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LPTHE (CNRS, UMR 7589), Université Pierre et Marie Curie-Paris 6, 75252 Paris Cedex, France

E-mail: jean-bernard.zuber@upmc.fr

Received 7 July 2008, in final form 17 July 2008
Published 21 August 2008
Online at stacks.iop.org/JPhysA/41/382001

Abstract
The large-N limit of some matrix integrals over the orthogonal group O(N) and
its relation with those pertaining to the unitary group U(N) are re-examined.
It is proved that limN→∞ N−2

∫
DO exp N Tr JO is half the corresponding

function in U(N), with a similar relation for limN→∞
∫

DO exp N Tr(AOBOt),
for A and B both symmetric or both skew symmetric.

PACS numbers: 02.20.−a, 05.40.−a, 05.90.+m

1. Introduction

Matrix integrals of the type

Z(G) =
∫

G

D� eκN Tr(A�B�−1), (1)

over a classical compact group G = U(N), O(N) or Sp(N), with κ being a real parameter,
appear frequently in theoretical physics, from disordered systems [1–3] to 2D quantum gravity
[4] and related topics. They also have a mathematical interest in connection with integrability,
statistics and free probabilities. They are sometimes called matrix Bessel functions [5], or
(generalized) HCIZ integrals. While the expression of Z is well known for the group U(N)
[6, 7], the situation with O(N) is more subtle. The result is known for skew-symmetric matrices
A and B [6], but its form is only partially understood for the more frequently encountered case
of symmetric matrices, in spite of recent progress [5, 8, 9].

On the other hand, in the large-N limit, we expect things to simplify [10, 11]. It is
the purpose of this work to revisit this old problem and to show that log Z has universality
properties in the large-N limit, a pattern which does not seem to have been stressed enough
before, at least in the physics literature (see the historical note below).

This paper is organized as follows. In section 2, we discuss the related but simpler case
of the integral ‘in an external field’,

ZG =
∫

G

D� eN Tr(J�+J †�†) (2)
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(where the second term in the exponential will be omitted in the orthogonal case). We prove
that it enjoys a universality property in the large-N limit. In section 3, we turn to integral
(1), discuss its large-N limit and prove that it has a similar universality property. We also
extend our integrals to cases where matrices A and B are neither symmetric (or Hermitian)
nor antisymmetric.

For the sake of simplicity this paper will be focused on the case of G = O(N) as compared
to U(N), but similar considerations apply to Sp(N).

2. The integral (2)

2.1. The basic integrals and their generating function

Let us consider the basic integral over the orthogonal group O(N)

Ii,j :=
∫

DOOi1j1 · · · Oinjn
, (3)

where O is an N × N orthogonal matrix and i, respectively j, are n-tuples of indices i
respectively j .

One may easily prove that Ii,j is non-vanishing only for even n and has then the following
general structure [19]:∫

DOOi1j1 · · · Oi2nj2n
=

∑
p1,p2∈P2n

δp1
i δ

p2
j C(p1, p2), (4)

where P2n denotes the set of pairings in {1, 2, . . . , 2n},
δp

i = 1 if ∀a, b, a = p(b) ⇒ ia = ib,

i ∈ {1, 2, . . . , N} and δp
i = 0 otherwise,

(5)

and where the coefficients C(p1, p2) enjoy many properties and may be determined recursively,
see appendix A for a review.

The analogous basic integral for U(N) is∫
DU Ui1j1 · · · Uinjn

U
†
k1�1

· · · U †
kn�n

=
∑

τ,σ∈Sn

C([σ ])
n∏

a=1

δia�τ(a)
δjakτσ(a)

(6)

with a double sum over permutations σ, τ ∈ Sn, the symmetric group, see appendix A.
Another way of encoding these formulae is to use the generating functions

ZO(J, J t ;N) =
∫

DO eN Tr JO = eWO(J ·J t ,N), (7)

ZU(J, J †;N) =
∫

DU eN Tr(JU+J †U †) = eWU(J ·J †,N), (8)

where J is a generic (i.e. non-symmetric, respectively non-Hermitian) matrix. ZO depends
only on traces of powers of J · J t , again by invariance of the integral under J → O1 · J · O2.
Likewise, ZU depends only on J · J †.

