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Abstract 

Structure constants of minimal conforrnal theories are reconsidered. It is shown that 
ratios of structure constants of spin zero fields of a non-diagonal theory over the same 
evaluated in the diagonal theory are given by a simple expression in terms of the compo- 
nents of the eigenvectors of the adjacency matrix of the corresponding Dynkin diagram. 
This is proved by inspection, which leads us to carefully determine the signs of the structure 
constants that had not all appeared in the former works on the subject. We also present a 
proof relying on the consideration of lattice correlation functions and speculate on the 
extension of these identities to more complicated theories. 

1. Introduction 

The computation of the structure constants of the operator  product algebra is 
the most delicate and tedious step in the determination of all the parameters  of a 
conforrnal field theory. In fact, this determination has been completed only for 
relatively few theories, mainly minimal c < 1 theories and sl(2) W Z W  theories. In 
their pioneering work, Dotsenko and Fateev [1] for minimal theories and 
Zamolodchikov and Fateev [2] for W Z W  theories computed the structure con- 
stants of what are now recognized as the diagonal or " A "  theories. A few years 
later, starting with some work by Christe and Flume [3] on the determination of 
OP subalgebras, much work was accomplished to extend these calculations to the 
non-diagonal ( " D "  or " E " )  theories [4-7]. The analysis was done case by case, and 
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even though some general rules and symmetries of the structure constants were 
found, no universal formula was available. 

In parallel, in his ADE lattice models, Pasquier [8] studied the algebra of 
spinless order  parameters and showed that their product was proportional to the 
following numbers: 

I~a)~](b)~ll(C)* 
Mab c= E i~(1) (1.1) 

ot 

Here  and in the following, $~a) refers to the a th  component of the ath 
orthonormalized eigenvector of the Cartan matrix C (or of the adjacency matrix 
G = 2 ]1 - C) of the A, D or E Dynkin diagram under consideration: 

aotl3~]~ a)= ya~b(a a), 
(a) (b)* 

E I~et I~c~ = ~ab, (1.2) 

E d~(a)d~(a)* = ~a~; "ca w O 
a 

a runs over the exponents, Ya = 2 cos( rr a / h  ), h is the Coxeter number and a is 
some labelling of the vertices of the diagram. (In the case Dh/2+l, h = 2 mod 4, 
the label a should be replaced by (a; Ca) , where eb/2 = + 1, and e a = 1 otherwise, 
to account for the double degeneracy of the exponent a = h/2 . )  For the Dynkin 
diagrams, the ~b's may be taken real (see, however, Appendix A) and the resulting 
M's  are fully symmetric in a, b, c: we shall then write them as Mab c. In the 
particular case of the A Dynkin diagram, I]¢ (a) t u r n s  out to be a symmetric matrix, 
equal to the modular S matrix of sl(2) characters, and Eq. (1.1) was then 
recognized as yielding the integer fusion coefficients Nab c ( =  0 or 1) [9,10] (in this 
case Gab - N2a b ,a ,b  = 1,2, . . . ,  h - 1). The role of this matrix Mab c in the operator  
product algebra of lattice theories was reemphasized again in [11,12]. Also, 
together with its "dual algebra", it was utilized later in the identification of the 
continuous, conformal limit of a larger class of lattice integrable models attached 
to graphs [13], and more recently in connection with the integrability of perturbed 
N = 2 superconformal field theories [14]. Strangely enough, its quantitative role in 
the OPE was never ascertained. 

In this paper we want to point out a curious fact. The numbers Mab ~ ( =  
NabcMab ~) yield the ratios of the structure constants of the spinless (or "scalar") 
fields of the D or E theories over the corresponding structure constants of the A 
theory with the same Coxeter number. Loosely stated (we shall be more precise 
below) 

O(a'aXb'bXc'c) (1.3) 
Mabc O~)×b,bX~,c)" 

That these ratios should be simpler than the individual structure constants had 
been recognized since long [4-7]. Recall that the structure constants are typically 
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ratios of products of Euler F functions of rational arguments, hence generically 
transcendental numbers. In contrast the ratios (1.3) are square roots of rationals! 

Although simple to express, this relation does not seem easy to derive directly 
from the crossing (or locality) equations, and our observation remains at this stage 
somehow phenomenological . . . .  On the other hand, from the lattice point of view, 
a simple extension of Pasquier's discussion yields the desired result. 

Structure constants involving fields with a non-zero spin (or "spin fields" in 
short) turn out to satisfy in many cases factorization properties that enable one to 
express them in terms of the M's: see Eq. (2.10) below. 

In the next section, we define more carefully our notations and conventions, and 
present the evidence that we have. Section 3 is devoted to a derivation of this 
relation starting from the lattice formulation:it may be read (or skipped) indepen- 
dently of the former section. Our observation leaves some unanswered questions 
that we shall list at the end of this paper, whereas a certain number of tables and 
additional data are gathered in three appendices. 

2. The conformal field theory approach 

2.1. Convent ions  and  normal iza t ions  

The minimal unitary representations of the Virasoro algebra are labelled by a 
value of the central charge c h = 1 - 6 / h ( h  - 1) and a scaling dimension As, s, = 
[ 1 / 4 h ( h  - 1)][(s(h - 1) - s 'h )  2 - 1], where s = 2j + 1, s' = 2j '  + 1 and h - 1 are 
positive integers, 1 ~< s < h, 1 ~< s' < h - 1. To describe the (A, D), (A, E) non-diag- 
onal theories we will assume that h is even (for h odd the cases (D, A), (E, A) 
appear instead). Furthermore for the purposes of this paper it will be enough to 
consider the subalgebra of the OPA for which all s ' =  1, and accordingly, we 
denote A s = As, 1. 

The primary fields in the subalgebra with s' = 1, oPt(z, £,), are labelled by a pair 
of values (a, ~) of the s index, possibly supplemented by an index e = ± whenever 
two different fields have the same scaling dimensions A a and A~. This happens 
only in the Deven case (i.e., h = 2 mod 4) for a = h / 2  = ~. Thus the label A stands 
for (a, ~) or, if need require, for (a, ~; e). 

We will consider fields with integer spin s ( A ) : =  A a - - A ~  (in general A a , a ' -  

A~,a,). T h e  normalization of the 2-point (euclidean) functions will be chosen to be 

(~PA(1)4~A(0)) = gAA = ( - -  1 )  s ( A )  (2.1) 

With this choice the corresponding 2-point Wightman function is positive definite 
[4] and all the structure constants of the primary fields OPE expansions are real in 
a proper basis. 

We denote these structure constants by the letter D: 

cPA(Xl)CPc(X2) I0) = D e c  ( z ,  - z2) a1-a'-zc(£,l - 2,2) af-a~-'~:qbe(x2) 10) 

+ . . . .  (2.2) 
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reserving the notation C to those of the diagonal case C~fc- r)(AXf,f) These -- ~(a,aXc,c)" 
constants are determined from the leading singularities at coinciding arguments of 
the 4-point functions 

( (~)A( X1)(I)c( X2)fI) B( X3)~i)D( X 4) ) 

s(F) F F 
= ~ ( - 1 )  dacdnnoq~f(Zl, a; z 2, c; z 3, b; Z4, d)  

F 

X,~f(~rl, a; ~r2, C; ~r3, b; ~r4, d),  (2.3) 

Here ~'~ are the chiral conformal blocks (in the s-channel), normalized in such a 
way that at coinciding arguments they reproduce the products of the Dotsenko- 
Fateev (DF) diagonal OPE coefficients, i.e., 

lim (Z 1 -- 1)aa+a~-aSz3ab+aa-al,_fi~f( Zl, a; 1, c; Z3, b; O, d) 
Zl  ---~ 1 

Z3 ----~ 0 

Taking into account the 2-point function normalization the general OPE coeffi- 
cients Dffc are expressed as 

DFc = d f c ~ .  (2.4) 

Thus to determine the OPE coefficients one has to find the relative structure 
constants d~c entering the non-diagonal kernel in (2.3). In the diagonal A-type 
theory the summation in (2.3) runs over f =)v and the constants dec coincide with 
the fusion rule coefficients Nfc, i.e., for the minimal sl(2) case under consideration, 
they can take the values 0, 1. The DF diagonal constants C[c can be chosen 
positive, fully symmetric with respect to all indices, and normalized according to 
c la  = 1. 

