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Abstract 

In this paper, we pursue the discussion of the connections between rational conformal field 
theories (CFT) and graphs. We generalise our recent work on the relations of operator product 
algebra (OPA) structure constants of s/(2) theories with the Pasquier algebra attached to the 
graph. We show that in a variety of CFT's built on s l (n)  (typically conformal embeddings and 
orbifolds), similar considerations enable one to write a linear system satisfied by the matrix 
elements of the Pasquier algebra in terms of conformal data (quantum dimensions and fusion 
coefficients). In some cases this provides sufficient information for the determination of all the 
eigenvectors of an adjacency matrix, and hence of a graph. 

PACS: I 1.10.Kk, 02.10.Tq 

1. Introduct ion 

In this paper we explore further the connections between rational conformal field 

theories and graphs. The idea inherited from the earlier work of  Pasquier [ 1 ] is that 

there are tight connections between some features of  rational conformal field theories 

based on s l ( n ) ,  typically W Z W  models and the corresponding minimal cosets, on the 

one hand, and generalised lattice "height" models based on graphs, on the other. The 

most conspicuous of  these connections lies in the spectra l  properties of  the two kinds 

of  theories: the same s l ( n )  weights that label the spin zero fields of  the CFT also label 

the eigenvalues o f  the adjacency matrices of  the graphs [2] .  
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This connection has been strengthened by the recent observation [ 3 ] that it extends to 
the level of operator algebras: in s/(2) theories, the ratios of structure constants of the 
OPA of spin-zero fields pertaining to a pair of CFT's of identical level are given by the 
structure constants MA~" of an algebra intrinsically attached to the graph. This algebra, 
which we call the Pasquier algebra, has structure constants given by a Verlinde-like 
formula, in which the components of the eigenvectors ~/, of the adjacency matrix of the 
graph replace the modular S matrix: see below for a more precise expression. 

These considerations assumed the knowledge of the graph. In [2], graphs relevant 
for the case of sl(3) were found by empiric ways, essentially by trial and error. The 
purpose of this paper is to show that, at least in a restricted class of CFT with an extended 
chiral symmetry algebra, the previous connection between the structure constants and 
the Pasquier algebra may be inverted. Data of the CFT enable one to determine the 

structure constants M of the Pasquier algebra, the diagonalisation of which yields the 
eigenvectors ~ and thus the adjacency matrix and the graph. 

This paper is organised as follows: after introducing in Section 2 some notations and 
some basic properties of the graphs, we shall study in Section 3 the operator algebra 
of conformal theories associated with conformai embeddings and propose an equation 
that connects conformal and graphical data. This will be probed in Section 4 on various 
examples. Section 5 uses the theory of "C algebras" to obtain more explicit relations 
on eigenvectors of the adjacency matrices. Two appendices present one further example 
and a discussion of the sl(3) block-diagonal D series. 

2. Notations 

This section is devoted to a summary of notations and concepts introduced in our 

former work. 

2.1. On CFT's 

Working with the sl(n) algebra and its affine extension ~(n)k,  at a certain integer 
level k, we first introduce some Lie algebraic objects. Let ,'tl . . . . .  ,4n-I be the funda- 
mental weights of sl(n). (The hat is intended to distinguish them from the later notation 
A for a pair of weights.) Let p = .41 + . . .  + An-l be the sum of these fundamental 
weights. Since in a WZW theory, the weight p labels the identity field, we shall also 
occasionally denote it by 1. The set of integrable weights (shifted by p) of the affine 
algebra sl(n)k is 

7='<k+"~={a=~;X~+ .+a._,2,_~la, cz.a;>~l.~a;~<k+n-I} 
+_1_  . ,  

i 

(2.1) 

We shall encounter the Zn group of automorphisms of this set of weights, generated 

by 
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a = ( a t ,  a2 . . . . .  a n - t  ) ~ o ' ( a )  = ( n  + k - h i  - -  . . .  - & , - t , / ~ 1  . . . . .  / ~ n - 2 )  • 

(2.2) 

We also make use of  the n (linearly dependent) vectors ei 

e ,=Jl , ,  e i = A i - £ ' - , ,  i = 2  . . . . .  n - i ,  e,, = -/~,,_, (2.3) 

(the weights of  the fundamental representation of  highest weight ,']'I ) and of  the sym- 
metric bilinear form on weight space 

I 
( e i ,  e j )  = 8 0 -- - .  (2.4) 

n 

We shall be mainly considering the WZW model with a current algebra .~(n) k, or 
the simplest coset CFT's  

. ~ ( n ) k - i  x s t ( n ) l  

.~ l ( ' )k  

also called the "minimal Wn models". In the WZW theories, primary fields are labelled 
by a pair of  integrable weights at level k, and this pair is denoted by a capital A 

= "o~k+") ( 2 . 5 )  A (a ,~ , ) ,  a,~. 6 --++ . 

In the coset theories, we rather need two such pairs at level k and k - 13 

(( - ' v ~k~"~ a ' , ; (  z '~k+"-I~ a , a ) ,  Ca , ~ ' ) ) ,  a , ~  c _ ~ +  , c _ + +  . 

In fact, as in [3] ,  we shall concentrate on the "thermal" fields, for which A' = A' = p, 

and thus label simply these fields by the same notation A as in (2.5).  
As in any CFT, the way the left and right representations of  the chiral algebra (affine 

or Virasoro or more generally Bin) are coupled to produce the primary fields of  the 

theory is encoded in the genus-one partition function 

Z = Z.IV'aa xa(q)xa(gl). (2.6) 
a,a 

Classification of  such modular-invariant partition functions has been accomplished only 

in a few cases [4 -6 ] .  In Eq. (2.6),  we have made use of  notations relevant for affine 
algebras. For coset theories, it is clear that a large class of  solutions is obtained through 
the factorisation of  the matrix A/" into those of  the factors of  the coset 

In principle we should use three pairs of weights 

(~ a, a). (a'. ~'), ~a". ~") ) ,  a,a ~ "p~y k~ , a', ~' E p~+".+ +t-~' . a", ~" ~ ~+. +~' 

However, we can make use of  the Z,, automorphism o" of  (2.2),  and of the fact that in the coset theory the 
pairs ( a, a '  ) and ( A, A' ) are determined modulo a diagonal action of  o', to rotate a " ,  ~." to the standard 
value p. 
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co~t _ A/ ' ( k )A / ' ( k -  1 ) ~a.,e),(,~,~,) - - a J  - a '~ '  (2.7) 

(see [7] for a thorough discussion of  all the possible solutions) but we shall consider 

solely the cases in which the level ( k  - 1 ) invariant is "trivial" 

A/'(coset _ A/'(k),,~ . a.a,),(,L,~,) - " a ~  ~a,a, • (2.8) 

In general, we find it appropriate to distinguish between the two cases of: 

(i) Type I theories for which the partition function (2.6) may be recast as a sum of  

squares of  sums of  characters 

Xa 2 
z = Z Z (2.9) 

i 

(ii) Type II theories for which this rewriting is impossible without the introduction of  

signs 

Z = Z + • (2.10) 
T "  

The former case signals the existence of  an extended chiral algebra, generated by 

holomorphic fields that appear in the block of  the identity, and whose irreducible repre- 

sentations labelled/3i decompose into irreducible representations of  the current algebra 

as shown in the expression of  Z 4. The latter cases that concern us less in the present 

paper are known to be related to some of  the former by a twist of  the right sector with 

respect to the left one according to an automorphism of the fusion rules [8-10] .  

In many of  the subsequent considerations, we shall be discussing spin-zero fields, for 

which the left and right components are identical ~. = A. For those fields, we shall adopt 

a short-hand notation, using A. instead of  A = (A,~) .  We do of  course the same for 

chiral quantities, i.e. quantities intrinsically attached to a single component. This is in 

particular the case of  the fusion algebra whose coefficients are given by the celebrated 

Verlinde formula [ 1 ! ] 

Sa"Su~S*" (2.11 ) Na;= S,,, 
O" 

In contrast, coefficients, or structure constants, of  the operator product algebra (OPA) 

are not chiral quantities and depend in an essential way on the coupling between the 

left and right sectors. 

"=Some representations A may appear in Bi with a nontrivial multiplicity multB,(,~) E N, i.e. in (2.9) 
X~, = ZaE~ '++ mul t~ , (h )Xa.  
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2.2. On graphs 

165 

The second category of  objects that we shall be handling are graphs. When dealing 
with s l (n)  theories, we postulate that each of  these graphs ~7 satisfies the tollowing 
requirements: 

(i)  it is connected; 
(ii) it is symmetric, i.e. unoriented; 
iii) let V be the set of  vertices; to each a E V may be attached a Z / n Z  grading T(a) ,  

the "n-ality", and the only nonvanishing entries of  the adjacency matrix G (i.e. 
the only edges) are between vertices of different z. This enables one to split this 
adjacency matrix into a sum of n - I matrices 

G = GI + G2 + . . .  + G , - i  , (2.12) 

where G t, is the adjacency matrix describing the edges that connect vertices of  
n-ality differing by p 

(Gv),,b ¢ 0 only if r (b )  = r ( a ) + p m o d n .  (2.13) 

Accordingly, the graph may be regarded as the superposition on the same set 
of  vertices of  n - I oriented (except for p = n/2) ,  not all necessarily connected. 
graphs •t, of  adjacency matrices Gp, p = 1 . . . . .  n -  1. As a consequence of  (2.13) 
and of  the symmetry of G, the matrices G o are pairwise transposed of  one another: 

'G t, = G,,_ t, ; (2.14) 

(iv) there exists an involution a H a v on 1) such that 7"(a v) = - r ( a )  and 

(Gp)ab = (Gt,)bva'~ ; (2.15) 

v) the matrices Gp c o m m u t e  among themselves, in particular each G~, commutes with 
its transpose G._t,, hence is "normal", i.e. diagonalisable in an orthonormal basis 
common to all of  them; 

(vi) these common eigenvectors are labelled by integrable weights .A 6 7:'~+k+ +') for some 
level k, we denote them ~,~a) (a  E 1)), and the corresponding eigenvalues of G~, 

G2 . . . . .  G,,-t are given by the following formulae: 

i= I 

2i7r ) y~a)= ~ exp - - - - ~ - ( ( e , + e j ) , / I )  
l <~i<j<~n 

T(a) ( 2iw ) , - I  = Z e x p  ----~--((ei, + . . . + e i . _ t ) , h . )  , 

1 <~il < . . . i , , _  t <~n 
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),(a) (pa) * , (a ' )  
n-t, = ('Y ) = Y,, , (2.16) 

where h = k + n and ,~* is the conjugate weight (An-n . . . . .  ,~l ) ; some of  these ,~ 
may occur with multiplicities larger than one; 

p = ( I ,  1 . . . . .  l )  is among these ,~, with multiplicity l: it corresponds to the 
eigenvector of  largest eigenvalue, y)f)  /> ['),tpa) l, the so-called Perron-Frobenius 

eigenvector; its components Ca (p), a E ~), are nonvanishing and positive; 
the graph ~j admits at least one extremal vertex, i.e. a vertex on which only one 
edge is ending and from which only one edge is starting. This vertex is denoted 1 
and we put two additional requirements on it 
(a) I v = 1, and thus r ( l )  = 0  5, 

(b) all the components of  the ~b relative to this vertex are nonvanishing and 
positive: VA ~I a) > 0. 

