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Abstract

We consider the set of partition functions that result from the insertion of twist operators compatible with conformal
invariance in a given 2D conformal field theory (CFT). A consistency equation, which gives a classification of twists, is written
and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretatior
of Ocneanu’s algebraic construction, and might offer a new route to the study of properties af @601 Elsevier Science
B.V. All rights reserved.

1. Introduction cently on boundary conditions on a half plane (or on
a strip) [1]. Somehow, the latter explored a chiral sub-
The study of possible boundary conditions and of sector of the theory, while the present approach reveals
the associated finite-size effects is known to be a pow- all its structure. At the same time it gives a physical
erful means of investigation of critical systems. This realisation of an algebraic construction proposed by
is particularly true in two dimensions, where confor- Ocneanu [2] and pursued also by Bockenhauer, Evans
mal invariance gives a very restrictive framework. In - and Kawahigashi [3].
this note we discuss a class of twists which may be
inserted in a 2D conformal field theory along a non-
contractible cycle (on a cylinder, say), and which are
requested to be compatible with conformal invariance, 2. Twisted boundary conditions
in a sense to be defined. It is shown that the complete
set of partition functions depending of these twists and
the associated algebras contain all the information on ~ Throughout this paper we make use of the following
the system, its physical spectrum and operator producthotations: We consider a rational conformal field
algebra. Our discussion is parallel to the one done re- theory (RCFT) with a chiral algebr, (the Virasoro
algebra or one of its extensions), and dendig; 1
- the finite set of representations of this chiral algebra,
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space of the form pair of components of (2.1), i.e., mapping soMew
_ V;into V;y ® V5 irreducibility of the representations

Hp= @ ZjjVi®Vj. (2.1) V; tells us such arX is nontrivial only for j = j/,

JJeT j=J'. If the multiplicity Z; is 1, it follows that

In order to study this CFT, it is a common practice [4] X must be proportional to the projecta®?’ ® pi

to consider it on a cylinder of perimet&f with a in V; ®V]v. If however Z.- > 1, X is a linear

complex coordinatey defined moduld” and to define  combination of operators ‘intertwining the different
a HamiltonianH by the translation operator along copies ofV; ®Vj-»:
the w imaginary axis. Then, taking a finite portion of
this cylinder bounded by the circlésn w = +L, one pUJiea) (Vi ®V; )(“) - Vi®V; )(“)
may identify the two boundaries by imposing periodic g =1 7 .
boundary conditions along this imaginary direction: ’ R
the CFT is regarded as living on a torus, and the and acting as?’ ® P/ in each. The notation encom-
partition function is the trace of the “time” evolution  passes the case;; =1.1f |j,n) ® |j,n) denotes an
operator7 associated with the Hamiltoniary, =
e 2LH Here, however, we shall allow the possibility
of inserting one (or several) operator(X) inside
the trace of this evolution operator. This may be PU-J: "“”—Z(U,n) |j, ))("‘)
interpreted as introducing one or several defect lthes n.i
(“seams”) in the system, along noncontractible cycles (a)
of the cylinder, before closing it into a torus, thus (<J’"| ®<]’ D
resulting into a certain class of “twisted” boundary @&’ =1,....Z;:. (3.2)
conditions. The new partition functions in the presence
of X’s are thusZx =try, X7, Zx x =try, XX'T,
etc.

The X are not arbitrary: we insist that these op- Go i) -
erators commute with the energy-momentum tensor P& More general solutiorg; with, say,|;, n)
T(w), T(w), or equivalently with the Virasoro gen-  replaced by’ |, n), whereU is a unitary operator im-

(3.1)

orthonormal basis of; ®er labelled by multiindices
n, n, we may write

There are thui ilZ; |2 linearly independent solu-
tions of Egs. (2. 2) If these equations are extended to
the generators of the full chiral algel#?a there may

erators plementing some automorphism®f a freedom rem-
_ iniscent to the “gluing automorphism”in the boundary
[Ln, X1[Ln, X]=0. (2.2) CFT, which has the effect of changirig, j) to some

(J, 0 ().

