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The Ward-Slavnov identities satisfied by the Green’s functions with one insertion of a gauge-invariant operator
are studied in the background-field gauge. As a consequence, the counterterms for a given gauge-invariant
operator must satisfy a system of equations, whose general solution is found in the simplest cases of operators
of low dimension (d < 6) or low twist (7 < 3) and conjectured in the general case. It then follows that the
renormalized Green’s functions satisfy the same Ward identities as the bare, regularized ones. We deduce a
definite prescription for the practical calculation of the anomalous dimensions of gauge-invariant operators
which do not vanish in the classical limit: this prescription is formulated in the background gauge or in the

usual Fermi-type gauge.

I. INTRODUCTION

The quantization procedure for Yang-Mills theo-
ries breaks explicitly gauge invariance and thus
one must check that the computed value of any
measurable quantity satisfies the requirement of
gauge independence: It must be independent of the
breaking term introduced for the quantization.

This problem is particularly tough in the case of a
nonspontaneously broken gauge theory where the

S matrix probably does not exist in a perturbative
sense. In this case, anomalous dimensions of
gauge-invariant operators appear as observables:
For example, they determine, according to Ref. 1,
the deep-inelastic behavior of the structure func-
tions relevant to leptoproduction. The computation
in Ref. 1 of these anomalous dimensions to first
order gave rise to various problems.?'® The study
of an explicit example, the operator f“,,z, in Ref. 4
showed that the renormalization of an operator in-
variant under classical gauge transformations in-
volves a coupling to noninvariant operators and that
this mixing cannot be ignored for the computation
of the gauge-independent anomalous dimension,
even in the one-loop approximation. This result
was obtained by algebraic manipulations which did
not lead to a geometrical interpretation of the
spurious non-gauge-invariant operators. Also, the
necessity of a blind computation of the full renor-
malization matrix associated with the original
gauge-invariant operator clearly seems redundant.
Therefore, we have taken up the problem again
with the aim of a better understanding and charac-
terization of the spurious operators and of reducing
through a simple prescription the computation of
gauge-independent anomalous dimensions.

A previous study of the Green’s functions in the
background gauge® suggests that this gauge is well
suited for the study of gauge-independent quanti-
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ties. Let us recall that this gauge is a generalized
Fermi gauge where the gauge-fixing term depends
on a parameter @ and on an external vector field,
the background field, and is covariant under class-
ical gauge transformations (type-1 transforma-
tions) associated with the classical field. The
quantization, as well as the renormalization,® pre-
serves the invariance under these type-1 transfor-
mations, while breaking the gauge invariance re-
lated to the quantized field. Also, the variation of
the background field is simply a change of gauge
for the quantized field. As a consequence, the
wave-function renormalization of the classical
field was found to be the coupling-constant renor-
malization g/g,. This result indicated that the
background gauge is conveniént for a direct com-
putation of gauge-independent quantities such as
B(g). The results of the present study, which are
summarized below, indeed confirm this idea.

The renormalization of a classical gauge-invari-
ant operator (class-I operator) which depends on
gauge fields and on matter fields and which does
not vanish by virtue of the classical equations of
motion in the absence of sources involves either
(a) class-I operators, (b) class-IIa operators
which are gauge invariant, but vanish in the classi-
cal limit because of the equations of motion in the
absence of sources, or (c) class-IIb operators
which are not gauge invariant and which depend
both on gauge and matter fields and on Faddeev-
Popov fields: A precise generic expression is
given for these operators. Class-II operators are
renormalized only among themselves and this
block-triangular structure of the renormalization
matrix leads to a natural prescription for the com-
putation of the a-independent anomalous dimen-
sions relative to class-I operators. This prescrip-
tion is stated both for the background gauge and
for the Fermi gauge. In the background gauge, the
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graphs with only external legs of matter and back-
ground fields need only gauge-invariant counter-
terms, namely of class I and class Ila. This auto-
matic elimination of class-IIb counterterms is the
main practical advantage of the background gauge
over the Fermi gauge, where, however, fewer ver-
tices appear in the effective computation. The se-
lection of class-I counterterms at the exclusion of
class-IIa counterterms in the background gauge or
of class-II counterterms in the Fermi gauge in-
volves inspection of the structure of the spurious
operators whichare characterized with precision.
Finally, our prescription fails for gauge-invariant
operators of class-Ila for which the mixing prob-
lem seems entire: Notriangular structure emerges
for the renormalization matrix between class-IIa
and class-IIb operators. No serious argument ex-
ists concerning this question; however, the general
“mythology” says that class-IIa operators are un-
physical, despite their gauge invariance.

Section II is devoted to notations and a brief re-
minder of results of Ref. 5: The Ward identities
and the renormalization of Green’s functions in the
background gauge. Section III gives the derivation
of our results which is based on a systematic ex-
ploitation of Ward-Slavnov identities (WI). The WI
for a single insertion of a class-I operator yield
a constraint equation for the possible counterterms
(Sec. I A). The equation involves a linear differ-
ential operator with a vanishing square. The solu-
tion of this equation is a nontrivial cohomology
problem. This algebraic problem is reduced and
solved exactly in the Appendix only for a few cases
(operators of dimension d < 6 or of low twist T<3
or 7 s 5 depending on the symmetry of Lorentz in-
dices). In the general case the solution is conjec-
tured: The only possible counterterms are class-I
counterterms and class-II counterterms defined by
the action of the linear differential operator men-
tioned above on a polynomial with definite dimen-
sion, ghost number, and Lorentz covariance.
These class-II operators obey WI (Sec. IIIB) which
prevent any coupling to class-I operators by re-
normalization. The insertion of operators leads
to contributions of diagrams with self-contractions
of the variables appearing in the expression of the
operators at the one-loop level; these contributions
are subtracted in Sec. III C without modification of
the Ward identities which hold for regularized
quantities to all orders of perturbation theory.

Section IIID completes the proof of WI for re-
normalized quantities by recursion on the number
of loops. In Sec. OIE the generating functional for
renormalized Green’s functions with a single in-
sertion of a class-I operator or a class-II operator
is shown to satisfy a WI analogous to those for a
bare insertion of a class-I operator, which ex-

presses the invariance under generalized super-
gauge transformations (type-2 transformations);
this generalized type-2 invariance is the remaining
symmetry associated with the initial gauge sym-
metry for the quantized field after renormalization.
The latter preserves trivially the initial type-1
symmetry connected with the gauge transforma-
tions of the background field. Section HIF estab-
lishes the a independence of the block of the re-
normalization matrix relative to class-I operators.
We have no proof for the o dependence of the rest
of this matrix; this point is particularly puzzling
in view of the existence of the gauge-invariant
class-IIa operators. All previous results are ex-
tended briefly to a theory including fermions in
Sec. IIG. The considerations of Sec. III are illus-
trated at various points by the operator Fu 2 intro-
duced in Ref, 4.

The reader interested only in the effective com-
putation of @-independent anomalous dimensions
may skip Sec. III, since the results of this section
are summarized in Sec. IVA. The computation in
the background gauge is described in Sec. IV B and
involves only graphs with external legs of back-
ground and matter fields. This result was claimed
by Sarkar and Strubbe® and by Crewther,® for twist-
two symmetric operators, in the one-loop approxi-
mation. The counterterms of the mentioned graphs
involve, however, also class-IIa operators which
must be eliminated by hand; we give some clues
for this operation and illustrate them by some ex-
amples. A similar work is performed for the Fer-
mi gauge in Sec. IVC. The Fermi gauge is just a
special case of the background gauge where the
background field is set equal to zero. The counter-
terms for graphs with external legs of Yang-Mills
and matter fields involve also class-IIb operators,
and therefore the selection of the class-I operators
is, in general, more difficult in the Fermi gauge.
The case of symmetric traceless operators of
twist two appears particularly simple inbothgauges
and this study confirms computations of Ref. 1 and
of Ref. 3 and 6. Higher-order perturbations dis-
cussed in Sec. IV D reintroduce some complexity
for practical calculations: The superficial diver-
gence of a diagram can be extracted only after re-
normalization of all subdiagrams which need, in
fact, all class-I and -II counterterms. Section IV E
ends with some comments relative to the contribu-
tion of class-II operators to Wilson expansion and
to the renormalization of several insertions of
class-I operators.

The method of investigation was developed by
Zinn-Justin.” It consists of a thorough use of WI
derived from supergauge transformations which
were introduced by Becchi, Rouet, and Stora® and
extended in Ref. 4. The ingredients are functional
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methods, gauge-invariant regularization, and min-
imal renormalization.””*% A gauge-invariant reg-
ularization® is supposed to associate an unambig-
uous finite value to each graph in a way which pre-
serves the equations of motion and Ward-Slavnov
identities independently of the regulating parame-
ter. No proof was given for the existence at all
orders of perturbation theory of such a regulari-
zation,® especially for a massless theory including
composite operators. We do not attempt to prove
this assumption. The functional methods are legit-
imate algebraic operations,” once a gauge-invari-
ant regularization has been applied.

