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Abstract

We consider the set of partition functions that result from the insertion of twist operators compatible with conformal
invariance in a given 2D conformal field theory (CFT). A consistency equation, which gives a classification of twists, is written
and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation
of Ocneanu’s algebraic construction, and might offer a new route to the study of properties of CFT. 2001 Elsevier Science
B.V. All rights reserved.

1. Introduction

The study of possible boundary conditions and of
the associated finite-size effects is known to be a pow-
erful means of investigation of critical systems. This
is particularly true in two dimensions, where confor-
mal invariance gives a very restrictive framework. In
this note we discuss a class of twists which may be
inserted in a 2D conformal field theory along a non-
contractible cycle (on a cylinder, say), and which are
requested to be compatible with conformal invariance,
in a sense to be defined. It is shown that the complete
set of partition functions depending of these twists and
the associated algebras contain all the information on
the system, its physical spectrum and operator product
algebra. Our discussion is parallel to the one done re-

E-mail addresses: valentina.petkova@unn.ac.uk
(V.B. Petkova), zuber@spht.saclay.cea.fr (J.-B. Zuber).

1 Permanent address: Institute for Nuclear Research and Nuclear
Energy, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria.

2 On leave from: SPhT, CEA Saclay, 91191 Gif-sur-Yvette,
France.

cently on boundary conditions on a half plane (or on
a strip) [1]. Somehow, the latter explored a chiral sub-
sector of the theory, while the present approach reveals
all its structure. At the same time it gives a physical
realisation of an algebraic construction proposed by
Ocneanu [2] and pursued also by Böckenhauer, Evans
and Kawahigashi [3].

2. Twisted boundary conditions

Throughout this paper we make use of the following
notations: We consider a rational conformal field
theory (RCFT) with a chiral algebraA, (the Virasoro
algebra or one of its extensions), and denote{Vi}i∈I
the finite set of representations of this chiral algebra,
χi(q), Sij , Nij

k with i, j, k ∈ I their characters,
modular matrix and fusion rule multiplicities given by
the Verlinde formula.

Suppose this RCFT has a spectrum in the plane
described by a matrixZjj̄ , j, j̄ ∈ I, i.e., a Hilbert
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space of the form

(2.1)HP =
⊕
j,j̄∈I

Zjj̄ Vj ⊗ V j̄ .

In order to study this CFT, it is a common practice [4]
to consider it on a cylinder of perimeterT with a
complex coordinatew defined moduloT and to define
a HamiltonianH by the translation operator along
thew imaginary axis. Then, taking a finite portion of
this cylinder bounded by the circles�mw = ±L, one
may identify the two boundaries by imposing periodic
boundary conditions along this imaginary direction:
the CFT is regarded as living on a torus, and the
partition function is the trace of the “time” evolution
operatorT associated with the Hamiltonian,T =
e−2LH . Here, however, we shall allow the possibility
of inserting one (or several) operator(s)X inside
the trace of this evolution operator. This may be
interpreted as introducing one or several defect linesC
(“seams”) in the system, along noncontractible cycles
of the cylinder, before closing it into a torus, thus
resulting into a certain class of “twisted” boundary
conditions. The new partition functions in the presence
of X’s are thusZX = trHP XT , ZX,X′ = trHP XX′T ,
etc.

The X are not arbitrary: we insist that these op-
erators commute with the energy-momentum tensor
T (w),�T ( �w), or equivalently with the Virasoro gen-
erators

(2.2)[Ln,X][�Ln,X
] = 0.

Since the Virasoro operators are the generators of
infinitesimal diffeomorphisms, this condition says that
each operatorX is invariant under a distortion of the
line to which it is attached. The operatorX is thus
attached to the homotopy class of the contourC. If the
chiral algebra is larger than Vir, there is a similar set of
commutation relations with the generators ofA, whose
physical interpretation is however less obvious.

