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The strong coupling expansion of large-N lattice QCD and its interpretation in terms of 
surfaces are reexamined. The relevant class of surfaces is defined and precise diagrammatic rules 
given. 

I. Introduction 

Since the original paper  of  Wilson [I], the possible interpretation of lattice gauge 
theories as a model of  strings has been an attractive idea. By analogy with the 
continuum theory [2], it was suggested that the la rge-N limit of  U ( N )  gauge theory 
[3] was most appropriate  for exhibiting a string behaviour. It was first believed that 
in the strong coupling expansion only noninteracting planar closed surfaces survive 
in that limit [4]. The fixed time slices of  such surfaces would then describe the 
evolution of  free strings. This point was then questioned by Weingarten [5], who 
exhibited a counterexample.  The point was also discussed in refs. [6, 7], but although 
it was generally believed that, properly interpreted, the relevant diagrams could be 
seen as planar  (see e.g. ref. [8]), no general discussion and proof  existed. In a slightly 
different framework, Foerster [6] showed that loop equations [9] may generate 
complicated topologies. 

More recently, Drouffe and one of us have characterized the relevant strong 
coupling diagrams in the N-~  oo limit (appendix of  ref. [10]). We used a cumulant 
expansion, but the geometrical interpretation in terms of surfaces was lacking. On 
the other hand,  Kazakov [l l] discussed how group integrations in U ( N ) ,  N-~ oo, 
give a set of  rules for contracting plaquettes and build up planar, connected surfaces. 
However, his prescription for computing the free energy and the weight attached 
to some contributions was not totally clear to us. Indeed, the main difficulty of  the 
problem lies in a proper  evaluation of the free energy F. As F is of  order N 2 for 
large N, arbitrary powers of  N appear  in the partition function, and it is only for 
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a quantity like F that the concept of dominant diagrams makes sense. The diagram- 
matic rules for deriving the free energy in the strong coupling expansion are, however, 
not simple: in general, it is not correct to restrict oneself to connected diagrams 
because of  excluded volume effects [10]. In the most commonly used character 
expansion, the O ( N  2) behavior of the free energy is not apparent and it results 
from cancellations within subsets of diagrams [12, 10]. Moreover that formalism, 
with arbitrary representation assignments to plaquettes, is not appropriate for an 
interpretation in terms of surfaces. In the cumulant expansion of ref. [10] the 
exponentiation of connected graphs takes place, but the graphs are abstract graphs 
expressing the binding of plaquettes and links, and do not seem easy to interpret 
in terms of surfaces made of plaquettes. On the other hand, Kazakov introduces a 
graphical notation for the group integral and claims that exponentiation of these 
diagrams takes place. It is the purpose of this note to bridge between the two 
approaches. One may summarize the results in the following way: in the large-N 
limit of lattice QCD with Wilson action, the total free energy F = In Z is given by 

1 
~ s F =  ~ 131Sl 1 H ~ / )  (1.1) 

surfaces S k " 
closed, connected, 
orientable, planar 

Here, "surface" means a set of oriented plaquettes, together with a set of prescriptions 
to sew the plaquettes along common links: plaquettes may be joined pairwise along 
a link, or with new types of contractions, depicted by Kazakov as saddles (figs. 
lb, c), that we shall call cyclic. The surface may be self-intersecting, and the various 
sheets that cross along one link may either be independent (fig. ld) or exchange 
tubes (see figs. le,f). The whole pattern including the tubes must be closed, connected 
and "planar",  i.e. of genus 0. Notice that a plaquette may be occupied an arbitrary 
number of  times; therefore IS] denotes the number of plaquettes counted with their 
multiplicity. The surface is weighted by a product of factors attached to each link; 
the factors depend on the pattern of contractions of plaquettes incident on that link. 
For example, f =  1 if 2n plaquettes are pairwise contracted, and not connected by 
a tube (fig. la, d or d'). Kazakov [11] has given the weight attached to a single cyclic 
contraction. In general, we shall see that these weights are given by the cumulant 
expansion of the one-link integral 

f DU exp N tr ( UJ + UtJ t) = exp [N  2 W(JJ*)],  (1.2) 

i.e. by the coefficients of the expansion of  W in terms of powers of the moments 
p, = ( 1 / N )  tr (J  J*)". These coefficients have recently been computed explicitly [ 13] 
in a work inspired by Kazakov's method. Finally, in eq. (1.1), there may appear a 
symmetry factor l/k, when the whole surface is invariant by a permutation group 
of its links, plaquettes and contractions, of  order k. 
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Fig. 1. Examples of contractions of plaquettes incident on a link: (a) trivial contraction; (b), (c) saddle 
or cyclic contraction;  (d), (d') non-interacting pairwise contractions; (e), (f) tubes. Arrows indicate the 
relative orientation of plaquettes. The general configuration may include any superposition of all such 

contractions. 

