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Abstract

In this note, I revisit integrals over NSU( ) of the form † †∫ � �DU U U U Ui j i j k l k lp p n n1 1 1 1
. 

While the case p  =  n is well known, it seems that explicit expressions for 
p  =  n  +  N had not appeared in the literature. Similarities and differences, in 
particular in the large N limit, between the two cases are discussed.

Keywords: matrix integrals, group integration, lattice QCD

(Some figures may appear in colour only in the online journal)

1.  Introduction and results

In this note, we consider the NSU( ) integrals

† †∫ � �DU U U U U ,i j i j k l k lp p n n1 1 1 1� (1)

with DU the normalized Haar measure, or their generating functions

Z J K DU KU JU, tr tr ,p n
p n

, ( ) ( ( )) ( ( ))†∫=� (2)

where J and K are arbitrary N N×  matrices.
Such integrals, mainly over the group U(N), have been the object of numerous publications 

in the past, in the context of lattice gauge theories [1–4], or in the large N limit [5, 6], or for 
their connections with combinatorics [7, 8]. Integrals over NSU( ) seem to have received less 
attention, see, however, [2, 9]. Recent work by Rossi and Veneziano [10] has prompted this 
new investigation.

Let us first recall the physical motivations for studying the NSU( ) integrals (1) or (2). 
Such integrals appear in the context of lattice calculations of baryon spectrum. Indeed, con-
sider a SU(N) lattice gauge theory, with link variables denoted U NSU( )∈� , Wilson action 
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2

Utr Pplaquettesβ= ∑S , and lattice averages DU DU: e e⟨ ⟩ ( ) /∫ ∫⋅ = ∏ ⋅ ∏� � � �
S S. Following [10], 

introduce the baryonic Wilson loop or ‘book observable’

U: i i j j
a

N

i j
a

1
N N a a1 1

⟨ ⟩ ⟨ ⟩( )∏=
=

� �ε εB

where the ordered products U Ua
a

( )
( )= ∏ ∈� �C , a N1,= � , stand for N (static) quark lines join-

ing two points A and B, a distance r apart, see figure 1. B represents a baryon made of N 
quarks, created at A and annihilated at B. To lowest order in a small β (strong coupling) expan-

sion, DV Vi i j j a
N

i j1N N a a1 1
⟨ ⟩ ∫β= ∏ =� �ε εB A , with A the total area of the N ‘sheets’ of the book, 

and the last V-integration is carried out on the ‘junction’ of these sheets and is given by ZN,0. 
Higher order corrections in β may involve some other integrals Zn+N,n.

By NZ  invariance, it is clear that the above integrals vanish if

p n N0 mod . − ≠� (3)

From a representation theoretic point of view, the number of independent terms in (2), (i.e. 
of independent tensors with the right symmetries in (1)), is given by the number of invariants 
in N Np n( ) ( ¯ )⊗⊗ ⊗ , where (N) and N( ¯ ) denote the fundamental N-dimensional representation 
of NSU( ) and its complex conjugate.

Zn,n(J,K) is a well known function of (traces of powers of) JK, (‘Weingarten’s function’ 
[1]), at least for n  <  N, and one may collect all Zn,n’s into

∑ κ
=Z J K

n
Z J K,

!
, .W

n

n

n n
0

2

2 ,( )
( )

( )
⩾

� (4)

For the convenience of the reader, a certain number of known results on these integrals and 
their generating function are recalled in the appendix. This case n  =  p in equations (1) and (2) 
will be referred to as ‘the ordinary case’.