II. PRELIMINARY

The classical Yang-Mills Lagrangian
£Q,)=-10,9,-9,Q,+2Q,xQ,1x) 2.1

is invariant under the following local gauge trans-
formations:

6Qk(x) = D} (Q)0w? (x)
=(8,6" + gf*MQf)0wi(x), (2.2)

J

where f ¥ denote the structure constants of a com-
pact semisimple Lie algebra. The X symbol is a
shortcut for

(Kxﬁ)i =f”kAjBk,

Summation over repeated indices is assumed. The
quantization of this classical Lagrangian requires
the insertion of a term which breaks the gauge in-
variance. In the background gauge of Ref. 5, the
gauge term after a translation of the gauge field
Q.= Q + A takes the expression - (1/2a)[D}/(A)
X Q,] where the external field Ku isthe background
field. A corresponding Faddeev-Popov term must
be introduced and the full action reads

- 1. .
S'= f dx <£(Q+ A) - ?‘;[D,';’(A)Q‘j‘]z
+C; D}/ (ADIHA + Q)C,,) . (2.3
The generatmg functional of Feynman graphs, de-
noted by Z(A u,n”, £,&,, 5“, K, L ) depends, of course,

on the varlables Ny, &, and 5,, which are the
sources of Qu and of the ghosts C; and C;:

z(&,, 7, 6,803, K i“)=fdeCdE exp[i@-»fd‘*x(ﬁ“'éu +City+ &, ci)ﬂ. (2.9

The modified action S contains sources :T“,

E, i“ of composite operators (see Refs. 4 and 5) introduced only

for a linearization of Ward identities satisfied by the generating functional of one-particle-irreducible (1PI)

graphs:

S= fd‘* <£(A +@,)-

D WQF + 17 +TD (AIDMA + QC* + L] + TG, xL,) +-§K,(Ex6),~).

(2.5)

The auxiliary sources 3“, ﬁ, and f’u which depend on space-time x should be set to zero for practical cal-
culations of counterterms. The action S is invariant under the following transformations.

(a) type-1 transformations.
0A}(x) = D} (A)dw? (x) .

(2.6)

Qu, c;,C;, ju y K, Lu transform according to the adjoint representation.

(b) type-2 transformations®*:5,

6Qh(x) =[Di(A +Q)C? + Li](x)ox = -&mm

A} (%) = = Li(x)or,

6CH(x) = —(CX C)(x)on = OKa?(x) B\

6T,(x) = - (DL (@4 ()0,

where 06X is the anticommuting x-independent parameter.

2.7

The generating functional of 1PI regularized graphs, F(AU,QH, Ci, C,,j“, K, T ), is defined as the Legen-
dre transform with respect to n“, £, and 5 of the functional W:

W(A“, nu, gi; gir ju; Ky L“)=Z an(AP’ Tluy &i) gi, j

ue

K L),

2.9

F(K,u Q’y, ci’ 6{! j“, E, _I:u)"'W(Kp’ ﬁ“y g{ ’ gir jpyﬁr i“)+ fd‘lx(ﬁu '-Q.“ +-c—i5{+£_ici)(x)=o)
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where

oW oW — ow
v, Ci=——=, C;=+—p.

ani’ Tt e LT

The functional T (T =T - (1/20) fd“x[DL"(A)Q‘j]z) satisfies identities (a) and (b) which follow from the in-
variance of the action under type-1 and -2 transformations and identity (c), which is the equation of motion
for the ghost'*:

(a)

Q) =—

4 i 9
LE = DYy v (9 g + )53+ T sy
+Kj(x)—_8K2(x) +dJ5(%) aJEj’j(x) + Li(x) 8L§(x)>]f‘ =0, (2.92)
(b)
fd‘*< I ef  eof af L5 of > 0, (2.9b)
9Q,(x) 8, (x) acCH(x) oK{(x) aA‘(x) ’
(c)
D) - @, xT, 0] =0, (2.90)

3J ] .x) T aC (x)
For identity (b) we have made use of the invariance of the integration measure dQ dC dC under type-2 trans-
formations

828 _ 8%S _
aQ(xaTi(y) 8K, (x)aCi(y)

Obviously, S (S=S- 1/2a) [ [D} (AR d“x) satisfies identities (2. 9) ('~ $5). Identity (2.9a) is specific of
the background gauge; in a Ferml gauge (A L =0) only an integrated version remains, corresponding to
invariance under global transformations. Accordlng to Ref. 5, the renormalization procedure (“minimal
renormalization”) can be performed in a way that ensures the validity of identities (2.9) for the renormal-
ized action S® and the renormalized 1PI functional I'?; the action S* has the same functional form as the
bare functional S:

SR(KH,_Q.M, C" 6.’-5 ’ ﬁ’ —I:p’ g’ a)=s(Ko’ _.0’ C?, C?’ jo’ﬁo’ —I:o’ go’ ao), (2'11)

(2.10)

where the bare variables denote AJ=(g/g%)&,, QF, =2,'/?Q,, C{=Z;'/%C.. T}, =Z;'/*C,, J3,=2,'7*F,

K° =z!/?K, L° (g/8%21/2Z "/ZL a,=aZ,, and \where g° Z;, andZ, are, respectwely, couphng-
constant and wave—functlon renormahzatlons Inthefollowing, whenwe consider insertions of composite oper-
ators O(A + Qu , &), itwillbe understood that we have performed anintermediate renormalization on the gener-
atmgfunctmnal Z®A 7,8 8,5, K, L, X, g )

2%~ [ dqdc dc exp|i(s(3,QY, €5, T, T, B, T, 2%, @)

f [XO(A°+Qu,g°)+Z~31/217u 'Q’“+23'1/2(EC?+6?£,-)] >jl . (2.12)

However, for simplicity of notation we shall drop in the following 0 indices and the wave-function renor-
malization factors Z; "*/2; one can readily check that the Ward identities are not altered by this simplifi-
cation.

III. INSERTION OF A GAUGE-INVARIANT OPERATOR

The proof of the block-triangular structure of the renormalization matrix isgiveninSecs. IIIA-IIIC. We
derive the Ward identities in the tree approximation for class-I and class-II operators, respectively in
Secs. IITA and IIIB. Next we introduce a prescription (Sec. IIIC) for the insertion of operators which elim-
inates some of the most singular self-contractions of operators and which allows us to extend the validity
of our WI to all orders for the bare regularized genevating functional. Finally, the proof of these WI for
the renormalized genervating functional to all orders is given in Sec. IIID: The WI for class-II operators
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yield the block-triangular structure of the renormalization matrix; the proof of WI for class-I operators

rests on our conjecture.

Section III E is devoted to comments concerning the geometrical interpretation of

the WI after renormalization, the role of the equations of motion in the presence of non-supergauge-invari-

ant operators, and the peculiarities of class-Ila operators.
a independence of the block of the renormalization matrix relative to class-I operators.

In Sec. III F we derive new WI which imply the
All previous re-

sults are extended to a theory including fermions in Sec. IIIG.

A. Ward identity in the tree approximation for a class-I operator

Let us add a new term to the action S of Eq. {2.5), namely

8§=S+ f d*x X(x)o(A’ugrQ'p)(x),

where O denotes a local classical gauge-invariant operator.

3.1)

Clearly, the WIfor the 1PI functional T are

not affected by this insertion. Thus, the 1PI generating functional of graphs with one insertion of O, de-

noted by Iy, T'p=0T /60X (x
(a)

) x =0, obeys the following identities:

9,T5=0, (3.2a)
(b)

oo = f dix <8Q (%) BJ?(x) a;f,lzx) an( ) ag}ﬂ(x) aKiz(x) ar( )aca( ) - Ly )34?(x)>r° 9 (3.2b)
(c)

(DU(A) aJ?( ) _5—39,(77>r0= 0. (3.2¢)
Let us assume that the same identities hold in the ( (a) ©,0'=0, (3.4a)
Fanctional, denoted aleo by T (this property 13 re- ) 500, (.40)
Lo e same oxder, the singela past T, of Ty @ Prs —sEm)o 0. o)

which is a local functional, verifies (3.2a), (3.2c),
and the following identity:

85 g, aiv=0. 3.3

The identity (3.3) follows from the absence of di-
vergences of the functional I' (X =0) and from its
value in the tree approximation:

flrce(X= 0) =§ .

