VERLINDE NIM-REPS FOR CHARGE CONJUGATE $S L(N)$ WZW THEORY

V.B. Petkova
Institute for Nuclear Research and Nuclear Energy
72 Tsarigradsko Chaussee,
1784 Sofia, Bulgaria
petkova@inrne.bas.bg
J.-B. Zuber
SPhT, CEA Saclay, 91191 Gif-sur-Yvette, France
zuber@spht.saclay.cea.fr

Abstract

We compute the representations ("Nim-reps") of the fusion algebra of $\widehat{s l}(N)$ which determine the boundary conditions of $\widehat{s l}(N)$ WZW theories twisted by the charge conjugation. The problem is related to the classical problem of decomposition of the fundamental representations of $s l(N)$ onto representations of $B_{l}=s o(2 l+1)$ or $C_{l}=s p(2 l)$ algebras. The relevant NIM-reps and their diagonalisation matrix are thus expressed in terms of modular data of the affine B or C algebras.

Keywords: Conformal field theories, WZW theories, boundary conditions, nim-reps

1. Introduction

It is now well understood that the possible boundary conditions of a rational conformal field theory are determined by the set of non-negative integer valued matrix representations, or nim-reps, of the fusion algebra of this theory [2]. In the present paper we address the problem of determining nim-reps and related data for those theories of WZW type, that are described by a modular invariant partition function twisted by complex conjugation

$$
\begin{equation*}
Z=\sum_{\lambda} \chi_{\lambda}(\tau, z) \chi_{\lambda^{*}}(\tau, z)^{*} \tag{1}
\end{equation*}
$$

To be specific, we restrict here to the $\widehat{s l}(N)$ current algebra. This exercise has the double merit of illustrating the power of certain methods of general application, and of exhibiting a nice algebraic pattern: indeed, it turns out that the problem is intimately connected to the classical problem of decomposing the representations of $s l(N)$ onto representations of the $B_{l}=s o(2 l+1)$ or $C_{l}=s p(2 l)$ algebras, with $N=2 l$ or $2 l+1$. This work generalises the previous results for $N=3[1],[2]$ and $N=4[3] .{ }^{1}$

2. The $A_{N-1}=s l(N)$ and the affine $\widehat{s l}(N)$ algebras

To proceed, we need to introduce notations. As we are dealing with pairs of Lie algebras, we consistently use different types of labels for their representations etc. For the $\widehat{s l}(N)$ theories under study, weights will be denoted by Greek letters. At a given level k or shifted level $h=k+N$ these weights belong to the Weyl alcove

$$
\begin{equation*}
\mathcal{P}_{++}^{\left(A_{N-1}, h\right)}:=\left\{\lambda=\sum_{i=1}^{N-1} \lambda_{i} \Lambda_{i} \mid \lambda_{i} \geq 1, \sum_{i=1}^{N-1} \lambda_{i} \leq h-1\right\} \tag{2}
\end{equation*}
$$

where $\Lambda_{i}, i=1, \cdots, N-1$ are the $s l(N)$ fundamental weights. The Weyl vector is $\rho=\sum_{i=1} \Lambda_{i}$. The number of weights in $\mathcal{P}_{++}^{\left(A_{N-1}, h\right)}$ equals $\binom{h-1}{N-1}$. The alcove is invariant under the action of C, the complex conjugation of representations, $C: \lambda=\left(\lambda_{1}, \cdots, \lambda_{N-1}\right) \mapsto \lambda^{*}=\left(\lambda_{N-1}, \cdots, \lambda_{1}\right)$, and of the \mathbb{Z}_{N} automorphism σ, related to the cyclic symmetry of the affine Dynkin diagram of type A

$$
\begin{equation*}
\sigma(\lambda)=\left(h-\sum_{i=1}^{N-1} \lambda_{i}, \lambda_{1}, \cdots, \lambda_{N-2}\right) . \tag{3}
\end{equation*}
$$

Basic in our discussion is the symmetric, unitary matrix $S=\left(S_{\lambda \mu}\right)$ of modular transformations. Under the action of C and σ,

$$
\begin{equation*}
S_{\lambda^{*} \mu}=S_{\lambda \mu^{*}}=\left(S_{\lambda \mu}\right)^{*} \quad S_{\sigma(\lambda) \mu}=e^{2 \pi i \tau(\mu) / N} S_{\lambda \mu} \tag{4}
\end{equation*}
$$

where $\tau(\lambda):=\sum_{i=1}^{N-1} i\left(\lambda_{i}-1\right)$ is the \mathbb{Z}_{N} grading of weights -the " N ality".