Since the Virasoro operators are the generators of '\, satisfy

infinitesimal diffeomorphisms, this condition says that ) )
each operatoX is invariant under a distortion of the — pUtJjuenay) p(ja.jzez.a;)

line to which it is attached. The operatdar is thus 888, plninenay) (3.3)
attached to the homotopy class of the cont@uf the 27 jujam %2 ' '

chiral algebra is larger than Vir, there is a similar set of Note also that they play here the réle of the Ishibashi
commutation relations with the generator€ofvhose ~ states in the problem of boundary conditions in the

physical interpretation is however less obvious. half plane. We then write the most general linear
combination of these basic operators as

gl ea)
3. Characterising thetwists Xo= ) ———pUine), (3.4)
ji.aa! vV Slj Slf
What is the most general form of operators fratp . i 2
to Hp commuting with allZ, andL,? Following a  With x alabeltaking: =3, 7(Z; ;) values and an
route that proved useful in a different context [1], we & Priori arbitrary complex: x n matrix. The denomi-
may first restrict ourselves to operators intertwining a nator, /S1;S3; is introduced for later convenience. We
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shall denote by7 the set of labels and use the label
x =1 for the identity operator

X1:=Id= Z pUJiee, (3-5)
i

for which

BT = 58  =  b. (39

Using (3.3) and the hermitian conjugation properties
of the projectors
(pU-iree))t = pGij@ (3.7)
we may compose two such as

XXy

"o,

w)fj’i;“’a/)*wy(j’f;“ o)

S1j 815

— pU.jia.a’) (3.8)

j,f,a,ot’,a”
For our purposes, insertion of one or two suciwill
be sufficient.

4. Theconsistency equation

As usual, it is convenient to map the cylinder
into the complex plane with coordinate by ¢ =
exp—2irw/T. The toroidal domain is mapped into
an annulus with identified boundaries along the circles
12| = |G|*Y? (here? = 2iL/T and§ = exp2ir 7).
One then reexpresses the partition function in terms
of Virasoro generators acting in that plane. This is a
well known calculation [4], which is hardly affected
by the insertion of operators and we find

Zx = ter(X qLofc/24éZofc/24)’ (41)

and an analogous formula for the insertion of tWo
With the help of

try (P(j,f;ot,a’)é Lofc/24qzofc/24)
=Xj (@) X]_(é) Saas (42)

and of (3.7) we write the corresponding twisted
partition function as

Zyly = ZXIXV
t,l/x(j’f;“’“/)*wv(j’f;“’“/) i )
= ) - Xi (@) x;5(q)-
LT Sl]Sj_j
J.jel
a,a'=1,...2Z; 4.3)

7]

159
In particular, forx = y =1, we find
Zyi= Y X (@ x;(@)
Jije
=Y Z;ixi@ x;@). (4.4)
j.jeT

which is, as it should, the modular invariant partition
function describing the system with no twist. The
above discussion may be generalised to the situation
where the underlying chiral algebra of the CFT is a
current algebra of generatarsand levelk and where

the energy-momentum of the system includes a term
coupled to the Cartan generators:

T (w) = T (w) — 2% > v dP(w)

5r(%)

and a similar expression faf. This modification has
been shown in [1] to lead to partition functions in-
volving unspecialised characterg (¢, vT). Repeating
this calculation in the present situation (and real
and choosing properly modified projectdts, chang-

ing (j, j) to (j, j*) one recovers the analogues of
(4.3) and (4.4) with the second character replaced by
X;(G. vy,

Because of the identification of its two ends, the
cylinder considered above may be mapped into an-
other plane, with coordinate= exp(rw/L). The im-
age of the fundamental domain inis an annulus in
that plane with boundaries along the cirdlgls= 1 and
lz| = |¢|~1 identified, with nowg = exp2irt, T =
—1/7 =iT/2L. Moreover the fact that (2.2) is satis-
fied implies that the energy momentufi(w), T (w)
is well defined on the cylinder and consistent with this
identification, and thal'(z), T'(z) is thus globally de-
fined in the whole plane. On the cylinder, one may
also use the Hamiltonian corresponding to fhew-
translation operator. Then the partition functidp,,
is obtained as the trace of the corresponding evolution
operator in a Hilbert space

Hay =P Vi Vi © Vs,
iieT

P
2mv,
T

(4.5)

where the nonnegative integer multiplicitiéég;xy
depend on the twists and y. In the trivial casex =
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y = 1, they must reduce to which is the way the matriced;;. 1* = Vs .,
~ 1 appeared originally in the work of Ocneanu. As will
Virn1™ =2 (4.6) be explained below, alt,” may be reconstructed from

We can thus complete the calculation as in the absencethe simpler Ocneanu matricés*.
of the X operator(s) and get

Lo—c/24 Lo—c/24
Zypy =try,,, qLoc/2gqlocl 5. Solutions of (4.9)