2.2. The locality requirement and the associativity equations 

The relative structure constants d~ c (to which we will often refer in what 
follows as to the structure constants) are determined imposing the requirement of 
locality, i.e. the symmetry of the euclidean correlator (2.3) under exchange of any 
pair of fields. The locality applied to the 3-point functions leads to relations for the 
3-point normalization coefficients DAC F =DFcgFF, implying that DAC e = 
(--1)s(A)+s(C)+s(F)DcA F is cyclically symmetric in A,C,F.  Written in terms of the 
relative structure constants d~c they read 

d~c = ( - 1)s(A)+s(C)+~(F)d~A = ( -- 1)~(A)dC F = ( -- 1)~(C)d~c. (2.5) 

The relations (2.5) imply in particular that all constants of type d~A are identically 
zero if s ( F ) =  1 mod 2. Note also d (~  ) = 6As(--1) ~(a) = (--1)s(A)d~l,1)B. Further- 
more the locality condition which arises exchanging the two middle fields in the 
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4-point function implies taking into account the braiding properties of the chiral 
conformal blocks, 

F F (  c a}  (~ a}  ~(A)+,(o).~r ~r  (2.6) ~ d A c d B o  = ( - * )  "An"CO, b d ,b F 

where {~ ~} are the fusion matrices first introduced in [1] (see Appendix B for more 
explicit formulae). Similarly, exchanging the first pair of fields, we recover the 
relations in (2.5). Combining the two moves, i.e., exchanging the first and the third 
fields, reproduces the crossing relation of [1] 

1.~s(F)AF ,,IF f a ( - 1)'(A)+'(B)+~(C)-'(°) E ( -- *' "AC~'BD~ b 
F 

I"~s(T).gT ,-IT 
= ( -- IJ .BCt~AD . 

d f t  b d y~ 

(2.7) 

With the normalization conventions adopted in this paper the fusion matrix 
satisfies the orthogonality relation 

~t (b  ad)ft(b d l f , t  ~ f f ' '  
(2.8) 

which implies in particular the validity of Eq. (2.6) in the diagonal case. 
Now consider scalar correlation functions (i.e., ~ = a, ~ = c, b = b, d = d and 

hence s ( A )  = 0, etc.). Take t = t in (2.6) and sum over t. Since (2.8) enforces f = f  
we obtain in both sides a summation over scalars F = (f ,  f ;  el), T = (t, t; e t) only, 
or ,  

~_, dFcdFBo = ~_~ df4Bdrco.  (2.9) 
F T 

The summation in (2.9) runs over f (or t) such that the triplets (a, c, f )  and 
(b, d , f )  (or (a, b, t), (c, d, t), respectively) are consistent with the fusion rules, 
i.e., d~c = Nafcd~c, etc.. 

The associativity equations (2.9), the symmetry of the scalar structure constants 
and the normalization d~l~ ) = 1 imply that the scalar structure constants admit a 
representation of the type satisfied by the M matrices in (1.1) with some variables 

subject to the last two conditions in (1.2). Further restrictions on these unknown 
d ( h - c , h - c )  _~ +~t(c,c) implied by a corre- variables arise from the symmetry (a,aXh-b,h-b) '--~(a,aXb,b) 

sponding symmetry of the fusion matrices (see Appendix B). 
However, these data alone are not sufficient to identify these qJ's with the 

eigenvectors of the Cartan matrices and thus to determine the scalar structure 
constants, and one has to solve the full set of Eqs. (2.6). 

On the other hand analyzing the explicit solutions of (2.6) found in [3-7] one 
observes that in all non-diagonal cases the squares of the structure constants 
involving only scalar fields coincide with the squares of the corresponding M 
matrix elements. The determination of the signs of all these constants (previously 
known in the D and partially in the E 6 cases [4]), shows that not only the squares 
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but the scalar constants themselves coincide with the M matrix elements, i.e., with 
notations now settled, we can rephrase our main result (1.3) in the form 

d (cc) c 
( a a X b b )  = M a b  • (1.3') 

In fact, as we shall see, there is a certain freedom in the choice of signs of both the 
d's and the M's. The precise statement is thus that one can find a determination 
of these two sets of numbers satisfying (1.3'). 

Note that while in the E6, E 8 cases and (in a particular basis) in the Deven case 
all M matrix elements can be chosen non-negative, in the remaining Dood (i.e., 
h = 0 mod 4) and E 7 cases some of these matrix elements are negative (see 
Appendix A for explicit formulae). 

The former three cases are also selected by the property of factorization of their 
structure constants involving also spin fields - namely, whenever daCB is non-zero, 

i dCBi 2 _ c -- M ~ b M ~ i  , ,  (2.10) 

and furthermore in the D 4, E6, E s cases, dCB vanishes iff the product M~bM~ar, 

(for (a, ~), etc., in the OPA) is zero. The property (2.10) holds in the Deven series 
in the bases in which all scalar constants are non-negative - at the price of 
complex spin field constants appearing for some h; as in (1.3) any a = h / 2  has to 
be replaced by a double index (see below for more details). 

Thus up to signs all the relative structure constants in the cases E6, E s and 
Dcven are completely described by the corresponding M matrices. 

These positivity and factorization properties are most likely a consequence of 
the fact that these theories may be interpreted as the "diagonal" theories for some 
extended chiral algebra [15]. In Appendix C we present some evidence in support 
(see also the second reference of [3], and [5]). 

Unlike (1.3) the formula (2.10) is not universal. It fails in the Dod d and the E 7 
models, although partial factorizations still take place. 

We recall that apart from some trivial subalgebras of the diagonal OP algebra in 
the D cases (and the subalgebras {(1, 1), (h - 1, h - 1)}, present in all series) there 
are no closed OP subalgebras involving only scalar fields in the non-diagonal 
minimal theories. On the contrary the M matrices in any of the A D E cases can be 
interpreted as the structure constants of a closed associative algebra x a * x b = 

c 
Mab X c. 

In [16], it was noticed (in connection with some work of Dubrovin on topological 
field theories [17]) that the M algebras of the A D E cases admit subalgebras 
containing the generators x a of smallest and largest labels (a = 1 and h - 1 in our 
present notations), and that the labels of these subalgebras are the exponents of 
finite Coxeter groups. Accordingly, we shall show below that some of the OPAs of 
the ADE models admit subalgebras whose spin zero fields are labelled by the 
exponents of the finite Coxeter groups. 

In what follows we shall summarize the existing data on the general structure 
constants, providing in addition also the full information about their signs. Apart  
from some partial results this information was not present in the literature so we 
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have rechecked numerically the exceptional cases. The results for E 6 and E 7 are 
presented in detail below, while the signs of the constants involving spin fields in 
the rather lengthy case E 8 are not included. 

2.3. ADE relative structure constants - explicit formulae 

The set of fields that concern us in any ADE theory is described by the subset 
of fields in the corresponding modular invariant [18] for which all s' = 2j' + 1 = 1. 