We now turn to the determination of the Zn+N,n. First, for n  =  0, ∫ �DU U Ui j i jN N1 1
 is given 

by the only invariant in NN ( )⊗ , namely by the totally antisymmetric tensor product, (i.e. the 
determinant of U, equal to 1 in NSU( )). Hence

Figure 1.  A book observable for N  =  3.
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DU U U Ai j i j i i j jN N N N1 1 1 1∫ =� � �ε ε

with a constant A determined by contraction with i iN1�ε  and use of =ε ε�� �U U Udeti i i j i j j jN N N N1 1 1 1
, 

hence ∫ ∫= = = =ε ε� �DU U DU A ANdet 1 !j j j jN N1 1
, and /=A N1 !. Thus

∫ = ε ε� � �DU U U
N

1

!
.i j i j i i j jN N N N1 1 1 1� (5)

Equivalently,

Z J K K, det .N ,0( ) =� (6)

More generally, for n  <  N, ZN+n,n(J, K) is the product of Kdet  by a polynomial of M JK:= , 
invariant under M VMV †� , for any V NSU( )∈ , and homogeneous of degree n in M, hence a 
polynomial that may be expanded on traces of powers of M

Z DU UK U J K d ttr tr det .N n n
N n n

n
, ( ( )) ( ( ))†∫ ∑= =

α
α α+

+

�
� (7)

with a sum over partitions of n denoted p1 , 2 , , p1 2[ ]α = α α α� , q nq qα∑ = , and with the 
notations

t t t JK: , : tr .
q

q q
qq ( )∏= =α

α
� (8)

The coefficients dα are determined through recursion formulae resulting from a contraction of 
(1) with a Kronecker delta:

J K
Z N n n Z .jk

lk ji
N n n il N n n

2

, 1, 1( )δ δ
∂

∂ ∂
= ++ + − −� (9)

The first coefficients are readily determined

( )
( )
( )

( )
( )

( )( )
( ( ) )

( ) ( )( )
(( ) )

( ) ( )( )
(( ) )
( )( )

( ) ( )
( ) ( )( )

[ ]

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

= =

= =− =
+

= =
−

=−
+
−

=
+ −
−

= =−
− −

=
+ −

+ − −
=

+ +
+ − −

=−
+ −
− −

=
+ − + +
+ − −

n d

n d
N

d
N

N

n d
N N

d
N

N N
d

N

N N

n d
N N N

d
N

N N N N
d

N

N N N N

d
N

N N N
d

N N

N N N N

1 1

2
1 1

3
4

1

3 1

1

1 2

1

4
30

1 2

8 2 1 3

1 1 2

3 1 6

1 1 2

6 1 4

1 2

1 8 1 6

1 1 2

etc.

1

2 1

3 1,2 1

2

4 1,3

2

2

2

1 ,2

2

1

4 2

2

3

2

2 4

� (10)

These coefficients are in fact simply related to the analogous coefficients zα in the expan-
sion of the ordinary generating function, see appendix, equation (A.3). If zα, nα � , is written 
in the form

z
P N

N N N n1 12 2 2 2

( )
( ) ( ( ) )

=
− − −

α
α

�
� (11)

with P N( )α  a polynomial of N, then

d
P N

N N n

1

1 2
.

( )
( ) ( ( ))

=
+

+ − −
α

α

�
� (12)
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This follows from the comparison between the two systems of recursion formulae, see below 
section 2, and may be verified on the first coefficients (10) and (A.5).

Note that the coefficients dα decrease more slowly than the zα, for fixed n, as N grows. This 
behavior has consequences on the large N limit of the generating function ZD defined by

∫∑ κ= = =κ
+Z

n
Z DU UK Z K

!
e tr : det .D

n

n

N n n
UK U J N

D
0

,
tr tr ( ) ˜

⩾

†� (13)

Note also the different summations in (4) and (13): here κ is a homogeneity parameter for the 
eigenvalues of M  =  JK while in (4), it is 2κ  that plays that role. In both cases, however, we take 
κ of order N and set N ˜κ κ= . Then while in the ordinary case, a non trivial limit is obtained 
by taking the traces tn also of order N, resulting in an exponentation Z N WexpW W

2= , here one 
finds that the traces tn have to be kept of order 1 and then Z NWexpD D˜ = , with WD a non trivial 
function of the tn’s.