Let us remark that the operator O obviously obeys
identity (3.3), since O is gauge invariant:

fd4 <8J‘ g~ b é)A,>0(K,,+ Q)

n

fd4xD°(A+Q)cf (&,+Q,)=0.

BQ‘
The set of counterterms XO’ necessary to renor-
malize in the one-loop approximation the graphs
W1th | one 1nsertion of O contains all polynomials in
Z,Q,,¢;,C,7J,,K, L, which have the same sym-
metry properties as O (Lorentz covariance, par-
ity,...), a dimension less than or equal to that of
the operator, and which verify the identities

Equations (3.4a) and (3.4c) are easy to solve.
According to Eq. (3.4a) O’ is a type-1 invariant
function which depends on jp and C; only through
the combination [/}, - Di'(A)C,] [Eq. (3.4c)]. Con-
cerning identity (3.4b), the linear differential op-
erators 9; and 9 verify the identities 85>=0, 8:>=0.
This follows, after some algebra, from the antl-
commutmg character of the varlables C,, 5,,3 K
L and from identity (2.9b) for I' and 5. Thus we
have found, apart from our classical gauge-invari-
ant operators of class I, other solutions of Eq.
(3.4b):

O’=85F class-II operators.

Do there exist any solutions other than the previous
ones to Eq. (3.fIb) which are type-1 invariant, de-
pend only onJ; - D{/(A)C/, and have a total ghost

v number equal to zero:

Y, =y(C)=-1, y(K)=-2, and y(C)=y(L,)=+1.

This question is discussed in the Appendix where
the identity (3.4b) is simplified with the help of
identities (3.4a) and (3.4c) and solved completely
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for the case of low dimensions (4, 5, 6) and low
twist (2, 3) in a theory including fermions. In gen-
eral, for arbitrary dimension and nonzero value
of ghost number for the operator 0’, Eq. (3.4b)
possesses other solutions than class-II operators.
For the operators under consideration (y =0) we
will assume in the following that all counterterms
of a class-I operator belong either to class I or to
class II.

As an example, let us return to the operator
-4/ d*xF,2(x)= 0, and perform the same alge-
braic manipulations as in Ref. 4 to find the coun-
terterms of this operator in the background gauge.
They take the following form:

9 1 2]
0~ (o553 35)
4 i i 9 i 9
+fd (Au aAl +Q"_5@T# +K——8K,- S,
’ 9 4 i i 0 (3.5)
Of[gsg‘fd (Au‘aif” aLtﬂS

_ 4 (i 8 i ® J
—[fdx<c = KT |S-

(0, +30}) and Oj, as one immediately verifies, are
class-II operators:

J

- Dii(A)C']Q}+K*C,
(3.6)

01+§02'=§asfd4x{[J‘
o;:asfd4x(Kici).

B. Ward identity in the tree approximation for
a class-II operator

Instead of a class-I operator, we add to the ac-
tion S of Eq. (2.5) a source term for an operator
F which depends on C; and Jf‘ only through the com-
bination [J} — D{/(A)C,;] and which has ghost num-
ber equal to —1:

S=S+fd4xY(x)F(x). (3.7

The associated source Y(x) is of anticommuting
character. F is supposed to be invariant under
type-1 transformations [Eq. (2.6)]. In the follow-
ing we derive the WI relating the generating func-
tional I'p and T for 1PI Green’s functions with
one insertion of the operator F and 8sF, respec-=
tively, in the tree approximation

Togr=0rls.

The generating functional Z associated with the
action 8 of Eq. (3.7)

2(K, 7 653, T)= [ dgacaT exp[i<8+f (ﬁu-Q’u+Ec,+Ci§i)ﬂ (3.9

obeys the following identity which expresses the invariance of S under type-2 transformations of Eq. (2.7):

-= fd“xL'(x) AT (x)

- [aeacds [an(nige+ [ a% vt i (@ W [ e v ) s

1

2 D ARU(EW - [t r@

T

xexp[ <S+f(ﬁu-Q'u+§—,-C,+Ei£i)>], (3.9)

Clearly, _to completej the right-hand side of Eq. (3.9) to the expression 9;F, we need terms of the form
[0F(2)/a7}(x)] [8S/0Q}(x)] and [0F (2)/6 K*(x)[8S/8C*(x)] for which information is obtained for the equations of

motion:

fdQ acdc (7] (x)+

fdeCdC< TH(x) +

fd" Y(2) 2g£z))>exp[i<8+f(T*IM'Q.“+§—,'C‘+E,-£1-)>]=O,

fd“ Y(2) ac,(v;>exp[i <S+f(ﬁu'éu+gicf+5,-é,-)>]=

(3.10a)

(3.10pb)

Appplication of the operators fd‘*z Y(2)[aF (2)/8J}(x)] and J d*z2 Y(29) [6F (2)/2K* (x)] on Egs. (3.10a) and (3.10D),

respectively, yields the identities

oF (z) S oF

[ aqacac [azv@ <n ()~

Jenlso .1

Ti0) T Q) aTL)

+§ C;+Ci; )>] (3.11a)
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fdeCdCfd“z Y(z)<-2"(x) :ﬁf‘(’l)Jrag,fx) alif(x)>exp[i<s+f(ﬁ”-Q’“+§,.c,.+E,.g,.)>]=o. (3.11b)

Note that we have taken advantage of the locality of the operator F and of the anticommuting character of
the source ¥

Y3(x)=0 (8.12)

to discard the terms‘quadratic in Y in identity (3.11b) and that we have omitted one-loop contributions of the
form azF(z)/an‘(x)aJL(x) which will be considered in Sec. IIIC. Combining Eq. (3.9) and (3.11) we derive
identity for Z:

1 . ; 9 9 i (y)Did
7 [ (L W) 5aT + ) 5 5 ) T e a€ (9D} ) on] (x>>Z

fdeCdC fd“xY x)asF(x)exp[ <e>+f (n‘1 +£ ;C, +Cié; )ﬂ . (8.13)

This identity yields immediately the announced identity between the 1PI generating functionals after a Le-
gendre transformation:

Ty or=0rTp . (3.14)

In the tree approximation this result is trivial; however, as we shall see in the following, the same alge-
bra as the one used in the tree approximation works to all orders. This relation implies the absence of
coupling of class-II operators to class-I operators.

C. Extension of the Ward identities to all orders for the bare regularized functionals

In the derivation of Eq. (3.13) we have omitted contributions like 82F(z)/aJﬁ(x)8Qf1(x) since these terms
arising from self -contractions of the operator F(z) are one-loop contributions. These terms are dangerous
when we wish to extend the derivation of (3.13) to higher order, since they involve 5*(0) in view of the lo-
cality of the operator F. In this section we will show that we can subtract the contributions of these self-
contractions in a consistent manner and without spoiling the equations of motion and WI; this is achieved
by a prescription which we introduce in the following.

Of course, this method is not entirely convincing, since we implicitly assume that the dimensional reg-
ularization applied to the class-I operators O; and to the operators F;, which sets to zero all contributions
from self-contractions, does not spoil the geometric properties which yield the WI. The case of class-II
operators 9gF; is somewhat special, however, since in our derivation of equations of motion it is obtained
explicitly by calculating the product of two operators. Thus, we start by multiplying operators at different
points x and y, subtract the dangerous contributions, and then take the limit x—y. Our prescriptions are
defined by

~

S 9F - o* > ’F
3Q (%) BJ‘(y) - <g“”_ o 8Q.,’(x)8J,1(y)}’

B oF
<8Q Q1 (x) aJ‘(x)

58S ) %32 92
S I —in F )

< 7700 99 (x)> “im (GG sem ~ 70 seiman)

tim
(

(st o) i (s s " seTaeE )
(

(3.15)

8S oF o°F )

<as oF_\ . —
9Qi(x) 7} (x>>‘,iy () a7 u(y) ~ " 8 QL(x)8aL(y)

[
)
Py

i J aF _ 1 i j Y OF 0.8y ——*—BZF 3
< D (A)Qi(x) o )> —:_w< =D (A)Ry(x) (y)”ﬁ O 8Qi(xaJ} (y)>

(052 = fd4x<< afjf(x) aj,'fx)> +< ejf(x) 8;§x)> - <3€a‘§(x) Blgf;x)> - < aKa‘g(x) 308"2‘)> L) BA'( )>
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_9dF

X\ni
(guvox‘dadv)ov(x) dJ[iL(Y)

X X 2
~ih(gyy - dudv ) d°F

° 0Qy(x)ddyly)

FIG. 1. Contribution from [8§/BQL (x)]laF/an‘ (y)] eliminated by the prescription.