We want to find a set of matrices $\left\{n_{\gamma}\right\}_{\gamma \in \mathcal{P}_{++}^{(N ; h)}}$ with non negative integer entries such that their matrix product reads

$$
\begin{equation*}
n_{\lambda} n_{\mu}=\sum_{\nu} N_{\lambda \mu}{ }^{\nu} n_{\nu} \tag{5}
\end{equation*}
$$

where $N_{\lambda \mu}{ }^{\nu}$ are the fusion matrices of the $\widehat{s l}(N)$ theory at that level. The n_{λ} must satisfy Cardy consistency condition

$$
\begin{equation*}
n_{\lambda a}^{b}=\sum_{j \equiv j(\mu), \mu \in \operatorname{Exp}(h)} \frac{S_{\lambda \mu}}{S_{\rho \mu}} \psi_{a}^{j} \psi_{b}^{j *} \tag{6}
\end{equation*}
$$

with ψ the unitary matrix diagonalising them; $j=j(\mu)$ labels a proper choice of basis. Their eigenvalues are thus of the form $\chi_{\lambda}(\mu):=S_{\lambda \mu} / S_{\rho \mu}$, and are specified by the weights μ labelling the diagonal terms in (1), called "exponents". In the case under study, the exponents are the real, i.e. self-conjugate, weights $\mu=\mu^{*}$ in the alcove. Depending on the parity of N, those have a different structure:

$$
\operatorname{Exp}^{(h)} \ni \mu=\left\{\begin{array}{cl}
\left(m_{1}, \cdots, m_{l}, m_{l}, \cdots, m_{1}\right), & \text { if } N=2 l+1 \tag{7}\\
2 \sum_{i=1}^{l} m_{i} \leq h-1 & \text { if } N=2 l
\end{array}\right.
$$

and their number is

$$
\left|\operatorname{Exp}^{(h)}\right|=\text { \#real weights }= \begin{cases}\left(\begin{array}{c}
\left\lfloor\frac{h-1}{2}\right\rfloor
\end{array}\right) & \text { if } N=2 l+1 \tag{8}\\
\left(\begin{array}{l}
l \\
l \\
l
\end{array}\right)+\binom{\left\lfloor\frac{h-1}{2}\right\rfloor}{ l} & \text { if } N=2 l\end{cases}
$$

In general, the nim-rep matrices satisfy $n_{\lambda}^{T}=n_{\lambda^{*}}$; in the present case, because of the reality of the exponents μ, their eigenvalues $\chi_{\lambda}(\mu)$ are real and satisfy $\chi_{\lambda}(\mu)=\chi_{\lambda^{*}}(\mu)$ and one concludes that the matrices n_{λ} are symmetric. Moreover, because a real weight μ has a N-ality τ equal to $0 \bmod N$, resp. 0 or $N / 2 \bmod N$, for N odd, resp. even, eq. (4) implies that n_{λ} is only a function of the orbit of λ under σ, resp. σ^{2}. As usual, it is sufficient to find the generators $n_{\Lambda_{i}+\rho}=n_{\Lambda_{N-i}+\rho}$ associated with the fundamental weights to fully determine the nim-rep. If the matrices $n_{\lambda}=\left(n_{\lambda a}{ }^{b}\right)$ are regarded as adjacency matrices of graphs, it is natural to refer to the labels a, b of their entries as vertices. On the latter, we do not know much a priori, besides that their number equals the number of exponents (8). The set of vertices is denoted by \mathcal{V}.