The  derivation of  the solutions of  Eqs. (2.6) is simplified by taking into account 
the symmetries of the structure constants [3-7],  

(d~(C) ~ 2 / ~ / o . l ( c )  ~ 2  [d,,,(c) ~2 (2.11) 
2 =  t - - ' 

where tr = trltr r and 

t r r ( ( a , g ) ) = ( a , h - g ) ,  t r , ( ( a , ~ ) ) = ( h - a , ~ ) ,  f o r a , ~ l h ,  

6rr((1 h 1 . = i h 1 . = 1 , , ~h, - , ~h,  7h, e)) (7 , e) o'.((½h e) ) .  

(2.12) 

In (2.11) it is assumed that the transformations (2.12) are consistent with the 
content of the given non-diagonal series. Thus the first equality (2.11) with the 
transformation tr holds in all cases, while the rest make sense only in the cases 
when the transformations o- r and 0 5 keep invariant the specific set of indices. 
(Alternatively these transformations can be used to relate the constants in differ- 
ent types of theories, say Ah_ 1 and Dh/2+l, etc., see below.) 

Actually there are stronger restrictions than (2.11), to be described in detail 
below, which determine also the relative signs of the constants. They are based on 
the explicit symmetries [4] of the fusion matrices recalled in Appendix B. Further- 
more Eqs. (2.6) are consistent with the choice 

d(~,o _ -3(~,~)_ (2.13) (a,~Xb,b) -- u'(~,aXb,b)" 

Note that a change by a sign ~A, /X~ = 1, /XO,1) = 1, of all fields is possible, since 
it preserves the normalization of the 2-point function. Since we fix the signs of the 
diagonal structure constants C these sign factors affect the relative constants d. 
The sign renormalization is obviously consistent with the locality Eqs. (2.6) - in 
what follows we shall fix it imposing various conditions. 

2.3.1. Case Dh/2+ 1 
Let us start with the two infinite series Dh/2+l, h = 2 mod 4, or h = 0 mod 4. 

Each contains a subalgebra of scalar fields described by (a, a), a odd, which is also 
a subalgebra of the corresponding diagonal Ah_ 1 series. Here  the scalar 
(h/2,  h/2; + ) in the Deven case is simply denoted (h/2,  h/2). Furthermore both 
contain a scalar - to be denoted for convenience in both cases by (h/2,  h / 2 ; -  ), 
which in the Devon case represents the second scalar of scale dimension A(h_2)/4. 
Finally both possess a set of non-zero spin fields labelled by (c, h - c) where c is 
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odd in the Devon case and even for Dodd- Now using the notation C, F, etc., for the 
non-zero spin fields as well as for the scalar (h/2, h / 2 ; -  ), the values of the 
relative structure constants read 

d( t , t )  __ N t 
( a , a X b , b )  - -  a b ,  

f f  - -  J a c ,  d(a,a)C _ ( _ 1 ) ( a _ l ) / 2 N f a c N a h h f _  c = ( _ l ) ( a _ l ) / 2 N f  ( 2 . 1 4 )  

all the others being zero. In what follows we shall often omit the fusion rule 
structure constants Nafc, assuming that the left and right triplets of indices are 
consistent with the fusion rules. Note that when C and ff coincide, the sign of 
d(da,a)6 as given by (2.14) is uniquely determined from Eqs. (2.6) [4]. (We require 
that the sign factors/z(a,a ) are trivial for the fields of the diagonal subalgebra of the 

P D series, ~ ( a , a )  = 1 . )  The general solution for d(a,~)d is given by the expression !n 
(2.14) multiplied by the sign factors /xd /zp, e.g., one can choose ~ = ( - 1 )  s(c). 
With the choice ~d = 1 made in (2.14), these constants can be rewritten in the 
Deven case as 

dP ^ _  r l O ' r ( ( f , f ) )  _ _ 1¢ ~-l)/2d(f,f) 
( a , a ) C  - -  ~ ( a , a ) O - r ( ( C , C ) )  - -  ( 1 ( a , a X c , c ) ,  

where according to (2.12) trr((h/2, h /2) )  = trr((h/2, h/2; + )) = (h/2, h/2; - ). In 
the Dod d case, (2.14) is a manifestation of the automorphism of the diagonal fusion 
rules used to construct the Dod d series [19]. 

The formula (2.14) describes in an unified way the constants of both D series. It 
also makes explicit the Z 2 grading of both OPAs that assigns a grade 0 to the 
subalgebra of fields without hats and 1 to those with hats [4]. On the other hand in 
the Deven case there exists an alternative description, changing the basis of fields - 
namely replacing the two scalars of identical dimension with two independent 
linear combinations. Using (2.14) one can rewrite the structure constants for the 
new basis. We shall illustrate this on the case h = 2 mod 8, and in more detail for 
h = 18, i.e. for D10 since the explicit formulae will be relevant also for the case E 7 
below. 

Denote by ~b and 4~ the fields labelled by (h/2, h/2), and (h/2, h / 2 ; - ) ,  
respectively, and consider the linear combinations 

1 
~ ± =  ~ -  (4~ + 4~). (2.15) 

(In the other subseries h = 6 rood 8 of the Dew n series, the second field in the 
RHS of (2.15) appears multiplied with ¢ -  1, i.e., ~ - =  (~+)*. )  Restricting to the 
case h = 18, denote furthermore the fields in the LHS of (2.15) by 9 ± respectively. 
Then one obtains from (2.14) the following expressions for the non-zero scalar 
fields constants: 

9 ± 9 ~: 
B9±9±  :=  d9±9±  = 1~- (2.16a) 

B~±9±:=d~)±= ½[l +(-1)Ja],  a ~ 9 ,  j ~ = ½ ( a - 1 ) ,  (2.16b) 
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B~±9 ~ := a(a'aL'9~9* = 5'[ 1 - ( -1 ) Ja ] ,  a 4 : 9 ,  (2.16c) 

Bb+, `4~bb) = f ~ - ,  a, b4:9, (2.16d) :~--" '*9 :¢(a ,a) 

Bi b := ,4(c,c) = 1 a, b, c 4: 9. (2.16e) ~(a,a)(b,b) 

(In this basis the squares of the above constants appear in [6].) Unlike the solution 
for the scalar constants in the initial basis (2.14) (i.e., ff = C = (h/2, h / 2 ; -  ) in the 
second equality) all constants in (2.16) are non-negative. Furthermore for the 
remaining constants in the new basis we get 

111 +(--1)s(A)] ,  d9A±9 * =  T-½[A-(-I)s(A)], a ~ 9  (2.17a) d9±9± = -I- 

dea,a)9 ± =  + ~ - ( - - 1 )  ja, d~±A=(-~, a , b ~ 9 ,  (2.1719) 

d(a,a)~ = ( - 1) ja, a, b, c :~ 9, (2.17c) 

which in particular implies (since s(A ~) =Ja mod 2 for h = 2 mod 8) the factoriz- 
ability (2.10) of the squares of the constants in (2.17), if in the RHS the M matrices 
are also converted in the basis corresponding to (2.16). 

Formulae similar to (2.16) hold in the case h = 6 mod 8, where some of the 
non-zero spin constants become complex in the new basis. Also the symmetry 
properties of the scalar constants (and the M matrices, see Appendix A) get 
modified since (2.1) is replaced for A = ( h / 2 ,  h / 2 ; _ ) w i t h  ( ~ ( 1 ) ~ * ( 0 ) ) =  1. 
Note that the factorization property (2.10) holds in that basis. 

For h = 10 one selects using the basis (2.15) two isomorphic subalgebras of the 
0 6 series which differ by some of the signs of the structure constants. They consist 
of the fields {~+, (1, 1), (9, 9), (1, 9), (9, 1)} and {q~-, (1, 1), (9, 9), (1, 9), (9, 1)}, 
respectively. The scalar fields in any of these subalgebras are labelled by the 
exponents {1, 5, 9} of the Coxeter group H 3. The fields in the grade zero subalge- 
bra of the general series Dh/2+ 1 correspond to the exponents of Bh/2. 