The graphs subtracted by these prescriptions are
given in Figs. 1-5. These prescriptions subtract
only the most singular contributions for which the
degree of divergence of the closed loop is of de-
gree four at four dimensions of space-time. Other
contributions, as that of the graph of Fig. 6, are
supposed to be regularized as usual and vanish in
the dimensional regularization. Finally, the pre-
scription of Eq. (3.15) makes use of the locality of
the polynomial F and of its dependence on C;
through [~ D¥(A)C,].

With these prescriptions, the bare regularized
functional Z obeys identity (3.9) where one re-
places the quantities

9F(z) oS

8Q,(x) an(x)
by the corresponding subtracted operators defined
in Egs. (3.15). Application of the operators [d*
Y(2 [oF (@/eJ(y)] and [d*z2 Y (@)[oF (2)/6K*(y)] at
point y# x on Egs. (3.10a) and (3.10b) yields pre-
cisely in the limit x—~y the identities (3.11a) and
(3.11b) for the subtracted operators

1 i j oF
and FDM (A)Q“(x) Yode))

< 89S  aF(2) d < 89S  9F(2)

Q%) aT() ) (55 K1)

instead of the unsubtracted operators which appear
in these equations. Notice that all this is consis-
tent, since these subtractions arise only in the
one-loop approximation and identities (3.11) were
derived originally in the tree approximation; fac-
tors of 77 have been made explicit in our prescrip-
tion to clarify this point. Finally, identity (3.13)
is obtained for the operator (8s/) instead of osF,

_OF
day(x)

de C; y)

~ih 9L9Y . sz_
T duy(y)dQy(x)

FIG. 2. Contribution from [8S/8J;'1(y)][8F/8Q§‘(x)] elim-
inated by the prescription; the three dots symbolize other
terms which are less singular, such as the contribution
of the graph of Fig. 6.

by combining similarly the identities (3.9) and
(3.11) for subtracted quantities and by taking into
account the following identity between subtracted
operators:

89S  oF (2) 1 ; dF(2)
<W“‘3J;<x)> B <oz D (AID (AN, () aJ;;(x)>

:< 8S aF(z)>_<a(S-§) OF (2)
aQu(x) 8Ti(%)/ ~ \ 8Q%(x) aJi(x)>

B < 38  oF

T\ 3QL(x) 8Jf,(x)>’
The latter identity holds for the corresponding
quantities of the right-hand side of Eq. (3.15) be-
fore we take the limit x—-y. With these precau-
tions, we now assume that a gauge-invariant reg-
ularization is applied which preserves identities
(3.2) and (3.13) for the 1PI bare generating func-
tionals T, and I - for single insertions of our
subtracted operators, to all orders of perturbation
theory, and we are about to exploit these identities
for the renormalization procedure.

D. Perturbative proof of Ward identities for renormalized
functionals and consequences

We start with the renormalization of class-II
operators for which we have derived the identity
for the bare functional

T sspp=rTr,- (3.16)

This relation implies that to all orders in pertur-
bation theory we need only counterterms of the
form (85F;) to renormalize the graphs with one
insertion of {9sF;). To show this, we proceed by
recursion and we suppose that to order n the re-

dcC; (x) dK;ly)

FIG. 3. Contribution from [85/8C* (x)1[8F /6K ()] elim-
inated by the prescription.



1] Ai dF
[gwnx_d;dcu-&)]o;oq I
_ih sz.
dQL(x)dJIL‘L(y)

FIG. 4. Contribution from [8S/9Q}, (v)][8F/8J%(y)] elim- !

inated by the prescription.

normalized action S*["’ contains only counterterms
of the form

PIRAUC NN
Pén

The 1PI functional T}, satisfies identity (3.16)
and its divergent part at order (n+1), TEID,
obeys the identity

=0 TR, (3.17
At order (z +1) the new counterterm has the ex-
pression

PIVAAREN S
J

Without altering the counterterm at order (n+1),
we introduce in the action instead of the previous
expression the subtracted counterterm!!

2028 0 oshy)
i

The renormalization action S*I" *!1 with these coun-
terterms gives rise to a generating functional
T'&fZz5 which obeys again identity (3.16). Thus, we
have acheived our proof that the operators of
class II are coupled only to themselves and not to
class-I operators.

Now we are ready to show by recursion thatclass-
I operators generate to all orders of perturbation
theory counterterms which are either class-I or
class-II operators. Suppose again that this is true
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to order n. Since the regularized functionals with
one insertion of any class-I operator O; 1sis N
or any class-II operator (8sF;) N+1<i<p both sat-
isfy identity (3.2b),
rTagr;»= () Tp, =0, (3.18)
then the 1PI functional for one ihsertion of a given
0;, say O,, with all the counterterms to order »
also obeys Eq. (3.2b). Its singular piece at order
(n+1) verifies 8;TGl"},=0 and, according to our
conjecture, the counterterm is of the form

tzi?“’oﬁ }; A AREN
=1 i 5T

Again, without altering the finiteness at order
(n +1) we change the counterterm ),Z,; 8;F; to 2, Z;
(8gF;)** This ends the recursion proof.

Returning to our example fu,ﬁ, the renormali-
zation matrix for 0,, O,+3 O, and Oj is identical
to the one which we computed in a Fermi gauge in
Ref. 4. In this basis the renormalization matrix

was indeed triangular.

E. Comments on symmetry after renormalization

Type-1 symmetry is exactly preserved by the
renormalization procedure used here: All coun-
terterms are invariant under the initial transfor-
mations of Eqs. (2.6), as well as the measure of
integration. Type-2 symmetry is, of course, re-
normalized; however, the algebraic structure of
the supergauge transformation is preserved by re-
normalization. We remark that the generating
functional Z(,¢ ) for a single insertion of the oper-
ator (85F) obeys the same type-2 identities as the
class-I gauge-invariant operators: This is, in
fact, an equivalent version of Eq. (3.18). Let us
simplify Eq. (3.9) by use of the ghost equation of
motion which is unaltered by the presence of the
source Y for an operator F depending only on
[7i-D¥(A,)T,]; this yields the following identity:

o oF
1 dgaux) aCiy)
* in e §*F
~ih k97
% dag(x)dCily)
—ih BN oF
o dQu(x)dlyly)

FIG. 5. Contribution from (1/a) D (A4)Q}x)[8F/8C! ()]
eliminated by the prescription: the three dots denote less
singular operators.

d%F
dJ(y)day(x)

FIG. 6. The graph of Fig. 6 is the contribution omitted
in the right-hand side of Fig. 2; it diverges less rapidly
than the term ik (8% 8}, /0)[62 F/aJ }, (y)8Q},(x)] in the limit
x—y.
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1 ' i 0 i 9
7 ‘”"{Lu(x) AT ) T s

15 j l—a T 5 5 — -
v} (A)[Du’a(A)i Py —g<Lu(x)xim>j] e }z_oz_yz(asm, (3.19)

where the differential operator 6 verifies 62=0. Thus, the generating functional Z (3¢ for one insertion of
the operator (8sF) satisfies the WI

0Z¢5sm=0, (3.20)
which is equivalent to the following formal property of {d):
(05)2=0. (3.21)

By use of the equation of motion for the ghost, the generating functional Zﬁl for a single insertion of O, and
of its counterterms obeys the following identity:

1 N TN SN ST
7/ d4"<L~(") 5AL T G 8 WS s (D (A) ’(x)> 25,=0, (3.22)

where the expression of the renormalized operator O, reads

N i
Of=)2,,0;+ Z,;oF;). (3.23)
i=1 i

i=Nt1

Identity (3.22) expresses the invariance of the generating functional zgl under the following type-2 trans-
formations, up to source terms:
8R
éQn(x) = BJ’( ) o,

0A} (%)=~ Ly(x) ox,
(3.29)
R

. 98
() = —o
6CH(x)=+ KT oX,

. 1 ... .
0C (%) = = =D/ (A)Qy(x)on
where 8% denotes the action renormalized to first order in the source X,
8¥=S+ fd“xX(x)Of(x).

This geometrical interpretation of Eq. (3.22) is, however, formal, because the Jacobian of the transfor-
mation (3.24) is highly singular:

9__‘]_ 3 828R a2sR

Ox 8@ (x) o i (x) T aCHx)aK (%)
Finally, let us note that identity (3.22) is not valid for the generating functional Z% Ay, § §,J“, K, L,, X),
where X is the source of the operator OF:

7 [ (105 i sy By v DA s ) 25 =000,

This means that in order to preserve WI for Z%(- -+ X) through renormalization it is necessary to introduce
other terms in the action proportional to X2 or, equivalently, to consider generalized type-2 transforma-
tion, analogous to those of Eq. (3.24), which contain X? contributions.