3. Characterising the twists

What is the most general form of operators fromHP
to HP commuting with allLn and �Ln? Following a
route that proved useful in a different context [1], we
may first restrict ourselves to operators intertwining a

pair of components of (2.1), i.e., mapping someVj ⊗
V j̄ into Vj ′ ⊗V j̄ ′ : irreducibility of the representations
Vj tells us such anX is nontrivial only for j = j ′,
j̄ = j̄ ′. If the multiplicity Zjj̄ is 1, it follows that

X must be proportional to the projectorPj ⊗ P j̄

in Vj ⊗ V j̄ . If however Zjj̄ > 1, X is a linear
combination of operators intertwining the different
copies ofVj ⊗ V j̄ :

P (j,j̄ ;α,α′) :
(
Vj ⊗ V j̄

)(α′) → (
Vj ⊗ V j̄

)(α)
,

(3.1)α,α′ = 1, . . . ,Zjj̄ ,

and acting asPj ⊗ P j̄ in each. The notation encom-
passes the caseZjj̄ = 1. If |j,n〉 ⊗ |j̄ , n̄〉 denotes an

orthonormal basis ofVj ⊗V j̄ labelled by multiindices
n, n̄, we may write

P (j,j̄ ;α,α′) =
∑
n,n̄

(|j,n〉 ⊗ ∣∣j̄ , n̄〉)(α)
× (〈j,n| ⊗ 〈

j̄ , n̄
∣∣)(α′)

,

(3.2)α,α′ = 1, . . . ,Zjj̄ .

There are thus
∑

j,j̄ |Zjj̄ |2 linearly independent solu-
tions of Eqs. (2.2). If these equations are extended to
the generators of the full chiral algebraA, there may

be more general solutionsP (j,j̄ ;α,α′)
U with, say,|j̄ ,n〉

replaced byU |j̄ ,n〉, whereU is a unitary operator im-
plementing some automorphism ofA, a freedom rem-
iniscent to the “gluing automorphism” in the boundary
CFT, which has the effect of changing(j, j̄ ) to some
(j,ω(j̄)).

TheP ’s satisfy

P (j1,j̄1;α1,α
′
1)P (j2,j̄2;α2,α

′
2)

(3.3)= δj1j2δj̄1j̄2
δα′

1α2
P (j1,j̄1;α1,α

′
2).

Note also that they play here the rôle of the Ishibashi
states in the problem of boundary conditions in the
half plane. We then write the most general linear
combination of these basic operators as

(3.4)Xx =
∑

j j̄ ,α,α′

Ψ
(j,j̄ ;α,α′)
x√
S1j S1j̄

P (j,j̄ ;α,α′),

with x a label takingn = ∑
j,j̄ (Zjj̄ )

2 values andΨ an
a priori arbitrary complexn × n matrix. The denomi-

nator
√
S1j S1j̄ is introduced for later convenience. We
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shall denote bỹV the set of labelsx and use the label
x = 1 for the identity operator

(3.5)X1 := Id =
∑
j j̄ ,α

P (j,j̄ ;α,α),

for which

(3.6)Ψ
(j,j̄ ;α,α′)
1 =

√
S1j S1j̄ δαα′ =: Ψ (j,j̄ )

1 δαα′.

Using (3.3) and the hermitian conjugation properties
of the projectors

(3.7)
(
P (j,j̄ ;α,α′))† = P (j,j̄ ;α′,α)

we may compose two suchX as

X†
x Xy

(3.8)=
∑

j,j̄ ,α,α′,α′′

Ψ
(j,j̄ ;α,α′)∗
x Ψ

(j,j̄ ;α′′,α′)
y

S1j S1j̄
P (j,j̄ ;α,α′′).

For our purposes, insertion of one or two suchX will
be sufficient.

4. The consistency equation

As usual, it is convenient to map the cylinder
into the complex plane with coordinateζ by ζ =
exp−2 iπw/T . The toroidal domain is mapped into
an annulus with identified boundaries along the circles
|ζ | = |q̃|±1/2 (here τ̃ = 2 iL/T and q̃ = exp2 iπτ̃ ).
One then reexpresses the partition function in terms
of Virasoro generators acting in that plane. This is a
well known calculation [4], which is hardly affected
by the insertion of operatorsX and we find

(4.1)ZX = trHP

(
X q̃L0−c/24 q̃

�L0−c/24),
and an analogous formula for the insertion of twoX.
With the help of

trHP

(
P (j,j̄ ;α,α′)q̃L0−c/24 q̃

�L0−c/24)
(4.2)= χj (q̃) χj̄ (q̃) δαα′,

and of (3.7) we write the corresponding twisted
partition function as

Zx|y := Z
X

†
x Xy

(4.3)

=
∑
j,j̄∈I

α,α′=1,...,Zjj̄

Ψ
(j,j̄ ;α,α′)∗
x Ψ

(j,j̄ ;α,α′)
y

S1j S1j̄
χj (q̃) χj̄ (q̃).