2.2. The large-N limit and its relation to the unitary case

In the large-N limit, one may show that

WO(J · J t ) = lim
N→∞

N−2WO(J · J t , N) (9)

exists and is related to the corresponding expression for the unitary group.
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Let us recall the situation in the unitary case. The generating function ZU has been studied
extensively in the past. The limit WU(J · J †) = limN→∞ WU(J · J †, N)/N2 was shown to
satisfy a partial differential equation with respect to the eigenvalues of J · J † [11]. In the
‘strong coupling phase’, an explicit expression was given [12] for the expansion of WU in a
series expansion in traces of powers of J · J †

WU(J · J †) =
∞∑

n=1

∑
α�n

Wα

trαJ · J †∏
p

(
αp!pαp

) (10)

Wα = (−1)n
(2n +

∑
αp − 3)!

(2n)!

n∏
p=1

( −(2p)!

p!(p − 1)!

)αp

, (11)

where α � n denotes a partition of n = α1 · 1 + α2 · 2 + · · · + αn · n and

trα(X) :=
n∏

p=1

(
1

N
Tr Xp

)αp

. (12)

Now we claim that WO defined in (9) is

WO(J · J t ) = 1
2WU(J · J t ). (13)

Proof. We repeat the steps of [11], paying due attention to the differences between independant
matrix elements in a complex Hermitian and in a real symmetric matrix. The trivial identity∑

j
∂2ZO

∂Jij ∂Jkj
= N2δikZO is re-expressed in terms of the eigenvalues λi of the real symmetric

matrix J · J t :

4λi

∂2ZO

∂λ2
i

+ 2
∑
j �=i

λj

λj − λi

(
∂ZO

∂λj

− ∂ZO

∂λi

)
+ 2N

∂ZO

∂λi

= N2ZO. (14)

Writing as above ZO = eN2WO and dropping subdominant terms in the large-N limit, with WO

and Wi := N∂WO/∂λi of order 1, we obtain

4λiW
2
i + 2Wi +

1

N

∑
j �=i

2λi

λj − λi

(Wj − Wi) = 0, (15)

which is precisely the equation satisfied by 1
2WU in [11]. This, supplemented by appropriate

boundary conditions, suffices to complete the proof of (13). �

As noted elsewhere [7, 13] it is appropriate to expand W on ‘free’ (or ‘non-crossing’)
cumulants [7, 14, 15]

ψq(X) := −
∑

α1,...,αq�0∑
i iαi=q

(
q +

∑
i αi − 2

)
!

(q − 1)!

∏
i

(− 1
N

Tr Xi
)αi

αi!
. (16)

Then

WO(J · J t ) = 1
2ψ1(J · J t ) − 1

4ψ2(J · J t ) + 1
3ψ3(J · J t ) − 1

8 (5ψ4(J.J t ) + ψ2
2 (J · J t )) + · · · ,

(17)

where the only occurrence of ψ1 is in the first term.
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3. The generalized HCIZ integral

3.1. Notations. Review of known results

Let us first recall the well-known results. If the matrices A and B in (1) are in the Lie algebra
of the group G, namely are real skew-symmetric, respectively anti-Hermitian, for G = O(N),
respectively U(N), the exact expression of Z(G) is known from the work of Harish-Chandra
[6]. To make the formulae quite explicit, we take A and B in the Cartan torus, i.e. of a diagonal
or block-diagonal form [16]

A = diag(ai)i=1,...,N for U(N) (18)

and

A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

diag

((
0 ai

−ai 0

)
i=1,...,m

)
for O(2m)

diag

((
0 ai

−ai 0

)
i=1,...,m

, 0

)
for O(2m + 1)

(19)

and likewise for B. We assume that all the a’s are distinct and likewise for the b’s. Then the
integral (1) reads

Z(G) = const.
det(MG)

�G(a)�G(b)
, (20)

where

MG =

⎧⎪⎨
⎪⎩

(eκNaibj )1�i,j�N

(e2κNaibj + e−2κNaibj )1�i,j�m

(e2κNaibj − e−2κNaibj )1�i,j�m,

�G(a) =

⎧⎪⎨
⎪⎩

∏
i<j (ai − aj ) if G = U(N)∏
1�i<j�m

(
a2

i − a2
j

)
if G = O(2m)∏

1�i<j�m

(
a2

i − a2
j

)∏m
i=1 ai if G = O(2m + 1).

(21)

For convenience, �U(a) will be abbreviated into �(A) = ∏
i<j (ai − aj ), the usual

Vandermonde determinant.