A comment concerning the operator 8g might be useful. The operator {9sF) coincides with the variation
of the operator F under a supergauge transformation up to terms which vanish in the absence of sources
because of the equations of motion. To see this we introduce again the explicit dependence of F on the
ghost field C; and we express 95 in terms of the full action S instead of y by use of the ghost equation of
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motion. This yields

e (35} o iy i) - (ot

For operators of class I, both (850) and (60/61) vanish exactly. The class-II operators are supergauge
invariant up to terms which vanish because of the equations of motion in the absence of the non-gauge-in-
variant sources for the fields Q¥, C', and C'.

Finally, let us notice that class II contains operators which are gauge invariant under the classical gauge
transformations: éQu(x) D"(A +Q)0w!(x). These operators vanish in the classical limit if one considers
the classical equation of motxon of a Yang-Mills field in the absence of the gauge term {— (1 /2a)[D”(A)Q“ 2}
of the corresponding Faddeev-Popov term and of the source terms; these operators (class-IIa) have the
generic expression

, ] oL .
0'= <WL(7> (4+QGYE,+ @) (3.25)

where Gf,( K"+§“) transforms according to the adjoint representation of the group. To illustrate this point,
it appears more convenient to use a different version for our cohomology operation 95, namely the opera-
tion 8 which yields an equivalent set of class-II operators (see Appendix):

4 B,E,(B )_ @ ol ri - 9 ri 9
fd (83 ) 57 7 ( xC (x)ac,( y +J,;' (x)D}/ (B,) SR -L, (x)——;—aAu(x)>, (3.26)

O0'=BF)| pi~si _piiX yo
qi=ri-p}iR T,
Lyi=rh+ Dt Ape;

for any local type-1-invariant polynomial F in the variables A B C;, ZT K L With this expression of
class-II operators it is clear that the latter corresponds to a polynom1al F hnear in j

0’ =@l (GBI I3, =1, + 3, - (3.27)
The other class-II operators, denoted by class Ilb, are associated with a polynomial F such as
3F =0 (3.28)

aJ”(x) By =
Ci= u=Ki=L;'xi=°

A,
I

and vanish for all fields and sources, except K“, set equal to zero. The presence of class-Ila operators
causes several problems which will be discussed further,

F. o dependence of the renormalization matrix

As in Ref. 5, the a dependence of various Green's functlons is obtamed by examination of Ward identities
in the presence of a source term L for the operator [C'D},'(A)Q,+J, *@*+aK+C]. The action 8: §=5
+ f d*x X(x)O,(x) is invariant under the following transformatlons

da=2aLoA,
0A} (%) = - Ly(x)oN,

5Qi(x) = [DI(A+Q)Ci(x)+ Li(x)] on =_6J?(Sx) or,
h
o & m 08
8CH (%) =5 (CXCY(x)oN =575 O, (3.29)
6CH(x) = <_—-D‘f(A)Q’(x) C (x)L)

0J%(x) = —J (%) LOx,
8K (x)=—aK(x)Lox,
0L (x)=6L=0.
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This invariance property is expressed by the following identity for the regularized 1PI generating func-
tional I'y for graphs with one insertion of the operator O;:

a'rolsL{za%+fd4x[Q;;(x) an(x) ~Ji(x )BJ"’,( 5-C (x)a e
+a <C X)—7= 8C‘( ) -Kix }1"01+8F Ty, =0, (3.30)
where 6’ verifies
62=0. 3.31)

Identity (3.30) for the generating functional T, (A) for Green’s functions with only external A, legs reads
1 0 g

Ty,
oL aJZ(x)

2a rol(A)+ (&)

aQ (x) (A") =0. ) (3.32)
This derivation of (3.32) is valid in the one-loop approximation. The counterterms for I‘OI(K‘,) belong either
to class I or to class Ila. Identity (3.32) implies that the @ -dependent counterterms are the class-IIa coun-
terterms; thus class-I counterterms are o independent.

To extend the proof to higher orders, we proceed according to the methods of Secs. III A-IIID, except
that we now take into account the source L. Operators of class II

<<as+2La >ZF>

obey the following identity in the tree approximation:

( 3 ; 3 ; 3
Ti(og+2La(d/0a)zm = { arL+L[201% + fd4x<Q;(x) ETHE) - J(x) 5TT)

— 3 ; 9 |
CH) 5y +aC () 5y - oK (x)mﬂ}rz},, (3.39

where I', denotes the 1PI generating functional in the absence of the operator F but in the presence of the
operator L. The main simplification is the reduction of the bracket of the right-hand side of Eq. (3.33) to
[65+2La(d/6a)] in the tree approximation, where S is the action for L=0. To higher orders one first
writes identity (3.33) for the bare functional I'. . . before intermediate renormalization; this identity in-
volves the bare variables of Eq. (2.11); then we derive identity (3.33) for I'. .. after our intermediate re-
normalization, which involves the renormalized variables a, ..., using the following results of Ref. 4:

LO=2z,Y/2Z ~1/2 <1 +a % 1nZ3>IL,
_ (3.34)
alg, @) -1=[a(gy, ay) -1][1+a(8/0a)InZ,]-2a(®/8a)n Z,.

All the considerations in this section rest on our choice of a “minimal renormalization” where g, is a in-
dependent: a dependence and o, dependences are thus equivalent. The recursion proof on the number of
loops then goes through for class-II operators as in Sec. IIID.

Similarly, identity (3.30) can be derived for the regularized functional Ty, after an intermediate renor-
malization and the singular part of I‘Ol' verifies

, - :
<as+2Loz EE>F01,div=°' (3.35)
With the help of our conjecture for the solution of 8,7 =0 one shows immediately that the solution of
9 +2L j—) T=0
s+2La 5o =

is of the form
.4

:r:i}:}v;z,.(g)oig;l«a +2L o> >Z(g, a)F> | A (3.36)
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where Z; for 1 <sis N is independent of @. With these ingredients, a recursion proof establishes the vali-
dity of Eq. (3.30) for the renormalized functional I‘gl and the independence of Z;, 1 <i< N, with respect to
a to all orders of perturbation theory.

G. Introduction of matter fields

For the sake of definiteness, we consider spinor fields, which transform like some irreducible repre-
sentation of the gauge group; we denote by (7'*),, the Hermitian matrices which are the generators of this
representation. The classical Lagrangian (2.1) now reads

£@Q,, Yo, ¥)=-50,Q, -8,Q,+8Q,xQ, P +F,GH® —-ms,,)y,, (3.37)
where D"y, is the covariant derivative of ¥,:
D, (x)=0,9,(x) — igQp(x) T 4y 9, (%) .
This Lagrangian is invariant under the local transformations of both Qu and ¥,, ¥, given by (2.2) and
6(x) = ig g, 6w (%) Yp(x),
0P, (x)=—igP,(x)T %, dwi(x).

After introduction of the gauge-fixing term, Faddeev-Popov ghosts, and auxiliary sources, the total action
takes the form [cf.(2.5)]

(3.38)

S=fd4x< A +Qu, Yar ¥p) = 1 [D”(A\Q”] [J,",+6jDﬂi(A)][Dﬂk(A+Q)Ck+ Lﬁ]
+gci(§uxiu)i +‘—§-Ki(6><_(5)i -igP,TL,C:M, +igM, T, C? %> , (3.39)

where the new sources M, and M, have been introduced for convenience (M, and M, will be considered as .
commuting sources). The results of Sec. IIIB are then readily extended: The action S is invariant under
both “type-1" transformations (¥,,M,, ¥, ,M, transform according to the same representation 7?%) and
“type-2” (supergauge) tranformations given by (2.7) and

0y, (%) =38 T%,C (x) Py (x)OM =_51—T/Ia£(x_) on,
@ (3.40)
67,(x) = — ig T, () T, C* (x)on =a—1‘33(—x)ox
As a consequence, the 1PI functional I" satisfies the following identities:
ol or oT or o oT or oT or
J d"<aQ;‘,(x) aJ;;(x) ~ 30 3K ~ ) T e oI T 99,0 8Ma(x)> =0 (3.412)
it = ij 0 ol _____3
:DxI‘_[D (A) —— aA’( A +gf“k<Qu( X) —— an( ) +CI(x)—— ac“(x) +C’ (x) el )
; 3
K 5 + ) Jk( S+ L) aLk(x)>
+igTi, <$b(x) 8353(96) + M, (x) 8]'\{(x)> -igT}, (zp,,(x) X)) + M, (x) TR )>] =0, (3.41b)

whereas the ghost equation of motion (2.9c) remains unchanged. It is then easy to see that the functional
T, with one insertion of a gauge-invariant operator O(Au+ Qs s J,) satisfies the equations