2.3.2. Case E 7 
The exceptional case E 7 which appears for h = 18 contains scalars A = (a, a) 

labelled by the E 7 exponents a = 1, 5, 7, 9, 11, 13, 17 and spin fields of the type 
(a, h -  a), with the same values of a, a 4= 9, and the spin fields (3, 9), (9, 3), 
(15, 9), (9, 15). 

Since the spins of the fields labelled by (7, 11) or (11, 7) are odd, all constants of 
the type d (TA1) o r  d(A 1LT), and those related to them using (2.11) vanish. This in 
particular implies that the factorization (2.10) cannot take place, e.g., for A = (7, 7) 
since M777 = 1 = -M77 11. Furthermore because of the symmetry (2.11) this leads 

'4(7'7) and "4(11'11) to the vanishing of the scalar constants ~(9,9x9,9) ~(9,9x9,9). Similarly the constant 
d(15,9) vanishes since s((15, 9)) = 1 mod 2, which in turn implies the vanishing of (9 9X9 9) 
`4(3~9y ' 
'~(9,9)(9,9)" 

The results of [5-7] concerning the squares of the remaining structure constants 
can be furthermore summarized in the following way. 

(i) The squares of all scalar structure constants coincide with the squares of the 
corresponding M matrices (see Appendix A). According to (2.11) the latter gives 
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as well all the constants obtained from the scalar ones by the tr-transformations 
(2.12). Hence because of the symmetry of the M matrices, M h_a h -b  c ---" M a b c ,  the 
factorization formula (2.10) holds in these particular cases. 

(ii) We have 

`4(5,13) ,[2 3 (2.18) 
~(7,7X7,7)1 = 4"  

1 - M 7 7 1 3 . )  Hence for this as well as for those related (Compare with M775 = - ~ = 

by the tr-transformations the factorization (2.10) fails. 
(iii) If the triplet {A, B, C} consists of scalars and (or) some of the fields (3, 9), 

(9, 3), the square of the constants factorizes into the corresponding scalar con- 
stants (2.16) of the D10 case - in the basis, in which these constants are positive, 
i.e., 

-- BabBnT,, (2.19) 

where 9 from (3, 9) goes to 9-,  while 9 from (9, 9) goes to 9 + in the RHS - e.g., 
d(3,9) )2 = B33 B959 - = v~-, ,~0,9×9,3), = B3 9- B9-3 = 1, etc.. The RHS of (2.19) ~(3,9X3,9) / (,4(9,9) )2 9 + 9 + 

provides as well the expressions for all it-related constants. 
To describe the signs of the structure constants, first note that the symmetries 

of the fusion matrices (see Appendix B) can be used together with Eqs. (2.6) to 
derive restrictions on the relative signs. Namely 

dCB = ( - 1) ( " -  I)/2eI( B )eI (  C ) d ~ ) B )  = ( - 1)(a-1)/2 rx (B]e ,  rl .~ g"~ da'(C) 

(2.20) 

Here el((9, 3)) = el((9, 15)) = - 1 = er((3, 9)) = er((15, 9)), while for all the other B 
this factor is one. In particular e,((9, 9)) = 1 = er((9, 9)). 

Taking also into account (2.13) it remains to choose the signs of a minimal 
subset of constants. The choice 

d(5,5) `4(9,9) ,/(9,9) `4(7,7) > 0 (2.21) 
(9,9X9,9), ~(9,9X9,9), "*(5,5X7,7), '"(7,7X7,7) 

is consistent with the locality equations (2.6). (Note that (2.6) restricts only the sign 
of the product of the four constants in (2.21).) With this choice one obtains (1.3), 
i.e., the signs of the scalar constants coincide with the signs of the corresponding 
E 7 M matrix elements, and furthermore 

d(5,13) d(5,5) `4(7,7) ,4(9,9) ,,.. 
(7,7)(7,7), (3,9)(3,9) < 0 ;  "(9,3X3,9), ~(9,3X3,9) / 0 ,  

sign(d~93;9)x7,7)) = sign(d~359~(7,7)) = -sign(d~3~9~7,7)) = -sign(d~3~9~s,5)) 

(2.22) 

• ( 3 , 9 )  
= --  s lgn (d (3 ,9X3 ,9 ) ) .  

Clearly the couplings of the E 7 scalar field (9, 9) and those of the D10 field ~ +  
with the fields belonging to the common subset completely coincide. This follows 
from the identity of the c o n s t a n t s  M9a b = Bb9+a, checked by comparing (2.16) with 
the formulae in Appendix A, and furthermore from the comparison of (2.17) with 
the consequences of (2.20). This fact together with (2.19) can be interpreted as a 
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manifestation of the automorphism of the fusion rules of the extended D10 field 
algebra which upon twisting takes it into the E 7 theory [19]. 

2.3.3. Case E 6 
This exceptional case appears for h = 12 and contains the scalars labelled by the 

E 6 exponents a = 1, 4, 5, 7, 8, 11 and spin fields of the type (a, h - a), a = 4, 8, 
and (1, 7), (7, 1), (5, 11), (11, 5). The odd spin fields are those labelled by (4, 8), 
(8, 4), (5, 11), (11, 5). The results in [4,5] imply that the squares of the general 
structure constants are determined by the factorization formula (2.10). 

Let us now add the signs of the remaining constants. The symmetry of the 
fusion matrix together with Eqs. (2.6) gives the following relations for the relative 
signs. 
(i) Let all a, b, c be odd (hence ~, b, ? are also odd): 

do.(c) A,r(a) = ( --  1)  ( a - ~ ) / 2 d C B -  (2.23) 

(ii) Let a be odd and b, c even: 

,4 (4,8) = _ 3(4,4) = _ , / (8 ,8 )  . 
~(5,5X4,8) ~(5,5X4,4) ~(5,5X8,8), 

I X (~ - 1)/2 r/trr((b ~).) t * A ( b ,  b) '4(b'b)-  ---- ( - -  D (a-j 1)/2d°'l((b'b))AO.l((b,b)) = ( - -  . t]  t, Ao.r((~,b)) 

= ( -- l~(a-~)/2rlo'((b,bD 
] " * A t r ( ( b , b ) ) ,  

for A = (1, 1), (1, 7), (7, 1), (7, 7) and b = h - b; 

d(8,4) = r/(4,4) . 
(73)(4,8) '*(7,7x8,8), 

dA(b,b)_ 1~ (a - 1) /2 r l (b , . b )_  - _ (b,b, = ( - - ~ 1  .A (b ,b )=( - -1 ) (a -1 ) /2d (b ( ' bb , )  ) 

for A = (11, 11), (5, 5), (11, 5), (5, 11) and b = h - b. 
(iii) Let b be odd and a, c even: 

dA  '~(c) 1) ~(c) + (b - r,)/2 dCa 
~r(B) = ( -- 

Note that (2.24b) follows given (2.24a) and (2.25). 

(2.24a) 

l"~(a - ~ ) / 2  r / (b~)  
= ( - -  x )  t ~ A ( b , b )  

(2.24b) 

(2.25) 

Using the above relations as well as (2.13) it is sufficient to give the signs for a 
minimal set of constants, e g ,  dg,D__, d(7,D.. ,  d(5, 5) and d (1'7) d (7'7) 
--(1 7~ . t !  ~ . . . .  " "~ ~ ( 1 , / X I ,  I)  (4,4X4,4) (4,4.)(4,4) (1,7)(1,7), (7 1X1 7), a" "" "-"1 ~'," ~','~ • " ' (7,TR77), 12(4 4X4 4), d(4 4X4 8), d(4 4X4 8)" Actually given d(77 77, for F = (7, 7), (1, 7), ' ' , .  , • , , , X , )  

Eqs. (2.6) restrict the signs of the remaining constants in this subset. Thus the 
choice of the sign of one of the scalar constants, e.g., 

d(7,7) 
(7,7X7,7) > 0 

ensures that all scalar constants are positive and hence they coincide with the E 6 
M matrices. Furthermore choosing 

d(1,7) 
(7,7)(7,7) > O, (2.26) 
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it follows that 

d(a ,7) (7,7) r/(1,7) ,4 > O, (1,7)(1,7) ~(7,1X1,7), ~(4,4)(4,4) 

• ( 7  7 )  • ( 1 , 7 )  
slgn(d(4:4X4,S)) = sign(d(4,4)(4,8) ) . 