As a consequence of  item (a) in requirement (viii),  the two points connected to I 
are conjugate to one another under the involution and will be denoted, respectively, a/ 
and a~. 

For the benefit of  the reader who is not convinced by the naturalness of these re- 
quirements, we shall point out that the graphs Gr, respectively, their adjacency matrices 
(Gt,).b, are natural extensions of  the fusion graphs, respectively, fusion coefficients of  
the n - 1 fundamental representations of  sl(n)k; in that particular case, 1; = .ptk+.) - - + +  , 

~" is the natural Z / n Z  grading of  representations of sl(n) (number of  boxes of the 
Young tableau modulo n),  while the involution is the conjugation of representations; 
the commutation and spectral properties of the Gp are also natural in that case, with the 
expressions (2.16) following from the Verlinde formula, together with the explicit form 
of  the modular matrix S; in that particular case, ~b = S. 

In the case n = 2, the only graphs satisfying these conditions are the ADE Dynkin 
diagrams [ 12] and the weights ,~ labelling the eigenvalues are the Coxeter exponents. 
For n = 3, some graphs have been found satisfying these conditions, see [2].  By 
extension of the s / (2)  situation, we call again "exponents" the corresponding ,~ and 
denote their set by Exp. It is a simple consequence of  Eq. (2.13) that the set Exp is 
invariant under the automorphism (2.2) and that the eigenvectors may be chosen so as 

to satisfy 

(vii)  

(viii) 

- e  ¢~ . (2.17) 

These graphs are not, however, in general, fusion graphs. This is evidenced if out of 
the set of eigenvectors ~O~ a) and their complex conjugates ~0~ a)*, satisfying 

Z @(a'~) d'JtaV'* =t~Av" Z ~b(a'~) ~J~'~)" =~ac, (2.18a) 
aEV ,~EExp 

t~(a) = ~pat a) .  = ~O~,~" ) (2.18b) t/x/ 

Although assumption (a) is not satisfied by all graphs that we know, it ,seems to be met by those that are 
relevant in the context of the present paper, namely tho~ of type I. 
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one lbrms the following two sets of  real numbers: 

dt(~.) ,/,(P.) ,t,(v) * M a ;  = ~-~ v-a wa Wa 
, ~ v  ¢(~P) ' (2.19a) 

,I,(.~ ) .I,( A ) .I,( ,~ ) * 
N,h ¢ -  - , . _ ,  ¢ , { a )  (2.19b) "~'a "Yb V'c 

,~EExp 

These M ' s  and N's may be regarded as the structure constants of two commutative and 

associative algebras, dual to one another. They are two generalisations of the Verlinde 

lormula to which they both reduce in the self-dual case where ~p = S. Beside these self- 

dual cases, the M's are in general not integers but rather algebraic numbers, belonging 

to the number field generated by the ~b's. It is therefore surprising that in contrast, the 

N's are still found to be rational numbers, and in fact in most known examples they 
are integers. More precisely, there exists at least one choice of the vertex "1", and if 

some of the eigenvalues are degenerate, one choice of the basis ¢, such that the N's  be 

rational integers. This is an empirical observation for which no general proof is known 

to us. Note that we can identify the graph (that is, the set of vertices and the collection 
of arrows associated with any G v) with the set of matrices {Nt,} and the action of any 

@, defined as the (left) matrix multiplication. Indeed we have 

N,, = ~ ( G t, )ahNh, (2.20) GI, 
b 

which is obtained inserting the r.h.s, of (2.19b) for (N,,)~, = N,~t,, exploiting also the fact 

that G/, is diagonalised by the same eigenvectors, i.e., ( G v ) ~  = Y'~-aEExp ~'(a)'t'(a)'t'(a)* l ip  "f'h "~(: ' 

and using the first orthogonality relation in (2.18a). Taking in the l.h.s, of (2.20) the 

identity matrix Ni we see that the Gp belong to the algebra of N matrices and are 

in fact linear combinations of these N matrices with nonnegative integral coefficients. 
Also it is easy to prove that the N algebra is Z, graded i.e. that NCab 4= 0 only if" 

r ( c )  = ~'(a) + r ( b )  modn as a consequence of the invariance of the set Exp under o" 
and ot" the transformation (2.17) of the eigenvectors. In particular Gt and Gn-j coincide 
with the matrices N,,~ and Nay, respectively, because of (viii) above. The fact that the 
adjacency matrices are found within the N algebra will be used below. 

These graphs are relevant for two related problems. First, they are believed to allow 

the construction of generalised height (or RSOS) integrable and critical lattice models. 
This is true for n = 2 [1] and has been verified also in some cases of n = 3 [2,13], 

but it is likely that the previous conditions are not restrictive enough in general. On 

the other hand, these lattice models are related to the previous topic of s l (n )  CFT's 
insofar as their continuous limit is described by the minimal cosets above. Again, this 
is convincingly demonstrated only in the case of s/(2),  whereas the other cases rely on 

several empirical evidences. 
(i) The first of these evidences is that the same set of integrable weights of .~'l(n) 

at level k that label the diagonal terms of a modular-invariant partition function 
(2.6) also describes the spectrum of eigenvalues of one of the graphs ~7. 
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In fact it appears that not all modular-invariant partition functions of sl(n) 
WZW theories may be matched with a graph. For example, no graph satisfying 

the conditions above can have a spectrum Exp matching the diagonal terms of the 
infinite series of modular invariants of st(3) for a level k not a multiple of 3 [ 14], 

z = ~ Ix~12 + Z x,~x,%k,,a, a ,  k/> 4,  (2.21) 
,~ E Qn,p¢.$ k, a E'r",",' "\O 

where Q is the root lattice of st(n). Indeed the only diagonal terms in (2.21) 
come from the first sum, and the set Q n _++'Den+k) is clearly not invariant under the 

action of o-, in contradiction with a property of the sets Exp, see above. Another 

counter example is provided by the conformalembedding of/~8 into Es, both at 

level I. There is only one representation of E8 of level 1, that decomposes into 
three representations of/~s, viz. p, ,~3 = P+,/13 and A6 = P + - / / 6  [ 15]. The partition 
function reads 

Z = IXp + Xa~ + Xa~l 2. (2.22) 

As there are only three contributing representations, a possible graph satisfying 
the axioms of Section 2.2 must have three vertices and cannot satisfy (2.13) for 

p = l .  

As far as we can see, there are two possibilities at this stage. One may try 

to relax some of the conditions that we have put on the graphs. For example, 

demanding that (2.13) holds in a weaker form, with mod n replaced in the r.h.s. 
by mod m, where m is a divisor of n, would allow one to accommodate the 

case (2.22) above, in which Gi = G4 = GT, G2 = G5 = Gs, G3 = G6 = 1, 
and m = 3. Accordingly the set of exponents is invariant under the subgroup 
Z3 = { 1 , 0  -3, 0 "6} of Z9. We shall not pursue this line here. Alternatively, we 

may decide to concentrate on those modular invariants that are relevant tor the 

coset theories, see (2.8). It is known [ 16] that the only branching functions (or 
characters) of cosets G × GIG that do not vanish are those for which, with our 

notations of Section 2.1, A - ,V - A" + p belongs to the root lattice Q. For a 
modular invariant of the form (2.8), this implies that A - A has to belong to Q, 
which is not the case for the two counter examples above. This is this attitude, 

which is consistent with the general belief that the graphs are deeply connected 
with the lattice models, hence with the coset theories, that was adopted in [ 17]. 

(ii) The second evidence was pointed out recently in the case of st(2) theories [3]. If 
one computes the ratios of structure constants of spin-zero fields in two theories 
o f  identical level, say for the D or E type of theory over the A theory of same 

level, one finds that 

D(D) or (E)  

(,~a~(u#~(,,,,) (2.23) Maul, = D(A) 

(The reader is referred to [3] for a precise definition of the constants D.) 
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(iii) The last evidence was presented in [ 17]. There it was shown that for a given 
graph and the corresponding modular invariant identified through the observation 
(i) above, there is an empirical coincidence between the nonnegativity of  the 
Ma~' and Nob c coefficients and the property of  the corresponding modular-invariant 
partition function to belong to type I defined in (2.9).  Then it was shown that for 
those graphs that have the structure constants N and M nonnegative, there exists 
an algebraic way to determine the partition function of the corresponding CFT. 
This was based on the theory of  "C algebras" that will be reviewed and used in 
Section 5 of  the present paper. 

In the present paper we want to extend the discussion of  the second point to sl(n) 
theories, n > 2 and show its relations with the last point. 