Indeed one finds for the first terms

κ
κ κ κ

= + − + − + + − + + − +
∞

�
N

Z

K
t t t t t t t t t t t t t tlim

1
log

det 2 3
3 2

4
6 2 8 5

N

D
1

2

1
2

2

3

1
3

1 2 3

4

1
4

2 1
2

2
2

3 1 4˜ ˜ ( ) ˜ ( ) ˜ ( )
→

�

(14)

which is just the beginning of a simple formula in the large N limit:

∑ ∑ ∏κ
α α

= = −
−

−∑ +

−∑
α

α
α

∞

−

�

W
N

Z

K

n

n

p t
: lim

1
log

det
1

1 !

1 !

Cat 1

!
D

N

D

n

n

n

n

q p

p

p1

q

p

˜ ( ) ( )
( )

( ( ) )
→ ⩾

�

(15)

in terms of the Catalan numbers =
+

mCat m

m m

2 !

! 1 !
( ) ( )

( )
. This will be proved below in section 3.

2. The recursion relations

Let us return to (9) and look at the action of the differential operator 
Kji

∂
∂

 on a typical term 

t Kdetα  of (7). Making use of the identities

K
K Kdet Cof

ji
ji[ ] ( )∂

∂
=� (16)

K KX K XCof detji jl il( ) ( ) ( )=� (17)

one may write for each term in the expansion of ZN+n,n

( ) ( ( ) )

( )( ) ( )

( )( ) ( )
⩽ ⩽

( )

( )

( ) ( )

∑

∑ ∑

∑ ∑

α

α

α α α α

∂
∂ ∂

=
∂
∂

= + +

+ − +

α α

α

α α

=

−

=

−

=

−
− −

=

−

<

+ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

�

�

� ��

K J
t K

K
q K JK t K

q N JK t JK t K

q JK t K qr JK t K

det det

1 det

1 det 2 det

ji lj ji q

p

q
q

jl

q

p

q il
q

s

q

s il
q s

q

p

q q il
q

q r p
q r il

q r

2

1

1

1

1

1

1
1

1

2 2 1

1

1

q

q

q q r,

�

(18)

with q p: 1q
1q p1( )( )α = α α α−� �� , q p: 1q

2q p1( )( )α = α α α−� ��� , and (( )α = α α −� �� q: 1q r,
1q1   

α α− �r p1r p).
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In this way, (9) yields an (overdetermined) system of relations between the coefficients dα 
at ranks n and n  −  1, namely

∑ ∑ ∑

∑ ∑

∑

α

α α α α

δ

+ +

+ − +

= +

α
α α

α α

α
α α

=

−

=

−
− −

=

−

<

+ −

−′
′ ′

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬
⎭

�

�

�

� ��

d q N JK t JK t K

q JK t K qr JK t K

n N n d t K

1 det

1 det 2 det

det .

n q

p

q il
q

s

q

s il
q s

q

p

q q il
q

q r p
q r il

q r

il
n

1

1

1

1
1

1

2 2 1

1

1

1

q

q q r,

( )( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( )
⩽ ⩽

( )

( ) ( )

�

(19)

Compare these equations with those satisfied by the coefficients zα in the similar expansion 
of Zn,n(J, K) in the ordinary case, see (A.4). Their structure is the same, except for changes in 
the terms of (19), underlined. In the linear system on the dα, the parameter N in the lhs of (A.4) 
has been changed into N  +  1 while the right hand side is multiplied by (N  +  n). As a result the 
solutions of the dα linear system are obtained from those of the zα one by

= + + − + |α α +�n d N n N n N zfor a given 1 1 .N N 1( )      ( )( ) ( ) →
If zα is written as in (11), it follows that dα has the form (12), qed.

In particular, this relation implies that zα and dα have the same overall sign, namely 
1 n#cycles( ) ( )− α + .