3.2. The large-N limit

We now consider

F (O)(A,B) := lim N−2 log
∫

DO eN Tr AOBOt

, (22)

F (U)(A,B) := lim N−2 log
∫

DU e2N Tr AUBU †
. (23)

Note the factor 2 introduced for convenience in the latter exponential. We claim that, for A

and B both symmetric or skew-symmetric,

F (O)(A,B) = 1
2F (U)(A,B). (24)
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3.2.1. The skew-symmetric case. For A and B both skew-symmetric, the limit of (20) is
easy to evaluate. Assuming without loss of generality that all a’s and b’s are positive, we
find that (MO)ij ∼ e2Naibj , thus Z(O) ∼ det(e2Naibj )/�O(a)�O(b). On the other hand,
the real matrices A and B of the form (19) may also be regarded as anti-Hermitian, with
eigenvalues Aj = ±iaj , j = 1, . . . , m (supplemented by 0 if N = 2m + 1). An easy
computation gives �(A) = (�O(a))2 up to a sign. The matrix MU = (e2NAiBj )1�i,j�N ≈
(e2Naibj )1�i,j�m ⊗ (0 1

1 0

)
, as N → ∞. Hence detMU ∼ (detMO)2. Thus, the U(N)

integration for the pair (A,B) yields, according to (21), and up to an overall factor,

Z(U)(A,B) = det(e2NAiBj )

�(A)�(B)
∼

(
(det(e2Naibj )1�i,j�m

�O(a)�O(b)

)2

= const. (Z(O)(A,B))2 (25)

in accordance with (24).

3.2.2. The symmetric case. We now turn to the more challenging case where both A and
B are real symmetric. We may suppose that A and B are in a diagonal form A = diag(ai),

B = diag(bi), and assume that all a’s and all b’s are distinct. In that case, we shall resort to
(an infinite set of) differential equations, in a way similar to the discussion of section 2.

In a recent work, Bergère and Eynard [9] have introduced the following integrals over the
compact group G:

Mij =
∫

G

d��ij�
−1
ji eκN Tr A�B�−1

, (26)

which may be regarded as particular two-point correlation functions associated with the
partition function Z(G) of (1). The latter is recovered from Mij by a summation over i or j

Z(G) =
∑

i

Mij ,∀j, Z(G) =
∑

j

Mij ,∀i. (27)

As shown in [9], Mij satisfy the following set of differential equations:∑
j

KijMjk = κNMikbk (28)

with no summation over k in the rhs. Here K refers to the matrix differential operator

Kii = ∂

∂ai

+
β

2

∑
j �=i

1

ai − aj

and for i �= j, Kij = −β

2

1

ai − aj

. (29)

(We make use of Dyson’s label β = 1, 2 for G = O(N), U(N), respectively.)
Now, by a repeated application of the operator K on M, we find for any positive integer p

that
∑

j (K
p)ijMjk = NpMikb

p

k ; hence after summation over i and k,∑
i,j

(Kp)ijZ
(G) = Z(G)

∑
k

(κNbk)
p. (30)

The differential operator Dp := ∑
1�i,j�N(Kp)ij has thus the property that

DpZ(G) = (κN)p Tr BpZ(G). (31)

Thus far, the discussion holds for any finite value of N. Now take the large-N limit with the
ansatz Z(G) = eN2F (G)

. Equation (31) reduces in that limit to

∑
i

⎛
⎝N

κ

∂F (G)

∂ai

+
β

2κN

∑
j �=i

1

ai − aj

⎞
⎠

p

= Tr Bp (32)
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with N ∂F
∂ai

of order 1, as in section 2, and all other terms resulting from further application of

∂/∂ai
over F (G) suppressed by inverse powers of N.

These equations had been obtained in [7] in the case of U(N) (β = 2) from the explicit
form of Z(U) and shown to determine recursively the expansion of F (U) in traces of powers of
A and B. Comparing the orthogonal (κ = β = 1) and unitary (κ = β = 2) cases, it is clear in
(32) that 2F (O)(A,B) satisfies the same set of equations as F (U)(A,B), thus vindicating (24).