3. Duality equations and constraints on the M algebra 

Let us consider one of  the euclidean 4-point functions 

(¢, t;. (xl)¢'A: (XZ)"PA, (X~)4% (X4)) 

in the minimal 14,', theories [18].  Here as explained above Ai = ( A i , ~ i ) ,  with hi,~i E 
T'~_ ~''), label fields of the subalgebra of "thermal" fields. The label should furthermore 
include some index to distinguish fields with the same pair of  sl(n) weights, but for the 
time being we shall exclude the cases with such degeneracies. Denote by /ka = /ka-, 
/k~ the conformal weights of  the field CbA and hence by s(A) := ~ a  - / k ~  E Z its spin. 
Thc physical fields decompose into chiral vertex operators (see, e.g. [9 ] )  

d A ~ : ~ t ' h ( A s ) (  ( A5 ) (zT.) IA2) , q,,,(=g)lA2) =~--] A,~., \a,a2J, z) ~ ~a2 
15 
t.i 

(3.1) 

As 'A  NaS with structure constants dAi~2 (A = (t,  f ) ) ,  d]t  = I. The index t = 1 , 2 , . . . ,  a,a,, labels 

basis in the space .-Vaa,~, of  chiral vertex operators. To simplify the notation this index a 

is omitted whenever it takes only one value, e.g., Nata. = Naal = I; N a~a,a2 = dim V a~a~a., is 
the Verlinde multiplicity (2.11 ), 

a, at M a~ Nala. , = Na;a, = Nasa ~ = Na,a; . (3.2) 

The requirement of  locality of  the physical correlation functions leads, taking into 
account the braiding properties of  the chiral vertex operators, to a set of equations for 
the structure constants d~!~.  In particular exchanging the two middle fields and selecting 
the contribution of  the identity ,~6 = ~.6 = 1 = p in the intermediate channel we have 

Z (  _ [ )s(A, )+s(AO dA,;B dAs;a Fa,.a2 -ffa_,.a: .,.(A,) • a, 'A, A,a, a~.(r.t):l a,(e.t-)l = ( - l )  " d~ild.l,;t2" 

. . L i t  

(3.3) 
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-- lTat .az In (3.3) F (F) denote particular elements of the left (right) fusion matrix, as.<~.o..~.(~.,P 
namely those for A6 = 1. Upon suitable normalisation, such that the diagonal structure 

"4As:<t'~ = 6t./, we can choose, whenever NaSa. , #: constants (A i  = (Ai, Ai) ) are given by "ala., 
0, 

[ 
FAaJ.a2 a, ~ /  Das 

s , ( r , t ) ; i  = ~r127~(r),t'eAiA2 : =  ~¢&2s(r).t" vDa'Da2 " (3.4) 

Here Da is the quantum dimension, defined by a ratio of  s l ( n ) k  modular matrix elements, 

Da = S a t / S t l .  In (3.4) oq23(r) is the image of the basis element in V ~  2 labelled by 

r under the mapping o,23 - o-,3o,2: V~ ~ tr,3V~.~, = Vffu and t* labels an element 

in V az a;a5 with complex conjugated matrix elements (see [9 ] ) .  From (3.4) and the fact 
that the quantum dimensions form a representation of the fusion algebra, it follows that 

( l.7.at.a2 ,~ 2 

as t.r 

1 ~ N a~- Da~ • 1 ~ D a ~ -  Da, Da: 2.~ ala2 . =1  
Oa, Da2 as.t as 

(3.5) 

There exists a basis such that upon complex conjugation 

AiA2 J =~a~a~ (3.6) 

Choosing dtA.a = ( - - I )  ~(A), we have furthermore (from the locality of  the 3-point 

function and the above choice o f .  as.~ t) t ,  

dA,;t~ l )s(Ai)+s(As) rla~;trlz3(B) 
az..t~ = ( -  " - a~ a~ , 

and hence (3.3) simplifies to 

(3.7) 

~ ~ Z  "4As;A 2FA' F-L'- = 1 (3.8) 
t~AIh2 ala 2 ala 2 • 

.I~ t.? 

There is still a "gauge" freedom left in determining the constants dA: a transformation 

P , '  ® Pi~' by an unitary matrix P , ,  keeps invariant Eq. (3.3) and the chosen normali- 
-I <~'~) coincide with the relative structure sations 6 . In the s / (2)  case the constants -(a,a)(u,u) 

constants represented by the r.h.s, of  (2.23).  
We shall make now, following the idea in [ 19], two assumptions which were justified 

in the s / (2)  case [3] by the explicit solutions of  the duality equations. 
Consider a theory described by a modular-invariant partition function of  type I (2.9),  

and denote alternatively by {A} the representation ~i of  the extended algebra, if A 
appears in its decomposition with respect to s l ( n ) k ;  recall that the dimensions A,~ for 

A E {A} differ by integers. Each field operator in these cases is described by a pair 

The matrices P may depend on the triplet of weights, i.e., P = Pa~a2. The general duality equations 

are covariant when transforming both d and F. Furthermore they are invariant under the change d a~:a AIA2 
,Is;A /x I~ ~ t, fz I~ dai A,." ]~,t[ = I, which preserves the 2-point function normalisation. 
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of weights (A,~) such that both ,~,~ E {,~}. We shall make a frequent use of this 
feature, carrying out the summation over pairs of weights (like As in (3.8)) in two 
steps: a summation over blocks and a summation over weights within that block. We 
shall assume that in all nondiagonal cases associated with conformal embeddings the 
constants d A factorise according to 

N(at} dA~; A 12 - ~  (a,)la,) Z -as = Mala2 M~I~ 2 , J A~A.I (3.9) 
t,i 

where m{a~) *" { a, } {a2 } are the Verlinde multiplicities of the extended theory, Ai, ~i E { Ai}, and 

a,a: are some real constants. They are defined only whenever N]~a2 v~ 0, N{a,}{a2} ~: 
0, and will be considered to be identically zero otherwise. The above formula, which 
allows one to block-diagonalise (3.8), makes sense in the diagonal case as well. Indeed 

. (a~} coincides with the Verlinde multiplicity and (3.9) reduces to in that case N(a~}(a2} 

/~a, = N at In the nondiagonai cases related to conformal embeddings of sl(n)k into h~a2 Ate2" 

a simple affine KM algebra fi at level 1 the multiplicities re{as} take the values 1 0 "{a~}{a2} 
in all cases. 

We insert (3.9) into (3.8) and make now the second assumption that the quantity 

{a,}{a2}/'(a,}{a2} := ~ a,a2 a~a~ (3.10) 
ate{as) 

depends on Ai 6 {al}, ,~z E {,~2} only through the equivalence classes {,~t }, {a2}. 
With these assumptions Eq. (3.8) implies 

1. (3.11) ~v{a,}(a2} ,,{a,} = 

{a.,) . To be a function of the classes {a,}{a2}, Fia,}{a2/ has to be representable in all 
- -(a.~} 

possible ways by the M's according to (3.10). Thus given/'{a,}{a2}, satisfying (3.11), 

we get a linear system of equations for the unknown Ma~a2. 
{as} , The factor F~a,}{a2~ in the l.h.s, of (3.10) can be interpreted as the counterpart in the 

extended theory of the particular fusion matrix elements in (3.3) and (3.4); accordingly 
we can choose 

Fiat} ~/ D{at} (3.12) 
{a,}(a.} = D{a,}D{a~} ' 

1 

where D(a} = S{a}{i}/S{u{i } is the extended quantum dimension expressed by the 
extended modular matrix S{a}{u}. The set of Eqs. (3.11 ) follows from the requirement 
of locality of the diagonal correlators of the extended theory and (3.10) can be seen as 
a consistency condition for (3.1 I) to hold. 

This kind of argumentation can be extended as discussed in the third appendix ot" 
Ref. [3]. Namely starling from the general system of equations implied by locality one 
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can recover the full fusion matrix of the extended theory and convert the initial duality 
equations to the extended ones. Accordingly a more general factorisation assumption, 
replacing (3.9), can be made for the constants d a themselves before a summation over 
A. However, the resulting set of equations for the chiral "halves" of d a , which would 
replace (3.10), involves the unknown general fusion matrix elements F a"a'- A~,( t,r ) ;A6,( s,u ) " 
Thus, although the full extended fusion matrices are simple and in principle known 

(recall that the level of the extended algebra is k = 1), this system cannot be effectively 
used to lind the unknown structure constants d, as has been done in the rank 1 case 

(see Appendix C of [3]) .  Our strategy in what follows will be to study instead the 
simpler Eqs. (3.10) for the matrices M. The knowledge of the latter provides partial 
information about the structure constants d and completely determines them whenever 
the corresponding Verlinde multiplicity is equal to I. 

Remarks  

(i) As suggested by the example ~(2)4  C ~(3)1 (i.e., the "D4" case), in which 
there is a degeneracy of fields, we cannot expect the factorisation (3.9) to always 

hold in the "unitary basis", i.e., for d A satisfying (3.6). Indeed, in that case as 

well as for the whole Deven (sub)series k = 4 mod 8, the basis for which the 

relative structure constants are real (recall that A* = A in the s/(2) case) excludes 
the appearance of more than one of the "doubled" scalar fields in any product of 

fields and the d 's  do not factorise. Complex linear combinations of these real scalar 
fields yields a pair of mutually conjugate fields and complex structure constants. 

The latter satisfy a generalisation of (3.6), which takes into account the hermitian 

conjugation of the two new scalar fields. Only in this basis the factorisation 

(3.9) takes place. Assuming that similar considerations extend to higher rank 

we shall use (3.10) also in cases with degeneracies of the exponents. With a 
slight abuse of notation we continue to use {)t} for the different representations 

of the extended algebra containing the sl(n)k representation ,~. However, in all 
concrete examples a clear distinction will be made, adding an additional index 

to A so that no confusion arises. The same will be done when h. appears with 
a nontrivial multiplicity mult{a}(a) in a given representation {A}; in expressions 
like the r.h.s, of (3.10) it will be assumed that the summation runs over all such 

exponents, i.e., ~-~a~{a} (-" ") = ~a~7~,"~ mult{,q (A) ( . . . ) ,  thus accounting for the 
multiplicities. In fact in most of what follows (with the exception of Appendix A 
and Section 5.4) we shall restrict ourselves to the cases with trivial multiplicities, 

mult{a}(A) = 0, !. 
(ii) We recall that in an appropriate basis the factorisation (3.9) holds true also in the 

s/(2) block-diagonal Deven series - whenever the structure constants involve the 
fixed points of (2.2). Furthermore the remaining constants factorise similarly to 
(3.9), but in a weaker sense, up to a nonchiral 6-function factor in the r.h.s., due 
to an intrinsic Z2 grading of the 2-dimensional OPA [3]; also the extended mul- 
tiplicity does not appear in the analog of (3.9). Although a block-diagonalisation 
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of (3.3) of the kind performed above is impossible in general, (3.11) can be 
effectively recovered, since the (chiral) equation (3.10) is still valid. The only 
difl'erence is that the extended multiplicity ~{'~} in (3.10) and (3.11) can "'(~,}{a~.} 
take also the value 2. 