The logic of the derivation of eq. (1.1) is as follows: 
(i) We first set up a diagrammatic expansion of  the free energy: the graphs are 

abstract entities which encode the binding of plaquettes. This step is valid for any 
gauge group. 

(ii) These graphs are transformed by the introduction of double lines as in ref. 
[2]: this is convenient for discussing the large-N limit and leads to planar abstract 
surfaces. 

(iii) The last step involves an interpretation of these abstract surfaces as real 
lattice "surfaces" in the sense defined above. 

Before embarking on the diagrammatics, let us recall the issues at stake. First, 
we want to clarify a long-standing conjecture on the connection between the strong 
coupling expansion and surfaces, and prove eq. (1.1). Secondly, and more 
ambitiously, one would like to use this representation in terms of surfaces as a 
statistical theory of  surfaces. A lot of work has been done recently on the statistics 
and critical properties of random surfaces [14, 15]. All these works consider free 
surfaces (planar or not), without self-interactions; as the universality properties of 
such a system are not fully understood, it would be interesting to know what are 
the precise classes of random surfaces and their self-interactions, if any, which 
reproduce the long-distance physics of large-N QCD. We shall briefly return to this 
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point in the last section of this paper and see that although the above representation 
is not quite appropriate, it is suggestive. 

2. Cumulant expansion 

We first recall and develop the results sketched in the appendix of ref. [10]. The 
U(N) action under study is the Wilson plaquette action 

S= ~ S(Up)=Y~3Ntr(Up+ ut) .  (2.1) 
plaquettes p 

The partition function is then reexpressed in terms of the external field functional: 

Z = f H DUel] e s(%) (2.2) 
P 

f t t t = H eS((l/N4)(a/°JP)) l] DUe exp [N tr ( UeJe + UgJg)]lj=j 
p g 

where 

if 

~ ~ p ) / 1  a N  1 ~v a a a a 
tr ~ 7  -= -~  ~ ~ O(Je,)~o a(Je)~v O(J*e,,)~80(J~,,)a~ 

tr Up = tr ( UeUe, U*e. U*e.). 

The external-field functional 

I(JJ*) = f DU e Ntr(Us+UV*) (2.3) em2W(jJ+)  = 

has been extensively studied for finite N and in the large-N limit [16]. For our 
present purpose, it is sufficient to say that, for small J J*, and N--> ~ ,  

W(JJ*) = E W,~ tr (JJ*) tr ( j j , )2 -- • tr (JJ*)" , (2.4) 
n=l otk~0 

~.kOtk =n 

where the second sum runs over the partitions a of the integer n. A general expression 
of W~ has been derived recently [13]: 

W~=(-1) " (2n+~ak-3)!  ~I (-(2k)!~'~k 1 (2.5) 
(2n)! k= l \  (k!) 2] C~k v" 

W(Jf )  is the generating function of the "connected integrals": 

" " " U k d l "  " " U k . l .  cgJj, f i .  • • c3Jtt.k. 
D U U i l j ,  U/.j. * t = N 2 - 2 n  

conn. 

= ~ N 2 _ E n _ C o  n !  W[o]  t~i,t~, " ' "  6 i , l o ~ . 6 j l k ~ l ' ' "  6J .k~ . ,  (2.6) 
o,~ n[ o) 
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where now the sum runs over the permutations/9, tr of  the symmetric group Zn ; [-P] 
denotes the class of  the element p characterized by its cyclic structure 

[ p ] = [ l ~ , 2 ~ 2 - . . n " ~ ] ,  

ntp 3 is the number  of  elements in the class [p]:  

n! 
(2.7) 

nip] = l~la j ! 2 ~ 2 a 2  ! . . . . 