=D Vi xi@) x:(@)- 4.7) _ _ _
For the so-called diagonal theories, for which the
iieZ . .
. bulk spectrum is given byZ.: = §.;, we know a
For realq, v the unspecialised anglog of the second 555 of solutions of (4.9). In that case, it is natural
character can be rewritten g (¢, v)* and takinginto 5 jgentify the sef of twist labels with the set of

account (4.6), the partition functiafiy1(v) reduces,  ronrasentations, since their cardinality agrees, and to
up to av-dependent factor, to the modular invariant.

take
Identifying the two expressions (4.3) and (4.7) and
using the modular transformations of (unspecialised) \7l-j =N;N; (5.1)
H (n =y aTkveT s Y ~
Svr;a;ct:ters inthe form, (4, vT) = Sjrixi@,v) understood as a matrix product, in particulay. k=
. The corresponding,’”) are just the modular
Vo Y= Z S‘JSU AL Ota)q,(j] aoz)* matrlx elementsS,;. As a second case, consider
nE 4 8185 ! a non-diagonal theory with a matri€;; = 8;.(;),
],j,Ol,Ol . . . .
. where¢ is the conjugation of representations or some
i,i €T (4.8) other automorphism of the fusion rules (like tie

In the last step we have used the reality of the I.h.s. @utomorphism in theDy. ;1 cases ofil(2) theories).
The similarity of this condition with Cardy’s equation ~ Th€nVij = NiNe().

in the case of open boundaries [5] is not a coincidence. . 1€ simplest nontrivial cases are provided by the
We shall in fact exploit Eq. (4.8) in a way parallel to s1(2) theories. The latter are known to be classified by

Cardy’s [1]. ADE Dynkin diagrams. The diagondland theDy,11
To proceed, we make the additional assumption CaSes have been just discussed. In the other cases with
a block-diagonal modular invariant partition function

(.J; ) ; ; a
that thew, form a unitary (i.e., orthonormal (Dae. Es. Es), we find thatthe matrice; 1* may be

and complete) change of basis from lﬂé”]_’a’fx) to expressed simply as bilinear combinations of the ma-
the X, operators. The integer numberg. * will be tricesn;,® which give the multiplicities of representa-
regarded either as the entries5f x |Z| matricesV,”, tions when the RCFT lives on a finite width strip or
x,y €V, oras those of)| x [V| matricesV;, i,i . in the upper half-plane [1]: there, the indices, ...,

Following a standard argument, Eq. (4.8) may pelong to the sep of vertices of the Dynkin diagram,
be regarded as the spectral decomposition of the and are in one-to-one correspondence with the possi-
matrices V;; into their orthogonal eigenvectorg ble boundary conditions. In general we find that the

and eigenvalues;; S;;/51;51;. As the latter form a  |abelsx may be taken of the forrtu, b, y), a,b € V,
representation of the tensor product of two copies of ,, an extra label, and

Verlinde fusion algebra, the same holds true forthe
matrices: 1@ — Z nictnjcb (5.2)

ceTy
11]1 12]2 z :NIIIZ JlJZ ’3]3 (49)
i3,/3

Combining (4.6) with (4.9), we have in particular

with ¢ running over a certain subs@l, of vertices.
For the Dy, case, we také =1, y =0,1 and T,
is the set of vertices of., grading equal toy. For

N: A V. ,*;1x\7. x. 1 (4.10) the conformal embedding casés, respectivelyEsg,
Z iz Nz Ziss Z h 22 b = 1,2, respectivelyp = 1,2, 3,8, the labely is

33
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Fig. 1. Partition function with the twist = (a, b, y) as in (5.2).

dropped, and the range of summation ©ofis the
subsef C V, identified with the set of representations
of the extended fusion algebra, i.€, = {1, 5, 6},
respectively{l1, 7}. (For Dy, T = Tp.) Here we are

making use of the same labelling of vertices as in [1].
Finally, the caseE7 requires a separate treatment, as

all but one of the matriceE:* may be represented by
a formula similar to (5.2), in terms of the matrices
of the “parent theory’Djg, see [6] for more detalils.

Eg. (5.2) provides closed expressions for the matrices

Vij.1* already known from the work of Ocneanu.

It expresses a relation between twisted (torus) and

boundary (cylinder) partition functions, generalising
a well known formula for the modular invariant. It is
illustrated on Fig. 1. See also [7] where the partition
functionsZ,,, for a diagonal theory, cf. (5.1), appear
computing boundary partition functions for tensor
product theories.