Combining (3.4) and (3.12) we rewrite (3.10) 

j = Ma,a ., al E E {a2} 

(3.13) 

This system of Eqs. (3.13) that has been derived for the thermal fields ot" IV, coset CFT 
can be analogously derived for the sl(n)k WZW models. 

The constants /~ will soon be shown to be identical with the structure constants 
M (2.19a) of the Pasquier algebra. Apparently the input in (3.13) is very simple - 
we need the fusion rules of the extended theory and the quantum dimensions of both 
the extended and unextended theories, all of which are known, being expressed by the 
modular matrices of the corresponding WZW models. The unextended fusion rules are 
also implicitly taken into account since Ma,a. , -- 0 If Nala, = 0. In fact this simplicity of 
( I I ) limits its applicability since in general the set of independent equations in ( I I ) is 
not suflicient to determine completely the constants M~ia 2 for all values of the couplings 
(hi . A2, h3); rather we get some relations between these constants. Yet there are some 
examples, to be discussed in the next section, in which the above data provide a full 

solution. 
As suggested by the De~e. sl(2) case, the formula (3.13) might actually apply to all 

type I Iheories, though related in a more subtle way to the duality equations of the CFT, 
since some substitute of (3.9) is required. We check and confirm this conjecture in 
Appendix B for the block-diagonal sl(3) modular invariants of the D series, comparing 
with the results in [20,17]. 

4. Examples of solutions of (3.13) 

Let us illustrate the previous considerations on the case of nontrivial sl(n) k theories 
obtained by contbrmal embeddings into a simple aftine algebra ft. The latter have been 
classified 121], see also [15,16]. The algebra sl(n) may be conformally embedded 
into a few exceptional algebras, necessarily of level 1, and there are (restricting to 
cmbeddings into simple algebras) four infinite series of conformal embeddings 

s / ( n ) n _ 2 C . ~ ( n ( n 2  1) ) 

"(l( n)'+2 C sl( n(n + i ) ) 2  

• ~I(2n)2, , C .~b(4n 2 - 1 )~ , 

, n / > 4 .  
I 

I 

n ) 2 ,  
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M(2n + 1)2n+1 C ~b(4n(n + l ) ) l .  (4.1) 

We shall look for solutions Ma,a2 of the system of Eqs. (3.13), which satisfy the 
symmetry relations 

a,az = Ma~,a, = Ma~a~ = Ma,a~ ' 

Maa. = 1 = Maap, (4.2) 

in agreement with the symmetry of the structure constants d and (3.2). All solutions 
that we will find are consistent with the symmetry under the Z,  automorphism (2.2) 

t~,,~a3) ~a3 (4.3) a,,,(A2) = Ma,a2 • 

Recall that there is a general and explicit formula for the quantum dimensions in the 
s'l(n)k affine algebra in terms of scalar products with positive roots, 

sin ( (a ,  a)Tr/Ck + n)) 
Da = 1"I s in ( (p ,  o t ) ' rr / (k+n))"  

c t > 0  

They satisfy various properties like Da = Da- = D,,(a) and Da > 0 for integrable 
representations. The case s/(2) was considered in [3]. The system (3.13) is sufficient 
to recover all M -- M for the block-diagonal invariants labelled D4 (k = 4) and E6 
(k = 10), while the case Es (k = 28) requires considering a system of equations larger 

than (3.13), as discussed above. 
Let turn now to the case s/(3).  There are four values of the level, k = 3, 5, 9, 21, for 

which there exist modular invariants originating from some diagonal modular invariant 
of the embedding algebra. The ~ (3 )  modular invariant for k = 3 corresponds to the 

A 

embedding sl(3)3 C .~b(8)l, and it is also one of the invariants of the D series for 

k = 0 m o d 3  [22], 

Z~s/(3) ' = IXll --t- .)(41 --t- .)(14[ 2 --t- 31,I,~2 [ . (4.4) 

The integrable representations of £b(8)l, are given by the identity ( I ,  1, i, 1) and 
(2, 1,1, 1 ), ( 1, I, 2, 1 ), ( 1, 1, I, 2) (with standard notations for the so(n) weights). All 
have quantum dimensions equal to i and the charge conjugation is trivial. Their fusion 

algebra is of type D2 ~ Z2 x Z2. 

wi x w i = l ,  i =  1 ,2 ,3 ,  

w i x w ~ = w k ,  i 4: j 4: k v~ i. (4.5) 

The three identical representations (2,2)  of M(3) 3 are distinguished naturally by as- 
signing to each of them the index i inherited from the g'b(8)l counterpart. The only 
nontrivial s/(3) 3 quantum dimension is D2,2 = 3. The system reduces, after taking into 
account (4.2), to 

~(2.2), ! = )~cI.4) 
I = , , .  ( 2 , 2 ) , ( 4 . 1 )  ' ( 4 . 1 ) ( 4 . 1 )  ' 
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[ ~ ( 2 , 2 ) ,  1 
.... (2.2),(2.2)j ~ ,  for i # j :~ k 4= i, 

{ /~ f ( I , I )  ± ~(4.1) ~_ .~(1,4) ~ 1 (4.6) 
1 = \ , , ,  (2,2)d2.2), T l r l  (2.2)ff2.2)~ . . . .  (2,2)d2,2),] D(2,2) ' 

which implies using (4.2) again 

/~(2.2)~ v'~, for i 4= j ~ k 4= i,  (2,2),(2,2)j ----" 

/ ~ ( I , l  ) ~ ( 4 . 1 )  . . . .  j~(1 .4)  = I ( 4 . 7 )  
(2,2),(2.2), = zw (2,2)~(2.zh (2.2),(2.2), • 

The last two equalities in (4.6) incorporate the ~(3).~ fusion rule 

(2 ,2)  ® (2,2)  = ( I ,  1) E) (1,4)  @ (4, I) ~ 2 ( 2 , 2 )  

in a way respecting the fusion rule (4.5) of the corresponding extended representations. 
The remaining matrix elements are recovered from (4.2); (4.3) is indeed fulfilled. 

In this and in all examples to follow the degeneracy of fields with the same sl(n) 
weight is resolved by the correspondence to different representations of the extended 
algebra. In all these cases the symmetry relations have to be reformulated for the pairs 
of indices, taking into account also the conjugation properties (trivial in the above 
example) of the extended fusion multiplicities. 

To the modular invariant (4.4) has been assigned in [20,17] the graph 79 (6) of 
Fig. 1. For an appropriate choice of the eigenvectors ~, the M's computed according to 
(2.19a) coincide with the /~  .just determined. This coincidence can be also checked on 
the example ,k = 5. The WZW exceptional modular invariant described by the conformal 

embedding sl(3) 5 C ~(6) ]  reads [23] 

L~(3),~ = ]XII  "{- X3312 jr. i x I 3  q" X43] 2 '{- 1X23 -4- X61I 2 --1-- IX41 q'- XI4[ 2 

-I-1z32 + X16I 2 + ])(31 --t-- X34] 2 . ( 4 . 8 )  

The integrable representations of sl(n)] consist of the identity p = y']~i"__~ ~ -'1i, and the 

fundamental representations ,tl + p = 0-(p) . . . . .  / l ,-J + p  = o'n-1 (P). They close on a 
Z,, type of fusion algebra, with Ai := -'li + p, being identified with o "i, and have quantum 
dimensions equal to I. In our example these representations correspond to the blocks in 
the above order, i.e., Xt3 + X 4 3  -''~ Or, X23 -'t- X61 "~  0"2, etc. The quantum dimensions of 
the relevant representations of sl(3)5 read 

D3,3 = D3,2 = ( 1 + v/ '2)  2 = 3 + 2v/2, 

Dj .3 = D1.4 = D3,4 = 2 4- V'2, 

DI.t = D;.6 = I . (4.9) 

Now we can solve the system (3.13), imposing the restrictions of the g,, fusion algebra 
of the classes on the corresponding representatives, while the sum in the r.h.s, goes over 
representations A3 of sl(3)5, 23 E {A3}, such that the Verlinde multiplicities Naala: are 
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Fig. ~. The oriented graphs D (6) and g(8) of matrix Gi for the conformal embeddings of M(3)3 C .~)(8)~ 

and s/(3)5 C s l (6) l .  

nonzero. Taking into account the symmetry relations (4.2),  (4.3),  the result for the 
independent nonzero matrix elements is 

~<3..~) _ I 
' 3 . 3 ) ( 3 , 3 ) -  ~ ~ - 2 ,  

]~(3.3) -- D(I '3> = V ~ ,  
(3,1)(4,3) 

/~(3,1 ) - l ,t~(1.6) ~ ( 4 , 3 )  ~ ( 4 , 3 )  ,~(4,1 ) ( 4 . 1 0 )  
(3,3)(3,1) - = ' "  (3,3)(3,2) = ~'~ (3,3)(4,3) = ~" (6.1)(3,1) = "" (6,1)(1.3) ' 

which is in agreement with the values for the corresponding matrices M attached to the 
graph g(8) introduced in [ 17] (see Fig. 1). 

The system (3.13) can be analysed also in the remaining two exceptional cases k = 

9,21,  corresponding to the embeddings of  M(3) into level-I ~76 and E7, respectively. 

Again all quantum dimensions of  the representations of  the extended algebras are equal 

to 1, while their fusion algebras are of  type Z3 and Z2, respectively. However, the 
equations in these cases are not sufficient to determine all matrix elements. Nevertheless 
they impose a set of  restrictions, which can be checked to be consistent with the explicit 

results of  [ 171. As a side remark, we note that in the case k = 9 some of the squares of  
the M matrix elements are not  given by rational numbers. Recall that they are rational 
in the s l (2)  case as a general property [3,24]. 

Based on the results in the s l (2)  and s l (3)  cases we now make the conjecture that 

the matrices M and M introduced in (2.19a) and (3.9) are identical in general. Hence 
we look for new solutions of  (3.13),  to be used to reconstruct the corresponding graphs 

as explained in Section I. 