C[ p] = ~,kak is the total number  of  cycles in class [ p] and W t p] = W, is given in eq. (2.5). 
The advantage of this formalism is that it enables us to compute the free energy 

in a well-defined way. According to the general theory of diagrammatic expansions 
([10] and further references therein), the free energy is the sum of contributions of  

connected diagrams made of  vertices coming from 

3 0 0 
f i N -  t r ~  or f i N  -3 t raJ~ ,  

and of contractions (named "a-s i tes"  in [10]) read off eq. (2.6) (fig. 2). We recall 
that arbitrary powers of  S(Up) are generated in the expansion of exp [S( Up)], and 
hence several distinct vertices may refer to the same plaquette on the lattice. The 
links emanating from the plaquettes (i.e. the derivatives O/aJe) must be contracted 

in all possible ways using the cumulants of  (2.4). 
Along a given link, the same set of  contractions may come from several origins. 

For example,  if six plaquettes incident on a link are contracted according to 

1 I tr ( j j , ) 2 ,  tr (JJ*) 

such a term may come either from the product  of  two distinct cumulants of  order 

1 and 2: 

N2 WIll 1N tr ( j j , )  2 1 x N Wt21-~ tr ( j j , ) 2 ,  

a a 

aJi a Jr" Jt J| 

X X 
! a__ Jt J~ 
aj~_ aj~. 

(a )  (b) 
Fig. 2. (a) Graphical representation of a vertex associated with a plaquette tr (UeU e,U*e. U*r.). (b) 

Graphical representation of a link contraction associated with the term tr (JeJte) 2. 
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> ¢ . > e  . . . . .  

disconnected connected 

(b) 

Fig. 3. (a) The two contributions to (l/N)tr(JJ*)(l/N)tr(JJ*) 2. (b) A connected contraction 
( l / N )  tr ( j j , )3.  

or from a single cumulant of  order 3: 

N2 W[1,21( ~ tr ( JJ*) ) (--~ tr ( Jj*)2) . 

The former will be referred to as a disconnected contraction, the latter as a connected 
one, and they will be denoted graphically as in fig. 3. These two contributions come 
with different powers of  N. In general, the connected contractions will be suppressed 
by inverse powers of N 2. It would seem that in the large-N limit, only disconnected 

contractions contribute: this is not true, however, because of the connectivity 
requirement on diagrams contributing to F. The dotted lines just introduced for 

connected contractions contribute to the connectivity (see fig. 4 for an example). 
To complete the prescriptions of  this diagrammatic expansion, we still have to 

answer two questions: 
(i) What is the weight attached to a graph? 
If  a certain cumulant tp = 1-[k [ ( l / N ) t r  (jj,)k]~ is used on a link, it gives rise to 

n! x nip I different contractions (corresponding to p e [ p ] ,  any (r in eq. (2.6)). Each 

(a) (b) 

) (  ) (  ---1 
, , . . . , ,  , , z . , ,  

(c~) (c2) (c3) (c4) (cs) 
Fig. 4. (a) Diagram made of  two cubes sharing one link. (b) Its representation in terms of  vertices and 
contractions; the contractions along / (shaded blob) have to be chosen from the set depicted in (c): c I 
leads to a disconnected diagram and is discarded in the computat ion of the free energy, c4 gives a 

sub-dominant  diagram as N-*  o0, c2, c3, cs survive in that limit. 
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P 
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3! 3 

Fig. 5. Example of symmetry factors. Both graphs are contributions to ~ DU( t r  Up tr U~) 3. 
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such contraction is weighted by the integer 

n! 
ft~,~- Wtp3. (2.8) 

11[ pl 

Notice, however, that all these contractions do not necessarily lead to dominant 
diagrams in the large-N limit (see below). If  a disconnected contraction is used on 
a link, it is weighted by the corresponding product of  ftp]- Therefore each graph 
carries a factor f i e f  ~e) product over all its links of the factors Jim- These factors in 
turn depend on the way the plaquettes are sewed along these links. A given graph 
must then be embedded in all possible ways on the lattice. That is, each plaquette 
vertex in the graph must be associated with a lattice plaquette. Several plaquette 
vertices may be assigned to the same lattice plaquette. Hence, each graph may be 
embedded in several ways. Some of these embeddings carry an extra symmetry 
factor 1/k, which is a remnant of the factorials in the expansion of eS: as usual, k 
is the order of the symmetry group of the graph with its embedding assignments. 
A few examples are displayed in fig. 5. Notice that in contrast with the case studied 
in refs. [17, 18], k may not necessarily be seen as the number of wrappings of a 
simpler surface. In the case of [17, 18], the only possible symmetry of a connected 
diagram is cyclic. Here, there are other types of contractions which may ensure 
connectivity and lead to larger symmetries: see fig. 5a for an example. 