3)J:l-‘0=0y
3T, =0, (3.42)
9
ij =
<5° (A)an() aéim)ro 0,

where now D, is the differential operator defined in (3.41b) and o denotes
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:fd < or 8 D ar 3 Dy 9
* 0Q,(x) 8J(x) * aJi(x) 8Q%(x)” 8C(x) 8K*(x)~ 8K'(x) 8C'(x)
3 or ] ar ] ar 9 or °] 3.43
Ly MO 5 B 2 R 2 T T 2 7 = A T ) aﬂ)'a(x)> (8.43)

The identity 82 =0 remains valid. We are now faced with the problem of solving the system of equations
(a) ®i0"=0,
(b) 3;0'=0, (3.44)
9
ij /=
(c) <D (A5 8J’(x) aéi(x> 07=0

for local polynomial functionals O’ of the variables Qu, Ku’ C;, Ci, jp, I_{, 'I:“, Yas gy M,, and M, which
conserve the total number of ghosts. Some clues to this resolution are given in the Appendix where we
prove our conjecture in the simplest cases: Any solution of Eq. (3.44) is of the form

OinV(Ku+ ép; zpa; $4)+BSF'

The generalization of Secs. IIIB-III F in the presence of matter fields is then straightforward. The op-
erators (9sF ) [where now contractionsbetween 8 /6M (3/0M,) and the kinetic part of 39S/87, (8S/0y,) are also
forbidden] form a set of operators stable by renormalization, and the addition of counterterms does not
modify the Ward identities (3.42) satisfied by I'y,. Class-IIa operators have the form

-

0L - < . X
fdx 2Q1(») (Ay+ Qs ¥as Pa)Gu( Ay + Qy,y Yy $2) (),

fdxH (B, +Q,, ¥, ) W( )(A +Qy, ¥4, T), or fdx 0.0 H(R +Q,, ¥,,7,)

where the assignments for G, H, and H to given representations and fermion numbers are obvious. Exact-
ly as in Sec. III'F, it can be seen that only these operators contribute to the @ dependence of the divergent
part of Green’s functions with one insertion of a gauge-invariant operator and only external legs of Ku s Yas
and J,. Finally, one can show that class-II operators of the form

_Z%Pa (Au’Qur‘/’b»H)’bszC)orH(All’Ql"lpb’%”c”c)

are separately stable by renormalization.

5%

IV. RECIPE FOR THE COMPUTATION OF - INDEPENDENT ANOMALOUS DIMENSIONS

A. Summary of results

Let us collect first the results of the previous section concerning the renormalization matrix relative to
a gauge-invariant operator which does not vanish in the classical limit (class-I operator). We conjecture
and prove in the Appendix for operators of dimension d< 6, or of twist 7 <5 for totally symmetric opera-
tors, or of twist 7< 3 for operators antisymmetric in two indices and symmetric in the other indices, the
following assertion. The renormalization matrix {Z,-j} acts in the space of class-I operators and of class-
II operators O’ which are defined by the following equation:

OI(A;‘+Q“9 lpa’a}—a! ci’ 61)=[( 5F(Au9B;u ¢a, Zpai Ci9 }A:Ka L;;;Ma’Ma)>] EM_X +6# (4-1)
JL=—D”(A)Cj.
L", Diiayc;
i=My=Hq =0

The operation 8 introduced in the Appendix in the presence of fermions denotes, for M and M equal to
zero, the expression

f dix ( 9 9L 2, 0L 9
8B, (x) 8J (x) T80, (%) oM, (x) 07, (x) M,(x)

o = B ; 5 o 9
+E1EW BT gy - L1000y - DB 570 o)
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andthe( ) product [Eq.(3.7)] subtracts dangerous
graphs with a closed loop and no propagator (Fig.
1). The sources J;(x), K*(x), Lj(x) are elements of
the adjoint representation of the Lie algebra and
have dimension 2 and ghost number y: y(Jf‘)
=—y(L}) =3y(K;)=-1 with the convention ¥(c)
=-y(C)=+1. The sources M, and M, belong to the
same representation as the fermion fields ¥ and
have dimension 3, ghost number y =—~1, and a
fermion number F:

F(M)=F(y,)==F(M,)=+1,

£ is a shorthand notation for the classical action
of By, ¥,, ¥, [Eq. 3.37].

To find all operators coupled by renormalization
to a given class-I operator O, with definite dimen-

J
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RENORMALIZATION ON NON-

ABELIAN GAUGE. . .. II. . .. 3173

sion d, Lorentz covariance, and other symmetry
properties (like parity, for example), construct (i)
all gauge-invariant operators with dimension less
or equal to d, the same Lorentz covariance and
symmetry properties as O,, and (ii) all type-1 in-
variant operators F; with dimension less or equal
to (d-1), the same Lorentz covariance and sym-
metry properties as O,, a ghost number equal to
(-1), a fermion number equal to zero, and which
depend on the variables K“, B,, ¥a, ¥, Ci, 3., K,
L;, M,, and M,. Then operate on each polynomial
F; as indicated in Eqgs. (4.1) and (4.2). The() pre-
scription is unessential for the value of O; in the
tree approximation. This procedure yields a re-
dundant set. For example, there exist gauge-in-
variant operators which have the expression oF
(class IIa)

-

o Bt Qoo b, BIGHE, + G, 00T o 50 (Bys By 0, T (R, B0, T

3Q,(x)

Therefore, class I is defined as the set of all gauge -
invariant operators which do not belong to class
IIa. Other elements of class II are denoted by
class IIb. Notice that the described procedure
yields a redundant set of operators; the reduction
of this set to a basis of independent operators can
be achieved by a systematic and tedious use of the
Jacobi identity, anticommutation relations (and
partial integrations for operators at zero momen-
tum).

With this basis, the matrix {Z,;} takes the form

I IIa TIIb
I /o independent
_ a priovi
{2} =Ta 0 a dependent (4.32)
b 0

The counterterms Z;; are obtained directly from
the superficial divergences of various 1PI graphs
containing an insertion of an operator O, or O,
after extraction of the wave-function renormaliza-
tion from each external leg of the graph and cou-
pling-constants renormalization, g, and @, (see
Sec. II); in the following, mention of a superficial
divergence refers to the superficial divergence
after this intermediate renormalization.

The multiplicatively renormalizable eigenvec-
tors ©; associated with the o -independent counter -
terms of class I, take the expression

Q;= Z ¥;;(£)0; + Z Xi;(a, £)0]. (4.3p)

class-{ class-II
UpL’YuH)T( \)pera‘ors

Finally, graphs with only external legs of the
background field A,, ¥, and ¥ do not give rise to

r

class-IIb counterterms, since these class-IIb
operators vanish for all fields and sources, but
Ay, ¥, and @, set to zero. This remark leads
directly to the recipe for the computation of the
a-independent anomalous dimensions relative to
class-I operators in the background gauge.

B. Recipe in the background gauge

The superficial divergence of a 1PI graph with
an insertion of a class-I operator O; and external
legs of the background field A, and fermion fields
¥, and P, gives contributions to counterterms both
of class I and class IIa and thus the remaining
problem is the extraction of the class I counter-
terms from the superficial divergences of the
mentioned graphs. The first task is, of course,
to list all class-I and -Ila operators of the same
Lorentz covariance and the same dimension as O;.
In the absence of fermions in the theory, the sepa-
ration of class-Ila operators would be automatic
if we could choose the background field to verify
the condition

0L(A,) _
aAz(x) =0, (4.9
which is indeed preserved by renormalization;
however, we do not know how to realize this con-
dition in a consistent fashion. Therefore, an al-
ternative procedure is to compute the superficial
divergence of one of the following:

(i) a given 1PI Green’s function with definite
Lorentz behavior which may contribute to class-I
operators only, because the expression of class-
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ITa operators in the tree approximation does not
display an element with the same tensor behavior
(to perform the computation consistently, you need
as many independent tensors as class-I operators),
or (ii) a 1PI graph with definite external legs which
does not appear in the expression of any class-Ila
operator in the tree approximation (again, one
needs as many independent graphs as class-I oper-
ators), or (iii) if the previous procedures are not
possible, either a given 1PI graph with various
tensor behaviors in the external momenta or var-
ious 1PI graphs and eliminate by hand the contri-
bution to class-IIa operators by performing linear
combinations between the various computed coun-
terterms.