The first two nontrivial cases of  the first series in (4.1) are M(4) 2 C ~(6)1  and 

.]/(5 ) 3 C s l (10)  I, for which the modular-invariant partition functions read, respectively, 

= [Xll l  + Xt3112 + 21XI21[ 2 + 21A'212[ 2 + IXII3 + X31t[ 2 , 

= [ X I I I I  "I'- X122112 -'I- 1X3121 --l- X121312 

+ { I x l 211  + X2131] 2 + l,t'1411 + Xl2t212 

-t'-I,)(1311 -Jr- X2113[ 2 q'- IX4111 --t- )(2122[ 2 --4- c.c.] ~ . 

(4.11a) 

(4.11b) 

In the case (4.1 la ) ,  the successive blocks correspond, respectively, to the weights A0 = 
p, Aj and As, A2 and A4, and A3 of  M(6 )h  where we are making use of the notation 
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7 

I 

5 

3 

Fig. 2. The graphs of Gi and Gz corresponding to the conformal embedding .~(4)2 C M(6)i. The inw)lution 
a -~ a'" acts as the reflection in the line I-4 if the graph is regarded as two dimensional. 

hi = p + l]'i introduced above for the fundamental weights shifted by p. In the case 

(4.1 Ib) likewise, the blocks correspond to a0, As, followed by aj, a2, A3, A4 and their 
conjugate. For each of these cases, the system (3.13) fully determines the M's. In the 

case of sl(4) 2, the degeneracy of, say, the two representations A = ( !, 2, 1 ) is lifted by 

the assignment of two opposite ~6 charges equal +1 that they inherit from the "parent" 

rcpresentations (2, 1, 1, I, 1) and (1 ,1 ,1 ,  I, 2) in ,~(6)I. The symmetry relations (4.2) 
hold with, e.g., ( (1 ,2 ,  1)+)* = (1,2,  1): F, etc. We thus obtain for the matrix MCJ21), 
in the basis (I I ! ) ,  (131), (121)+, (212) +, (311), (113), (212)_,  (121)_ 

1 

I 

V7 
1 I 

/~2]~, = I 

1 

1 1 

Now assuming that M = M and diagonalising it as in (2.19a), we may determine the 
~/J and construct the matrices N. As anticipated their entries are all nonnegative integers 
and one ot" them, arbitrarily denoted NT, turns out to have the desired spectrum to qualify 

as G~: its eigenvalues are of the torm (2.16) with h taking all the values that appear in 

the diagonal terms of (4.1 la). The graph is depicted in Fig. 2 together with the graph 

of the matrix G2 = N2 + N6 also identified by its spectrum; tinally G3 = G I = Ns. The 

same procedure with the case of s/(5)3 produces the graphs of Fig. 3. In Fig. 3a, the 
graph of the matrix Gi = Ni2 is represented, with a certain labelling of the vertices: this 

labelling has been chosen in such a way that a vertex marked e had a "5-ality" equal to 
/ ' -  1 mod5. In Fig. 3b, the graph of G2 = Ns+Nj8 is represented. The matrices G3 = G~, 
G4 = G~ are also found among the N matrices or their combinations: G3 = N9 + NIg, 

G4 = g20, The arrows of these graphs have been omitted as redundant since they are 
dictated by rule (2.13). 



178 V.B. Petkova, J.-B. Zuber/Nuclear Physics B 463 (1996) 161-193 

l 

S 

)3 

I 

Fig. 3. The graphs of Gi and G2 corresponding to the conformal embedding d (5 )3  C M( 10)l; see the text 
for the conventions on the 5-ality of  the vertices and the ensuing orientations of edges; for the graph of G2 
a certain reshuffling of the radial directions has been done for more readability and broken lines indicate 
double edges. The involution a ---* a v is the reflection in the line I -6  for 1 ~< a ~< 10 whereas 11 v = 16 and 
a v = 3 2 - a ,  1 2 < ~ a ~ < 2 0 .  

5. Dual  pairs  of  C algebras  - properties  and applicat ions 

In this section we transform (3.13) into a system of equations for the eigenvectors 

~ba of  the M matrices and in particular we obtain for a subset of  them explicit analytic 

expressions valid for arbitrary s l ( n ) .  For this purpose we need some properties of  the 

C ("character") algebras [25] ,  so let us briefly review the basic notions and some 

theorems involved. 

5.1. A short  review o f  the theory o f  C algebras  

A C algebra/ , / is  an associative commutative algebra over C, with a basis xl, x2 . . . . .  Xd, 

real structure constants, 

c c 
Xa Xb = Pab Xc,  Pab E ~, ,  (5. I ) 

c 

an identity xl (to be also denoted by xl ) ,  hence P~'b = 6ab, and an involution a ~ a v, 
CV which extends to an algebra isomorphism x,, ~ (xa) v := x~v - hence pC b = Pavb v ,  and 

such that 

p~,h = 6ahv k~ , k~ > O V a, b . (5.2) 

It is furthermore assumed that the mapping xa ---* ka is a linear representation of/ , / .  
b b v It follows that I v = 1, kl = 1, kav = ka, and kcpCab = kbPavc = kbPac v .  The  algebra 

is realised isomorphically by the matrix commutative algebra spanned by (p,,)~, a = 

I . . . . .  d. 
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These axioms imply furthermore that the matrices (Ba)~  = ~ (Pa)~ are normal 
(since B,, commute and tB,, = Ba v )  and hence can be diagonalised simultaneously by 
an unitary matrix U, i.e., 

d 

" ~ h l  ab 
i=1 

(5.3) 

where the cigenvalues may be written pa( i )  = -~j v/'~; one may choose p,,( 1 ) = k , ,  and 

the complex conjugate of U~i satisfies Uai* = Uaw. 

The C algebra/./' has exactly d linear representations Ai, given by A.g : xa ~ p , , ( i ) .  

There is a natural notion of a dual C algebra ~,  as the set of all linear mappings of 
U into C with the point-wise multiplication. It has structure constants/~]k satisfying 

d 

~ ' ~  ' ~  E Uajl~i(a)U~*k I ' t j  = (5.4) 

where the eigenvalues are i~i(a) = lj,,, v ~,, fii( 1 ) = ki, and Uai = U,i~. The  dual of/.~ 
isH. 

The unitary matrix U, which diagonalises the structure constants of the pair of algebras 
H and L/ according to (5.3), (5.4) is in general nonsymmetric. Whenever U can be 
chosen symmetric the algebra/4 is self-dual. 

Comparing with (2.19a), (2.19b), it is clear that we can look at the pair of algebras 
spanned by the N and M matrices as matrix realisations of a dual pair of C algebras L¢ 
and/2 with 

, 

, % _  

(5.5a) 

- -  Of, , .  ( 5 .5b )  

One introduces in an obvious way the notion of a C subalgebra of the C algebra/2 
as the C algebra/dr with basis {x,~, a C T}, where T is a subset of { 1,2 . . . . .  d}. Mr is 
a proper C subalgebra if ! < ITI < d. 

From now on we shall assume that both/2 and/at have nonnegative structure constants. 
One can prove that under this assumption H has a proper C subalgebra iff its dual/d 
has a proper C subalgebra. (Recall that the nonnegativity of the M and N matrices 
was established for all known examples of type I theories and assumed for all general 
theories of this type.) Furthermore if/,( has a proper C subalgebra/dr one can define a 
factor C subalgebra, denoted lg/ lgr,  by splitting the set {I ,2  . . . . .  d} into equivalence 

C classes 7] _: T , T 2  . . . . .  Tt. Namely a ~ c iff ~fl E T, such that Pa# ~ O. Then the 
I clements Xi := ~ ~ber,  Xb. i = !,  2 . . . . .  t, with the multiplication inherited from 

/2. provide a basis tbr /,(//-dr. The parameter kr, is given by kr, = ~ o c r ,  k , /~_~, ,er  k , .  
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A theorem in [25] states that the dual of lgllg.r is isomorphic to a C subalgebra of 
/A, obtained by the same procedure starting from a subset T of the dual basis and thus 
denoted/.4?. The classes T/can be enumerated by the elements of the subset T ~ i. Vice 
versa, there is one-to-one correspondencebetween the elements~ of T and the equivalence 
classes T,, ,a  = I, 2 , . .  Irl, Zt - T, of U, and U/U~ = UT. 

5.2. Further analysis of Eq. (3.13) 

Let us now return to the set of Eqs. (3.13) assuming that all its solutions for the 
M = AI are nonnegative. We multiply both sides with 

x{*,} ({')'}) S{a~}{r} 

"- S{i}{r} ' 

where S{a}b,} is the modular matrix of the extended theory. Then we sum over the 
classes, using that X{a} ({Y}) provide for any {y} a one-dimensional representation of 
the extended fusion algebra. We thus obtain 

( =ZMI:,, ,,y{,i,}({'y})VD---~aq ) . (5.6) 
A3 

It follows that we can interpret X { a i ( { Y } ) ~  as some of the one-dimensional 

representations of the M algebra, given in general by ~'*' o~--nv, c E V. Thus identifying 

each class {y} with a vertex c, such that {1} corresponds to the identity vertex element 
1 E V, and {y}* = c v, we select a subset T of the vertices for which (5.6) provides 
explicit expressions for the M eigenvalues 

O' a) 7 Da Sly}{a} 7 D* 
4~,!, ~ : =  x { a } ( { ' r } )  - , D{a} S{:,}{i} D{a} 

VA. EExp,  { y } - ~ c E T ,  

(5.7) 

and in particular 

O~ A~ 7 D a  S{i}{a} DD~a} Dax/-D-~ ~,~,~ - x t * / ( { l }  ) - = . D{a} SU}O} 
(5 .8 )  

(hi 

so that for any exponent A, we have V/-~a = ¢,j,, = 

Clearly the l.h.s, of (5.7) is constant when A varies within a given class {a} and 
hence we can rewrite (5.7) more symmetrically dividing by x/D{A} and summing over 
a c { a }  
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°v/b--~ S-" x~(c) X{,~}(c)- I{a}l "---' v/-OS a , c E r ,  
a~{a} 

where Xa(c) stand for the eigenvalues in the 1.h.s. of (5.7) and 

i{a}]= ~ ,nult{a}(a). 
aET~. 