3.3. The generic case

Although it does not look very natural in view of their symmetries, one may extend the
integrals Z(U) and Z(O) to the case of generic complex (non-Hermitian), respectively real
(neither symmetric nor skew-symmetric), matrices A and B. If we insist on having real
quantities in the exponential, the unitary integral that we consider reads

Z(U) =
∫

dU eTr(AUBU †+A†UB†U †) (33)

(and one recovers the factor 2 introduced in (23) for A and B Hermitian). In parallel the more
general orthogonal integral reads

Z(O) =
∫

dO eTr AOBOt =
∫

dO eTr AtOBtOt

. (34)

The functions Z(U) and F (U) have now expansions in traces of products of A and A† (or At ) and
of B and B† (or Bt ), with an equal number of daggers (respectively transpositions) appearing
on A and B. We can no longer rely on the diagonal form of A and B (a generic real, respectively
complex matrix is not diagonalized by an orthogonal, respectively unitary, matrix) and there
are no longer differential equations in these eigenvalues satisfied by Z or F. Still, there is some
evidence that universality holds again. By expanding the exponentials and by making use of
the explicit integrals (4), (6), (see also appendix A), we have checked that, up to the fourth
order, for A and B real

F (O)(A,At ;B,Bt) = 1
2F (U)(A,A† = At ;B,B† = Bt). (35)

If we write the expansion of F in powers of A (and B) as F = ∑
n=1 Fn, we find

F
(U)
1 = ψ1(A)ψ1(B) + ψ1(A

†)ψ1(B
†), (36)

F
(U)
2 = 1

2 (ψ2(A)ψ2(B) + 2ψ2t (A,A†)ψ2t (B, B†) + ψ2(A
†)ψ2(B

†)), (37)

F
(U)
3 = 1

3 (ψ3(A)ψ3(B) + 3ψ3t (A,A†)ψ3t (B, B†) + (A → A†, B → B†)), (38)

F
(U)
4 = 1

4

(
ψ4(A)ψ4(B) + 4ψ4t (A,A†)ψ4t (B, B†) + 2ψ4t t (A,A†)ψ4t t (B, B†)

+ ψ4t |t (A,A†)ψ4t |t (B, B†) − ψ2
2 (A)ψ2

2 (B) − ψ2
2t (A,A†)ψ2

2t (B, B†)

−ψ2
2t (A,A†)ψ2(B)ψ2(B

†) − ψ2(A)ψ2(A
†)ψ2

2t (B, B†)

− 4ψ2(A)ψ2
2t (A,A†)ψ2(B)ψ2

2t (B, B†) + (A → A†, B → B†)
)
, (39)

where the ψn are the free cumulants defined above and the ψnt are ‘polarized’ versions of the
latter, involving A and A† (or At ), see appendix B for explicit expressions.
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4. Concluding remarks

• It should be stressed that the equality (24) can be true only asymptotically as N → ∞.
Indeed the exact result [6] for A and B skew-symmetric as well as what is known for A

and B both symmetric [8] clearly indicate that it does not hold for finite N.
• The differential operator Dp considered above is interesting in its own right. Consider

the differential operator D̂p(∂/∂A) such that

D̂p(∂/∂A) eN Tr AB = Np Tr Bp eTr AB. (40)

For Hermitian matrices, for which all matrix elements Aij may be regarded as independent,
one may write

Dp(∂/∂A) = Tr

(
∂

∂A

)p

:=
∑

i1,···ip

∂

∂Ai1i2

∂

∂Ai2i3

· · · ∂

∂Aipi1

, (41)

while in the case of symmetric matrices, the general expression involves some
combinatorial factors. The above property (40) suffices to define D̂p on any
(differentiable) function of A, by the Fourier transform.

Now let D̂p act on functions f (A) invariant upon A → �A�−1. Then D̂p reduces
to a differential operator Dp on the eigenvalues ai of A. As we have seen above, Dp =∑

ij (K
p)ij , but it would seem desirable to have a more direct construction of that basic

operator. In the case of G = U(N), one has the elegant form [7]

Dp = 1

�(A)

∑
i

(
∂

∂ai

)p

�(A). (42)

This result, however, makes use of the explicit form (20) of Z(U), and there is no counterpart
for G = O(N). Thus the question is: can one derive the expression (42) of Dp from that
(41) of D̂p? Curiously, what looks like an innocent exercise of calculus turns out to be
non-trivial, even for G = U(N).

• In view of the similarity between (13) and (24), on one hand, and of our (partial) results
and conjecture on the ‘generic’ case, on the other, it would be nice to have a general,
intuitive argument why these universality properties hold. Heuristically, the overall factor
1
2 in (13) and (24) just reflects the ratio of numbers of degrees of freedom in the two
cases: there are N(N − 1)/2 ∼ N2/2 real parameters in an orthogonal matrix and N2 in
a unitary one. But why is the function of A and B universal?