Along with the nim-rep matrices n_{λ}, we are also interested in finding a related set of matrices $\hat{N}_{a}=\left(\hat{N}_{b a}{ }^{c}\right)$, satisfying $\hat{N}_{a} \hat{N}_{b}=\sum_{c} \hat{N}_{a b}{ }^{c} \hat{N}_{c}$ and

$$
\begin{equation*}
n_{\lambda} \hat{N}_{a}=\sum_{b \in \mathcal{V}} n_{\lambda a}^{b} \hat{N}_{b} \tag{9}
\end{equation*}
$$

These matrices, associated with the vertices of the graph, span the "graph algebra", which in this particular case is commutative. The set
includes the unit matrix attached to a special vertex denoted $1: \hat{N}_{1}=I$. Then the previous relation evaluated for $a=1$ gives

$$
\begin{equation*}
n_{\lambda}=\sum_{b \in \mathcal{V}} n_{\lambda 1}^{b} \hat{N}_{b} \tag{10}
\end{equation*}
$$

i.e. the nim-rep matrices are ≥ 0 integer linear combinations of the \hat{N}. The matrix ψ in (6) diagonalises both n and \hat{N} and (10) can be also rewritten as

$$
\begin{equation*}
\chi_{\lambda}(\mu)=\sum_{a \in \mathcal{V}} n_{\lambda 1}^{a} \hat{\chi}_{a}(j(\mu)), \quad \mu \in \operatorname{Exp}^{(h)} \tag{11}
\end{equation*}
$$

where $\hat{\chi}_{a}(j)=\psi_{a}^{j} / \psi_{1}^{j}$ are the eigenvalues of \hat{N}_{a}.
In the present context the equations $(9,10)$ have a natural group theoretic interpretation. This is clear already in the simplest case $N=3$ [2]. The reality of the exponents (7) implies that they can be identified with an integrable weight $\mu \rightarrow j(\mu)$ of $\widehat{s l}(2)$ at a related level. Then depending on the parity of h, the coefficients $n_{\lambda 1}{ }^{a}$ originate from different patterns of decomposition of the representations of $s l(3)$ into those of $\operatorname{sl}(2)$. Namely the graphs are determined by the fundamental nim-rep which is either $n_{\Lambda_{1}+\rho 1}{ }^{a}=1+\delta_{a 2 \omega}$, or $n_{\Lambda_{1}+\rho 1}{ }^{a}=\delta_{a 3 \omega}$, with ω the $\operatorname{sl}(2)$ fundamental weight, thus reflecting the two ways of decomposing the 3dimensional $s l(3)$ representation. As we shall see, this example is the first in the series for odd N, with C_{l} and B_{l} taking over the rôle of $\operatorname{sl}(2)$ for h even or odd respectively. The "branching coefficients" interpretation of the nim-reps and the equations $(5,10)$ has been discussed also in the context of the discrete subgroups of $S U(2)$. See also [5] for a related recent discussion. Given the diagonalisation matrix ψ_{a}^{j} one can compute as well the structure constants of the algebra dual to the graph algebra, the Pasquier algebra, which admits important physical interpretations [2].

3. $\quad B$ and C algebras

We now briefly introduce relevant notations for the Lie algebras B_{l} and C_{l} and their affine extensions $B_{l}^{(1)}$ and $C_{l}^{(1)}$.

In the B_{l} algebra, we denote the integrable weights by Latin letters, keeping however the Greek ω_{i} for the fundamental weights and $\bar{\rho}$ - for the Weyl vector. As the dual Coxeter number is $h^{\vee}=2 l-1$, the Weyl
alcove at level k is the set

$$
\begin{equation*}
\mathcal{P}_{++}^{\left(B_{l}, h\right)}=\left\{m=\sum_{i=1}^{l} m_{i} \omega_{i} \mid m_{i} \geq 1, m_{1}+2 \sum_{i=2}^{l-1} m_{i}+m_{l} \leq h-1\right\}, \tag{12}
\end{equation*}
$$