In particular, forx = y = 1, we find

Z1|1 =
∑
j,j̄ ,α

χj (q̃) χj̄ (q̃)

(4.4)=
∑
j,j̄∈I

Zjj̄ χj (q̃) χj̄ (q̃),

which is, as it should, the modular invariant partition
function describing the system with no twist. The
above discussion may be generalised to the situation
where the underlying chiral algebra of the CFT is a
current algebra of generatorsJ and levelk and where
the energy-momentum of the system includes a term
coupled to the Cartan generators:

T ′(w) = T (w) − 2 iπ

T

∑
p

νpJ
p(w)

− k

2

∑
p

(
2πνp

T

)2

,

and a similar expression for�T . This modification has
been shown in [1] to lead to partition functions in-
volving unspecialised charactersχ(q̃, ντ̃ ). Repeating
this calculation in the present situation (and realν)
and choosing properly modified projectorsPU , chang-
ing (j, j̄ ) to (j, j̄∗) one recovers the analogues of
(4.3) and (4.4) with the second character replaced by
χj̄ (q̃, ντ̃ )

∗.
Because of the identification of its two ends, the

cylinder considered above may be mapped into an-
other plane, with coordinatez = exp(πw/L). The im-
age of the fundamental domain inw is an annulus in
that plane with boundaries along the circles|z| = 1 and
|z| = |q|−1 identified, with nowq = exp2 iπτ , τ =
−1/τ̃ = iT/2L. Moreover the fact that (2.2) is satis-
fied implies that the energy momentumT (w), �T (�w)

is well defined on the cylinder and consistent with this
identification, and thatT (z),�T (z̄) is thus globally de-
fined in the whole plane. On the cylinder, one may
also use the Hamiltonian corresponding to the�ew-
translation operator. Then the partition functionZx|y
is obtained as the trace of the corresponding evolution
operator in a Hilbert space

(4.5)Hx|y =
⊕
i,ī∈I

Ṽiī∗; x
yVi ⊗ V ī ,

where the nonnegative integer multiplicities̃Viī; xy
depend on the twistsx andy. In the trivial casex =
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y = 1, they must reduce to

(4.6)Ṽiī∗;1
1 = Ziī .

We can thus complete the calculation as in the absence
of theX operator(s) and get

Zx|y = trHx|y qL0−c/24q
�L0−c/24

(4.7)=
∑
i,ī∈I

Ṽiī; x
yχi(q)χī(q).

For realq, ν the unspecialised analog of the second
character can be rewritten asχī∗(q, ν)

∗ and taking into
account (4.6), the partition functionZ1|1(τ ) reduces,
up to aν-dependent factor, to the modular invariant.

Identifying the two expressions (4.3) and (4.7) and
using the modular transformations of (unspecialised)
characters in the formχj (q̃, ντ̃ ) = eiπkν2/τSj∗iχi(q, ν)

we get

Ṽiī; x
y =

∑
j,j̄ ,α,α′

Sij Sīj̄

S1j S1j̄
Ψ

(j,j̄ ;α,α′)
x Ψ

(j,j̄ ;α,α′)∗
y ,

(4.8)i, ī ∈ I.
In the last step we have used the reality of the l.h.s.
The similarity of this condition with Cardy’s equation
in the case of open boundaries [5] is not a coincidence.
We shall in fact exploit Eq. (4.8) in a way parallel to
Cardy’s [1].

To proceed, we make the additional assumption

that theΨ (j,j̄ ;α,α′)
x form a unitary (i.e., orthonormal

and complete) change of basis from theP (j,j̄ ,α,α′) to
theXx operators. The integer numbers̃Viī;xy will be
regarded either as the entries of|I|×|I| matrices̃Vx

y ,
x, y ∈ Ṽ , or as those of|Ṽ|× |Ṽ| matrices̃Viī , i, ī ∈ I.

