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F-91191 Gif-sur-Yvette, France

ABSTRACT

A Pasquier algebra is a commutative associative algebra of normal matrices at-

tached to a graph. I review various appearances of such algebras in different

contexts: operator product algebras and structure constants in conformal theories

and lattice models, integrable N=2 supersymmetric models and their topological

partners.

1. Introduction

Let G be a graph with n vertices a, b, · · ·, Gab its adjacency matrix; as the edges of

G may be oriented, G is non necessarily symmetric, but we shall assume that it is

normal, i.e. it commutes with its transpose: [G,Gt] = 0, hence it is diagonalizable

in an orthonormal basis ψ
(i)
a . Here i labels the eigenvectors and runs over n values.

Among them, the Perron-Frobenius eigenvector plays a special role and will be

denoted ψ
(0)
a . We then define the set of matrices Mi of matrix elements

(Mi)jk = M k
ij =

∑

a

ψ
(i)
a ψ

(j)
a ψ

(k)∗
a

ψ
(0)
a

. (1.1)

It includes the unit matrixM0 = II and forms a commutative and associative algebra

MiMj =
∑

k

M k
ij Mk (1.2)
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that we shall call the Pasquier algebra[1]. This note is devoted to a review of various

appearances of this algebra in different contexts, some known for quite some time,

some more recent.

Before doing so, let us notice that there is a well known particular case of this

algebra, obtained by taking for G the graph formed by the integrable weights of an

affine algebra ĝ at some level k ≥ 1, with edges between the weights λ1 and λ2 if

λ2 ⊂ λ0 ⊗λ1, where λ0 is one of the fundamental representations. Then both types

of labels of ψ, a and i, refer to integrable weights λ, the ψ are in fact given by the

matrix elements of the unitary matrix S of modular transformations of characters

χλ(τ), and the Pasquier algebra is nothing else than the Verlinde fusion algebra of

ĝ at level k [2]

N λ2

λ0λ1
=

∑

µ

Sλ0µSλ1µS
∗
λ2µ

S0µ

, (1.3)

with 0 denoting the weight of the identity representation. Thus in that case, all

M k
ij = N λ2

λ0λ1
are non-negative integers. This is not the case in general.

In cases different from this fusion algebra, the labels i and a, although in equal

number, are inequivalent. This suggests to perform the summation in (1.1) in an

alternative way and to form the dual algebra generated by the matrices Na of matrix

elements

N c
ab =

∑

i

ψ
(i)
a ψ

(i)
b ψ

(i) ∗
c

ψ
(i)
0

. (1.4)

This is again an associative and commutative algebra, with the matrix N0 = II, the

identity matrix. Eq. (1.4) assumes that there exists at least one vertex labelled 0

such that all the ψ
(i)
0 are non vanishing. If this point is chosen among the extremal

vertices of the diagram, i.e. those connected with only one other vertex denoted f ,

then it is easy to see that ψ
(i)
f /ψ

(i)
0 = λ(i) is the i-th eigenvalue of the adjacency

matrix G, hence Nf = G. In the simplest cases, the dual algebra is thus generated

by the identity matrix N0 and the adjacency matrix of the Dynkin diagramNf = G,

all the matrices Na turn out to have integral entries and, depending on the case

(and the choice of the vertex 0), these integers are or are not all non negative (cf.

[3]). In some selfdual cases, like the Verlinde algebra (1.3), the M and N algebras

coincide.

2. Lattice models, conformal field theories and operator product algebras

2.1. Lattice operator algebra

In his original study of lattice integrable models attached to the ADE Dynkin

diagrams, Pasquier was assigning a height a, a vertex of the diagram, to each lattice
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site, with the constraint that neighbouring sites were given neighbouring heights on

the diagram. Such models admit a description in terms of states representing the

height configurations along diagonals on the lattice. Let Pa(r) be the projector on

the subspace of states that have the height a at site r. Its expectation value is

the so-called local height probability and is an order parameter of the lattice theory.

Pasquier was led to consider another set of operators

φ(i)(r) =
∑

a

ψ
(i)
a

ψ
(0)
a

Pa(r) . (2.1)

The merit of this set is that its correlation functions at criticality have a simple

power behaviour

〈φ(i)(r)φ(j)(r′)〉 = δij
const.

|r− r′|di
(2.2)

In fact, this critical behaviour is represented by one of the c < 1 conformal field

theories, the labels i have to be chosen among the Coxeter exponents of the diagram

G (shifted by −1 to agree with our convention that 0 labels the identity), namely

the field φ(i) corresponds to the spin zero primary field along the diagonal of the

Kac table r = s = r = s = i+ 1.