• Diagrammatics? A diagrammatic expansion exists for F (U) [13], using the functional W
of section 2, and this matches a combinatorial expansion [17]. Repeating the argument
in the real orthogonal case leads to a much less transparent result, however, and does not
seem to yield a simple derivation of (24) based on (13).

• A heuristic argument. Our result (24) for real symmetric versus complex Hermitian
matrices should also be related to a similar relation between partition functions of two-
matrix models. It is ‘well known’ that integrals over two real symmetric, respectively two
complex Hermitian matrices with arbitrary polynomial potentials V and W ,

Z2RS =
∫

real
symmetric

dA dB e−N Tr(V (A)+W(B)−AB) ∼ e−N2F2RS , (43)

Z2CH =
∫

complex
Hermitian

dA dB e−2N Tr(V (A)+W(B)−AB) ∼ e−N2F2CH , (44)

are such that for large N

7
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F2CH = 2F2RS. (45)

(Note once again the factor 2 in front of the ‘action’ of the Hermitian case.)
For one-matrix integrals, this is a classical result, following from the saddle point
approximation [14] or from the orthogonal polynomial approach [18]. It may also be
derived from the diagrammatics: Feynman diagrams for real symmetric matrices in the
large-N limit are the same as those of the Hermitian integral, up to factors of 2 coming
from the possible twists of the double lines of their propagators. This diagrammatic
argument is expected to extend to the two-matrix integrals (44), justifying the claim (45).

On the other hand, if we diagonalize the matrices A = diag(ai) and B = diag(bi), we
see that (44) reduces to

Z2RS =
∫

da db|�(a)�(b)| e−N
∑

i (V (ai ))+W(bi ))

∫
DO eN Tr AOBOt

, (46)

Z2CH =
∫

da db(�(a)�(b))2 e−2N
∑

i (V (ai ))+W(bi ))

∫
DU eN Tr AUBUt

. (47)

Finally, if we imagine that the latter integrals over the eigenvalues are dominated in the
large-N limit by a saddle point configuration, we see that the scaling (24) of the angular
part is consistent with the scaling (45) of the full integral. Obviously a more rigorous
version of this heuristic argument would be desirable.

• Historical remarks. As far as we know, the property (13) had never been observed before.
On the other hand, property (24) has a richer history. It seems to have been first observed
in the case where A or B is of finite rank in [2], and then repeatedly used in the physics
literature [22, 21]. This was later proved in a rigorous way in [17]. In [20], this is extended
to the case where the rank is o(N). Indeed for a finite rank of A, say, only terms with a
single trace of some power of A dominate, and the expression of F(A,B) is known to be
given by

∑
n�1

1
n

1
N

Tr Anψn(B) for the unitary group [7].
Following a totally different approach, Guionnet and Zeitouni [23] have proved

rigorously the existence of the free energies F (U) and F (O) (for A and B symmetric)
in the large limit, and have established that they solve the flow equation proposed by
Matytsin [24]. A by-product of their discussion is the explicit β dependence of the free
energy and the resulting universality property (24). This has been made more explicit in
the recent paper [25]. These papers also cover the case of the symplectic group (β = 4).
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Appendix A. More details on the ‘basic integrals’

In this appendix, we recall well-known results [10] on the integral (3). Equivalently we may
consider

I(u,v) =
∫

DO

n∏
a=1

(ua · Ova), (A.1)
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where ua and va, a = 1, . . . , n, are vectors of R
N . The integral I(u,v) is linear in each ua

and each va , and is invariant under a global rotation of all u’s or of all v’s: ua → O1ua,

va → O2va , since this may be absorbed by the change of integration variable Ot
1OO2 → O

in accordance with the invariance of the Haar measure DO. If N > n the completely
antisymmetric tensor ε cannot be used to build invariants. Hence I(u,v) is only a function
of the invariants ua.ub,va.vb and by linearity must be of the form

I(u,v) =
∑
p1,p2

C(p1, p2)
∏

(ua · up1(a))
∏

(vb · vp2(b)), (A.2)

a sum over all possible pairings of the indices a = 1, . . . , n, b = 1, . . . , n; this shows that I
vanishes for n odd. In the following we change n → 2n and denote P2n the set of all pairings
of {1, 2, . . . , 2n}, with |P2n| = (2n − 1)!! .