where the notation h is again used for the shifted level $h=k+2 l-1$. The number of integrable weights is $\left|\mathcal{P}_{++}^{\left(B_{l}, h\right)}\right|=\left(\frac{\left.\frac{h+2}{2}\right\rfloor}{l}\right)+2\left(\frac{\left(\frac{h+1}{l}\right\rfloor}{l}\right)+$ $\binom{\left\lfloor\frac{h}{2}\right\rfloor}{ l}$. These weights are graded according to a \mathbb{Z}_{2} grading $\tau(m):=$ $m_{l}-1 \bmod 2$ and the $\tau=0$ weights label a subalgebra of the Verlinde fusion algebra. The \mathbb{Z}_{2} automorphism of the affine B_{l} Dynkin diagram acts on the weights in the alcove as $\sigma(m)=\left(h-m_{1}-2 \sum_{i=2}^{l-1} m_{i}-\right.$ $\left.m_{l}, m_{2}, \ldots, m_{l}\right)$.

For the C_{l} algebra, we use parallel notations: fundamental weights are again denoted $\omega_{i}, i=1, \cdots, l$; the dual Coxeter number is $h^{\vee}=l+1$ whence the shifted level $h=k+l+1$; the Weyl alcove reads

$$
\begin{equation*}
\mathcal{P}_{++}^{\left(C_{2}, h\right)}=\left\{m=\sum_{i=1}^{l} m_{i} \omega_{i} \mid m_{i} \geq 1, \sum_{i=1}^{l} m_{i} \leq h-1\right\} ; \tag{13}
\end{equation*}
$$

the number of weights in the alcove is $\left|\mathcal{P}_{++}^{\left(C_{l}, h\right)}\right|=\binom{h-1}{l}$; the \mathbb{Z}_{2} grading reads $\tau(m):=\sum_{i=1}^{l} i\left(m_{i}-1\right) \bmod 2$. The \mathbb{Z}_{2} automorphism of the affine C_{l} Dynkin diagram acts on the weights in the alcove as $\sigma(m)=$ $\left(m_{l-1}, \ldots, m_{1}, h-\sum_{i=1}^{l} m_{i}\right)$.

The S matrices of B and C type are real and satisfy a \mathbb{Z}_{2} analog of the σ symmetry property (4).

4. Results

We may summarise our results as follows. In general the eigenvalues in the r.h.s. of (11) are expressed by the modular matrices S of B_{l} or C_{l}

$$
\begin{equation*}
\hat{\chi}_{a}(j)=\frac{S_{a j}}{S_{1 j}} \tag{14}
\end{equation*}
$$

in which the weights of B or C algebras label both the graph vertices $a \in \mathcal{V}$ and the basis $j=j(\mu)$ into (6), related to a projection of the set of exponents (7) to the B or C alcoves; the vertex $a=1$ in (14) is identified with the B or C Weyl vector $\bar{\rho}$, i.e. the shifted weight of the identity representation.
The situation depends on the parities of N and of the shifted level h.

1) For $N=2 l+1, h$ even:

The set of exponents $\operatorname{Exp}^{(h)}(7)$ is identified with the C_{l} integrable alcove $\mathcal{P}_{+,+}^{\left(C_{l}, \frac{h}{2}\right)}$

$$
\begin{align*}
\mathcal{P}_{+,+}^{\left(C_{l}, \frac{h}{2}\right)} \ni j(\mu) & =\left(m_{1}, m_{2}, \ldots, m_{l}\right) \tag{15}\\
\Leftrightarrow \mu & =\left(m_{1}, \ldots, m_{l}, m_{l}, \ldots, m_{1}\right) \in \operatorname{Exp}^{(h)}
\end{align*}
$$

and the same alcove parametrises as well the set of graph vertices $\mathcal{V} \equiv$ $\mathcal{P}_{+,+}^{\left(C_{C}, \frac{h}{2}\right)}$. The Pasquier and graph algebras are identical and coincide with the C_{l} Verlinde fusion algebra, $\hat{N}_{a}=N_{a}$. Accordingly ψ_{a}^{j} in (6) is provided by the C_{l} modular matrix S,

$$
\begin{equation*}
\psi_{a}^{j}=S_{a j}, \quad a, j \in \mathcal{P}_{+,+}^{\left(C_{l}, \frac{h}{2}\right)} \tag{16}
\end{equation*}
$$