(2.27) 

As an example of the application of (2.24) one obtains, e.g., 

d(S,S) 
(1,7X8,8) < O, 

while 

d(8,4) _ _ ,4(1,7) 
(1,7x8,4) - ~(8,4x8,4) ~ O, 

d(8,4) = _ ,4(7,1) 
(7,1X8,4) ~(8,4)(8,4) < 0 .  

In the last two equalities we have used also the relations (2.5). 
The E 6 operator product algebra has a subalgebra consisting of the fields 

{(1, 1), (5, 5), (7, 7), (11, 11), (5, 11), (11, 5), (1, 7), (7, 1)}. The labels {1, 5, 7, 11} 
of the scalars in this set correspond to the exponents of the Coxeter group F 4. 
Furthermore this subalgebra has the smaller subalgebra {(1, 1), (7, 7), (1, 7), (7, 1)} 
generated by the purely chiral subalgebras {(1, 1), (1, 7)} and {(1, 1), (7, 1)}. 

2.3. 4. Case E s 
We shall be very brief on this last case, already studied in part in the last 

reference of [5], as it is fairly cumbersome, and we shall not display explicitly all 
the formulae (they may be obtained on request from the authors). Suffice it to say 
that a determination of signs in the expressions of dCB = ± ~MabcM~ ~ (cf. (2.10)) 
has been completed. Imposing Eqs. (2.1), (2.5), (2.13) and (2.23) as constraints 
leaves a set of 423 signs (!) that are determined so as to satisfy (2.6). There are 
solutions such that the sign for A, B and C scalars is + ,  thus in agreement with 
(1.3). 

Finally one observes that the exponents {1, 11, 19, 29} of H 4 appear as labels of 
the scalars in a subalgebra in this E 8 case. The latter subalgebra consists of the 
fields labelled by {(a, ~); a, ~ = 1, 11, 19, 29}, and it contains furthermore the 
chiral subalgebras {(a, 1)} and {(1, a)}, a = 1, 11, 19, 29. 

We conclude this section with a remark on the general case j~ 4= 0 of the 
minimal (unitary) theories and the corresponding non-diagonal solutions. Notice 
that for s ' =  2 j ' +  1 even, in the exceptional cases with g 4: h -  s, s, the spins 
As, s, -za~,s, (mod 1) depend on the second index s' 3. Furthermore there are 
additional sign factors in the general fusion matrix, mixing both types of indices, 
i.e., it factorizes only up to signs. This does not change the solutions for the 
squares of the relative structure constants d, i.e., they are the same as the ones 
described above, whenever the triplets of primed indices are consistent with the 

3 Choosing as in [8] the (h - 1 ) ( h  - 2 ) / 2  independent  left (right) labels to be represented by {(s, s'); 
s' = s mod 2} avoids this dependance. 
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fusion rules, but the signs of some of them will depend on the primed indices. 
However, the signs of the relative scalar constants are not affected, so that the 
property (1.3) holds true in the general case, with the proper substitution of the 
labels, i.e., a + (a, a’), etc.. 

3. The lattice approach 

According to Pasquier [201, an integrable SU(2) lattice model may be attached 
to a graph by constructing a representation of the Temperley-Lieb algebra on the 
space of paths on the graph. We recall hereafter the basic steps in that construc- 
tion and then expose some universality properties in the calculation of the matrix 
elements that enter the expression of the correlation functions. 

3.1. The Temperley -Lieb algebra 

By definition, the Temperley-Lieb algebra is the associative algebra generated 

by k..., U,_, subject to the conditions 

Q2=pQ, p=2cos(~/h), (3.la) 

Sq=qQ, if Ii-j1 >2, (3.lb) 

q= qq.+Iq. (3.lc) 

There, h is an integer, to be chosen as the Coxeter number of a Dynkin diagram 8 
of ADE type. 

One then introduces the space Z’ of paths on the graph 59, i.e., the space 
spanned by the states { I ao, . . . , a,)}, 

Ia O...(YL)=G,~~~G~,~*...G”~_~~~I”~)~ la,)@ *-- Icq), P-2) 

where (alp) =a,, and the matrix elements of the adjacency matrix G of the 
graph .V ensure that consecutive vertices LY~, czi+r along the path are adjacent on 
the graph. The space Z’ also supports a representation of the Temperley-Lieb 
algebra, provided by the formulae 

ai+l 

with CY~ 0 ff; = 6 G cr_,u: (*:y*y) 1’2 a,-1ai+1 ai--1a, 1(1(l) . at-1 
ai-l 

(3.3) 

This is easily seen to verify (3.1) with p = yr, the eigenvalue of the Perron- 
Frobenius eigenvector 1,4 . w Note that none of these operators affects the values of 
CQ and LY=. 
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For our purposes, it will be useful to enlarge the algebra by the operators ~b~ "), 

~b(a) 
Ot i 

~b~")[ a o . . .  aL)  = ~ l a 0 . . .  aL) .  (3.4) 

For any operator of this enlarged algebra, define now the (modified) trace 

Tr X = • ~,aod'(1)* \,-~1... O~L ] X [ ol 0 . " ~  .. a/~)qJ~, Tr ]1 = (y l )  L, (3.5) 
{a0 ..... aD 

which has the properties of a Markov trace [21]. The main property that we shall 
use below is its cyclicity: for any two operators X and Y belonging to the algebra 

Tr XY = y '  ~1,(1)* ,i.me.. a L I X  Y l a ° aL ) "rot 0 WOt L \ ~ 0  . . . . . .  

Or0 ~otl ~ . . . ~ a L _ l ~ O t L  

= E d'(1)* d ' ( 1 ) / ~  ~ I X l ~ 0 ~ l  • 13L-IaL> Wct o "Pot L \ u L 0 ~ I  . . . O~ L _  lOlL • . 
O~0~Otl~ - • • ,  ~ L 

~ 1  . . . . .  # L - - 1  

X ( 0 ~ 0 ~ 1 . . .  3 L _ l a L l Y l a o a l . . .  aL_la  L ) 

= ~ ~b(~lo)*~(~(Oto~l...[3L-laLlYXlctofll...flL-laL) 
OtO ,~[~ 1 . . . . .  [ ~ L _ I , O I L  

= Tr YX. (3.6) 

3.2. Height lattice models and their correlation functions 

We now consider a square lattice of finite size. To each lattice site is assigned a 
"height" that is a vertex of ~" with the constraint that neighbouring sites are 
assigned neighbouring heights on the graph. It is convenient to regard the "equal 
time" configurations of heights aoal . . ,  a L attached to a diagonal zigzag line 
across the lattice and to describe it by a state ]aoal . . .  aL) in the Hilbert space X 
of the theory. 