Let us illustrate these considerations by the ex-
ample of traceless twist-two operators at zero
momentum. For totally symmetric twist-two op-
erators there exist no class-IIa operators. Indeed,
the operator F associated with such a class-Ila
operator should be constructed from a function
Hu2~ e ”"(B) of twist zero, totally symmetric in
IEERITEE

By .. 'u,,(x) =Jﬁl(x)Hf‘2. .. u,,(x)

+ (permutations y, —= g, o0 ., iy).
(4.5)

A type-1 covariant object H‘jz, - (B) can be built
only from the covariant objects D}/(B) and F,(B)
which is eliminated by the simultaneous require-
ments of total symmetry and of twist zero (this
forbids any contraction which raises the twist);
finally, no covariant object can be built only with
the tensor D;’(B) at zero momentum. In the pres-
ence of fermions, this argument can be implemen-
ted. Class-IIa operators constructed with fermion
fields have at least twist four, unless y, matrices
lower the twist; however, the producty,y,, which
brings the twist to the value of two, does not con-
tribute to symmetric traceless operators. This
result confirms the computation of Sarkar and
Strubbe® and Crewther® of the anomalous dimension
of traceless symmetric twist-two operators in the
one-loop approximation.

Our next example is given by the operators of
twist two and dimension four, antisymmetric in

Oi 0;
@ ’ @ i:1’2
q P q p

FIG. 7. The contribution of these graphs determines
the renormalization factors Z;; and Z;, relative to the
operators O; of Eqs. (4.6).

their ‘indices p.and v, at nonzero momentum:

-

0,=4i%(y,B, -y, D),
0,=i%(x,D, -7,D)¥,
0,=iF0,,BY,
0,=iF 0o, ¥.

(4.6)

These operators are independent. No class-I or
-IIa operator can be constructed from the gauge
field (A +Q), only. Oy and O, are class-IIa opera-
tors. In order to determine the renormalization
factor Z;, relative to O,, we only need to compute
the divergent part of the two-point function with
one insertion of O;, of tensorial structure p,v,
-p,7, (see Fig. 7). Similarly, for O,, the diver-
gent part of the 2-point function with tensor struc-
ture ¢,7, - 4,7, yields the counterterm Z;, relative
to the operator O,.

C. Recipe in the Fermi gauge

In our approach, the Fermi gauge is just a limit-
ing case of the background gauge where one sets
the field &, to zero after all algebraic manipula-
tions. This procedure applied to Eq. (4.1) yields
the complete list of class-II operators coupled by
renormalization to a class-I operator of a given
spin and dimension. The graphs with external legs
of the fields éw ¥, , and ¥, which seem suited for
the computation of class-I counterterms, need,
however, also class-IIb counterterms in contra-
distinction to the graphs selected in the background
gauge. A complete list of class-I and -II operators
of given spin and dimension must be established
and the extraction of class-I counterterms pro-
ceeds according to the same general rules as in
the background gauge: Either one chooses suitable
tensor contributions of certain graphs or computes
graphs with different number of legs.

Again, in this Fermi gauge the traceless sym-
metric twist-two operators at zero momentum are
simple. Because of the symmetry and twist con-
straints, there exist no class-II operators con-
structed with fermions and thus the superficial
divergence of graphs with fermion external legs
yields automatically class-I counterterms, depend-

p,ai -p. B

FIG. 8. The contribution of this graph determines the
anomalous dimension of symmetric traceless twist-two
operators [Eq. (4.7)].



ing on fermlon f1elds For graphs with external
legs of the field Q the two-point Q function with
the following tensor structure (see F1g 8)

0i;8asby " " Dy, (n even) ‘ 4.7

J

Fy fd“xJ”(x

The polynomial H can be constructed from the type-1 covariants D,"l" (B), (B —A)L,
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needs only class-I counterterms, depending on the
field (_5“ To see this, we notice that the function
F [Eq (4. 1)] must be linear in J; and independent
of K and L because of the 51multaneous require-
ment of tw1st (+1) and ghost number (-1):

-+ u,(A, B) + (permutations p_ ~Hyeee o). (4.9

and F,(B), which is,

however, eliminated by the simultaneous requirements of twist zero and symmetry in all indices. The

generic form of class-II operators is therefore given by

0= [ ave [BQ 0

+ (permutations p, —p, ..., u,,):l .

ol Ay, Q)

0.3, = [ a5, 00 -

3A(y) a“cj(y)>

Ay=0

(4.9

The contribution of these operators to the two-point @, function in the tree approximation

Gij[pzpuz. ¢ .pu"_l(gulo( gunﬁ +gpnagulﬂ)_Pul' ‘ ‘pun_l(polgunﬂ+pﬂgu"u)+(permutations #1» “’2’ MR IJ'n)]

vanishes for the peculiar tensor selected in Eq.
(4.7. The authors of Ref. 1 seem to have computed
the counterterm associated with the particular
function of Eq. (4.7), which gives indeed the cor-
rect a-independent anomalous dimension.

The operator -15“,,2 at zero momentum is an ex-
ample of a case where there exist no class-Ila
operators and thus the prescription is trivial in
the background gauge and not a priori in the Fermi
gauge.

D. Computation of anomalous dimensions at order n

Suppose we are interested only by the value of
the anomalous dimensions at some order 7 of per-
turbation theory, and not by the complete expres-
sion of the corresponding multiplicatively renor-
malizable operators, and we have picked accord-
ing to the recipes of the previous sections a con-
venient graph with definite tensor structure. Then
the extraction of the superficial divergence from
this graph at order » requires preliminary renor-
malization of all subgraphs. This implies the com-
putation at order (% -1) of all counterterms Z;; for
i< N if N denotes the number of independent class—
I operators. This includes the class-II counter-
terms relative toj > N. However, the rest of the
matrix { Z,;} (i> N) is irrelevant for the computa-
tion of the N o -independent anomalous dimensions.
The computation of the counterterms Z;; for is N
yields, of course, also the components of the mul-
tiplicatively renormalizable operators, associated

(4.10)

r

with the N a-independent anomalous dimensions,
on the space of class-I operators, namely the func-
tions ¢;,;(g) of Eq. (4.3b). These simplifications
are a direct consequence of the block-triangular
structure of the renormalization matrix.

E. Final comments

Let us end with some trivial comments. The
presence of class-IIa operators constitutes a re-
striction of our method since it does not apply to
them. These operators might, however, be un-
physical, but we dispose of no convincing criteria
of “physicality.” A necessary, but not sufficient,
criteria would be the presence of other a-indepen-
dent dimensions than the N a-independent ones
relative to class-I operators. No general proof
could be given concerning this o dependence. Even
a counterexample showing explicit « dependence
cannot settle the question, since we know of an ex-
plicit example of a class-IIb operator with a-inde-
pendent anomalous dimension: It is the conserved
operator CMC studied in Ref. 4. This example
shows that accidents may occur.

The next point we would like to emphasize is the
fact that the variation of all class-II operators un-
der a supergauge transformation (Ref. 8) vanishes
in the absence of sources of the quantized fields
because of the equations of motion (see Sec. III D4).
Therefore, we have at the moment no plausible
argument to exclude a contribution to the Wilson
expansion of a product of gauge-invariant currents
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arising from a class-II operator associated with
an a-independent anomalous dimension.

The study of the Wilson expansion involves a
preliminary work on the renormalization of a pro-
duct of two local class-I operators which can pre-
sumably be carried out along similar lines to those
followed here, namely the exploitation of WI de-
rived from the supergauge transformations. In
fact, if the renormalization of a single insertion
of a class-I operator can be performed in a way
which preserves the form of the bare WI for the
regularized functional (as noted in Sec. IIID), then
the counterterms for a bilocal product of two op-
erators are again class-II operators, at least at
the one-loop level. Thus, the class-II operators
seem to play an important role in the renormali-
zation of gauge-invariant operators.

V. CONCLUSIONS

We have achieved by means of Ward-Slavnov
identities a systematic study of the renormaliza-
tion of single insertions of classical gauge-invari-
ant operators of arbitrary momentum which applies
also to the compensation of non-“logarithmic” di-
vergences. The classical gauge-invariant opera-
tors, which do not vanish in the classical limit in
the absence of sources and of the gauge-fixing term
and correlated Faddeev-Popov ghosts, are denoted
by class-I operators. The latter couple by renor-
malization to gauge-invariant operators, which
vanish in the above mentioned classical limit (they
are referred to as class-Ila operators), and to
non-gauge-invariant operators which involve gauge
and matter fields as well as Faddeev-Popov fields
(the latter are referred to as class-IIb operators).
Class-II operators which mix with a given class-I
operator O of dimension d are generated by the
action of a linear differential operator on poly-
nomials which have ghost number (-1), dimension
less than or equal to (d — 1), and the same Lorentz
covariance as O. The class-II operators obey
peculiar Ward identities, which imply for class-II
operators the same WI as those for single inser-
tions of class-I operators and which yield a block-
triangular form for the renormalization matrix:
The renormalization of class-II operators involves
only class-II operators. The block-triangular
structure of the renormalization matrix simplifies
greatly the computation of the «-independent ele-
ments of the class-I counterterms. Explicit pre-
scriptions for this computation were given and
illustrated by some examples, both in the Fermi
gauge and in the background gauge. In this respect
the computation in the latter gauge of the superfi-
cial divergence of 1PI graphs with external legs of
matter fields and of the background field only se-

lects automatically class-I and -Ila operators,
eliminating thereby class-IIb operators; the num-
ber of vertices in this gauge is, however, larger
than in the Fermi gauge.