Pasquier then showed that a three-point correlation function of the lattice op-

erators (2.1), 〈φ(i)(r1)φ
(j)(r2)φ

(k)(r3)〉, is always proportional to M k
ij . (In that

ADE case, the eigenvectors may be chosen real, and Mijk = M k
ij is completely

symmetric in i, j, k). This was the first occurrence of the algebra (1.1). See also [4]

for a discussion of this lattice operator algebra.

2.2. Generalized graph models and their continuum limit

The construction of Pasquier was later extended to a larger class of graph lattice

models related to higher rank algebras. In the next simplest case of SU(3), the

graphs are the SU(3) weight lattice truncated at some level, or one of their orbifolds,

or some suitable deformation, and the continuum limit of these models is described

by SU(3) coset conformal theories[5]. It was shown there that in the identification

of this continuum limit, the study of the M algebra, of its dual algebra and of their

selfdual subalgebras is playing an important role. One of these selfdual subalgebras

describes indeed the extended fusion algebra of the conformal theory at hand.

2.3. Random lattice models

More recently Kostov[6] studied the ADE models on a random lattice. He con-

sidered the random motion of a particle on the graph and introduced interactions
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between three particles given by the matrix Mijk; there i, j, k refer to the “mo-

menta”of the particles dual to their positions on the graph. Similar considerations

apply to strings whose target space is a Dynkin diagram[7]. Thus in this context

too, the M ’s describe three-point couplings.

2.4. Structure constants of conformal field theories

A conformal field theory is fully specified in terms of the following data: c, the cen-

tral charge, (hi, hı), the conformal weights of the (finite or infinite) set of primary

fields, and C(iı)(j)(kk), the structure constants of these fields. The latter are de-

termined through a painstaking analysis of the locality equations of the four-point

functions of the theory and have in fact been tabulated only for a handful of the-

ories, mainly those related to ̂su(2), namely the c < 1 theories and SU(2) WZW

theories [8−9]. On the other hand, in view of its original introduction in connec-

tion with the (lattice) operator algebra, one may expect the Pasquier algebra to

be related to these structure constants. Curiously, however, its quantitative role in

that context had never been ascertained. Recently, with V. Petkova[10], a simple

empirical observation was made.

Let C
(G)
(ii)(jj)(kk) be the structure constants of the spin zero fields of one of the

ADE WZW theories : i, j, k run over the Coxeter exponents (minus 1) of the G

Dynkin diagram that label the primary spin zero fields. Then it was noticed by

inspection of the existing data that

C
(G)
(ii)(jj)(kk) = C

(A)
(ii)(jj)(kk)Mijk , (2.3)

i.e. the M ’s describe the relative structure constants of the G theory with respect

to the diagonal A theory of same Coxeter number. Notice that while the structure

constants of each theory are known to be generically transcendental numbers, the

ratios M are algebraic numbers, in fact square roots of simple fractions.

What is the rationale of such a result? The ratios d = C(G)/C(A) of structure

constants are known to satisfy quadratic equations of the type

dIJMdKLM =
∑

N=(n,n)

dIKNdJLNXnmXnm (2.4)

with capitals standing for pairs of indices: I = (i, ı), etc, and no summation over

M . Here X is the orthogonal crossing matrix from channel i ∗ j → k ∗ l to channel

i ∗ k → j ∗ l. Unfortunately, as fields of spin zero do not form a closed operator

algebra, these equations do not yield a closed system on structure constants of spin

zero fields (I = (i, i) etc). Thus the alledged property

d(ii)(jj)(kk) = Mijk (2.5)
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has to be supplemented by an Ansatz on the other structure constants. It is gener-

ally believed, (but not proved, to the best of my knowledge), that in non diagonal

theories that may be regarded as diagonal theories for some larger extended chiral

algebra[11], the structure constants of non zero spin fields factorize:

d2
(iı)(j)(kk)

= d(ii)(jj)(kk)d(ıı)()(kk) . (2.6)

and thus are determined up to a possible sign ambiguity. Even then, it is not clear

how equation (2.4) admits (2.5) as a unique solution.

