\
& +\sum_{q=1}^{p} q^{2} \alpha_{q}\left(\alpha_{q}-1\right)(J K)_{i l}^{2 q-1} t_{\widehat{\alpha_{(q)}}} \operatorname{det} K+2 \sum_{1 \leqslant q<r \leqslant p} q r \alpha_{q} \alpha_{r}(J K)_{i l}^{q+r-1} t_{\widetilde{\alpha}_{(q, r)}} \operatorname{det} K \tag{18}
\end{align*}
$$

with $\widehat{\alpha}_{(q)}:=\left(1^{\alpha_{1}} \cdots q^{\alpha_{q}-1} \cdots p^{\alpha_{p}}\right)$, $\widehat{\widehat{\alpha}}_{(q)}:=\left(1^{\alpha_{1}} \cdots q^{\alpha_{q}-2} \cdots p^{\alpha_{p}}\right)$, and $\widetilde{\alpha}_{(q, r)}:=\left(1^{\alpha_{1}} \cdots q^{\alpha_{q}-1} \cdots\right.$ $\left.r^{\alpha_{r}-1} \cdots p^{\alpha_{p}}\right)$.

In this way, (9) yields an (overdetermined) system of relations between the coefficients $d_{\alpha}$ at ranks $n$ and $n-1$, namely

$$
\begin{align*}
& \sum_{\alpha \vdash n} d_{\alpha}\left\{\sum_{q=1}^{p} q \alpha_{q}\left(\underline{(N+1)}(J K)_{i l}^{q-1}+\sum_{s=1}^{q-1} t_{s}(J K)_{i l}^{q-s-1}\right) t_{\widehat{\alpha}_{(q)}} \operatorname{det}(K)\right. \\
& \left.\quad+\sum_{q=1}^{p} q^{2} \alpha_{q}\left(\alpha_{q}-1\right)(J K)_{i l}^{2 q-1} t_{\widehat{\alpha_{(q)}}} \operatorname{det}(K)+2 \sum_{1 \leqslant q<r \leqslant p} q r \alpha_{q} \alpha_{r}(J K)_{i l}^{q+r-1} t_{\widetilde{\alpha}_{(q, r)}} \operatorname{det}(K)\right\} \\
& \quad=n \underline{(N+n)} \delta_{i l} \sum_{\alpha^{\prime} \vdash n-1} d_{\alpha^{\prime}} t_{\alpha^{\prime}} \operatorname{det}(K) . \tag{19}
\end{align*}
$$

Compare these equations with those satisfied by the coefficients $z_{\alpha}$ in the similar expansion of $Z_{n, n}(J, K)$ in the ordinary case, see (A.4). Their structure is the same, except for changes in the terms of (19), underlined. In the linear system on the $d_{\alpha}$, the parameter $N$ in the lhs of (A.4) has been changed into $N+1$ while the right hand side is multiplied by $(N+n)$. As a result the solutions of the $d_{\alpha}$ linear system are obtained from those of the $z_{\alpha}$ one by

$$
\text { for a given } n \quad d_{\alpha}=(N+n)(N+n-1) \cdots(N+1)\left(\left.z_{\alpha}\right|_{N \rightarrow N+1}\right) .
$$

If $z_{\alpha}$ is written as in (11), it follows that $d_{\alpha}$ has the form (12), qed.
In particular, this relation implies that $z_{\alpha}$ and $d_{\alpha}$ have the same overall sign, namely $(-1)^{\not \mathrm{cccles}^{2}(\alpha)+n}$.