Let us illustrate (5.2) with the simplest example
Dg4. ThereV has 8 elements, but one finds only 5
independent matrices

100 0 1
00000
vit=]10 0 2 0 of,
000O0O
1000 1
0 00O
10202\
vi’=|0 0 0 0 Of,
102 01
00O0O0O
0010
000O0O
Vvil=vi*=|1 0 1 0 1},
00000
00100
0 00O
01010
vi°=W'=V8=|0 0 0 0 o],
01010
00O0O0O

161
0101
~ 000O0TO
vi=]l0 2 0 2 0 (5.3)
000000
01010

Here the labels 12, 3,4 and 56, 7, 8 refer respec-
tivelytoy =0andy =1in (5.2).

To any of thesal (2) cases Ocneanu hag associated
a graphG with a set of vertices given by. These
graphs are generated by the pair of adjacency matrices,
Vo1 and Vi.o. For example in theDy, cases in the
basis used above\?zl is block-diagonal, withny
appearing twice in the diagonal, while 1711,2 these
two blocks appear off diagonally. Such graphs have
been also constructed in some highér 2 E?(n) cases
[2,3].

The minimal ¢ < 1 theories are intimately con-
nected to thes7(2) ones, as is well known. For the
theory of central charge= 1 — 6(g — h)2/gh classi-
fied by the pairA;,_1, G), with 2 odd, andg the Cox-
eter number o6, the sefZ of Virasoro representations
(r,s)isrestrictedby Kr<h—1,1<s<g-1land
we choose odd. Then the twist labels are of the form
(r, x), x atwist label of the correspondi@g(Z) theory
labelled byG and
V(rs)(r’s’); 1

r,r’,r” odd

V(G) X

(r//’x) _ N /r//
rr ss’;1

(5.4)

in terms of the fusion matrices, Qf s7(2)h_2 and of
the V(©) matrices of thes case ofs/(2),_ discussed
above.

6. Examples

Some of the twisted partition functions of minimal
models have been already encountered, and have a
simple realisation in the corresponding lattice models,
in terms of defect lines or of twisted boundary condi-
tions imposed on the lattice degrees of freedom. In par-
ticular, when the underlying lattice Hamiltonian has
some symmetry under a discrete group, one may use
any element of this group to twist the boundary condi-
tions along a lineZ, and the invariance of the Hamil-
tonian guarantees the independence with respect to de-
formations ofC [8]: this is the lattice equivalent of the
property (2.2) above.
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Consider for example the critical Ising model:
this is a diagonal minimal model described by three
representations of the Virasoro algebra. Here we
depart from our previous conventions and denote

the representations by their conformal weight,%o,
andl—le. By the previous discussion, we know that there
are three possible twists, whose matvix is given by

the ordinary fusion matrixV,. The one labelled by 0
corresponds to no twist at all, and the two others lead
to a partition functiorZo), which reads

chargew or & for the Potts spin and parafermion, 1 for
the othersZy s is what was denoted “T” in [5].

7. The N algebra

In the diagonal case, formula (5.1) implies th%ﬂ
are linear combinations df;*, i.e.,

7,5 = 3 NS
X
This formula generalises to other cases, the Verlinde

matrix being replaced by a new nonnegative integer
valued matrixV,,*. In terms of the partition functions

Zoy = |Xo(é)|2+ |X%(é)|2 - |Xli6(é)|2

2
= x0@)x3@)" +cc.+[x 1@, (6.18) e have
~\ 12 ~
Zos = |Xo(q)| |X%(CI)| Zy|z=Z Nyx*Zyx, (7.1)
X
J— %
= (xo(q) + X1 (61)))(1;6(61) +c.c (6.10)  Lhere
Other partition functions are then obtained by fusion lp By .
. . N G,Jsa.B) U, Jsay)
in the sense thaZ,|, = 3", Ny,*Zoj,. In this case,  Nyx" = Z Z v, e ﬁ‘l’z] POVIE,
only Z% L= Zojo+ ZO|1 is distinct from the previous jejsa By L2 (7.2)
ones.

The physical interpretation of thg form of (6.1a) ' "€ matricesy := (V) form an associative al-
is clear: the three primary operators of the theory are gebra . N =2 ny N: (‘fusion algebra of de-
weighted by theitZ, charge. This is the well-known fect lines”). It is noncommutative whenever the cor-
partition function of the Ising model on which periodic responding modular invariant matriZ has entries
boundary conditions are imposed on the spin in one larger than 1, like, e.g., in thel(2) Dzz cases In the
direction and antiperiodic ones in the other [5,8]. In commutative cases, (7.2) reduces to the spectral rep-
contrast, (6.1b) doesn't seem to have been discussedesentation ofV. It is easy to check that in all/(2)
before. In general, Eq. (5.4) |n the diagonal case CasesN,.® in (7.2) are indeed nonnegative integers.