In fact, it is much easier to establish that property starting from the lattice

theories. A small refinement of the discussion of Pasquier[1] leads indeed to the

conclusion that the lattice three-point functions of the φ operators are not only

proportional to Mijk but in fact equal to Mijk times a universal function indepen-

dent on the graph G with a given Coxeter number. Thus the ratios of three-point

functions, hence in the continuum, the G/A ratios of structure constants, are equal

to the ratios Mijk/Nijk. The denominator Nijk is the Verlinde fusion coefficient,

and takes the value 1 whenever Mijk 6= 0. The details of this argument will be

presented elsewhere[10] 1.

Although at this time, this property has not been derived within the continuum

theory starting from first principles but rather established by inspection, it seems

to teach us something new on the relations between the fusion (or crossing) ma-

trices and the ψ eigenvectors. In fact, this is the first explicit occurrence of these

eigenvectors in the conformal field theory formalism: so far, only their eigenvalues,

or equivalently the Coxeter exponents, had manifested themselves in the diagonal

terms of the modular invariant partition function.

Could this property hold in theories other than those related to SU(2)? If it

could be established with some generality, it would yield in a very cheap way the

structure constants of other non diagonal theories relatively to the corresponding

diagonal one: as recalled above there are several cases of conformal theories asso-

ciated with an affine algebra of rank larger than ̂su(2) where there is a candidate

graph[5]. Conversely, this might lead to constraints on these graphs and to a better

understanding of their distinctive features.

Preliminary investigations seem to indicate that property (2.5) generalizes nicely

to other theories, whenever the fusion coefficients N k
ij takes the value 1. When

it is higher, which signals the occurrence of several amplitudes in the three-point

functions, (2.5) is violated.

1 In fact, this result had been known for some time, but carefully kept secret, by I.

Kostov . . .
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3. Integrable deformations of N = 2 superconformal field theories

We now turn to an a priori very different class of problems, that have to do with

N = 2 superconformal field theories, their connections with topological field theories

and their integrable perturbations. There is a huge literature on this subject, (a

good introduction is found in [12]), and I shall content myself with a lightning

review of the notations and basic concepts.

3.1. A quick review

N = 2 superconformal theories have a symmetry algebra generated by the energy-

momentum tensor T (z), a U(1) current J(z) and two supersymmetry fermionic

generators G±(z), whose Laurent moments are denoted respectively Ln, Jn, G±

r+ 1

2

(n is integer, and so is r in the Neveu-Schwarz sector). The primary fields are spec-

ified by the eigenvalues of L0 and J0, the conformal weight h and the U(1) charge q.

Among them, the chiral fields, annihilated by the generators G+
− 1

2

, satisfy h = 1
2q

and form a ring for the pointwise (non singular!) operator product expansion[12].

lim
z′→z

φi(z)φj(z
′) = (φiφj) (z). (3.1)

The simplest N = 2 theories are the minimal ones, of central charge c < 3. They

fall in an ADE classification, as is apparent from their modular invariant partition

function and also from their description by a Landau-Ginsburg potential, that is

possible in that case [12].

Another fascinating property of theN = 2 theories is their connection with topo-

logical field theories (TFT’s). By “twisting” the energy-momentum tensor T (z), i.e.

by changing it into Ttop = T (z)+ 1
2
∂J(z) and by modifying slightly the rules of com-

putation of the correlation functions 〈φi1(z1, z1)φi2(z2, z2) · · ·φin
(zn, zn)〉, one may

show that the latter become z-independent, i.e. topological quantities depending

only on the genus of the Riemann surface on which one is constructing the theory

and on the number and indices i of the fields. One is interested in deformations

of this structure. In the N = 2 language, it is important to preserve the N = 2

supersymmetry while breaking the (super)conformal invariance. This is provided

by perturbations that are “top components” of superfields

〈φi1φi2 · · ·φin
e
−

∑
l
tl

∫
d2z G

−

−
1

2

G
−

−
1

2

φl(z,z)+h.c.
〉 . (3.2)

The resulting theory is no longer critical, it has massive excitations, particles and/or

solitons, and in some cases, is completely integrable. On the other hand, twisting

it still produces a topological theory and it is an interesting question to know if
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there is a signal of integrability in the TFT. In the latter, all genus zero correlations

〈φi1φi2 · · ·φin
〉 may be expressed in terms of the three-point functions

Cijk(t.) = 〈φiφjφke
−

∑
l
tl

∫
d2z G−

−
1

2

G
−

−
1

2

φl(z,z)+h.c.
〉 . (3.3)

that satisfy the following set of constraints:

(i) the tensor defined as ηij = Cij0 is independent of the t’s and invertible: let ηij

denote its inverse;

(ii) Cijk satisfies the integrability conditions that enable one to write it as Cijk =
∂3

∂ti∂tj∂tk
F (t.), where F (t.) is some function, the free energy of the theory;

(iii) C k
ij = Cijlη

lk satisfies the so-called factorization property expressing the con-

sistency of the two decompositions of the four-point function

〈φiφjφkφl〉 = CijmC
m

kl = CikmC
m

jl , etc .

This means that all the information on the C’s is encoded in the function F , called

the free energy of the theory, that satisfies itself non linear partial differential equa-

tions expressing condition (iii). These equations are usually supplemented by an

assumption of homogeneity:

(iv) F (t.) is a quasihomogeneous function of the t’s.

The latter condition is natural from the N = 2 point of view where chiral fields and

thus their couplings are graded by their U(1) charge.

We shall return later to these Witten-Dijkgraaf-Verlinde-Verlinde equations[13].

3.2. Normalizable perturbations

In view of the discussion of the previous section and the similarity between the

(deformed) N = 2 algebra encoded in the C’s and the operator algebra of conformal

field theories, it is natural to wonder whether the C may be diagonalized in an

orthonormal basis. This turns out to be impossible generically and to happen only

in very specific cases that we shall study. In general, the normalization has to be

modified, i.e. we have to allow a redefinition of the C’s by a diagonal change of

basis. Let us thus assume that we may write

C k
ij =

ρiρj

ρk

(Mi)jk (3.4a)

(Mi)jk =
∑

a

λ(i)
a ψ(j)

a ψ(k)∗
a (3.4b)

for a suitable set of factors ρi. The symmetry i ↔ j together with the condition

that M0 = II shows that M may in fact be written in the form (1.1). We called

such a situation a normalizable perturbation of the TFT.
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Now come three surprising empirical observations:

First, the condition that the C’s may be written as in (3.4) turns out to be

very restrictive, and in the cases where only one t parameter is left non vanishing,

may be analysed in detail with the result that it seems to happen if and only if the

corresponding N = 2 theory is integrable. This has been verified in all cases where

the deformed algebra is known explicitly, in particular for the ADE minimal theories

and for a class of N = 2 theories based on the ̂su(N) algebras. For example, for the

An theory, the “normalizability” property (3.4) takes place only for perturbations

by either t1, or t2 or tn−1 that are known to be integrable and even believed to

be the only ones [14]. This has been extended to the other D or E cases: in some

cases, this simple criterion has suggested perturbations that had not been identified

before as integrable and in which integrability has now been established by other

means [15]. This connection remains quite mysterious. Could the normalizability

property be useful in the construction of conserved quantities or of the S matrix

solution of the Yang-Baxter equation ?

Secondly, when we write the M algebra (3.4b), we note that in contrast with

the original discussion of sect. 1, we are not given a graph to start with. We

may, however, form the dual algebra following equation (1.4) and using the ψ’s that

diagonalize the M matrices in (3.4b). The second surprise is that these numbers

N c
ac turn out to be integers, and that among the matrices Na, (a 6= 0), at least

one has non negative entries. That Na may be regarded as the adjacency matrix

of a graph, and, third surprise!, this graph has the same topology as the pattern

of extrema of the Landau-Ginsparg potential 2. As the latter are interpreted as

associated with the ground states of the theory, with solitons interpolating between

them, the interpretation of the matrix Na is that it displays the flow of solitons (of a

certain type[14]) between these ground states. For instance, when an ADE minimal

N = 2 theory (or its topological partner) is perturbed by the least relevant chiral

field, one of the Na turns out to be the adjacency matrix of the corresponding ADE

Dynkin diagram! In other words, the normalized chiral algebra M for tleast rel. 6= 0

is nothing else than the Pasquier algebra of the ADE diagram. That observation

had been originally made by Lerche and Warner[16]. All this seems to extend to

other non ADE theories.

Clearly a good and systematic explanation of these curious facts is badly missing.