## 3. Exponentiation and large $N$ limit

The differential equation (9) carries over to the generating function $Z_{D}$ of (13) in the form

$$
\begin{equation*}
\delta_{j k} \frac{\partial^{2}}{\partial J_{l k} \partial K_{j i}} Z_{D}=\delta_{i l}\left((N+1) \kappa+\kappa^{2} \frac{\partial}{\partial \kappa}\right) Z_{D} . \tag{20}
\end{equation*}
$$

We write $Z_{D}=\operatorname{det} K \tilde{Z}_{D}$, in which $\tilde{Z}_{D}$ is a function of $M:=J K$ invariant under $M \rightarrow V M V^{\dagger}$ for any $V \in \mathrm{SU}(N)$, and we rewrite the differential equation as

$$
\begin{equation*}
\frac{\partial^{2} \tilde{Z}_{D}}{\partial M_{l k} \partial M_{j i}} M_{j k}+(N+1) \frac{\partial \tilde{Z}_{D}}{\partial M_{l i}}=\delta_{i l}\left((N+1) \kappa+\kappa^{2} \frac{\partial}{\partial \kappa}\right) \tilde{Z}_{D} \tag{21}
\end{equation*}
$$

This may be reexpressed as a differential equation wrt the eigenvalues $\lambda_{i}$ of $M$ (generically $M$ is diagonalizable). This is a standard procedure [5] with the result that for any $i, 1 \leqslant i \leqslant N$

$$
\begin{equation*}
\lambda_{i} \frac{\partial^{2} \tilde{Z}_{D}}{\partial \lambda_{i}^{2}}+(N+1) \frac{\partial \tilde{Z}_{D}}{\partial \lambda_{i}}+\sum_{j \neq i} \lambda_{j} \frac{\frac{\partial \tilde{z}_{D}}{\partial \lambda_{i}}-\frac{\partial \tilde{Z}_{D}}{\partial \lambda_{j}}}{\lambda_{i}-\lambda_{j}}=\left((N+1) \kappa+\kappa^{2} \frac{\partial}{\partial \kappa}\right) \tilde{Z}_{D} \tag{22}
\end{equation*}
$$

Finally we write $\tilde{Z}_{D}=\exp N W_{D}$, which results in
$\lambda_{i}\left(N \frac{\partial^{2} W_{D}}{\partial \lambda_{i}^{2}}+N^{2}\left(\frac{\partial W_{D}}{\partial \lambda_{i}}\right)^{2}\right)+(N+1) N \frac{\partial W_{D}}{\partial \lambda_{i}}+N \sum_{j \neq i} \lambda_{j} \frac{\frac{\partial W_{D}}{\partial \lambda_{i}}-\frac{\partial W_{D}}{\partial \lambda_{j}}}{\lambda_{i}-\lambda_{j}}=(N+1) \kappa+N \kappa^{2} \frac{\partial W_{D}}{\partial \kappa}$.
In the large $N$ limit, we rescale $\kappa=N \tilde{\kappa}$, keeping all $t_{n}=\sum_{i} \lambda_{i}^{n}$ of order 1, and after dropping the subdominant terms, we get for $w_{i}:=\frac{\partial W_{D}}{\partial \lambda_{i}}$ the equation

$$
\begin{equation*}
\lambda_{i} w_{i}^{2}+w_{i}=\tilde{\kappa}+\tilde{\kappa}^{2} \frac{\partial W_{D}}{\partial \tilde{\kappa}} . \tag{24}
\end{equation*}
$$

(Note that this is in contrast with the 'ordinary case' where the term $\sum_{j \neq i} \cdots$ contributes in the large $N$ limit [5].) Now $\tilde{\kappa}$ is just an homogeneity variable of the $\lambda$ 's, and we may thus substitute $\tilde{\kappa} \frac{\partial W_{D}}{\partial \tilde{\kappa}}=\sum_{j} \lambda_{j} \frac{\partial W_{D}}{\partial \lambda_{j}}=\sum_{j} \lambda_{j} w_{j}$. The equation finally reduces to a system of algebraic equations for the $w_{i}$ 's

$$
\begin{equation*}
\lambda_{i} w_{i}^{2}+w_{i}=\tilde{\kappa}\left(1+\sum_{j} \lambda_{j} w_{j}\right) . \tag{25}
\end{equation*}
$$