Following a standard argument, Eq. (4.8) may
be regarded as the spectral decomposition of the
matrices Ṽiī into their orthogonal eigenvectorsΨ
and eigenvaluesSij Sīj̄ /S1j S1j̄ . As the latter form a
representation of the tensor product of two copies of
Verlinde fusion algebra, the same holds true for theṼ

matrices:

(4.9)Ṽi1j1Ṽi2j2 =
∑
i3,j3

Ni1i2
i3Nj1j2

j3Ṽi3j3.

Combining (4.6) with (4.9), we have in particular

(4.10)
∑
i3j3

Ni1i2
i3Nj1j2

j3Zi3j3 =
∑
x

Ṽi1j
∗
1 ;1

xṼi2j
∗
2 ; x1,

which is the way the matrices̃Vij ;1
x = Ṽi∗j∗; x1

appeared originally in the work of Ocneanu. As will
be explained below, all̃Vx

y may be reconstructed from
the simpler Ocneanu matrices̃V1

x .

5. Solutions of (4.9)

For the so-called diagonal theories, for which the
bulk spectrum is given byZjj̄ = δj j̄ , we know a
class of solutions of (4.9). In that case, it is natural
to identify the set̃V of twist labels with the setI of
representations, since their cardinality agrees, and to
take

(5.1)Ṽij = NiNj

understood as a matrix product, in particularṼij ;1
k =

Nij
k . The correspondingΨ (j,j)

x are just the modular
matrix elementsSxj . As a second case, consider
a non-diagonal theory with a matrixZij = δiζ(j),
whereζ is the conjugation of representations or some
other automorphism of the fusion rules (like theZ2
automorphism in theD2)+1 cases of̂sl(2) theories).
ThenṼij = NiNζ(j).

The simplest nontrivial cases are provided by the
ŝl(2) theories. The latter are known to be classified by
ADE Dynkin diagrams. The diagonalA and theD2)+1
cases have been just discussed. In the other cases with
a block-diagonal modular invariant partition function
(D2), E6, E8), we find that the matrices̃Vij ;1

x may be
expressed simply as bilinear combinations of the ma-
tricesnia

b which give the multiplicities of representa-
tions when the RCFT lives on a finite width strip or
in the upper half-plane [1]: there, the indicesa, b, . . . ,

belong to the setV of vertices of the Dynkin diagram,
and are in one-to-one correspondence with the possi-
ble boundary conditions. In general we find that the
labelsx may be taken of the form(a, b, γ ), a, b ∈ V ,
γ an extra label, and

(5.2)Ṽij∗;1
(a,b,γ ) =

∑
c∈Tγ

nic
anjc

b

with c running over a certain subsetTγ of vertices.
For theD2) case, we takeb = 1, γ = 0,1 andTγ

is the set of vertices ofZ2 grading equal toγ . For
the conformal embedding casesE6, respectivelyE8,
b = 1,2, respectivelyb = 1,2,3,8, the labelγ is



V.B. Petkova, J.-B. Zuber / Physics Letters B 504 (2001) 157–164 161

Fig. 1. Partition function with the twistx = (a, b, γ ) as in (5.2).

dropped, and the range of summation ofc is the
subsetT ⊂ V , identified with the set of representations
of the extended fusion algebra, i.e.,T = {1,5,6},
respectively{1,7}. (For D2), T = T0.) Here we are
making use of the same labelling of vertices as in [1].
Finally, the caseE7 requires a separate treatment, as
all but one of the matrices̃V1

x may be represented by
a formula similar to (5.2), in terms of then matrices
of the “parent theory”D10, see [6] for more details.
Eq. (5.2) provides closed expressions for the matrices
Ṽij ;1x already known from the work of Ocneanu.
It expresses a relation between twisted (torus) and
boundary (cylinder) partition functions, generalising
a well known formula for the modular invariant. It is
illustrated on Fig. 1. See also [7] where the partition
functionsZx|y for a diagonal theory, cf. (5.1), appear
computing boundary partition functions for tensor
product theories.