The transfer matrix between these configurations is constructed in terms of the 
representation U/of  the Temperley-Lieb algebra (3.3): 

L - 1  L - 2  

~ - =  H X i ( g )  H g i ( u ) ,  
i = 1  i = 2  

i odd i even (3 .7)  
sin(rru) 

Xi(u ) = 1 + s i n [ ~ ( 1 / h  - u)] U/, 

with u a spectral parameter. The commutation of row-to-row transfer matrices for 
two different values u and v of this spectral parameter follows from the Yang-  
Baxter relation satisfied by the X's: 

x,(u)x,+~(u + v)x,(  v) =X,+l(V)Xi(u + v)x,+,(u), (3.8) 

which is itself a consequence of (3.1) and of simple trigonometric identities. 
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If  the lattice has a " t ime" extent of M, it is appropriate to define the partition 
function as the modified trace of the Mth  power of that transfer matrix, 

Z od-  E 
~tO , ~ L  

(3.9) 
L = ( a o . . .  aLI I ao . . .  aL>. 

Otl,.--, ~L_ 1 

In such a lattice model, it is natural to consider the operator  P~(r) that projects 
on the state of height a at a certain site r. Its expectation value is the so-called 
local height probability and is an order parameter  of the lattice theory. Pasquier 
suggested to consider another set of order parameters, 

~ ( a ) ( r )  = E ~P~(r). ( 3 . 1 0 )  
a ~//a 

The merit of this set is that its correlation functions are diagonal in the labels a 
and b: 

( const. ) 
<cI~(a)(r)~(b)(rt) ) = ~ab I r - r' I d° + subdominant terms (3.11) 

(see below). In fact, this critical behaviour is represented by one of the minimal 
unitary conformal field theories of central charge c -- 1 - 6 / h ( h  - 1), namely the 
one labelled ( m h _ 2 ,  oW) in the classification of [18]• The labels a have to be chosen 
among the Coxeter exponents of the diagram g' (which agrees with our convention 
that 1 labels the identity), namely the field ~(a) is a linear combination of the zero 
spin fields labelled in the Kac formula by s = a = s' mod 2 [18]. For a < h - 1, the 
leading term in (3.11) is given by the spin zero primary field along the diagonal of 
the Kac table s = s' = a, and only that term survives in the continuum limit. 

In the transfer matrix formalism, correlation functions of these operators may 
be computed through the insertion of ~b~ ~) defined in (3.4). If the fields q~ are 
located at sites r t = (tt, i t) with, say, t 1 ~< t 2 ~< . . .  ~< tq, their correlator reads 

( ~ ( a l ) ( r l ) . . .  ~ . ~ ( a q ) ( r q ) >  

- 1  
= Z m o d  E ~b(1)* I]/(1) to/0 "r~ L 

o~0~Otl,..., ot L 

X <O~ 0 • O~ L [ ~ - M - t q c ~ ( . a q )  ¢ ] ~ ( ' a 2 ) ~ - t 2 - t l c ~ ( a l ) J  t l  l a 0. teL>. (3.12) 
• " " r l q  " " " "r't 2 " t ' i  1 • • 

Thus expanding the expression of 3 and of each X i as given in (3.7), we see that 
the calculation of Zmo d or of any of these correlation functions is a universal linear 
combination of expressions of the form 

O~O,Otl,.. •, ~ L 

where .K is a monomial in the U/ and ~b~ '). Here  and in the following, universal 
means independent of the explicit representation of the Temper ley-Lieb  algebra 
attached to a graph with a given h. In contrast, Mab c is not a universal number as 
it depends on the graph ft. 
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We shall now prove that: 
(a) the modified partition function and the two-point functions are universal, 
(b) the three-point function is of the form (¢(a)q/b)4~(c))=Mab C × (a universal 

function). 
In the latter, the universal function may (and will in general) depend on the labels 
a, b, c, but in a universal way. It also clearly depends on the locations of the three 
operators. Note that (a) is a particular case of (b), when one or three of the 
operators are chosen to be the identity and using that Mab 1 = ~ab" Note finally that 
this universality of the three-point function is what is needed to prove the assertion 
on structure constants. In the ratio of two three-point functions of operators with 
the same labels but pertaining to the graph ~" and to the graph A of same Coxeter 
numbers, the universal function disappears and we find 

( ~)(a)( r l ) (~(b)( r 2  ) ~ ( c ) ( r 3 )  ) g ~  _ M a b c  

( q ~ ( a ) ( r l ) ~ b ( b ) ( r 2 ) d p ( C ) ( r 3 ) ) A  N a b c  (3.13) 

The fusion coefficient N a b  c takes the value 1 whenever the three-point functions 
for the graph A are non-vanishing. This is a peculiarity of SU(2) that makes this 
discussion simpler. On the other hand, in the continuum limit, this ratio of 
three-point functions is nothing else than the ratio of structure constants. Accord- 
ing to the discussion at the end of Section 2, this ratio is the same for the 
conformal fields on the diagonal of the Kac table that appear in this lattice 
approach as for those of the s' = 1 subalgebras considered in Section 2. 

We now turn to the proof of the asserted universality. (This may also be proved 
using the duster  expansion techniques developed by Pasquier in [8], see also [12].) 
The technique that we use here is more powerful and extends to a large part to the 
case of more general models based on Hecke algebras relative to sl(N) algebras of 
higher rank [22]. 

Let us first establish a few simple lemmas. 
Consider the operators ~b~ ~) defined in (3.4). At a given site i, they form an 

algebra 

~b~a)~b~ b) = Mab~b} c), (3.14) 

or more generally 

(J~ al) I~)~ at) = M ~,4 (.¢) (3.14)' • " " " " a I ... a I ";"t , 

where 
,t,(aj) \ '+'b_..C_ / ,~O)~,.<c). 

M a l . . . a  ' = E "l-- ! $(b,, ) I b t, (3.15) 
b / 

satisfy Ma,...aTM¢b~...bm = Ma, . .o ,  .. On the other hand, the $'s relative to different 
sites commute among themselves but do not commute with the U's. They satisfy, 
however, the following identities: 

U/6~a)u/= rat/~a_)lU/= raU/(l~!a_)l, (3.16a) 

U/6}a)u/-1U/= "q~'i- 2"h(a) Ui = v i V " i - 2 ' r  r a,(a) (3.16b) 
that are readily established using the expressions (3.3) and (3.4). 
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Now consider the trace of  any monomial  in the generators of the Temper l ey -  
Lieb algebra, U~, i = 1, 2 , . . . , I < ~ L  - 1, and in operators  ~b~ '), j = 0  . . . .  , J < ~ L ,  

contributing to a three-point  function of the ~b's. A second lemma asserts that  the 
trace of  such a monomial  may be written as a linear combination, with universal 
coefficients, of traces of products of U's  and ~b's at most linear in/.71, the one of 
largest label. This is easily established by induction on I and the degree in U1, 
using the relations (3.3), (3.14) and (3.16), and the cyclicity of  the modified trace. 

Then, we may always assume that J < L at the possible price of  replacing in the 
~(b) Moreover,  if the monomial  is of modified trace ~-,~L ~l~(1) by some more general T~ L . 

degree more  than one in ~bj and J >/I, we may use the commutativity of the ~b's 
and the cyclicity of the trace to bring the &j next to one another  and then use 
(3.14) to reduce their degree to one. Ultimately, we are dealing with a combination 
of monomials 

tr .,~'( U 1 . . . . .  U I ,  d~lil~ . . . ~ il) ) 

at most linear in//1 and if J >/I  at most linear in ~bj. 
The  universality property will then be proved by induction on the length L. I f  

L = 2, it is trivial• Let  us assume it is true for all lengths up to L - 1. For a length 
L, by the lemma above, .K may be taken to be at most linear in Ut._ r 
• I f  it is independent  of  U L_ ~, then the summation over a L may be carried out, 

with the result 

E ( O ~ 0 " " "  O~L [ ~ ( U 1  . . . . .  U,,(])(lal)"'~)(al))[OlO'"OlL>l] I(b) 
e L 

"~,/,(b) 
= ' ~ b ( O ~ 0 . . . O ~ L _ _ l l . , ~ ( . . • )  I O ~ 0 • • ' O I L - - I / W O t L _  1, 

and we are now dealing with a chain of length L - 1 on which the induction 
hypothesis applies. 