Assuming $w:=\sum_{i} \lambda_{i} w_{i}$ known, one finds

$$
\begin{align*}
& \lambda_{i} w_{i}^{2}+w_{i}=\tilde{\kappa}(1+w) \\
& w_{i}=\frac{-1+\sqrt{1+4 \lambda_{i} \tilde{\kappa}(1+w)}}{2 \lambda_{i}} \tag{26}
\end{align*}
$$

and $1+w$ is thus the root of

$$
\begin{equation*}
1+w=1-\frac{N}{2}+\sum_{i} \frac{\sqrt{1+4 \lambda_{i} \tilde{\kappa}(1+w)}}{2} \tag{27}
\end{equation*}
$$

Equation (26) should be compared with that of the generating function of Catalan numbers $\operatorname{Cat}(m)=\frac{(2 m)!}{m!(m+1)!}$, namely $C(t)=\sum_{n \geqslant 0} \operatorname{Cat}(n) t^{n}, t C^{2}(t)-C(t)+1=0$. We find that $w_{i}=\tilde{\kappa}(1+w) C\left(-\tilde{\kappa}(1+w) \lambda_{i}\right)$, hence

$$
\begin{equation*}
w_{i}=\tilde{\kappa}(1+w) \sum_{n \geqslant 0} \operatorname{Cat}(n)\left(-\tilde{\kappa}(1+w) \lambda_{i}\right)^{n} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
w=\sum_{i} \lambda_{i} w_{i}=-\sum_{n \geqslant 1} \operatorname{Cat}(n-1)(-\tilde{\kappa}(1+w))^{n} t_{n} . \tag{29}
\end{equation*}
$$

Let $f_{0}=1, \quad f_{n}:=(-1)^{n-1} \operatorname{Cat}(n-1) t_{n}$ for $n \geqslant 1, \quad y:=\tilde{\kappa}(1+w)$, then (29) reads $y=\tilde{\kappa} \sum_{n \geqslant 0} f_{n} y^{n}$, whose solution is given by Lagrange formula

$$
\begin{align*}
y=\tilde{\kappa}(1+w) & =\left.\sum_{n \geqslant 0} \frac{\tilde{\kappa}^{n+1}}{(n+1)!}\left(\frac{d}{d z}\right)^{n}\left(\sum_{m \geqslant 0} f_{m} z^{m}\right)^{n+1}\right|_{z=0} \\
& =\tilde{\kappa}+\sum_{n \geqslant 1} \frac{\tilde{\kappa}^{n+1}}{(n+1)!} \sum_{\alpha \vdash n} \frac{(n+1)!}{\left(n+1-\sum_{q} \alpha_{q}\right)!\prod_{q} \alpha_{q}!} n!f_{\alpha} \\
w=\sum_{n \geqslant 1} m_{n} \tilde{\kappa}^{n} & =\sum_{n \geqslant 1} \tilde{\kappa}^{n} \sum_{\alpha \vdash n} \frac{n!}{\left(n+1-\sum_{q} \alpha_{q}\right)!\prod_{q} \alpha_{q}!} f_{\alpha} \tag{30}
\end{align*}
$$

where the multinomial coefficient appears naturally in the expansion of the $n+1$-th power, and the $n!$ results from the $n$-th derivative of $z^{n}$. Upon integration we get

$$
W_{D}=\sum_{n \geqslant 1} \tilde{\kappa}^{n} \sum_{\alpha \vdash n}(-1)^{n-\sum \alpha_{q}} \frac{(n-1)!}{\left(n+1-\sum_{q} \alpha_{q}\right)!\prod_{q} \alpha_{q}!} \prod_{p}\left(\operatorname{Cat}(p-1) t_{p}\right)^{\alpha_{p}}
$$

which establishes (15).

Note the similarity of this calculation with the relation between ordinary moments $m_{n}$ and non crossing (or free) cumulants $f_{n}$ of a given distribution. The combinatorial or diagrammatical interpretation of (15) remains to be found.