Then the general expression of
∫

DOOi1j1 · · ·Oi2nj2n
is indeed of the form (4). The

coefficients C(p1, p2) may be determined recursively, but let us first point some general
features.

(i) Regard now p1 and p2 as permutations of S2n, both in the class [2n] of permutations made
of n 2-cycles (transpositions). Represent a typical term in the rhs. of (4) by a set of disjoint
chain loops ia−ja−jp2(a)−ip2(a)−ip1.p2(a)−· · · (these are the loop diagrams of [10]). The
coefficients C(p1, p2) are thus only functions of the product p1.p2, and in fact functions
only of the class in S2n of that product. Indeed if all i and j indices are relabelled through
the same permutation π ∈ S2n, ia → i ′a = iπ(a), ja → j ′

a = jπ(a), a = 1, . . . , 2n,
the integrand is preserved and ps → p′

s = π−1 · ps · π , for s = 1, 2, hence
p1 · p2 → π−1 · p1 · p2 · π and C(p1 · p2) must depend only on the class [p1 · p2].

(ii) For p1 and p2 ∈ [2n], their product p1 · p2 is the product of two permutations of Sn

acting on two disjoints subsets of n elements of {1, 2, . . . , 2n}, both in the same class of
Sn, p1.p2 = σ.σ ′ with [σ ] = [σ ′] [20]. The class [p1.p2] of p1.p2 is completely specified
by [σ ]; hence we may write the coefficients as C(p1, p2) = C([σ ]).

Proof. To any cycle α of p1.p2, {a, p1.p2(a), (p1.p2)
2(a), . . . , (p1.p2)

r (a)}, one may
associate another one {p1(a), p1.p2.p1(a), (p1.p2)

2p1(a), . . . , (p1.p2)
rp1(a)}, which is

obviously of the same length and which acts on distinct elements. Thus p1.p2 = σ.σ ′,
where σ and σ ′ acting on distinct elements of {1, 2, . . . , 2n} may be regarded as in the same
class of Sn. Moreover the class [p1 · p2], i.e. the cycle structure of p1 · p2 is obviously given
by that of [σ ] = [σ ′]. �

The coefficients C are then determined recursively. Noting that by contracting the last two
j indices one constructs Oin−1jn−1Oinjn

δjn−1jn
= (O ·Ot)in−1in = δin−1in , and one gets a (strongly

overdetermined) system of equations relating the C’s of order n to those of order n − 1 [10].
Explicit although fairly complicated solutions have been given [19].

The first coefficients read explicitly

n = 1 C[1] = 1

N

n = 2 C[2] = −1

N(N − 1)(N + 2)
, C[1, 1] = N + 1

N(N − 1)(N + 2)

n = 3 C[3] = 2

(N − 2)(N − 1)N(N + 2)(N + 4)
, C[1, 2] = −1

(N − 2)(N − 1)N(N + 4)
,

C[13] = N2 + 3N − 2

(N − 2)(N − 1)N(N + 2)(N + 4)

9
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n = 4 C[4] = −(5N + 6)

(N − 3)(N − 2)(N − 1)N(N + 1)(N + 2)(N + 4)(N + 6)
,

C[1, 3] = 2

(N − 3)(N − 2)(N − 1)(N + 1)(N + 2)(N + 6)
,

C[22] = N2 + 5N + 18

(N − 3)(N − 2)(N − 1)N(N + 1)(N + 2)(N + 4)(N + 6)
,

C[12, 2] = −(N3 + 6N2 + 3N − 6)

(N − 3)(N − 2)(N − 1)N(N + 1)(N + 2)(N + 4)(N + 6)
,

C[14] = (N + 3)
(
N2 + 6N + 1

)
(N − 3)(N − 1)N(N + 1)(N + 2)(N + 4)(N + 6)

.

The analogous basic integrals in U(N) are more widely known, see (6). One may actually
give an explicit form to the C([σ.τ ]), namely

∫
DUUi1j1 · · ·Uinjn

U
†
k1�1

· · ·U †
kn�n

=
∑

τ,σ∈Sn

∑
YYoung diagr.

|Y |=n

(χ(λ)(1))2χ(λ)([σ ])

n!2sλ(I )

n∏
a=1

δia�τ(a)
δjakτσ(a)

,

where χ(λ)([σ ]) is the character of the symmetric group Sn associated with the Young diagram
Y, hence a function of the class [σ ] of σ ; χ(λ)(1) is thus the dimension of that representation;
sλ(X) is the character of the linear group GL(N) associated with the Young diagram Y, i.e. a
Schur function when expressed in terms of the eigenvalues of X; sλ(I ) is thus the dimension
of that representation.