3.  Exponentiation and large N limit

The differential equation (9) carries over to the generating function ZD of (13) in the form

J K
Z N Z1 .jk

lk ji
D il D

2
2( )

⎛

⎝
⎜

⎞

⎠
⎟δ δ κ κ
κ

∂
∂ ∂

= + +
∂
∂

� (20)

We write Z K ZdetD D˜= , in which ZD˜  is a function of M J K:=  invariant under M VMV→ † 
for any V NSU( )∈ , and we rewrite the differential equation as

Z

M M
M N

Z

M
N Z1 1 .D

lk ji
jk

D

li
il D

2
2

˜
( )

˜
( ) ˜

⎛

⎝
⎜

⎞

⎠
⎟δ κ κ
κ

∂
∂ ∂

+ +
∂
∂

= + +
∂
∂

� (21)

This may be reexpressed as a differential equation wrt the eigenvalues iλ  of M (generically 
M is diagonalizable). This is a standard procedure [5] with the result that for any i, i N1 ⩽ ⩽

∑λ
λ λ

λ
λ λ

κ κ
κ

∂
∂

+ +
∂
∂
+

−

−
= + +

∂
∂

λ λ

≠

∂
∂

∂
∂

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Z
N

Z
N Z1 1 .i

D

i

D

i j i
j

Z Z

i j
D

2

2
2

D

i

D

j
˜

( )
˜

( ) ˜
˜ ˜�

(22)

Finally we write Z NWexpD D˜ = , which results in

∑λ
λ λ λ

λ
λ λ

κ κ
κ

∂
∂

+
∂
∂

+ +
∂
∂
+

−

−
= + +

∂
∂

λ λ

≠

∂
∂

∂
∂

⎛

⎝

⎜
⎜⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠

⎟
⎟⎟

N
W

N
W

N N
W

N N N
W

1 1 .i
D

i

D

i

D

i j i
j

W W

i j

D
2

2
2

2
2

D

i

D

j( ) ( )

�

(23)
In the large N limit, we rescale N ˜κ κ= , keeping all tn i i

nλ= ∑  of order 1, and after dropping 

the subdominant terms, we get for w :i
WD

i
=

λ
∂
∂

 the equation

J-B Zuber﻿J. Phys. A: Math. Theor. 50 (2017) 015203
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w w
W

.i i i
D2 2˜ ˜
˜

λ κ κ
κ

+ = +
∂
∂

� (24)

(Note that this is in contrast with the ‘ordinary case’ where the term j i∑ ≠ � contributes 
in the large N limit [5].) Now κ̃ is just an homogeneity variable of the λ’s, and we may thus 

substitute wW
j j

W
j j j

D D

j
˜

˜
κ λ λ= ∑ = ∑κ λ
∂
∂

∂
∂

. The equation finally reduces to a system of algebraic 

equations for the wi’s

w w w1 .i i i
j

j j
2 ˜( )∑λ κ λ+ = +� (25)

Assuming w w: i i iλ= ∑  known, one finds

λ κ

λ κ
λ

+ = +

=
− + + +

w w w

w
w

1

1 1 4 1

2

i i i

i
i

i

2 ˜( )
˜( )� (26)

and 1  +  w is thus the root of

w
N w

1 1
2

1 4 1

2
.

i

i ˜( )
∑

λ κ
+ = − +

+ +
� (27)

Equation (26) should be compared with that of the generating function of Catalan num-

bers ( ) ( )
( )

=
+

mCat m

m m

2 !

! 1 !
, namely C t n tCatn

n
0( ) ( )⩾= ∑ , tC2(t)  −  C(t)  +  1  =  0. We find that 

w w C w1 1i i˜( ) ( ˜( ) )κ κ λ= + − + , hence

w w n w1 Cat 1i
n

i
n

0

˜( ) ( )( ˜( ) )
⩾
∑κ κ λ= + − +� (28)

and

w w n w tCat 1 1 .
i

i i
n

n
n

1

( )( ˜( ))
⩾

∑ ∑λ κ= = − − − +� (29)

Let f0  =  1, f n t: 1 Cat 1n
n

n
1( ) ( )= − −−  for n 1⩾ , y w: 1˜( )κ= + , then (29) reads 

y f yn n
n

0˜ ⩾κ= ∑ , whose solution is given by Lagrange formula

∑ ∑

∑ ∑

∑ ∑ ∑

κ
κ

κ
κ

α α

κ κ
α α

= + =
+

= +
+

+
+ −∑ ∏

= =
+ −∑ ∏

α
α

α
α

+
+

=
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

�

�

y w
n

d

dz
f z

n

n

n
n f

w m
n

n
f

1
1 !