The decomposition formula (10) for the fundamental nim-reps reads

$$
\begin{equation*}
n_{\Lambda_{i}+\rho}=\sum_{k=0}^{i} \hat{N}_{\omega_{i-k}+\bar{\rho}}, \quad i=1,2, \ldots, l, \tag{17}
\end{equation*}
$$

reproducing the sl(3) result $n_{(2,1)}=I+\hat{N}_{2 \omega}$. For $h=2 l+2$ the alcove $\mathcal{P}_{+,+}^{\left(C_{l}, \frac{h}{2}\right)}$ consists of one point, the identity, and (17) degenerates to $n_{\Lambda_{i}+\rho}=n_{\rho}=1$ for all i.
2) For $N=2 l+1, h$ odd:

The set of exponents (7) is identified with a subset of the alcove $\mathcal{P}_{+,+}^{\left(B_{l}, h\right)}$

$$
\begin{align*}
& \operatorname{Exp}^{(B)}= \tag{18}\\
& \left\{\mathcal{P}_{+,+}^{\left(B_{l}, h\right)} \ni j=\left(m_{1}, m_{2}, \ldots, m_{l}\right) \mid \tau(j)=1, m_{1}<\frac{h-m_{l}}{2}-\sum_{i=2}^{l-1} m_{i}\right\}
\end{align*}
$$

where $\left(\right.$ note $\left.\tau(j)+1=m_{l}=0 \bmod 2\right)$

$$
\operatorname{Exp}^{(B)} \ni j \Leftrightarrow \mu=\left(m_{1}, \ldots, \frac{m_{l}}{2}, \frac{m_{l}}{2}, \ldots, m_{1}\right) \in \operatorname{Exp}^{(h)} .
$$

Another subset of $\mathcal{P}_{+,+}^{\left(B_{l}, h\right)}$ parametrises (for $l \geq 2$) the vertices $\mathcal{V}=\left\{\mathcal{P}_{+,+}^{\left(B_{l}, h\right)} \ni a=\left(m_{1}, m_{2}, \ldots, m_{l}\right) \mid \tau(a)=0, m_{1}<\frac{h-m_{l}}{2}-\sum_{i=2}^{l-1} m_{i}\right\}$

For $l=1$ the set of exponents and the set of vertices \mathcal{V} are parametrised by the subsets of $\mathcal{P}_{+,+}^{\left(A_{1}, h\right)}, 1 \leq m \leq \frac{h-1}{2}$, or $1 \leq m \leq h-2, m$ odd, respectively [2]. The eigenvector matrix in (6) is given for $l=1$ by $\psi_{a}^{j}=\sqrt{2} S_{a j}$, and for any $l \geq 2$ by

$$
\begin{equation*}
\psi_{a}^{j}=2 S_{a j}, \quad a \in \mathcal{V}, j \in \operatorname{Exp}^{(B)} . \tag{20}
\end{equation*}
$$

As empirically observed, there exists a basis (i.e., a preferred correspondence of the two sets of indices $\left.\mathcal{V}, \operatorname{Exp}^{(B)}\right)$, in which the matrix ψ_{a}^{j} is symmetric and hence the Pasquier algebra is identical to the graph algebra. The matrices \hat{N}_{a} are expressed (for $l \geq 2$) via the B_{l} Verlinde fusion matrices,

$$
\begin{equation*}
\hat{N}_{a b}{ }^{c}=N_{a b}{ }^{c}-N_{a b}{ }^{\sigma(c)}, \quad a, b, c \in \mathcal{V} \tag{21}
\end{equation*}
$$

and are checked to be nonnegative. The fundamental nim-reps are

$$
\begin{equation*}
n_{\Lambda_{i}+\rho}=\hat{N}_{\omega_{i}+\bar{\rho}}, \quad i=1,2, \ldots, l-1, \quad n_{\Lambda_{l}+\rho}=\hat{N}_{2 \omega_{l}+\bar{\rho}} \tag{22}
\end{equation*}
$$

reproducing for $l=1$ the $\mathrm{sl}(3)$ decomposition $n_{(2,1)}=\hat{N}_{3 \omega}$.
3) For $N=2 l$, arbitrary h :