The first coefficients read explicitly

n = 1 C[1] = 1

N

n = 2 C[2] = − 1

(N − 1)N(N + 1)
, C[1, 1] = 1

(N − 1)(N + 1)

n = 3 C[3] = 2

(N − 2)(N − 1)N(N + 1)(N + 2)
,

C[2, 1] = − 1

(N − 2)(N − 1)(N + 1)(N + 2)
,

C[13] = N2 − 2

(N − 2)(N − 1)N(N + 1)(N + 2)

n = 4 C[4] = − 5

(N − 3)(N − 2)(N − 1)N(N + 1)(N + 2)(N + 3)
,

C[3, 1] = 2N2 − 3

(N − 3)(N − 2)(N − 1)N2(N + 1)(N + 2)(N + 3)
,

C[22] = N2 + 6

(N − 3)(N − 2)(N − 1)N2(N + 1)(N + 2)(N + 3)
,

C[2, 12] = − 1

(N − 3)(N − 1)N(N + 1)(N + 3)
,

C[14] = N4 − 8N2 + 6

(N − 3)(N − 2)(N − 1)N2(N + 1)(N + 2)(N + 3)
.

10
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Appendix B. Free (non-crossing) cumulants

Note that in this appendix, we make use of a different notation for normalized traces
tr X := 1

N
Tr X, Tr X the usual trace, thus tr I = 1.

For convenience, we list here the first free cumulants of A in terms of the φp(A) =
tr Ap = 1

N
Tr Ap together with the mixed ones, involving traces of products A and A†:

ψ1(A) = tr A,

ψ2(A) = tr A2 − (tr A)2,

ψ3(A) = tr A3 − 3 tr A tr A2 + 2(tr A)3,

ψ4(A) = tr A4 − 4 tr A tr A3 − 2(tr A2)2 + 10(tr A)2 tr A2 − 5(tr A)4,

ψ2t (A,A†) = tr(AA†) − tr A tr A†,

ψ3t (A,A†) = tr(A2A†) − tr A† tr(A2) − 2 tr A tr(AA†) + 2(tr A)2 tr A†,

ψ4t (A,A†) = tr(A3A†) − tr A† tr A3 − 3 tr A tr(A2A†)) − 2 tr A2 tr(AA†) + 5 tr A tr A† tr(A2)

+ 5(tr A)2 tr(AA†)) − 5 tr3A tr A†,

ψ4t t (A,A†) = tr(A2A†2
) − 2 tr A† tr(A2A†) − 2 tr A tr(AA†2

) − tr(A2) tr(A†2
) − (tr(AA†))2

+ 2(tr A)2 tr(A†2
) + 2(tr A†)2 tr(A2) + 6 tr Atr A† tr(AA†) − 5 tr2 A tr2 A†,

ψ4t−t (A,A†) = tr((AA†)2) − 2 tr A† tr(A2A†) − 2 tr A tr(AA†2
) − 2(tr(AA†))2

+ (tr A†)2 tr A2 + (tr A)2 tr A†2
+ 8 tr Atr A† tr(AA†)) − 5(tr A)2(tr A†)2.
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[3] Guhr T, Müller-Groeling A and Weidenmëller H A 1998 Phys. Rep. 299 189–428 (Preprint cond-mat/9707301)
[4] Di Francesco P, Ginsparg P and Zinn-Justin J 1995 Phys. Rep. 254 1–133 (Preprint hep-th/9306153)
[5] Guhr T and Kohler H 2002 J. Math. Phys. 43 2707 (Preprint math-ph/0011007)
[6] Harish-Chandra 1957 Am. J. Math. 79 87–120
[7] Itzykson C and Zuber J-B 1980 J. Math. Phys. 21 411–21 (erratum on http://www.lpthe.jussieu.fr/∼zuber)
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[11] Brézin É and Gross D 1980 Phys. Lett. B 97 120–4
[12] O’ Brien K and Zuber J-B 1984 Phys. Lett. B 144 407–8
[13] Zinn-Justin P and Zuber J-B 2003 J. Phys. A: Math. Gen. 36 3173–93 (Preprint math-ph/0209019)
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