1 !

1 !

1 ! !
!

!

1 ! !

n

n
n

m
m

m

n

z

n

n

n q q q q

n
n

n

n

n

n q q q q

0

1

0

1

0

1

1

1 1

˜( ) ˜
( )

˜ ˜
( )

( )
( )

˜ ˜
( )

⩾ ⩾

⩾

⩾ ⩾

�

(30)

where the multinomial coefficient appears naturally in the expansion of the n  +  1-th power, 
and the n! results from the n-th derivative of zn. Upon integration we get

˜ ( ) ( )
( )

( ( ) )
⩾
∑ ∑ ∏κ

α α
= −

−
+ −∑ ∏

−∑
α

α α−

�

W
n

n
p t1

1 !

1 ! !
Cat 1D

n

n

n

n

q q q q p
p

1

q p

which establishes (15).
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Note the similarity of this calculation with the relation between ordinary moments mn and 
non crossing (or free) cumulants fn of a given distribution. The combinatorial or diagrammati-
cal interpretation of (15) remains to be found.
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Appendix

In this appendix, we recall a certain number of results on the Weingarten’s functions Zn,n(J, K) 
and their generating function ZW(J, K) of (4). The Zn,n are well known functions of (traces of 
powers of) JK, at least for n  <  N, see also [2–4]. For n N⩾ , the traces are no longer indepen-
dent, or equivalently the tensors i l j k( ) ( )δ δ∏ π ρ , S, nπ ρ∈ , are no longer independent, and we have 
to deal with a ‘pseudo-inverse’ of the Gram matrix, see [7, 8].

Consider the integrals on U(N) (or SU(N), this is irrelevant here, assuming n  <  N) [1, 4, 7]

∫ ∑ ∏

∑ ∑ ∏

σ δ δ

χ χ σ
δ δ

=

=

τ σ

τ σ

λ λ

λ

∈ =

∈
| |=

=

τ τσ

τ τσ

� �� � �

�

DU U U U U C

n s I

1

!

i j i j k k
S a

n

i j k

S Y
Y n

q

n

i j k

, 1

, Young diagr.

2

2
1

n n n n

n

a a a a

n

q q q q

1 1 1 1
([ ])

( ( )) ([ ])
( )

† †

 

( ) ( )

( ) ( )

( ) ( )

�

(A.1)

where ([ ])( )χ σλ  is the character of the symmetric group Sn associated with the Young diagram 
Y, (a function of the class [ ]σ  of σ); thus 1( )( )χ λ  is the dimension of that representation; s X( )λ  
is the character of the linear group GL(N) associated with Young diagram Y, that is a Schur 
function when expressed in terms of the eigenvalues of X; s I( )λ  is thus the dimension of that 
representation. Finally the coefficient C([ ])σ  will be determined below.

Alternatively, in terms of generating functions with sources J and K

( ) ( ) ( ) ([ ])†∫ ∑ α α= = | |
α

α
�

Z J K DU KU JU n C t, tr tr !n n
n n

n
,� (A.2)

where α| | is the cardinal of class [ ]α  in Sn, thus α| | =
α∏ α

n

p

!

!p
p

p
. In (A.2), the factor n ! comes 

from the sum over τ and the factor α| | from that over the elements [ ]σ α∈ . Thus

∫ ∑ ∑κ
κ

= + =
α

α α
=

∞

�

Z J K DU KU JU
n

z t, : exp tr
!