The set of exponents (7) is identified with a subset of the alcove $\mathcal{P}_{+,+}^{\left(C_{l}, h\right)}$

$$
\begin{align*}
& \operatorname{Exp}^{(C)}=\left\{\mathcal{P}_{+,+}^{\left(C_{l}, h\right)} \ni j=\left(m_{1}, m_{2}, \ldots, m_{l}\right) \mid m_{1}, \ldots, m_{l-1}-\operatorname{even}\right\} \\
& \operatorname{Exp}^{(C)} \ni j \Leftrightarrow \mu=\left(\frac{m_{1}}{2}, \ldots, \frac{m_{l-1}}{2}, m_{l}, \frac{m_{l-1}}{2}, \ldots, \frac{m_{1}}{2}\right) \in \operatorname{Exp}^{(h)} \tag{23}
\end{align*}
$$

A subset of $\mathcal{P}_{+,+}^{\left(C_{l}, h\right)}$ parametrises the vertices

$$
\begin{equation*}
\mathcal{V}=\mathcal{P}_{+,+}^{\left(C_{l},\left\lfloor\frac{h}{2}\right\rfloor+1\right)} \cup \sigma_{1}\left(\mathcal{P}_{+,+}^{\left(C_{l},\left\lfloor\frac{h}{2}\right\rfloor+1\right)}\right) \subset \mathcal{P}_{+,+}^{\left(C_{l}, h\right)} \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{1}\left(m_{1}, \ldots, m_{l}\right):=\left(h-m_{1}-2 \sum_{i=2}^{l} m_{i}, m_{2}, m_{3}, \ldots, m_{l}\right) \tag{25}
\end{equation*}
$$

For h odd (24) is a disjoint union of two subsets of $\mathcal{P}_{+,+}^{\left(C_{l}, h\right)}$ of the same cardinality.
The eigenvector matrix ψ_{a}^{j} is expressed by the C_{l} modular matrix S

$$
\begin{equation*}
\psi_{a}^{j}=(\sqrt{2})^{l-1} S_{a j}, \quad a \in \mathcal{V}, j \in \operatorname{Exp}{ }^{(C)} . \tag{26}
\end{equation*}
$$

Empirical data suggest that in general $(l>2) \psi$ in (26) is not symmetrisable for h even. For h odd \hat{N}_{a} are nonnegative, while for h even they may have signs. The same applies to the matrices of the Pasquier algebra, in which the role of the identity is played by $j=j(\rho)=(2, \ldots, 2,1)$, with $\psi_{a}^{j(\rho)}>0$. The fundamental nim-reps are

$$
\begin{equation*}
n_{\Lambda_{i}+\rho}=\sum_{m=0}^{\lfloor i / 2\rfloor} \hat{N}_{\omega_{i-2 m}+\bar{\rho}}, \quad i=1,2, \ldots, l . \tag{27}
\end{equation*}
$$

For $h=2 l+1$ (27) degenerates to $n_{\Lambda_{i}+\rho}=\hat{N}_{\bar{\rho}}$, for i even, $n_{\Lambda_{i}+\rho}=\hat{N}_{\omega_{1}}$, for i odd, and the graph algebra is isomorphic to \mathbb{Z}_{2}. In general the graph algebra matrices are expressed by the C_{l} Verlinde matrices

$$
\begin{equation*}
\hat{N}_{a b}{ }^{c}=\sum_{p=0}^{l-1} \sum_{l \geq i_{1}>i_{2}>\ldots>i_{p} \geq 2}(-1)^{\left\lfloor\frac{i_{1}}{2}\right\rfloor+\ldots+\left\lfloor\frac{i_{p}}{2}\right\rfloor} N_{a b} \gamma^{\gamma_{1}, \ldots, i_{p}(c)}, \tag{28}
\end{equation*}
$$