• If  ~ is linear in U L _  1, one may sum again over a L ,  

E (Ol 0 • . O I L I U L _ I . / ~ ' ( U I , . • . , "  - t ( a l )  . ~ ( L a L i l ) )  ,a, "~dt(b) • U L - 2 , q ) I  • .  - I O~ 0 . . . .  L/tl..'aL 
ot L 

&(t) 
= (0~0 • .  • O~L_ 1 I . ,KLv' (U1,  U d~(al) 6(LaL11)) Ol ~T aL--1 dt(b ) 

• " " ,  L - 2 , ' ~ l  . . . .  I O~ 0 • • • L - l /  ib(1 ) '~aL_ 2 
TCtL --2 

= (O~0 " ' "  O/L--1  I " ~ "  ( U I ,  " - - ,  UL-2,q)I" d- ( a l )  • " " ' + ' L -  llh(aL-1)'~'4~(b)]'-t"L-2 I O/0 " " " O~L-  1 > ~/(1L ) -  1' 

to which we may apply again the recursion hypothesis. QED. 
Ultimately, we collect only one M factor times a universal combination of y ' s  

and this proves the desired property. 

4. Questions, conclusions 

Although all structure constants including their relative signs are determined 
from the locality equations (2.6) and thereby we have been able to prove our 
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assertion (1.3), it seems desirable to find a more transparent and global argument 
to that effect. 

The same applies to the factorization property (2.10). It is also not unlikely that 
a general procedure yields the d's of the twisted cases (like E 7) from those of the 
corresponding untwisted case (see, e.g., Section 4 of [7]). 

The fact that a certain class of subalgebras is in one-to-one correspondence with 
Coxeter groups is also quite intriguing. 

It is natural to wonder whether the property (1.3) connecting the relative 
structure constants to the matrix elements of the Pasquier algebra extends to a 
larger class of non-minimal theories, in particular to cosets based on s l (N)  affine 
algebras, N >i 3. For some of those, graphs have been identified which allow the 
construction of integrable lattice models with a continuum limit described by the 
appropriate conformal theory [13], and it is a simple matter to find the eigenvec- 
tors ~b and to construct the M's. The latter, as well as spin zero fields, are now 
labelled____ by generalized "exponents" a taking their values among integrable weights 

of s l (N)  at some level k. Since essentially nothing is known about the structure 
constants of the non-diagonal solutions in these cases, it is difficult to assert the 
validity of (1.3). One may try instead to repeat the lattice approach following the 
steps of Section 3. One encounters, however, some difficulty due to the absence of 
a simple cluster expansion in those higher rank cases, or alternatively, the lack of 
the Kronecker delta function like in the RHS of (3.3) makes it difficult to 
generalize Eqs. (3.16). Preliminary results based on the consideration of lattice 
configurations of small size seem to point to the following conjecture: 
• whenever the fusion coefficient Nab c is equal to one, the property (1.3) remains 

true; 
• on the contrary, if Nab c > 1, the universality property crucial in Section 3 fails. 

This seems to fit with the qualitative idea that Nab c > 1 means that there is more 
than one independent amplitude in the (~A~Bq~C) correlation function, thus 
some more work has to be done to recover the "universal" quantity. 
On the other hand in the block diagonal cases one can exploit the existence and 

the locality properties of the underlying extended chiral algebras, extending the 
approach outlined in Appendix C. A preliminary computation suggests in pa_._~icu- 
lar that the M matrices in the level k = 5 exceptional example in the s/(3) case 
[13] can be reproduced and an extension of (1.3) obtained. We hope to return to 
these problems. 
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A p p e n d i x  A 

Tables of M matrices 

The M matrices introduced in Section 1 are in fact not fully determined, due to 
a remaining arbitrariness in the ~. The latter are assumed to be orthonormalized, 
which leaves a sign ambiguity for each, and slightly more in the D~,¢, case. 

(i) As for the sign ambiguity, it may be removed by imposing for example that 
the component qJ~(") of each eigenvector ~b (") for the vertex a at the end of the 
longest leg of the Dynkin diagram is non-negative. This disposes of all the cases 
but Deven. 

(ii) In the latter case, the eigenspace for the exponent a = h /2  is of dimension 
2. We choose (as in [20]) O (h/2;-) = 1/v~-(0, 0 , . . . ,  1 , - 1 ) ,  with all components 
vanishing but on the end points of the fork, and ~b (h/2,+) orthogonal to it, with the 
sign fixed as above in (i). The reader may find explicit formulae for the (unnormal- 
ized) eigenvectors e.g. in [20]. 

The following M have been computed using these prescriptions. Note that they 
satisfy the symmetry property Mh_ a h-b c = Mabc in all cases but the Doa d one, 
where it is true only up to a sign. 

A.1. Case Dh/2+ 1 

For a , b , c = l ,  3 . . . . .  h - 1  but 
and ( h / 2 ; - )  in the ])even one, we have 

= 1 ,  i f l b - c l + l < ~ a < < i n f ( b + c ,  2 h - b - c ) - l ,  
M"bc = N"bc = O, otherwise, 

*, where * denotes h /2  in the Do0 d case 

(A. la)  

Ma** = M , a  . = M ,  , ,  = ( - 1 )  ( " - 1 ) / 2  (A. lb)  

All the other M's  vanish. Comparing with (2.14) for C -- F = (h/2,  h / 2 ; -  ) we see 
that Eqs. (A.1) coincide with the expressions for the scalar constants d. Alterna- 
tively in the Deven case, the M matrices can be rewritten in the second basis 
corresponding for h = 2 mod 8 to (2.16); the formulae for h = 6 mod 8 read 

M : + = V ~ ,  Mf+=O=M+~_, 

M ± . - M a + -  ~ 1 + ( - 1 )  +:~, a ~ T h  , 
(A.2) 1[ ] M~,=Mff±= ~ 1 ( 1 )  ( " - 1 ) / 2  a - - = M ± ± ,  a ¢ ~ h ,  

Mf a = M[o = 1  = Ma), a, f :# l ~N, fh/2 7h, ± 

and for a, b, c, ~ h/2 ,  the constant is N,b c as in the old basis. The labels + stay 
for the two linear combinations gel+) = (1 /v~) (¢~  h/2) + i¢~h/2;)), qt~-) = ( ~ + ) ) *  
In the case D 4 (h = 6) the last line in (A.2) does not appear since it is excluded by 
the fusion rules, i.e., the constants take only the values 0, 1,v~-. 
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Appendix B 

Fusion matrices, quantum @symbols, symmetries 

Deno te  

s in( 'n 'ap)  b 

[ a ]  = sin(Trp) ' [ b ] ! =  a=l]-'I [ a ] ,  

[ [ a + b - c ] ! [ a + c - b ] ! [ b + c - a ] ! l  1/2 (B.1)  
A[ abc ] 

t 1 [a + b + c  + l]! 

Recall  the explicit expression for the quan tum Uq(Sl(2)) 6j-syrnbols [23], 

(~13 J4J2 ~:)p 

= ~/[2j5 + 1][2j6 + 1] a[jljzjs]Z[j3J4js]a[jlj4J6]A[j2J3J6] 

( -  1) z + r~'-lJ"[z + 11! 

Xz~ ~ [z - J2 - J3 - J6] [[z - Jl - J2 - Js]l[ z - Jl - J4 - J6][[ z - J3 - J4 - J5] ! 