4. Topological field theories

4.1. Dubrovin’s solutions as restrictions of the ADE ones

Recently Dubrovin [17] has found a class of solutions to the Witten-Dijkgraaf-

2 The reader is referred to [3] for a display of these graphs
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Verlinde2 equations mentioned above, associated with finite Coxeter groups. Let’s

recall that Coxeter groups are linear groups generated by reflections in a real Eu-

clidean space, and that finite Coxeter groups are classified [18]. Beside the Weyl

groups of the simple Lie algebras, Ap, Bp, Cp, (the two latter Coxeter groups being

identical), Dp, E6, E7, E8, F4 and G2, there are the groups H3 and H4 of reflec-

tions of the regular icosaedron and of a regular 4-dimensional polytope, and the

infinite series I2(k) of the reflection groups of the regular k-gones in the plane. In

Dubrovin’s work, the homogeneity degrees of the variables ti and of F are respec-

tively 1 − (di − 2)/h and 2 + 2/h where h is the Coxeter number of the group G

and di are the degrees of the G invariant polynomials in the coordinates of V . This

suggests to label the t parameters and their conjugate field in (3.3) by the degree

−2 of these invariant polynomials i = di − 2: hence, 0 labels the identity, h − 2

the field of higher charge or weight. The solutions of ADE type that Dubrovin

finds are nothing else than the ADE TFT’s discussed in sect. 3. As for the others,

it has been shown in [19] they may be obtained as restrictions of the former, i.e.

their C algebra is a subalgebra of some specialization of a C algebra of ADE type.

Moreover, one shows that those are all the possible such restrictions, subject to the

condition that the subalgebra contains the fields of lowest (0) and highest (h − 2)

labels : the former is the identity operator and the latter its dual in the N = 2 sense

that η0,h−2 = 1. This supports a conjecture of Dubrovin that his Coxeter solutions

are the only ones satisfying the condition

0 < degree (F ) − 2 ≤ degree (t.) ≤ 1 . (4.1)

4.2. Chebishev specialization

As we have seen in sect. 3, the specialization to all ti = 0 but th−2 = 1 of the C

algebra has several nice properties, in the ADE cases. It is “normalizable” and its

normal form is the Pasquier algebra of ADE type: this means that the ψ’s that

diagonalize it are the eigenvectors of the adjacency (or of the Cartan) matrix of

ADE type. In the simplest case of the Ak+1 topological theory, this specialization

reproduces the fusion algebra of ̂su(2)k that admits a polynomial representation in

terms of Chebishev polynomials. This specialization is thus called in general the

Chebishev specialization.

Does the Chebishev specialization of the other, non ADE, solutions enjoy similar

properties? One shows [19] that (i) for all the Bn, F4, G2, H3, H4, I2 cases, the C

matrices may again be brought to a normal form by a diagonal change of basis; (ii)

the normal form Mi of Ci has only non negative entries; (iii) in contrast with the

ADE cases, the matrices of the dual algebra are no longer all with integral entries;

the dual algebra, however, is generated by the identity matrix and the matrix Nf

(Nf ) a
a = 0 (4.2)
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(Nf ) b
a = 2 cos

π

m(a, b)
a 6= b ,

where the integer m(a, b) = m(b, a) takes a value different from 2 or 3 (hence

N b
a 6= 0, 1) only for one pair of vertices (a, b); see Table I below. These decorated,

so-called Coxeter graphs are the unique graphs such that the associated Nf matrix

of (4.2) has all its eigenvalues less than 2 [20]. It would be interesting to see directly

why the dual algebra requires this property.

Bn • • • · · · · · · •
4

•

F4 • •
4

• •

H3 • •
5

•

H4 • • •
5

•

I2(p) •
p

•

Table I : Coxeter graphs

The well known ADE diagrams are not represented here; neither is G2 = I2(6);

m(a, b) = m(b, a) = 3 unless otherwise specified above the edge (a, b).

Let us finally return to a point mentionned above and discussed earlier [16]. It

is quite curious that this Chebishev specialization of a perturbed chiral algebra

(hence relative to a massive theory) yields a fusion algebra (in the A case) or at

least (in the D,E cases) an algebra related to the operator product expansion of a

conformal (hence massless) field theory, as discussed in sect 2.4. Moreover, in view

of Dubrovin’s results, it is quite intriguing to see that (projections on spin zero

fields of) consistent operator algebras of ̂su(2) theories (containing the operator of

largest Coxeter exponent) are classified by Coxeter groups. A direct and general

way of establishing this property could provide a new route to the general program

of classification of conformal field theories.
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