## Acknowledgments

It is a pleasure to thank Gabriele Veneziano for inspiring discussions.

## Appendix

In this appendix, we recall a certain number of results on the Weingarten's functions $Z_{n, n}(J, K)$ and their generating function $Z_{W}(J, K)$ of (4). The $Z_{n, n}$ are well known functions of (traces of powers of) $J K$, at least for $n<N$, see also [2-4]. For $n \geqslant N$, the traces are no longer independent, or equivalently the tensors $\prod \delta_{i \pi(l)} \delta_{j \rho(k)}, \pi, \rho \in S_{n}$, are no longer independent, and we have to deal with a 'pseudo-inverse' of the Gram matrix, see [7, 8].

Consider the integrals on $\mathrm{U}(N)$ (or $\mathrm{SU}(N)$, this is irrelevant here, assuming $n<N)[1,4,7]$

$$
\begin{align*}
\int D U U_{i_{j_{1}}} \cdots U_{i_{i, j}} U_{k_{1} \ell_{1}}^{\dagger} \cdots U_{k_{n} \ell_{n}}^{\dagger} & =\sum_{\tau, \sigma \in S_{n}} C([\sigma]) \prod_{a=1}^{n} \delta_{i_{a} \ell_{\tau(\alpha)}} \delta_{j_{a} k_{\tau \sigma(a)}} \\
& =\sum_{\tau, \sigma \in S_{n}} \sum_{\substack{Y \text { Yung diagr. } \\
|Y|=n}} \frac{\left(\chi^{(\lambda)}(1)\right)^{2} \chi^{(\lambda)}([\sigma])}{n!^{2} s_{\lambda}(I)} \prod_{q=1}^{n} \delta_{i_{q} \ell_{\tau(q)}} \delta_{j_{q} k_{\tau \sigma(q)}} \tag{A.1}
\end{align*}
$$

where $\chi^{(\lambda)}([\sigma])$ is the character of the symmetric group $S_{n}$ associated with the Young diagram $Y$, (a function of the class [ $\sigma$ ] of $\sigma$ ); thus $\chi^{(\lambda)}(1)$ is the dimension of that representation; $s_{\lambda}(X)$ is the character of the linear group $\operatorname{GL}(N)$ associated with Young diagram $Y$, that is a Schur function when expressed in terms of the eigenvalues of $X ; s_{\lambda}(I)$ is thus the dimension of that representation. Finally the coefficient $C([\sigma])$ will be determined below.

Alternatively, in terms of generating functions with sources $J$ and $K$

$$
\begin{equation*}
Z_{n, n}(J, K)=\int D U(\operatorname{tr} K U)^{n}\left(\operatorname{tr} J U^{\dagger}\right)^{n}=\sum_{\alpha \vdash n} n!|\alpha| C([\alpha]) t_{\alpha} \tag{A.2}
\end{equation*}
$$

 from the sum over $\tau$ and the factor $|\alpha|$ from that over the elements $\sigma \in[\alpha]$. Thus

$$
\begin{equation*}
Z_{W}(J, K):=\int_{U(N)} D U \exp \left[\kappa \operatorname{tr}\left(K U+J U^{\dagger}\right)\right]=\sum_{n=0}^{\infty} \frac{\kappa^{2 n}}{n!} \sum_{\alpha \vdash n} z_{\alpha} t_{\alpha} \tag{A.3}
\end{equation*}
$$

with $z_{\alpha}=|\alpha| C([\alpha])$.
By the same argument as in section 2, the $z_{\alpha}$ satisfy the linear system of recursion relations