(ii) What are the relevant diagrams in the large-N limit? 

il tl° 

8 ~'J v a J 

a J  l, 8J~.. 
Fig. 6. Double-line representation of the vertex t r  (t~/~Jp) and of the contractions tr 2 (JJ*) and tr (jj*)2. 
The big arrows distinguishes J from J*, the small ones distinguish the first from the second matrix index. 
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The counting of powers of N is most easily performed if double lines are 
introduced to represent the conservation and contractions of matrix indices [2]: this 
is illustrated for a few simple vertices and cumulants in fig. 6. If the diagram under 
study has P vertices (plaquettes) and v~ connected contractions of the type 
N2(tr (J J*~ N )  a l  • • • (tr (J J*)'~ N) ~., and if there are f closed index loops, the power 
of N is 

# = - 3 P + Z  v, Z (2--ak)+f.  (2.9) 
k 

The number l of double lines joining vertices to connected cumulants is 

l=4P.  (2.10) 

One then considers the closed surface spanned by the index loops; more precisely 
f disks filling the interior of  each index loop are pasted along the l double lines. 
The resulting object is a closed surface which may have c connected parts, connected 
only by the dotted lines introduced above, and its genus is given by Euler's formula: 

2 c - g  = f - l +  e + E  v,~ E ak. (2.11) 
a k 

Hence 
# = 2 c - g - 2 Y .  v,~(~ ak--1) 

oL 

~ 2 - g  

~ 2 .  (2.12) 

The first inequality expresses that the c-connectivity of the surface results form the 
multi-trace cumulants, more precisely that the number c - 1 of cuts of  dotted lines 
to separate the surface into its c connected parts cannot be larger than the total 
number Y~ v~(Y~ ak--1) of  these dotted lines. This first inequality (2.12) is thus 
saturated when the original diagram is minimally connected, i.e. when erasing any 
dotted line makes it disconnected. In particular, connected contractions must not 
be used "inside" each connected part, but only along the links where two connected 
parts touch each other. The second inequality (2.12) tells us that each connected 
part of the surface must have a genus 0, i.e. have the topology of a sphere, to 
contribute to the leading (O(N2)) order of the free energy. Therefore, the surfaces 
that survive in the large-N limit may be seen as trees of components with the 
topology of a sphere connected by the dotted lines: loosely speaking, each spherical 
component has contributed N 2, each dotted line 1 /N  2. We may summarize the 
digrammatic rules obtained so far by an equation of the form (1.1), where the sum 
runs over minimally connected planar abstract graphs. 

3. Interpretation in terms of surfaces 

We now want to translate this planarity of  an abstract surface in terms of  a 
geometrical surface made of  plaquettes. It turns out that the previous representation 
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with double lines is again very useful and gives a sort of dual picture of the surface. 
The duality between the connectivity graph and the geometrical diagram had been 
already noticed in ref. [17] (see also [18]). Let us consider one particular connected 
part of the diagram, it has the topology of a sphere; assume first that all its cumulants 
are the trivial contractions ( 1 / N ) t r  ( j  j r ) :  then this part of the diagram is nothing 
but the dual of the corresponding set of plaquettes: vertices correspond to plaquettes, 
links connecting adjacent plaquettes are dual to links along which these plaquettes 
join, and the previous faces (filled with disks) are dual to sites of the original lattice. 
The set of plaquettes may therefore be identified after excision of a small neighbour- 
hood of each lattice site with the surface interior to the double lines; this is 
exemplified in fig. 7a. Consider now the effect of  a nontrivial cumulant; as shown 
above, for N ~ ,  only single trace, i.e. cyclic cumulants tr (JJ*) n, must be used 
within each connected part. The geometric interpretation of  such a contraction 
requires the introduction of a new type of "half-bond" contraction between 
plaquettes [11]: suppose that the 2n oriented plaquettes incident on that link are 
labelled by an integer running between 1 and 2n, even or odd according to their 
relative orientation with respect to the link. Then the contraction identifies the lower 
halves of the link on plaquettes P2k-~ and P2k, an d  its upper halves on plaquettes 
P2k and P2k+l (for k = 1 , . . . ,  n, and P2n+l ~ Pl)  (see fig. lb, c). These configurations 