Using the unitarity relations (2.18a) and the fact that the extended modular matrix 
elements S(i}{a} are expressed through elements of the modular matrix Sau of sl(n)t ,  
i.e., S{i}{a} = ~-~a6{a} &a, we obtain from (5.7) 

=S,,S{,~,~D~,) E ° ~ , ~ D  = e,~ '> ~D~,~. c=-{r}~7,. (5.9) 

Recall that (cf. (2.18b) g,c (j* are real in agreement with the reality of S{a}{a} and we 
can furthermore choose them positive. We can thus identify all the 7,-components of the 
Permn-Frobenius eigenvector of the N algebra 

- 01,) - D { , q ,  V a E T .  (5.10) 

Inserting (5.9) back into (5.7) we obtain an explicit expression for the subset of lhe 
eigenvectors {if,., c E 7" } of the M matrices 

V/ Si a V/ Da g~(a> =S{r}{a} - S{:,l{a} , VA E Exp, {y} = c E T. 
S{l}{a} Y~'~aE {a } Da 

(5.11) 

Eq. (5.11) is the main result in this section. In particular it determines explicitly the 
Permn-Frobcnius vector (of the M algebra) 

~1,I *~ = V/&aS{~{a} ,  a E {a}. (5.12) 

Both Si a and S{i}{a} are real, positive - and thus taking the positive root in (5.1 I ), all 
components of gq are indeed positive. Eq. (5.11) furthermore implies 

Cj,!a~ S(:,){a} 
, , , , =  =x{~}({a}) .  c - b , } c T , ,  a ~ { a } ,  (5.13) 

% S{i}{a} 

(i.e., the eigenvalues of N,., c E T, are constant within a class {,~}) and hence 

Cj['~> =Sb,){a),  c-= { y } e T ,  a e  {A}, (5.14) 

~' ~--~ l<a'IZ= l,  (5.15) 
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since ~ c r l ¢ ~ a ) l  2 -- Sla/S(l}{a). (Note also ~--~'-a~{a) lic(a)l 2 --" IS{r}{,ql 2 for c = 

{7'} E T, so that ~--~-a~Exp li~a)l = = i, in agreement with (2.18a).) 
The symmetry of the extended modular matrix S{r}{a} = S{a}(r} leads to relations 

for the if's, which, using (5.1 1 ), read 

~l ,,,(.a) = D/'~{.} .,.,,~, 
V---~B ~. o V----~-~ . , a, bE T, a={o~} ,  b-{,B}, 

i.e., the ratio of quantum dimensions "deforms" the nondiagonal matrix elements i a  (~), 
a, b E T. If each class contains only one element, i.e., T coincides with 1), and D{a} -- 
Da, the symmetry of the modular matrix Sau is recovered. 

Combined with (2.19b), Eqs. (5.13), (5.14), (5.15) imply that the matrix elements 
(N,,)l' I, b ,c  E T, of the subset of N matrices, {Na ,a  E T} coincide with the extended 
Verlinde multiplicities and hence are nonnegative integers. One can show that (N,,)~ = 0 
for a, b E T,  c ~ T, because all N matrix elements are assumed nonnegative and ka 

are strictly positive. (Hint: Use also that ka ,a  E ~), and kc, c E T provide linear 
representations of the graph algebra and the extended Verlinde algebra, respectively.) 

We are thus in the position to use the results of Section 5.1. The matrices {Na,  a E T} 

span a C subalgebra/gr of/,4, isomorphic to the extended Verlinde algebra. The latter 
is self-dual, hence the subalgebra/-/7" coincides with its dual algebra - a quotient of the 
dual algebra/,t. Indeed the subset T is identified with the set of weights in the class of 
identity {p} and/ .~  is realised as a subalgebra of the M matrices. The splitting of the 
set of exponents into the equivalence classes {A}, each described by the decomposition 
of a representation of the extended algebra, agrees with the meaning of the equivalence 
relation in the sense of [25]. 

Let us rewrite the basic relation (3.13), using (5.8) and (5.13), as 

Vote {el ,  V/3E {fl}, a = { a } ,  b = { f l } ,  c = { y }  E T ,  (5.16) 

identifying the equivalence classes T/of /~ with the representations {,~} of the extended 
,,{~,} 

algebra. Then (5.16) can be seen as an expression for the structure constants ~V{o}(t~ } 

of the quotient algebra/~//,{~- in terms of the structure constants M of/~. The parameter 

k{,} = E~,E{,} ~:~'/Z,~{,} k° = O~,} coincides with kc for c E r , c  =__ {y}.  

Remarks 
(i) Note that the relations of the type in (5.13), (5.14), follow from the general 

results of [25]; specific to the present application is the symmetry of the unitary 
matrix in the r.h.s, of (5.13), (5.14), and furthermore, the explicit realisation in 
(5.11). 

(ii) Similarly there is a formula dual to (5.16), in which the M matrix elements are 
replaced by N matrix elements, the sum runs over c E Tc, etc, and the l.h.s, is 
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replaced by the structure constants of U/L/r, dual to the subalgebra/~-, where 

coincides with the identity class {p}. It leads to the dual counterparts of the 
relations (5.13), (5.14). However, the analog of the extended S matrix, which 
diagonalises the matrices representing the algebra U/L/T, (as well as the matrices 
(M,)~,  o~ ,,8,9' E {1}) is not necessarily a symmetric matrix in general. Typically 

one has furthermore to enlarge the subset T, i.e., to consider subalgebras of the M 
algebras, bigger than the identity subalgebra/~{p}, so that the automorphism (2.2) 
keeps T invariant. The structure constants of the factor algebra U/L/r, are not in 
general integer valued. 

(iii) The relevance of the C algebras for the study of the relation between graphs and 
nondiagonal modular invariants was first pointed out in [17]. The considerations 
above are to some extent inverse in spirit to what was done in [ 17] for the block- 
diagonal cases of sl(2) and sl(3). Starting from the explicitly constructed graphs 
and N algebras for these examples, it was there observed empirically that in all 
cases the extended fusion algebra is represented isomorphically by a subalgebra 
of the graph algebra N. This leads to the relation (5.14). It was furthermore 
argued, exploiting the approach of Bannai and Ito, that given a subalgebra of a 
type I graph algebra, described by a subset T of the vertices, there is a natural 
dual partition of the set of exponents, which yields a type I modular invariant. 
In the present approach the knowledge of the modular invariant is assumed, from 
which it is derived that the graph algebra admits a subalgebra isomorphic to 
the extended Verlinde one. Furthermore the relation (3.13), which we traced to 
originate from the locality requirements in the field theory, provides an additional 
information and yields in particular the explicit general expression (5.11) tbr the 
subset {~b~ a~} ,a  E T, in terms of the original Sas, and the extended S(a}l,~} 
modular matrices. 

(iv) For completeness let us indicate what is the explicit set T for each of the graphs in 
the ligures of the present paper. For sl(3) (see also [ 17] ), the graphs of Figs. I 
and 4 below have been drawn in such a way that the vertices o f T  lie at the 
periphery of the graph: the, respectively, 4, 6 and 3 external vertices form the sct 
T. For the graph of Fig. 2, they are the vertices labelled I to 6, and for that of 
Fig. 3, those labelled 1 to 10. 

5.3. Other restrictions on the eigenvectors ~a 

According to property (viii) in Section 2 and to the discussion following Eq. (2.20) 
the fundamental adjacency matrix GI always coincides with one of the N matrices, 
(G~)'~, = N c This enlarges the set of ITI explicit one-dimensional linear representations alh" 

of the M algebra in (5.6), adding a new one. Indeed we have ~ = 71 a~ = ~ .  cf. 

(2.16), and since the denominator ~,I a) is known from (5.12), this determines ~0,~ ~ 
and gives for the corresponding eigenvalues of Ma the explicit expression 
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-(12) corresponding to the conformal embedding ~(3)9  C (E6)I Fig. 4. The graph/51 

s.,., o/ 7 
(5.~7) 

Now given (5.17) we add to the system (3.13) the equations 

t /  "r a f  ,~?t 

~ a f  '¢.'af A;EExp ~,'af 

(5.18) 

Similarly the complex conjugated eigenvector ,/~(a~). is expressed through the eigenval- "ray 

ues of the matrix G, -  1. As an illustration of the application of (5.17), (5.18), consider 
the example s/(3)9 C ffS6, with modular invariant 

Z'~(3),~ = ]XI,I -'b XI.10 q" X10.1 + X5,5 "t'- X2.5 -'t'- X5,212 q" 21X3.3 + X6.3 Jr" X3,6[ 2 • 

(5.19) 

Accounting for (4.2), (4.3), the system (3.13) reduces in this case to 3 indepen- 
dent equations for 6 unknown matrix elements M t5'5) •A(2'5) M (3'3)- (5,5) (5.5)' ~v' (5,5) (5,5)' (3,3) ~(3,3) ~' 

M((~:~))~-(3.3),, MI~:~)),(3,3)_, M((~;~))~(3.3)_. (Here ((3,6)+)* = (6,3) T, etc.; 5: corre- 

spond to the representations (2, 1, 1,1, 1, 1 ), ( 1,1,1, i, 2, 1 ) of E6,.) Since the extended 
fusion algebra is of type Z3, i.e., any product contains only one representation, the sum- 
mation in (5.18) runs effectively always over a3 within one class, {a3}. Then (5.18) 
adds 3 new equations for the 6 variables and thus allows one to determine completely 
all M matrices, and to reconstruct the graph denoted ~e~12)in [ 17] (Fig. 4). 

In exactly the same way one can solve also the case s1(4)6 C sit10)1 (see [26] 
for the expression of the modular invariant), thus exhausting, together with the example 
discussed in Appendix A, the cases sl(4)k C ~1, all described in (4.1). 

More information on the eigenvectors can be obtained if we make the assumption that 
for any vertex a belonging to the subset T, the graph of G~ has only one edge starting 
from a and one edge ending at a. This extra condition seems to be satisfied by graphs 
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associated with conformai embeddings, although we do not know a proof of it. This 
implies that GINo = Nb~a) for any a E T and some vertex b(a )  and hence 

h~,) = ,-as Va E T. (5.20) 

It is easy to see that all these vertices b(a ) ,  a E T form the class T,, s. Using again (5.7), 
(5.8), we obtain new explicit eigenvalues of the M matrices and hence new equations 
lier their matrix elements. 