$$
\begin{align*}
\sum_{\alpha \vdash n} z_{\alpha} & \left\{\sum_{q=1}^{p} q \alpha_{q}\left(N(J K)_{i l}^{q-1}+\sum_{s=1}^{q-1} t_{s}(J K)_{i l}^{q-s-1}\right) t_{\widehat{\alpha}(q)}\right. \\
& \left.+\sum_{q=1}^{p} q^{2} \alpha_{q}\left(\alpha_{q}-1\right)(J K)_{i l}^{2 q-1} t_{\widehat{\alpha_{(q)}}}+2 \sum_{1 \leqslant q<r \leqslant p} q r \alpha_{q} \alpha_{r}(J K)_{i l}^{q+r-1} t_{\widetilde{\alpha}_{(q, r)}}\right\} \\
& =n \delta_{i l} \sum_{\alpha^{\prime} \vdash n-1} z_{\alpha^{\prime}} t_{\alpha^{\prime}} . \tag{A.4}
\end{align*}
$$

Explicitly, the first coefficients $z_{\alpha}=|\alpha| C([\alpha])$ read

$$
\begin{array}{ll}
n=1 & z_{[1]}=\frac{1}{N} \\
n=2 & z_{[2]}=-\frac{1}{\left(N^{2}-1\right) N}, \quad z_{\left[1^{2}\right]}=\frac{1}{\left(N^{2}-1\right)} \\
n=3 & z_{[3]}=\frac{4}{\left(N^{2}-4\right)\left(N^{2}-1\right) N}, \quad z_{[1,2]}=-\frac{3}{\left(N^{2}-4\right)\left(N^{2}-1\right)}, \quad z_{\left[3^{3}\right]}=\frac{N^{2}-2}{\left(N^{2}-4\right)\left(N^{2}-1\right) N} \\
n=4 & z_{[4]}=-\frac{30}{\left(N^{2}-9\right)\left(N^{2}-4\right)\left(N^{2}-1\right) N}, \quad z_{[1,3]}=\frac{8\left(2 N^{2}-3\right)}{\left(N^{2}-9\right)\left(N^{2}-4\right)\left(N^{2}-1\right) N^{2}} \\
& z_{\left[2^{2}\right]}=\frac{3\left(N^{2}+6\right)}{\left(N^{2}-9\right)\left(N^{2}-4\right)\left(N^{2}-1\right) N^{2}}, \quad z_{\left[1^{2}, 2\right]}=-\frac{6\left(N^{2}-4\right)}{\left(N^{2}-9\right)\left(N^{2}-4\right)\left(N^{2}-1\right) N} \\
& z_{\left[1^{4}\right]}=\frac{N^{4}-8 N^{2}+6}{\left(N^{2}-9\right)\left(N^{2}-4\right)\left(N^{2}-1\right) N^{2}} \tag{A.5}
\end{array}
$$

etc.
The overall sign of $z_{\alpha}$ is $(-1)^{\# \text { cycles }(\alpha)-n}$ and its large $N$ behavior $\left|z_{\alpha}\right| \sim N^{-2 n+\# \text { cycles }(\alpha)}$.
To study the large $N$ limit, we take $\kappa=N \tilde{\kappa}$ and $t_{p}=N \tau_{p}$, with $\tilde{\kappa}$ and $\tau_{p}$ of order 1 . Then Brézin and Gross [5] have shown that

$$
\begin{equation*}
W_{W}(J K):=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \log Z_{W}(J, K ; N \tilde{\kappa}) \tag{A.6}
\end{equation*}
$$

exists and satisfies the coupled equations
$W_{W}=\frac{2}{N} \sum_{i}\left(\tilde{\kappa}^{2} \lambda_{i}+c\right)^{\frac{1}{2}}-\frac{1}{2 N^{2}} \sum_{i, j} \log \left[\left(\tilde{\kappa}^{2} \lambda_{i}+c\right)^{\frac{1}{2}}+\left(\tilde{\kappa}^{2} \lambda_{j}+c\right)^{\frac{1}{2}}\right]-c-\frac{3}{4}$
with $c=\left\{\begin{array}{lll}\frac{1}{N} \sum_{i}\left(\tilde{\kappa}^{2} \lambda_{i}+c\right)^{-\frac{1}{2}} & \text { for } \frac{1}{N} \sum_{i}\left(\tilde{\kappa}^{2} \lambda_{i}\right)^{-\frac{1}{2}} \geqslant 2 & \text { ('strong coupling') } \\ 0 & \text { for } \frac{1}{N} \sum_{i}\left(\tilde{\kappa}^{2} \lambda_{i}\right)^{-\frac{1}{2}} \leqslant 2 & \text { ('weak coupling') }\end{array}\right.$
The solution has two determinations, in a strong coupling and in a weak coupling phase. Here we are concerned with the strong coupling regime in which we may expand