Let us illustrate (5.2) with the simplest example
D4. There Ṽ has 8 elements, but one finds only 5
independent matrices

Ṽ1
1 =




1 0 0 0 1
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
1 0 0 0 1


 ,

Ṽ1
2 =




0 0 0 0 0
1 0 2 0 1
0 0 0 0 0
1 0 2 0 1
0 0 0 0 0


 ,

Ṽ1
3 = Ṽ1

4 =




0 0 1 0 0
0 0 0 0 0
1 0 1 0 1
0 0 0 0 0
0 0 1 0 0


 ,

Ṽ1
5 = Ṽ1

7 = Ṽ1
8 =




0 0 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 0 1 0
0 0 0 0 0


 ,

(5.3)Ṽ1
6 =




0 1 0 1 0
0 0 0 0 0
0 2 0 2 0
0 0 0 0 0
0 1 0 1 0


 .

Here the labels 1,2,3,4 and 5,6,7,8 refer respec-
tively to γ = 0 andγ = 1 in (5.2).

To any of thesêsl(2) cases Ocneanu has associated
a graphG̃ with a set of vertices given bỹV . These
graphs are generated by the pair of adjacency matrices,
Ṽ2,1 and Ṽ1,2. For example in theD2) cases in the
basis used above,̃V2,1 is block-diagonal, withn2
appearing twice in the diagonal, while iñV1,2 these
two blocks appear off diagonally. Such graphs have
been also constructed in some highern � 2 ŝl(n) cases
[2,3].

The minimal c < 1 theories are intimately con-
nected to thêsl(2) ones, as is well known. For the
theory of central chargec = 1 − 6(g − h)2/gh classi-
fied by the pair(Ah−1,G), with h odd, andg the Cox-
eter number ofG, the setI of Virasoro representations
(r, s) is restricted by 1� r � h− 1, 1� s � g − 1 and
we chooser odd. Then the twist labels are of the form
(r, x), x a twist label of the correspondinĝsl(2) theory
labelled byG and

Ṽ(rs)(r ′s ′);1
(r ′′,x) = Nrr ′ r

′′
Ṽ

(G)

ss ′;1
x,

(5.4)r, r ′, r ′′ odd,

in terms of the fusion matricesNr of ŝl(2)h−2 and of
theṼ (G) matrices of theG case of̂sl(2)g−2 discussed
above.

6. Examples

Some of the twisted partition functions of minimal
models have been already encountered, and have a
simple realisation in the corresponding lattice models,
in terms of defect lines or of twisted boundary condi-
tions imposed on the lattice degrees of freedom. In par-
ticular, when the underlying lattice Hamiltonian has
some symmetry under a discrete group, one may use
any element of this group to twist the boundary condi-
tions along a lineC, and the invariance of the Hamil-
tonian guarantees the independence with respect to de-
formations ofC [8]: this is the lattice equivalent of the
property (2.2) above.
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Consider for example the critical Ising model:
this is a diagonal minimal model described by three
representations of the Virasoro algebra. Here we
depart from our previous conventions and denote
the representations by their conformal weight, 0,1

2
and 1

16. By the previous discussion, we know that there
are three possible twists, whose matrixṼ1

x is given by
the ordinary fusion matrixNx . The one labelled by 0
corresponds to no twist at all, and the two others lead
to a partition functionZ0|x which reads

Z0| 1
2

= ∣∣χ0(q̃)
∣∣2 + ∣∣χ 1

2
(q̃)

∣∣2 − ∣∣χ 1
16
(q̃)

∣∣2
(6.1a)= χ0(q)χ 1

2
(q)∗ + c.c.+ ∣∣χ 1

16
(q)

∣∣2,
Z0| 1

16
= ∣∣χ0(q̃)

∣∣2 − ∣∣χ 1
2
(q̃)

∣∣2
(6.1b)= (

χ0(q)+ χ 1
2
(q)

)
χ 1

16
(q)∗ + c.c.