The set of explicitly found ~bb (a) is furthermore enlarged by the complex conjugates 

of the above vectors, since they generate the class Ta),. (T, s and T,), may coincide.) 
Examining the graphs on Figs. 1,2, 3 we see that (5.11 ), (5.17) and (5.20) (and their 

complex conjugates) together provide explicit analytic expressions for all eigenvectors 
~b,,, a E V. These formulae are not sufficient for the graph on Fig. 4 associated with 
the invariant (5.19) for which one recovers the eigenvectors corresponding to all but 
the three "central" vertices. These vertices have different values of the Z3 grading r ( a )  

introduced in Section 2. This allows one to express the moduli of the corresponding 
eigenvectors (and in particular the remaining unknown elements of the Perron-Frobenius 
eigenvector ~p(PJ) in terms of the known ones with the same grading, by exploiting the 
following relations: 

Z [0ba)i2= 1_ 1 = 0 , 1 ,  n - 1  
/1 

b,rfh)=l 

V, IEExp ,  such that y(pa) 4: 0,  p = 0 , 1  . . . . .  n - 1 .  (5.21) 

This follows from the basic property (2.13) of the matrices Gp since 

p ~b  ~"b = ~V b ( Up ) basra 

h.r(b) =l a,b;'r( b)=l 

(522) 
a,r(a)=l-p 

for any p = I, 2 . . . . .  n - !. Choosing v = A and taking into account the first relation in 
(2.18a) we get in particular (5.21). 

As the reader might have already noticed, the graphs drawn in Figs. 1--4 (all cor- 
responding to conformal embeddings) possess some symmetry. Let us try to trace the 
origin of these symmetries. 

Some of the symmetry comes from the Z2 group generated by the charge conjugation 
of the vertices, i.e., it reflects (2.15) and the first equality in (2.18b). 

Further restrictions on the set ~b~ (a), and hence on the N matrices, result from the 
subgroup F~ of automorphisms (to be denoted X) of the Dynkin diagram of ~t, generated 
by automorphisms which do not fix the vertex corresponding to the affine root. 

The induced action of FO on the integrable weights of fi can be lifted to the set of 
vertices V. Indeed the subset T, being in one-to-one correspondence with the set of 
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integrable weights of  the extended algebra 3, remains invariant under the action of these 
automorphisms. Using (5.11 ) we have for a E T 

~ ( a )  = e2i~rQ,({a})~(a) A E {A} ( 5 . 2 3 )  ~ ( a )  ' , 

where the phase Qz({A})  is specific to the extended algebra ~ and satisfies Q z ( { p } )  = 

0; see e.g. [10] for details. Moreover (5.20) allows one to extend this action to the 
elements of  the class Tas, i.e., to define v'z(t,(a))'t'('~) := Y (a)'t'~a)l wz(a) -- v't,(z(,,)),'t'(a) for any a E T. 

In fact (5.23) extends to an arbitrary vertex a as well, taking into account that M~u 
can be nonzero only if Q. , ({7})  = Q,~({,~}) + Qz({p .})  mod Z, since the same is true 
['or the extended multiplicity N{a}{u}. Furthermore it is not difficult to show that the 
invariance of T under 2 implies the invariance of  any of the classes T~, since due to the 
above definition we have N z(~) = N c and this is true in particular for b C T, a ,-., c. a2(b) ab' 
The equality (5.23) implies that for the fixed points of  2 the elements ~p~a) vanish 
identically whenever Qz({A})  is nontrivial. 

Combining (5.23) and (2.17) we have for any a and .A such that qta a ~ 0, 

l 
- ( r ( 2 ( a ) ) - r ( a ) ) = Q z ( { t r t ( A ) } ) - Q z ( { A } ) ,  m o d Z .  (5.24) 
II 

The consistency of  this relation restricts in general the automorphisms v to some 

subgroup of F~. 

Examples 
(i) k + 3  = 12 for s l (3 ) .  The extended algebra is E6 and the group F~ is isomorphic to 

Z3. The latter is realised by the fusion of the set of  integrable representations of  E6 
for k = 1. One has Q z ( 2 , 1 , 1 , 1 , 1 , 1 )  = - 1 / 3  = - Q z ( l ,  1 , 1 , 1 , 2 , 1 )  (see, e.g., 

[ 10] ). The classes T ,  7",, I , 7",},, consist each of three elements, while the remaining 

three classes consist of  one element, denoted, say, a = 4, 8, 12, respectively - on 

Fig. 4 these are the three interior vertices. This implies in particular that if A E 
• (3,3)+ = eT2rril/3~3,3)4. = i/1a(3,3)±. { ( 3 , 3 ) + } ,  then O,a = 0  for a = 4 , 8 ,  12, since ¢zq,,) 

(ii) The case .~(5)3 C s / (10) l :  here (5.23) and (5.24) make sense for .,v in the 

subgroup Z5 C Zi0, consisting of the even powers of  the generating element )_-i 
defined as in (2.1) for n = 10; Q,~.,({A}) = s t ({A}) /5 ,  where t({A}) is the 

standard n-ality of  the weight {A}. In general the symmetry (5.23) implies the 
invariance (Gp)Z(a)~.(b) = (Gp)ah. To check it in the case of  Fig. 3 requires 
in particular the identification of vertices in T with the integrable weights of  
.~'/(10) i. The analysis of  Section 5.2 applied to this case reveals that the first six 
fundamental representations of  sl(lO) correspond to vertices labelled 1, 8, 5, 7, 
4 and 6 in Fig. 3; their conjugate are consistent with the involution a ~-* a v. 
It follows that 2"2 maps cyclically vertices 1 ---, 5 ~ 4 ---, 3 ---, 2 ~ 1 and 
6 ---* 10 ---, 9 --, 8 ---* 7 --* 6 as well as i l  --~ 15 ----, 14 --~ 13 ~ 12 --~ 11 and 
16 ~ 20 --~ 19 ~ 18 --~ 17 --~ 16. Accordingly the graphs on Fig. 3 are invariant 

under rotations by 217"/5. 
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5.4. The intertwiner 

1 8 7  

We point out in this subsection a simple application of the general formula (5.11). 
In [ 17] an intertwiner, which relates the adjacency matrices of  the given graph and 

of  the basic "A" graph associated with s l (n )  (n = 2 ,3)  with the same value of h, was 

constructed, namely 

N~,.~pV = VGI, , 

Z ~ ,l,(W),h(o~) * , "l~ (h) 
Vli, = ~',,,v'b s"c , b, c E V '7 E --++ . ,,,EExp Sp,,, (5.25) 

It was furthermore obseta,ed that in all type I examples of  n = 2, 3, the particular 
matrix elements V~l, c E T, encode the content of  the blocks {7}. This property of  
the intertwiner (5.25) may be now derived as a consequence of  the explicit expression 
(" 5. I I ), namely 7 

V~, = ~ Sc.~ ~ St,,, = m u l t r ( 7 ) S ; - c ,  c E T ,  (5.26) 
f.~ o) E H 

i.e., V~ I provides the multiplicity of  '7 in /" -~ c. Here S:,o, is the ordinary S matrix 

whereas S,:, -= Srn refers to the extended one; we deviate from our usual notation, 
introducing .t"2 instead of  {w} for a representation of the extended algebra: this is to 

avoid confusion in cases where some o belongs to several s2. The second equality in 

(5.26) is the standard consistency condition resulting from the modular properties ot" 

the character X n = ~-~o,~n Xo, = ~-]~,o~'/'; mul ta (  w ) X,," 
More generally, if b, c 6 T, we have 

Vli , = ~ mul t r (7)N~,  b , (5.27) 
I'~7 

where N~.l, is the extended Verlinde multiplicity, and hence, at least for b, c E T, V~t, are 

nonnegative integers (in particular zero for "y ~ Exp).  To get (5.27) insert for ~p~a) the 
solution (5. I I ) and use again the consistency condition from the modular transformation 

of  the characters in the form 

Z multj~(o~)S~,,, = Z m u l t r ( y ) S r n ,  (5.28) 
.) 1"97 

or, alternatively, insert (5.26) in v~Ch = Y~,, V~N,~b; for b , c  E T this sum restricts to T. 
In the cases with no degeneracy of  weights o.,, coming from different representations 
of  the extended algebra, the sum in (5.27) reduces to one term and hence I/~p, = 
tnult(y t ('?') N c {r)t," 

7 This has also been derived recently by Ocneanu 1271 in a different context as reflecting tile counting of 
"essential paths" on the graph. 
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6. Conclusions 

In this paper we have presented more evidence on the connection between conformal 
theories and graphs. This connection and a number of related facts that had so far 
remained empirical have received more support or have been proved to follow from 
natural assumptions. 

Building upon our previous work on sl(2) theories in which we had established some 
relations between data on the OPA and data relative to the graphs, we have extended 
these relations to higher-rank s l ( n )  theories. Our present work is restricted to conformal 
theories that we call of type I, for which the block-diagonal form of the modular 
invariant signals the existence of an extended chiral algebra. Two plausible assumptions 
on the consistency of the operator algebra with this feature, namely Eqs. (3.9) (in 
the cases of conformal embeddings) and (3.10), have led us to the important relation 
(3.13) between fusion multiplicities, quantum dimensions and structure constants of the 
Pasquier algebra constructed out of the graphical data. 

The validity of these assumptions and the practical importance of this relation (3.13) 
have been tested in a variety of cases of CFT associated with conformal embeddings. It 
has been shown that they allow in some cases to fully determine the graphs starting from 

the CFT. Thus new graphs have been obtained in a way that is much more systematical 
than the empirical procedures used so far. The relation (3.13) for the Pasquier algebra 
is presumably more general, as suggested by the example in Appendix B, and applies 

to all type I cases. 
We have also reconsidered the use of the theory of C algebras in connection with our 

problem. Merging this approach with the previous results provides a justification or a new 
perspective to results that had been obtained some time ago in [ 17]. Moreover an explicit 
general tbrmula (5.11) has been derived for the components of the eigenvectors 0n, 
corresponding to the special set of vertices T 9 a, that are in one-to-one correspondence 
with the representations of the given extended theory. 