$$
\begin{equation*}
W_{W}=\sum_{n \geqslant 1} \tilde{\kappa}^{2 n} \sum_{\alpha \vdash n} w_{\alpha} \tau_{\alpha} \tag{A.9}
\end{equation*}
$$

with the first terms
$W_{W}=\tilde{\kappa}^{2} \tau_{1}+\frac{\tilde{\kappa}^{4}}{2}\left(\tau_{1}^{2}-\tau_{2}\right)+\frac{2 \tilde{\kappa}^{6}}{3}\left(2 \tau_{1}^{3}-3 \tau_{1} \tau_{2}+\tau_{3}\right)+\frac{\tilde{\kappa}^{8}}{4}\left(24 \tau_{1}^{4}-48 \tau_{1}^{2} \tau_{2}+9 \tau_{2}^{2}+20 \tau_{1} \tau_{3}-5 \tau_{4}\right)+\cdots$
and the general term given in [6]

$$
\begin{equation*}
w_{\alpha}=(-1)^{n} \frac{\left(2 n-3+\sum_{q} \alpha_{q}\right)!}{(2 n)!} \prod_{q}\left(-\frac{(2 q)!}{(q!)^{2}}\right)^{\alpha_{q}} \frac{1}{\alpha_{q}!} . \tag{A.11}
\end{equation*}
$$

## References

[1] Weingarten D 1978 Asymptotic behavior of group integrals in the limit of infinite rank J. Math. Phys. 19 999-1001
[2] Creutz M 1978 On invariant integration over SU(N) J. Math. Phys. 19 2043-6
[3] Bars I and Green F 1979 Complete integration of $\mathrm{U}(N)$ lattice gauge theory in the large $N$ limit Phys. Rev. D 20 3311-30 Samuel S 1980 U(N) integrals, $1 / N$ and De Wit-'t Hooft anomalies J. Math. Phys. 21 2695-703 Bars I $1980 \mathrm{U}(N)$ integral for the generating functional in lattice gauge theories J. Math. Phys. 21 2678-81
[4] Drouffe J-M and Zuber J-B 1983 Strong coupling and mean field methods in lattice gauge theories Phys. Rep. 102 1-119
[5] Brézin É and Gross D 1980 The external field problem in the large $N$ limit of QCD Phys. Lett. 97 B120-4
[6] O'Brien K H and Zuber J-B 1984 A note on $\mathrm{U}(N)$ integrals in the large $N$ limit Phys. Lett. 144 B407-8
[7] Collins B 2003 Moments and cumulants of polynomial random variables on unitary groups the Itzykson-Zuber integral and free probability Int. Math. Res. Not. 17 952-82
Collins B and Śniady P 2006 Integration with respect to the Haar measure of unitary, orthogonal and symplectic group Commun. Math. Phys. 264 773-95
[8] Novak J 2010 Complete homogeneous symmetric polynomials in Jucys-Murphy elements and the Weingarten function Banach Center Publ. 89 231-5
Zinn-Justin P 2010 Jucys-Murphy elements and Weingarten matrices Lett. Math. Phys. 91 119-27
[9] Carlsson J 2008 Integrals over $\mathrm{SU}(N)$ (arXiv:0802.3409)
[10] Rossi G C and Veneziano G 2016 The string-junction picture of multiquark states: an update (arXiv:1603.05830)