Other partition functions are then obtained by fusion
in the sense thatZy|z = ∑

x Nyx
zZ0|x . In this case,

onlyZ 1
16| 1

16
= Z0|0+Z0| 1

2
is distinct from the previous

ones.
The physical interpretation of thẽq form of (6.1a)

is clear: the three primary operators of the theory are
weighted by theirZ2 charge. This is the well-known
partition function of the Ising model on which periodic
boundary conditions are imposed on the spin in one
direction and antiperiodic ones in the other [5,8]. In
contrast, (6.1b) doesn’t seem to have been discussed
before. In general, Eq. (5.4) in the diagonal case
G = A reproduces forr ′′ = 1,x = s′′ = g − 1,g even,
the Z2 twisted partition functions due to antiperiodic
boundary conditions in [5,8], see also [9]. The physical
meaning and implementation in the lattice model
of the others is less clear and would require some
further investigation. See, however, reference [10],
where new Boltzmann weights that preserve Yang–
Baxter integrability and commutation of the transfer
matrices are inserted recovering the diagonal series
with Ṽij ;1x = Nij

x .
A similar discussion of the 3-state Potts model, clas-

sified as(A4,D4), follows easily from the formulae
(5.3), (5.4) above. The resulting ten independent par-
tition functions have been listed in Table 1:Z1|1 is the
standard modular invariant,Z1|3 the one studied in [5,
8,11] and denoted “C” in [5]: it corresponds to the as-
signment to each operator of the spectrum of itsZ3

charge,ω or ω̄ for the Potts spin and parafermion, 1 for
the others;Z1|5 is what was denoted “T” in [5].

7. The Ñ algebra

In the diagonal case, formula (5.1) implies thatṼy
z

are linear combinations of̃V1
x , i.e.,

Ṽy
z =

∑
x

Nyx
zṼ1

x .

This formula generalises to other cases, the Verlinde
matrix being replaced by a new nonnegative integer
valued matrixÑxy

z. In terms of the partition functions
we have

(7.1)Zy|z =
∑
x

Ñyx
zZ1|x,

where

(7.2)

Ñyx
z =

∑
j,j̄ ;α

∑
β,γ

Ψ
(j,j̄ ;α,β)
y

Ψ
(j,j̄ ;β,γ )
x

Ψ
(j,j̄ )

1

Ψ
(j,j̄ ;α,γ )∗
z .

The matricesÑx := {Ñyx
z} form an associative al-

gebra ÑxÑy = ∑
z Ñxy

zÑz (“fusion algebra of de-
fect lines”). It is noncommutative whenever the cor-
responding modular invariant matrixZjj̄ has entries

larger than 1, like, e.g., in thêsl(2) D2) cases. In the
commutative cases, (7.2) reduces to the spectral rep-
resentation of̃N . It is easy to check that in all̂sl(2)
cases,̃Nyx

z in (7.2) are indeed nonnegative integers.
This holds true in general and finds a natural explana-
tion in the framework of the subfactor theory [2,3].

The representations of this fusion algebra are la-
belled by(j, j̄ ), such thatZjj̄ �= 0, and appear with
multiplicity Zjj̄ , i.e., they are in one-to-one corre-

spondence with the physical spectrum(j, j̄; α) of the
bulk theory. It turns out that a subset of the struc-
ture constants of the associated (commutative) algebra
‘dual’ to the Ñ -algebra relates to the squared moduli
of the OPE coefficients of the physical (local) fields,
[6,12]. Thus all the information about the bulk the-
ory is encoded in the eigenvector matricesΨ of the
Ocneanu graphs̃G. We recall that the graphsG,G̃

and the various multiplicities — the sets of integers
Nij

k, nja
b, Ṽij ;xy, Ñxy

z, ñax
b — are related to the

existence of a quantum symmetry of the CFT, the Oc-
neanu “double triangle algebra”, [6,12], studied in the
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Table 1
Twisted partition functions of the 3-state Potts model

Z1|1 = |χ1,1(q) + χ1,5(q)|2 + |χ3,5(q)+ χ3,1(q)|2 + 2|χ1,3(q)|2 + 2|χ3,3(q)|2

Z1|2 = (
χ1,2(q) + χ1,4(q)

)(
χ1,1(q)+ χ1,5(q) + 2χ1,3(q)

)∗ + (
χ3,2(q) + χ3,4(q)

)(
χ3,1(q)+ χ3,5(q) + 2χ3,3(q)

)∗
= √

3
(
(χ1,1(q̃) + χ1,5(q̃)

)(
χ1,1(q̃)− χ1,5(q̃)