G = Areproducesfor”=1,x=s"=g—1,g even,
the Z, twisted partition functions due to antiperiodic
boundary conditionsin [5,8], see also [9]. The physical

This holds true in general and finds a natural explana-
tion in the framework of the subfactor theory [2,3].
The representations of this fusion algebra are la-

meaning and implementation in the lattice model belled by(j, j), such thatZ,; # 0, and appear with
of the others is less clear and would require some Multiplicity Z;-, i.e., they are in one-to-one corre-
further investigation. See, however, reference [10], spondence with the physical spectry j; «) of the
where new Boltzmann weights that preserve Yang— bulk theory. It turns out that a subset of the struc-
Baxter integrability and commutation of the transfer ture constants of the associated (commutative) algebra
matrices are inserted recovering the diagonal series‘dual’ to the ﬁ-algebra relates to the squared moduli
with V;;.1% = N;;~. of the OPE coefficients of the physical (local) fields,
A similar discussion of the 3-state Potts model, clas- [6,12]. Thus all the information about the bulk the-
sified as(A4, D4), follows easily from the formulae  ory is encoded in the eigenvector matricEsof the
(5.3), (5.4) above. The resulting ten independent par- Ocneanu graphSN; We recall that the graphé, G
tition functions have been listed in TableZj); is the and the varlous muluphcmes — the sets of integers
standard modular invarianfy3 the one studied in [5, Nij ,nja”, Vijix ,N,CV ac? — are related to the
8,11] and denoted “C” in [5]: it corresponds to the as- existence of a quantum symmetry of the CFT, the Oc-
signment to each operator of the spectrum ofZts neanu “double triangle algebra”, [6,12], studied in the
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Table 1
Twisted partition functions of the 3-state Potts model

Z11 = 1x21@) + x1.5@ + x3,5@) + x3.1@)1* + 2/ x2,3@) 1 + 2x33(0) I
Z12 = (x1.2(@) + x1.4@) (x1.1(@) + x1.5@) +2x1.3(@0)) " + (x3,2(@) + x3.4(0)) (x3.1(@) + x3.5(@) +2x3.3(0))"
=V3((x1,1@ + x1.5@) (x1,1@ — x1,5@)" + (x3.1@ + x35@) (x3,1(@) — x3,5()*)
Z13 = Z1a = ((x1.1@ + x1.5@) x1.3@* + (x3.1(0) + x35@) x3.3@)* +¢.¢) + [x1.3(@) %+ 1x3.3(9) 2
= 1x1.1@ + x1.5@P + 1x3.1@) + x35@1% ~ 1x1.3@1 — 1x3.3@)I*
Zys = Zy7=Zyg = x12(q) + )(1,4(61)|2 +1x3,2(q) + )(3,4(61)|2 =x1,1(q) — )(1,5(1?)|2 +1x3,1(4) — X3,5(67)\2
Zue = 71
Z1j0 = (x1.1(@) + x1.5@) (x3.1@) + x3.5(@)" +c..) + 1x3.1(@) + x3.5@)[* +2(x33(@) x1,3@)* +c.c.) +2/x33(9) I
=2(x1.1@ + x1.5@ 17 + 2x1.3@)1%) — ¢ H1x3.1@) + x35@)1* + 21x3.3@)1°)
Z110 = (x3.2(@) + x3.4@) (x1.1(0) + x1.5(@) + x3.1(0) + x3.5(0) + 2x1,3(0) + 2x3.3(0))"
+ (x1.2(@) + x1.4@) (x3.1(@) + x3,5(9) + 2x3,3(9)) ™
=3¢ (x1,1@) — x1,5@) (x1,1@) + x1.5@)* — V3 (x31@) — x35@) (x3.1@) + x3,5@))*
Z111= Z1112= (x3.3(@) (x1.1@) + x1.5(@) + x3.1(@) + x3.5@) + x1.3@))" + x1.3@) (x3.1(9) + x3.5(@)* +¢.c.) + x3.3@)I?
=2(x1.1@ + x1.5@ 1% = 2x1.3@)1%) — ¢ H1x3.1@) + x35@)1% — 21x3.3@)1?)
Z1113 = Z1115 = Z1116 = ((x3.2(@) + x3.4@)) (x1.2@) + x1.4(@))* +c.¢.) + |x3.2(@) + x3.4(9) 12
=21x11@ — x15@1% - ¢ Hxa1@) - x35@)1

_ *k
Z114= Zq)10

The labels(r, s) of characters label as usual the Virasoro representatioass| ¢ = 6); ¢ is the golden ratiq1 + +/5)/2.
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