are reminiscent of the "topology switches" which occur in loop equations [6, 9]. 
With the introduction of this new type of  saddle-like contraction of  plaquettes, it 
is easy to see that the double-line picture of the diagram is nothing but a flattening 
of the surface, the region inside the double lines representing again the plaquettes, 
and a small neighbourhood of each site on the lattice being excised; this case is 
illustrated in fig. 7b. Finally the dotted lines that make the diagram connected may 
be regarded as thin tubes connecting the corresponding sheets of the surface (figs. 
le,f). It is clear that the genus of the surfaces obtained in this way is still zero and 
that the class of surface that emerge from this reinterpretation and their counting 
are those which have been presented in sect. 1 and eq. ( l . l ) .  In particular, notice 
that in listing all the inequivalent surfaces, the relative location of tubes and /or  
saddles along a link must be regarded as irrelevant. Notice also that the prescription 
of summing over configurations containing tubes, which had been overlooked in 
previous works on the subject, is essential in reproducing the correct B-expansion. 
For example, it ensures that the sum of  all contributions to F depicted in fig. 8 

vanishes. 
Representation ( l . l )  for the free energy leads by differentiation with respect to 

/3 to a similar representation for the internal energy ( ( l / N ) t r  Up), and generalizes 
to the expectation value of  Wilson loops: the surfaces must have the loop as a 

boundary. 
It is also interesting to wonder about the convergence properties of these surface 

sums. Clearly the sum (1.1) ordered by increasing area [SI is convergent since it 
reproduces the ordinary strong coupling expansion [19]. Is it also absolutely conver- 
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! 

(b) 

A' 

G 

Fig. 7. From the abstract graph to its double-line representation to the geometrical diagram: the surface 
of the latter is in one-to-one correspondence with the interior of the double lines. (a) Simple cube, (b) 
double cube with a saddle contraction. In the latter case, two contractions are possible: although the 

second one is represented here with twists, both correspond to orientable genus-0 surfaces. 

gent?  This  is l ikely,  because  the graphs  of  sect. 2 are res t r ic ted to be  p l a n a r  [20]; 

the  growth  of  some coefficients in eq. (2.5), however ,  makes  the  a rgument  nont r iv ia l  

and  wou ld  require  a more  de ta i led  analysis .  
So far, we have been  conce rned  with the l ead ing  terms in the l a r g e - N  limit. 

S imi lar  techniques  may  be  used  to s tudy l / N  2 correct ions.  F r o m  the analysis  o f  

the sect. 2, it must  be c lear  that  correc t ions  come f rom three different  origins:  

(i) the cumulan t  coefficients W~ have s u b d o m i n a n t  terms b e y o n d  (2.5); 
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- I  

(c) 
-1 

(d) 

Fig. 8. The four surfaces corresponding to the diagram of  fig. 4a: surface (a) corresponds to the contraction 
c 3 of  fig. 4, (b) and (c) to c5, and (d) to c2. 

(ii) nonminimal use of connected cumulants gives extra powers of 1 / N 2 ;  

(iii) each handle in a connected component gives a 1 / N  2 factor. 