)∗ + (
χ3,1(q̃)+ χ3,5(q̃)

)(
χ3,1(q̃) − χ3,5(q̃))

∗)
Z1|3 = Z1|4 = ((

χ1,1(q) + χ1,5(q)
)
χ1,3(q)

∗ + (
χ3,1(q)+ χ3,5(q)

)
χ3,3(q)

∗ + c.c.
) + |χ1,3(q)|2 + |χ3,3(q)|2

= |χ1,1(q̃) + χ1,5(q̃)|2 + |χ3,1(q̃) + χ3,5(q̃)|2 − |χ1,3(q̃)|2 − |χ3,3(q̃)|2

Z1|5 = Z1|7 = Z1|8 = |χ1,2(q)+ χ1,4(q)|2 + |χ3,2(q) + χ3,4(q)|2 = |χ1,1(q̃) − χ1,5(q̃)|2 + |χ3,1(q̃) − χ3,5(q̃)|2

Z1|6 = Z∗
1|2

Z1|9 = ((
χ1,1(q)+ χ1,5(q)

)(
χ3,1(q)+ χ3,5(q)

)∗ + c.c.
) + |χ3,1(q)+ χ3,5(q)|2 + 2

(
χ3,3(q)χ1,3(q)

∗ + c.c.
) + 2|χ3,3(q)|2

= ζ
(|χ1,1(q̃) + χ1,5(q̃)|2 + 2|χ1,3(q̃)|2

) − ζ−1(|χ3,1(q̃) + χ3,5(q̃)|2 + 2|χ3,3(q̃)|2
)

Z1|10 = (
χ3,2(q) + χ3,4(q)

)(
χ1,1(q)+ χ1,5(q) + χ3,1(q)+ χ3,5(q)+ 2χ1,3(q)+ 2χ3,3(q)

)∗
+ (

χ1,2(q)+ χ1,4(q)
)(
χ3,1(q)+ χ3,5(q)+ 2χ3,3(q)

)∗
= √

3ζ
(
χ1,1(q̃) − χ1,5(q̃)

)(
χ1,1(q̃) + χ1,5(q̃)

)∗ − √
3ζ−1(χ3,1(q̃) − χ3,5(q̃)

)(
χ3,1(q̃)+ χ3,5(q̃)

)∗
Z1|11 = Z1|12 = (

χ3,3(q)
(
χ1,1(q) + χ1,5(q)+ χ3,1(q)+ χ3,5(q) + χ1,3(q)

)∗ + χ1,3(q)
(
χ3,1(q)+ χ3,5(q)

)∗ + c.c.
) + |χ3,3(q)|2

= ζ
(|χ1,1(q̃) + χ1,5(q̃)|2 − 2|χ1,3(q̃)|2

) − ζ−1(|χ3,1(q̃) + χ3,5(q̃)|2 − 2|χ3,3(q̃)|2
)

Z1|13 = Z1|15 = Z1|16 = ((
χ3,2(q)+ χ3,4(q)

)(
χ1,2(q)+ χ1,4(q)

)∗ + c.c.
) + |χ3,2(q)+ χ3,4(q)|2

= ζ |χ1,1(q̃) − χ1,5(q̃)|2 − ζ−1|χ3,1(q̃) − χ3,5(q̃)|2

Z1|14 = Z∗
1|10

The labels(r, s) of characters label as usual the Virasoro representations (h = 5, g = 6); ζ is the golden ratio(1+ √
5)/2.

more mathematical language of subfactors in [2,3].
The last of the above multiplicities,(ñ)axb, furnishes
a representation of thẽN algebra,

(7.3)ñax
b =

∑
j, α,β

ψ
(j ,α)
a

Ψ
(j,j ;α,β)
x

Ψ
(j,j)

1

ψ
(j ,β)∗
b ,

whereψ
(j ,α)
a is the eigenvector matrix which diago-

nalises the cylinder multiplicitiesni .

Note added

Answering a question of Patrick Dorey — it is easy
to repeat the calculation on a cylinder in the presence
of twist operators and with boundary states|a〉 and
〈b| at each end. In the simplest case of one such
insertionX

†
x , one gets a partition function linear in

the characters with multiplicities given by(niñx)a∗b
∗
,

with the notations of [1].
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