What remains to do is to understand better the justification of the assumptions of 
Section 3. Any progress in the solution of the general duality equations would eventually 
allow to extend the system of Eqs. (3.13) and determine completely the Pasquier algebra, 
as was done in [3] in the s/(2) case. Also cases with nontriviai multiplicities within 

a given representation of the extended algebra seem to present new situations that have 
just been tackled in Appendix A. Furthermore the extension of these results to theories 
of type II, i.e. that are not block-diagonal, presents a challenge. In that respect the recent 
work of Ocneanu [27] seems to indicate that these theories may also be treated in a 
similar way and that there are interesting connections between the graphs pertaining to 
the pair of theories of type I and II obtained from one another by a twist. 

Finally, we notice that the new graphs found in this work yield new cases of infinite 
reflection groups, following the procedure of [28], and describe presumably patterns of 
solitons in Af = 2 supersymmetric theories, as discussed by Cecotti and Vafa [29]. 
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Appendix A. An example of nontrivial multiplicity 

In this appendix we shall illustrate with the example ~(4)4  C s"o(15)l the cases 
when an exponent ,~ appears with a multiplicity higher than I in a given representation 
of the extended algebra. 

The modular invariant associated with this embedding reads [30]: 

Z~.~/(4~, 4 = l X l l l  -.F X151 -I-- x123 --I-- ,)('32112 --I-- [Xl15 -]-- x511 q-- X212 -J-- x23212 -I.- 1 2 x z 2 z l  z . 

(A.l) 

The exponents in the three blocks correspond to the content in the decomposition ot" the 
three integrable representations 

( I , 1 , 1 , 1 , 1 , 1 , 1 ) ,  (2, 1, i, I, 1, I, 1), ( 1 , 1 , 1 , 1 , 1 , 1 , 2 )  

of ff~( 15)t with quantum dimensions, respectively, 1,1, and v'~. They close on an Ising 
type fusion algebra. The representation (2 ,2 ,2)  of ~(4)4  appears in (1, I, !, 1,1, 1,2) 
with a multiplicity 2. Thus unlike the previous examples the extended algebra does not 
distinguish the two fields to be associated with the exponent (2 ,2 ,2) .  On the other 
hand, if we identify these fields, i.e., look at them as two copies of one and the same 
field, the set of equations for the M matrices is checked to be inconsistent. To resolve 
the ambiguity of the representations (2, 2, 2), which is a fixed point under the standard 
action of automorphism group g4, introduce two fields ((2, 2, 2);-t-) and define charge 
conjugation and the action of the o" automorphism according to 

o . ( ( 2 , 2 , 2 ) ; + )  = ( ( 2 , 2 , 2 ) ; : F ) ,  ( ( 2 , 2 , 2 ) ; + ) *  = ( (2 ,2 ,2 ) ; :F )  , (A.2) 

i.e., each of the two fields is invariant under o .2 only. For the other exponents keep 
the standard definitions of the charge conjugation and of o.. Then the last term in the 
modular-invariant (A.I)  can be interpreted as  [X(222):t-'b )((222);-12. 

~(l,l.~) = 1. With The definition of the charge conjugation implies that ,,, ((2.2,2);::Jz)((2.2.2);::F) 
(A.2) the set of equations for the M matrices becomes consistent and we obtain using 

that D~2.2.2) =4(1  + v'~), D(1,2.3) = (1 + v/-2) 2, 

~,.2.3)(3.2.1)=~ ~ = I, (A.3) 
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Fig. A.I. The graphs of G i and G2 corresponding to the conformal embedding ,d(4)4 C .~( 15)t. The graphs 
should be viewed as having a Z2 x Z2 symmetry : I ,---, 2 and 4 ~ 5. The broken lines denote edges carrying 
v'~. The set T is made of vertices 1.2 and 3. 

l D(2'2'2) - V/2. (A.4) M ~ , ~2.~., 
(( , ,2):+)((2.2,2);+)-- 2D(I.I,I,I,I.I.2) 

((2,2.2);:t:)((2,2.2)::t:)-- 2/)(i.1,1.1.1.1.2) V/-~ i .2.3 ) 

The remaining matrix elements are either zero or determined from (4.2),  (4.3),  taking 
into account (A.2) .  

Diagonalising the M matrices we obtain the fundamental matrices G o described by 
graphs depicted in Fig. A.I .  

An unexpected feature is that these matrices have nonintegral entries!! This is remi- 

niscent of  what is obtained when one folds a Z2 symmetric graph: for example going 

from the A2,,-i Dynkin diagram to its Z2 quotient Bn, one finds that the (symmetrised) 

Cartan matrix of  the latter contains some v '~  entries. This suggests that the graphs above 

may be unfolded into graphs with 10+2 :12  vertices. 
In fact if one returns to the modular-invariant (A.1) and calls "exponents" the weights 

that label the diagonal terms of  the sesquilinear form in the characters, one finds twelve 

such exponents. In that standpoint the exponent (2, 2, 2) should come with a multiplic- 
ity 4. 

There is indeed a simple way of  unfolding the graphs above. One just duplicates the 
vertices denoted 9 and 10 into 9 ,9  ~ and 10, 10 r and one replaces in GI and G2 the entries 
v '~ by ( l, 1 ) or ( I )  and the entry 2 by a 2 x 2 block (l t 1 ), see the resulting graphs on 
Fig. A.2. The exponent ( 2 , 2 , 2 )  now appears four times. It seems, however, that it is 
impossible to make all the structure constants of  the M and N algebras nonnegative. 

It thus appears that in such a case with nontriviai multiplicities, there are two alter- 

native attitudes: 
(i) either one puts the emphasis on the extended algebra, i.e. the block structure of  

Z, with all the consequences that may be inferred on the 0 ' s ,  as discussed in the 
present paper, but at the expense of dealing with nonintegrally laced graphs, not 
covered by the considerations of  Section 2; 
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Fig. A.2. The same graphs as in A.I after "unfolding", i.e. duplication of vertices 9 and 10 into 9, 9/, and 10. 
I (Y .  

(ii) or one follows the usual scheme of attaching an exponent to each diagonal term 
of  Z, and constructs an integrally laced graph, but at the expense of a more 
complicated connection with the OPA. 

Appendix  B. More  on orbifolds o f  s l (3)  

This appendix is devoted to another series of  CFT's  to which our considerations apply: 

the so-called 79 series of  orbifold ~ ( 3 )  theories for levels k = 0mod3 .  In contrast with 
the case mentioned above in (2.21),  they are endowed with a block modular-invariant 

partition function [221 

I 
Z = ~ E [Xa + X,,¢a) + X,r'(a)l 2 , (B . I )  

where we recall that Q denotes the root lattice. The partition function (B . I )  is as usually 
normalised in such a way that Igp[ 2 comes with a factor 1. The term IX,,o[ 2 associated 
with the fixed point a0 (k+3,  = ~ 3 ) P  of  or (2.2) comes however with a multiplicity 3. 
Accordingly, we have to append an index i = 1,2, 3 when referring to the exponent a0. 

For the s l (3 )  orbifolds under consideration, the relevant graphs have been constructed 
long ago by Kostov [20].  They are obtained by an orbifoiding procedure from the basic 

graphs of  type .,4 and the simplest example has been displayed in Fig. I. They have a 

number of  vertices equal to 

5 5 +l  +3. 

In the same way as in the case of  the Deven orbifolds of  .~I(2) theories in which two 
subseries have to be distinguished, depending whether ~ = 0 or 2 mod 4, here we have 
to distinguish according to the value of  .~ rood 3. This manifests itself in particular in 
the lorm of  the extended S matrix. That matrix satisfies (5.28), but this leaves some 
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arbitrariness in the 3 x 3 block S{(,~o.i)}{(~o.j) }. The  remaining elements are determined 
from (5.28),  using that all exponents have ~" = 0, and hence exploiting (2.17) gives 

S{~}{~,} = 3S,~ for ,L/.t ~= a0, S{~}{(,~o,i)} = S,~,~ o for A =~ ao. From the Kac-Peterson 
formula for S~, it follows that S,~o,~ 0 = - 3 / h  for h = k + 3 = 6 mod 9, Sao,~o = 0 for 

h = 0 mod 9, S,~oa o = 3 / h  for h = 3 mod 9. Also note S~op = 3 /h .  The  sum of the entries 
on any line or row in the 3 x 3 block in the extended matrix should be equal to S,,0,, o 
according to (5.28),  i.e., accounting also for the symmetry we are left with 3 unknown 

parameters, to be determined e.g., by the unitarity condition, or the other conditions on 
the extended modular matrix. It appears, taking into account (5.21),  (5.22),  that if we 
call K the integral part o f  ( k  - 3) /9 ,  this 3 x 3 block has the following form: 

3 3 - - K -  1 - -K--  1 
- K -  ! .~ - K - K -  I . ( B . 2 )  

The charge conjugation of  the classes { ( oto, i) } is assumed trivial, { (a0,  i) }* = { (a0,  i) }, 

i -- 1,2, 3 for all three subseries. 

From the relations between the S matrices of  the original and of  the extended theories, 

we deduce that D{(,~o,i)} = ~ and D{,~} --- D,~ otherwise. Then (3.13) reads; 

2 
(B.3) 

I=o 

for A,/z, "y all different from the fixed point ao; 

x/3 M ~ "  ,i) = Nb,O ,i} ( a .4 )  {a}{~,} ' 

for A, p. different from the fixed point; 

2 
1 

J"~(~') = M ~' = M{)'} 
~ ' " t - o , i ) ( , , o , J )  (,~o,i)(,~o,J) "{(,~o,i)}{(,~0,J)} ' (B.5) 
1---o 

for ~ different from the fixed point (here we have used also (4 .3)) ;  

M ( .... l) = Vr~N{(ao,I)}  
(,~o ,i)(~,o ,j) { (~ o  . i )}  { ( , ,0  ,J)} " ( B . 6 )  

Given the extended modular matrix one can compute by Verlinde formula the extended 
multiplicities and insert in these formulae. 

All these relations as well as (5.11 ) have indeed been checked for the lowest repre- 
sentatives of  the three subseries, k = 3 , 6 , 9  and it is thus presumed that Eqs. (3.13) and 
(5.11 ) hold true in general for all these orbifold theories. Furthermore Eqs. (3.13) and 

(5.11 ) are expected to hold true for the general ~ ( n )  orbifolds of  [20].  
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