1 
×[J2 + J4 +J5 +J6 - z]![jl + J3+J5 + J6- Z]![•4ja-- Z]!" (B.2)  

The  thermal  (i.e., for  all J'n = 0) fusion matr ix is def ined as (s i = 2 j  i + 1) 

S3 $4 sss 6 = ( - -  t J3 J4 J6 l/h" (B.3)  

One  can assume that  the paramete rs  jn, n = 1, 2 . . . . .  6, in (B.3) take values in a 
subrange consistent with the conformal  fusion rules for  the given h, i.e., any of  the 
triplets (Jl, Jz, J5), (J3, J4, Js), or  (Jl,  J4, J6), (J2, J3, J6 ), is admissible. Accordingly 
the summat ion  in the crossing equat ions  (2.6), as well as in (2.3), accounts for  these 
restrictions. The  consistency of  this t runca ted  summat ion  in the physical correla-  
t ion functions can be established by quan tum group arguments  [24,25]. 

The  signs in the RHS of  (B.3) come from the transit ion p = (h  - 1 ) / h  ~ p = 1 / h  
in the original expression and fu r the rmore  f rom the choice of  normalizat ion of  the 
chiral blocks in (2.3). The  lat ter  differs by a sign f rom that  in [1,4] and is adopted  
here  to ensure  the positivity of  the constants C~b in (2.4) 4 

Note  that  

( ac a ) f l  = ~ / [ a ~ ]  " I f ]  (B.4)  

4 Here we correct the analogous formula (3.1) in the third reference of [4]. The sign missing in (3.1), 
if compared (for all j' ffi 0) with (B.3) above, is due to the erroneous formula (2.2). This does not change 
the main results in the third reference of [4] but affects, say, some of the signs of the non-zero spin field 
constants in the E 6 c a s e .  
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The fusion matrix satisfies a set of symmetry relations derived in the first 
reference of [4]. Denoting s = h - s, they read 

S4__ s_._~ 6 = ( -- 1)a16+(alz+az3X~6-1)+alz3~2[ $3 S 4S2 SsS6' 

4 / sl -/ = ( - 1)a3,+(a,2+a23×ss-1)+a%~2 
_ _  S3 S 4 ' S 3 S 4 $55 6 S5$6 

- -  =(_l ) ( j2+j4- js -J6Xsl+sa+l)[S1 $2 
S S 3 S 4 SsS6 ~$3 4 SsS6 

(B.5a) 

(B.5b) 

(B.5c) 

where A52 =J l  + J 2 - J s ,  A423 =Jl +J2 + J 3 - J 4 .  
When inserted in the general equation (2.6) these relations imply restrictions on 

the signs of the relative structure constants. Finally, given these relations the 
derivation of the structure constants (2.14) in the D series is straightforward. 

Appendix C 

Relation to the extended theories 

In this appendix we shall sketch the implications of the factorization property 
(2.10) for the cases E 6 and E 8. All the arguments work for the simpler case D 4 as 
well. 

The idea is to use (2.10) to block-diagonalize the locality equations (2.6) [26]. 
Indeed, whenever the overall sign of the constants in it is positive, we can attach 
the ratio (Mfc Mfac//Mbat Mtd )1/2 to the fusion matrix. Take, e.g., A = B, C = D 
and T = (1, 1) and denote by {f} the equivalence class of f ,  i.e., f '  ~ f  iff Af = A r 
modulo an integer. A direct check shows that the quantity 

= r a) 
{a}{c} {c}{a} C f l  ' 

f~ {f} 

Ftt~{1 } = 1, (CAb)  

depends only on the classes {a}, {c}, as indicated by the notation (cf. also (B.4)). 
This fact (an assumption in [26]) allows to split the sum over f (or f )  in the 

locality equation to a sum over the classes followed by a summation within the 
classes. Hence Eqs. (2.6) for the particular choice A = B, C = D, T = (1, 1) admit a 
diagonal form, i.e. 

y~[Ff f ,  h 2 _ I . V ' I d F  h2Jc a }  {~ ~} = 1 .  (C.2) 
k {a}{c}] -- ~,_~, AC! ~a c fl  a c fl  

{f}  f , f  

Now let us look at the concrete expressions for F, tf~ apart from the values {a){c) 
already given in (CAb). 
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Case E6: 

F, {1} - F ,  {4} = l ,  F, {1} =F. {5} = V/~-; (C.3) {5}{5}- {5}{4} {4}{4} {4}{4} 

the rest zero. 
Case Es: 

F'{1}{7}{7} = ½(V~- - 1), F, (7}{7}{7} = [1( v~- -  1)]1/2; (C.4) 

the rest zero. 
Given the class matrices in (C.3) and (C.4), one recovers the corresponding 

fusion rule coefficients Nff  } = 0, 1 [26], {a}{c} 

F,{f} F{ c} {a}{c} {a}{f} N,{s} = ( c . 5 )  
{a}{a} F{1} {a}{a} 

The matrix in (C.1) can be represented by 

( D { f } )  1/2 
F, {f} S{1}{a} (C.6) 

{a}{c} = ~ D{a}D{~} ' , D{a} = SO}o } 

Here S is the modular matrix which according to the Verlinde formula diagonal- 
izes the fusion rule coefficients N, {f} The fusion algebra implied by (C.3) {a}{c}" 
coincides with the Ising model fusion algebra. In agreement with the analysis 
initiated in the second reference of [3] (see also [27]) the numbers in (C.3) are 
alternatively reproduced using the modular matrix elements Six/Si i  (quantum 
dimensions) for the set of integrable representations of the level 1 affine algebra B 2. 
Namely, identifying A = (0, 1), (1, 0) and (0, 0) (classical B~ dimensions 4, 5 and 1) 
with the classes {4}, {5} and {1}, respectively, one has 

D(0,1 ) -- ~ - ,  D(1.0 ) = 1 = DO,0). (C.7) 

The second fusion algebra is the one of the level 1 G 2 WZW model or of the 
corresponding coset theory. Indeed the classes {7} and {1} in the case E 8 can be 
identified with the representations h = (0, 1) and (0, 0) of G 2 since 

2 
D(°'I) ~ - 1 ' Do,o) = 1. (C.8) 

One can slightly extend the construction in (C.1). Namely, taking instead of 
T = (1, 1), arbitrary T = (t, D, with t, t ~ {1}, one can define, whenever MtaaM~c ~ t : t  t 
0, 

F, {f} - E  If} - - e  E M[~ {c a} ( C . 9 a )  
{a}{c};{1}- {c}{a};{1}-- a,c;t t t ft a c ' 

f~{f} 

FC {a} = 1. (C.9b) a}{1};{1} 
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Here ea,c;t = Ec,a;t is a sign (we suppress the dependence on {f}),  such that 
Ea,c; 1 = E a , a ;  t ~ -  1 and ea,c;t~,~;~ = sign(d,~TdCc) (Since the signs are overall they are 
easily found by direct computation - we omit the explicit values.) 

The LHS of (C.9a) takes the same values as the corresponding elements in 
(C.la). Hence it admits the representation (C.6), with the values given in (C.7) and 
(C.8). Similarly to (C.2), the quantity (C.9a) allows to block-diagonalize the locality 
equations (2.6) for A = B, C = D and T of the kind described above 5 

Vice versa, if the extended fusion matrix elements in (C.9a) are known, they can 
be decomposed for given {a} and {c} in several different ways into fusion matrix 
elements of the minimal model. The resulting set of relations - a linear system of 
equations for the decomposition coefficients M, can be solved (together with the 
signs), assuming the symmetry M~c = M~f. The coefficients then provide a factor- 
ized solution for the relative structure constants of the minimal model locality 
equations. Note that in the E 6 c a s e  it is sufficient to use (C.la),  i.e., to vary c ~ {c}, 
a ~ {a}, choosing t = 1. 

Finally let us remark that the existence of an extended theory behind some 
modular invariant implies a set of symmetry relations for the fusion matrices at the 
given h (equivalent to the class property above), which generalize (B.5). 
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