for $a, b, c \in \mathcal{V}$, where $\gamma_{i_{1}, \ldots, i_{p}}=\sigma_{i_{1}} \ldots \sigma_{i_{p}} \sigma_{1}^{i_{1}+\ldots+i_{p}}$. Here $\sigma_{l}=\sigma, \sigma_{1}$ appears in (24), and in general the maps σ_{s} for $s=1, \ldots, l$ are defined recursively, along with a sequence of subsets \mathcal{A}_{s} of the C_{l} alcove, s.t. $\mathcal{A}_{l+1}=\mathcal{P}_{+,+}^{\left(C_{l}, h\right)}$, and $\mathcal{A}_{2}=\mathcal{V}$,

$$
\begin{equation*}
\sigma_{s}(m)= \tag{29}
\end{equation*}
$$

$$
\begin{aligned}
& \left(m_{s-1}, \ldots, m_{1}, h-\sum_{k=1}^{s} m_{k}-2 \sum_{k=s+1}^{l} m_{k}, m_{s+1}, \ldots m_{l}\right), m \in \mathcal{A}_{s+1} \\
& \mathcal{A}_{s}=\left\{m \in \mathcal{A}_{s+1} \mid m_{s}=\left\langle m, \alpha_{s}^{\vee}\right\rangle<\left\langle\sigma_{s}(m), \alpha_{s}^{\vee}\right\rangle\right\}, \quad s=l, \ldots, 1 .
\end{aligned}
$$

In the simplest example in this series, the case $\widehat{s l}(4)$, the formula (28) reduces to two terms as in (21), and (27) reproduces the graphs displayed in [3], see the Figure. In this particular case \mathcal{V} is represented by the lower "half-alcove", i.e., the points $m=\left(m_{1}, m_{2}\right) \in \mathcal{P}_{+,+}^{\left(C_{2}, h\right)}, 2 m_{2}<h-m_{1}$.

The formulae above ensure that the solutions of (5) we find are integer valued. Furthermore they are non-negative, however we lack a general proof of this.

Note that the relations (17),(22),(27) for $h-N>1$ reflect three different decompositions of the A_{N-1} fundamental representations, in particular the same equalities hold for the corresponding classical dimensions. These decompositions are derived using the projections of A_{N-1} weights $P_{i}(\mu)=\sum_{j=1}^{N-1} \mu_{j} P_{i}\left(\Lambda_{j}\right)$, where $P_{i}\left(\Lambda_{j}\right)=P_{i}\left(\Lambda_{N-j}\right)$, and $i=1,2,3$, corresponding to the three cases above. More explicitly for

Figure 1. The graphs associated with the Nim-rep matrices $n_{\Lambda_{1}+\rho}$ for $\operatorname{sl}(N)$, $N=3,4,5$ and $h=N+1, N+2, \cdots$, drawn on the alcoves of B or C type.
$i=1$, corresponding to $N=2 l+1$ and $i=3$, for $N=2 l$, we have $P_{i}\left(\Lambda_{j}\right)=\omega_{j}$, where ω_{j} are the fundamental weights of C_{l}, while for $i=2$ and $N=2 l+1, P_{2}\left(\Lambda_{j}\right)=\omega_{j}^{\vee}$, where ω_{j}^{\vee} are the coweights of B_{l}, i.e., $\omega_{j}^{\vee}=\omega_{j}, i=1, \ldots l-1, \omega_{l}^{\vee}=2 \omega_{l}$.

Let us introduce the notation $W_{(i, h)}$ to apply to the three cases $i=$ $1,2,3$, determined by the three projections $P_{i}: W_{(1, h)}$ is the C_{l} affine Weyl group W of the case 1$), W_{(2, h)}$ is the B_{l} extended affine Weyl group $\tilde{W}=\{1, \sigma\} \ltimes W$ of the case 2) and $W_{(3, h)}=\{W \gamma, \gamma \in \Gamma\}$, where Γ is the set of maps $\gamma_{i_{1}, \ldots, i_{p}}$ in (28), with $\operatorname{det}\left(\gamma_{i_{1}, \ldots, i_{p}}\right):=(-1)^{\left\lfloor\frac{i_{1}}{2}\right\rfloor+\ldots+\left\lfloor\frac{i_{p}}{2}\right\rfloor}$. With these data at hand one derives a general representation of the NIM-reps in terms of their classical counterpart $\bar{n}_{\lambda+\rho a}{ }^{b}$, i.e., the multiplicity of the finite dimensional representation of highest weight b in the decomposition of the product of the A_{N-1} representation λ times the representation a of C_{l} (or B_{l}). It reads