Kazakov's method for generating the W" suggests that subdominant terms may also 
be given a geometrical representation in terms of higher-genus surfaces. For example 
the 1 / N  2 correction to the coefficient of the cyclic contraction tr (J  J)"  is represented 
by a handle on top of a saddle, etc. As corrections of type (ii) and (iii) may also 
be interpreted in terms of higher-genus surfaces, it seems that an expression similar 
to (1.1) holds for the N -2k corrections to F / N  2 in terms of genus-k surfaces. That 
the U ( N )  theory considered here (with Wilson's action) admits a 1 / N  2 expansion 
should be compared with Aizenman and Frfhlich's  recent remarks [22] about the 
possible anomalies in the N-dependence and the disease of such an expansion. 
Notice that the procedure followed here has blindly interchanged the strong coupling 
expansion and the large-N limit. On the other hand, it seems to us that with Wilson's 
action, the actual realization of  Aizenman-Fr6hlich anomalies necessarily involves 
a number of  plaquettes of  order N (or in the character expansion language, high 
representations) and hence are exponentially suppressed as /3 N and invisible in 
the present method. At any rate, it is likely that the I / N  2 expansion if it exists, is 
asymptotic [22]. 
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4. Discussion and conclusion 

The reinterpretation of U(~)  lattice gauge theory in terms of surfaces presented 
in this paper is slightly awkward for several reasons: 

(i) It is restricted to the strong coupling regime. Four-dimensional U (N )  theories 
( N  > 2) are known to experience a first-order transition: this prevents one from using 
the present surface picture for the study of the continuum, zero coupling limit. See, 
however, refs. [ l l ,  18] for suggestions on that problem. 

(ii) It is certainly a very cumbersome way of deriving the fl-expansion: for a 
given geometric configuration, there is in general a huge number of associated 
surfaces. Because of the signs in eq. (2.5), there are many cancellations. In practice, 
it is much easier to use the character expansion and rearrange it to work out the 
N ~ c o  limit [12, 10]. 

Moreover, the cumulant formalism used above, which produced the contractions 
of plaquettes, does not incorporate in a natural way the possibility of changes of  
variables and choices of gauge that simplify tremendously actual group integrals. 

(iii) A typical example of such unnatural cancellations is the case of  "spikes". 
The previous rules allowed a plaquette occupied several times to be connected with 
itself along (at least) one link which is not shared by any other plaquettes. However, 
the sum of such contributions to F vanishes, as is clear if one returns to the original 
integral. Therefore, spikes may be forbidden in the enumeration of surfaces. But of 
course, this leaves the possibility that the surface "backtracks" when it reaches a 
link common to several distinct plaquettes. 

(iv) The previous rules defined a rather unappealing theory of surfaces. First 
there are signs, related to the local structure of the surface, namely to the signature 
of the permutation of  contractions along the half-bonds. These signs ruin the 
hope of considering this representation as a statistical theory of surfaces. On the 
other hand, it would be nice to abstract some natural form of interaction of a 
continuous surface from this study, corresponding for example to the cyclic half- 
bond contractions. In this direction, Kazakov [l l] had proposed to reinterpret the 
cyclic contractions along half-bonds as reflecting the internal curvature of the 
surface; however, the consistency of this picture is not clear: for example, the 
patterns of  fig. 9 which only differ by a change of scale, come with very different 
(opposite !) weights*. 

Clearly, all these difficulties and objections make it desirable to perform some 
kind of resummation of this surface expansion. There has been a recent attempt by 
Kostov [18], using a rather different approach. The surfaces involved may again 
contain cyclic contractions along half-bonds, but no longer any tube: one still has 
a representation of the form (l.1) in terms of this new class of surfaces, but as the 
price to be paid, the explicit numbers fp in the weight fllSl Hey(f) are replaced by 
an infinite number of functions of/3,fo(/3), to be self-consistently determined. For 

* We are indebted to J.M. Drouffe for this example. 
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~ J  
J ~  
~ J  

~ J  

J 
~ j  

~ J  

~ f  

Fig. 9. Two surfaces that differ only by a change of scale: (a) is made with a cyclic contraction and 
comes with a factor -1 ;  (b) is made only with trivial contractions and comes with a factor +1. 

example, configuration (d) of  fig. 8 does not appear in this representation, but its 
contribution is provided by the dressing of the link of a simple cube. However, the 
weights f~e)(/3) are still not positive definite, and therefore, this representation is 
still not appropriate for a statistical interpretation. The problem of building a 
statistical theory of (planar?) surfaces from U ( ~ )  lattice gauge theory still remains 
a challenge. 

It is a pleasure to thank J.M. Drouite, D. Gross, C. Itzykson and C.I. Tan for 
stimulating discussions. H. O'Brien warmly thanks the people at LPTHE in Orsay 
for their kind hospitality. 
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