W
U N n

n

n0

2

( ) [ ( )]
( )

†
�

(A.3)

with z C([ ])α α=| |α .
By the same argument as in section 2, the zα satisfy the linear system of recursion relations
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( ) ( )

( )( ) ( )
⩽ ⩽

( )

( ) ( )

∑ ∑ ∑

∑ ∑

∑

α

α α α α

δ

+

+ − +

=

α
α α

α α

α
α α

=

−

=

−
− −

=

−

<

+ −

−′
′ ′

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬
⎭

�

�

�

� ��

z q N JK t JK t

q JK t qr JK t

n z t

1 2

.

n q

p

q il
q

s

q

s il
q s

q

p

q q il
q

q r p
q r il

q r

il
n

1

1

1

1
1

1

2 2 1

1

1

1

q

q q r,

�

(A.4)

Explicitly, the first coefficients z C([ ])α α=| |α  read

= =

= =−
−

=
−

= =
− −

=−
− −

=
−

− −

= =−
− − −

=
−

− − −

=
+

− − −
=−

−
− − −

=
− +

− − −

n z
N

n z
N N

z
N

n z
N N N

z
N N

z
N

N N N

n z
N N N N

z
N

N N N N

z
N

N N N N
z

N

N N N N

z
N N

N N N N

1
1

2
1

1
,

1

1

3
4

4 1
,

3

4 1
,

2

4 1

4
30

9 4 1
,

8 2 3

9 4 1

3 6

9 4 1
,

6 4

9 4 1

8 6

9 4 1

etc.

1

2 2 1 2

3 2 2 1,2 2 2 1

2

2 2

4 2 2 2 1,3

2

2 2 2 2

2

2

2 2 2 2 1 ,2

2

2 2 2

1

4 2

2 2 2 2

2

3

2 2

4

( ) ( )

( )( ) ( )( ) ( )( )

( )( )( )
( )

( )( )( )
( )

( )( )( )
   ( )

( )( )( )

( )( )( )

[ ]

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

[ ]

�

(A.5)

The overall sign of zα is 1 n#cycles( ) ( )− α −  and its large N behavior z N n2 #cycles( )| | ∼α α− + .
To study the large N limit, we take N ˜κ κ=  and t Np pτ= , with κ̃ and pτ  of order 1. Then 

Brézin and Gross [5] have shown that

W JK
N

Z J K N: lim
1

log , ;W
N

W2
( ) ( ˜)

→
κ=

∞
� (A.6)

exists and satisfies the coupled equations

( ˜ ) [( ˜ ) ( ˜ ) ]∑ ∑κ λ κ λ κ λ= + − + + + − −W
N

c
N

c c c
2 1

2
log

3

4
W

i
i

i j
i j

2
2

,

2 21
2

1
2

1
2

�
(A.7)

∑ ∑

∑

κ λ κ λ

κ λ
=

+ − −

−

⎧

⎨
⎪⎪

⎩
⎪
⎪

c
N

c
N

N

with

1
for

1
2 'strong coupling'

0 for
1

2 'weak coupling'

i
i

i
i

i
i

2 1
2 2 1

2

2 1
2

( ˜ )      ( ˜ ) ⩾ ( )

    ( ˜ ) ⩽ ( )

�

(A.8)

The solution has two determinations, in a strong coupling and in a weak coupling phase. Here 
we are concerned with the strong coupling regime in which we may expand

W wW
n

n

n1

2˜
⩾
∑ ∑κ τ=

α
α α

�
� (A.9)
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with the first terms

˜ ˜ ( ) ˜ ( ) ˜ ( )κ τ
κ
τ τ

κ
τ ττ τ

κ
τ τ τ τ ττ τ= + − + − + + − + + − +�W

2

2

3
2 3

4
24 48 9 20 5W

2
1

4

1
2

2

6

1
3

1 2 3

8

1
4

1
2

2 2
2

1 3 4

�

(A.10)

and the general term given in [6]

∏
α

α
= −

− +∑
−α

α⎛
⎝
⎜

⎞
⎠
⎟w

n

n

q

q
1

2 3 !

2 !

2 !

!

1

!
.n q q

q q
2

q

( )
( )

( )
( )
( )� (A.11)
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