$$
\begin{align*}
n_{\lambda+\rho a^{b}}^{b} & =\sum_{w \in W_{(i, h)}} \operatorname{det}(w) \bar{n}_{\lambda+\rho a} w(b) \\
& =\sum_{\gamma \in \mathcal{G}_{\lambda}} m_{\gamma}^{(\lambda)} \sum_{w \in W_{(i, h)}} \operatorname{det}(w) \delta_{w(b)-a, P_{i}(\gamma)} . \tag{30}
\end{align*}
$$

Here \mathcal{G}_{λ} is the weight diagram of the A_{N-1} representation of highest weight λ and $m_{\gamma}^{(\lambda)}$ is the multiplicity of the weight μ. A formula similar to the second equality in (30) but with $W_{(i, h)}$ replaced by the horizontal Weyl group \bar{W} gives $\bar{n}_{\lambda+\rho a}{ }^{b}$, for a, b in the dominant Weyl chamber $\mathcal{P}_{+,+}$. Because of the classical nature of the multiplicities in (30), the sums in that formula are finite. E.g., for the fundamental weights the
first equality for $n_{\Lambda_{i}+\rho 1}{ }^{b}$ reduces to the first term, i.e., to the classical branching coefficient $\bar{n}_{\Lambda_{i}+\rho 1^{b}}$ bs in (17),(22),(27), for all levels but the trivial value $h=N+1$. The formula (30) is analogous to the formula [6] for the fusion multiplicities, recovered formally by identifying the two algebras and setting $P=\mathrm{Id}$, see also [5] for a related recent discussion.

The interested reader is invited to consult [7] for further details and a discussion of the two alternative routes which led us to these results.

Acknowledgments

We are indebted to V . Ostrik for a question which added to the motivation for this work. Thanks also to T. Quella and V. Schomerus for discussions and to T . Gannon for informing us on the existence of their related work in progress with M. Gaberdiel, which has now appeared, see [8].

Notes

1. A different and more general approach to the problem of describing the boundary conditions associated with (1) has been developed earlier in [4], we thank J. Fuchs and C. Schweigert for informing us about this. The results presented in [4] do not look to us explicit enough to allow a direct comparison with the formulae here.

References

[1] Di Francesco, P. and J.-B. Zuber, Nucl. Phys. B 338 [FS] (1990) 602-646.
[2] Behrend, R.E., P.A. Pearce, V.B. Petkova and J.-B. Zuber, Phys. Lett. B 444 (1998) 163-166, hep-th/9809097; Nucl. Phys. B 579 [FS] (2000) 707-773, hep-th/9908036.
[3] Ocneanu, A., The classification of subgroups of quantum $S U(N)$, Lectures at Bariloche Summer School, Argentina, Jan 2000, to appear in AMS Contemporary Mathematics, R. Coquereaux, A. Garcia and R. Trinchero, eds.
[4] Birke, L., J. Fuchs and C. Schweigert, Adv.Theor.Math.Phys. 3 (1999) 671-726, hep-th/9905038.
[5] Quella, T., Branching rules of semi-simple Lie algebras using affine extensions, math-ph/0111020; A. Alekseev, S. Fredenhagen, T. Quella and V. Schomerus, in preparation; C. Schweigert, unpublished.
[6] Kac, V.G., Infinite-dimensional Lie Algebras, third edition, (Cambridge University Press, 1990); M. Walton , Nucl. Phys. B 340 [FS] (1990) 777-790; P. Furlan, A.Ch. Ganchev and V.B. Petkova, Nucl. Phys. B 343 [FS] (1990) 205-227.
[7] Petkova, V.B. and J.-B. Zuber, Boundary conditions in charge sl(N) WZW theories, hep-th/0201239.
[8] Gaberdiel, M. and T. Gannon, Boundary states for WZW models, hep-th/0202067.