The above mentioned prescription rests on a
conjecture which was proved only in a few cases:
Only class-I and -II operators mix with class-I
operators under renormalization. This conjecture
seems quite reasonable in view of the properties
of the class-II operators: same WI as for class-I
operators and block-triangular structure for the
renormalization matrix. The complete proof of
this conjecture was achieved for the following op-
erators, which are involved in the Wilson expan-
sion of currents for a gauge theory including fer-
mions: (i) operators of dimension d< 6; (ii) totally
symmetric traceless operators O, ... iy of twist
T<5; (iii) operators Ouuspye « + , totally symmetric
and traceless in z indices and antisymmetric in
the other two indices, of twist 7 <3. Finally, the
insertion of the class-II counterterms, which is
intimately related to the equations of motion, leaves
invariant the renormalized action in the presence
of a class-I operator under a generalized super-
gauge invariance which depends on the source of
the class-I operator: The situation is similar to
the familiar one in the absence of the operator
where the renormalization of the coupling constant
appears as a renormalization of the supergauge
transformation.

The applications of this work to practical com-
putations are numerous. Aside from the original
calculations of Ref. 1, calculations of anomalous
dimensions are involved in various physical prob-
lems of non-Abelian gauge theories; as an exam-
ple, we may quote the dynamical realization of
octet enhancement which was pointed out by Gail-
lard and Lee, and by Altarelli and Maiani (Ref. 12).
We hope that our prescription will avoid unneces -
sary computations of the full renormalization ma-
trix.

There remain several open problems. The tech-
nical ones are the general solution of the cohomo-
logy problem, which was only conjectured, and the
derivation of a basis of operators of given twist
which exhausts relations arising from the Jacobi
identity, anticommutation relations, and eventually
partial space integrations for operators at zero
momentum. Next, the existence of class-IIa op-
erators raises the questions of the existence of
other o-independent anomalous dimensions than
those relative to class-I operators, and of their
contribution to Wilson expansions of physical op-
erators. Finally, this work opens a tractable path
for the study of Wilson expansion, for which the
proper treatment of the renormalization of gauge-
invariant operators appeared as a preliminary.!3*
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) 0’ is a function of C* and J} only through the com-
bination J" —J' D”(A)C’ In terms of the vari-

1. Change of variables

APPENDIX: SOLUTIONS OF EQS: (3.44)

In this appendix, we want to study #the's,oluti.ons ables A B A +Q C;, :T’ Lt sL;+D:"’(A)Cj,
of Eqs. (3.44) satisfied by the counterterms of a - ey gy My, and M,,, 1t is stralghtforward to see
. gauge-invariant operator. We consider the-general . . that the differential operator F]
" case, with possible presence of matter (spinor) i
fields: 825+ [ dxciomi (A1)
(a) DLO’=0, TN
(o) 850'=0, takes the form
. . .
oL 9 9L °]
5= f [ 2 — it — C(x)xC(x)
B e W T 5w LG 2l e
. — . . )
’ . _.__. _ ij un ; i -7 i —_—
L) 54,0 (Du (B) {(x) +ig M () Topdh(x) zg%(x)T,,,,M,,(x)> 3 K,(x)], (A2)

where, here and in the following, £ is a shorthand notation for fde(B, ¥, P)2), £ defined in (3.37). In
those variables, D, reads

i=DY(R)—57= +D¥(B) =75

aAf (x) WaBi (x)

5 o 2
+g<C(x)X 2C (x) +oplx)x orLx )+K(x)>< BK( )+I‘“ X)X 8f[;(x)>i

+ zg<$a(x) » 57, 0x ( y +M,(x)T%, a]\i(?)) zg(zpa(x)Tba azpa( ) + M (%)T} (x)aMi(x) ) . (A3)

It is clear that this operator § still satisfies §2=0

; 9
#=[a "K D/(B) an( B+ 8 Tl 5y — 8 T () 5 (x>> } K (a4)

and the right-hand side vanishes, because of the local gauge invariance of £. If we are now able to prove
that some solution of
80’ =
(a) 80'=0, (A5)
(b) ©,0'=0
is of the form
0’'=8F with ©,F =0,

it follows from the definition (A1) that an equivalent expression for O’ is given by O’ =23;F’. The advantage
of this new operator 3 is to provide a better separation of variables. Notice that the local equation (3.44a),
which is valid because we are working in the background gauge, has played an important role in this sim-
plification.

2. Elimination of the variables f’ and K

7

The 1ntegrat10n of §0’=0 with respect to variables A and LE}s straightforward, since the operator
L' . 8/aA anticommutes with the operator 3, and is hnear in L. Indeed, the operator F, defined by
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- - — Ldt -~
FI(A#,BM,...,MG)=—J; (K-B), 577
m

satisfies

-

5F, = fdt [0(B,+U&,-B),..., 1T, ...)]

=OI(K;1’ B;u 6; j&y I_E’ _I:;:; ¢a’ wa’ Ma, 1\—40) -0

9 = > > > =, =, —
= [0"(B,+1(A,-B), B,, C, I, K, 1L, ¥, T, M,, M1,) | (a8)

(BIJ’ B“’C! j’:7K, 07. Zpd, —Zpd’ Ma’Ma)' (A7)

By construction, F, is a type-1 invariant: ©,F, =0, so 8Fl is also a type 1 1nvar1ant and the problem now
reduces to the solution of Eq. (A5) for operators O’ independent of A and L' Unfortunately, the remain-
ing cohomology equation is nontrivial and we have thus checked the Vahdlty of our conjecture only in the

simplest cases.

3. Low-dimension or low-twist operators

In the case of low-dimension d, or low-twist 7 operators, the possible ghost-number conserving solu-

tions O’ are polynomials of small degree in C; (d =7 =1), 5‘1 (d=2, 7=1), K (d=7=2),

M, or M, (d=T=3%

However, in the presence of spinor fields, one can use y matrices to lower the twist of the operator and
the possible degree in C; depends on the Lorentz structure.

It is easy to see that operators of dimension d=3 (4, 5, 6) or twist 7=2,3 (4, 5), completely symmetric
and traceless in their Lorentz indices, are, at most, linear (quadratic) in the C’s. On the other hand,
operators of twist T=2 or 3 antisymmetric in two indices uv and completely symmetric and traceless in

the other indices p,,..

b162 .
M, T5,,0,,(y, D"

oo . Dbu,,"_lb" +permutations)

., L, may be quadratic in C, for example, the operator

M, (CxC)'.

-
(a) Operators at most linear in C

After elimination of the variables —ﬁ‘j and Ku,
isfy the following equation:

fd x 90’ 9L a0’ aL Yo Xd
B x) aF (x) 09, (%) OM,(x)

- [Dj7(B) j#(x) + ig B, (%)T}y, 5 (x) — ig Ty () Ty M,

which, by application of two derivatives [8/06C; (y)]
X[8/8C,(2)] implies, for operators at most linear
in C;, the independence of O’ with respect to the
variable C;. By ghost-number conservation, O’
can therefore depend only on ﬁﬂ, g, and P, and
satisfies automatically Eq. (A8). Equation (A5b)
for O'(—ﬁ“, Uy 9,) tells us that O’ is a type-1 inva-
iiang,. ang thus a gauge-invariant polynomial of
B,=A,+Q,, ¥, and J,.

(b) Operators at most quadratic in ¢

The piece of O’ quadratic in the variable C, de-
noted by O’?, satisfies the identity

éco'zzfd4x(6X6)‘ai—é'O’2=0, (Ag)

where the operator 50 is again a cohomology oper-
ator

(602 =0. (A10)

89,(x) M (x) L[Ex T+ ==

the remaining solutions O’, independent of _I:’j and K“, sat-

c()

,,(x)]aK (x) =0, (A8

—
The following proof shows that for operators quad-
ratic in C, §; is a trivial cohomology operation;
this means that all solutions of equation (A9) take
the form

ofz=§ 8:G, (A11)

where G denotes a type-1 1nvar1ant (BEq. (A5b) local
polynomial in the variables A B 3' C and K.
This identity (A11) reduces the problem to the case
of operators linear in 6, which was solved in the
previous paragraph. Indeed, the polynomial O”

o"=0' —éG

satisfies Eq. (A8), is type-1 invariant, and is, at
most, linear in C. The main problem is to prove
that the polynomial 820’(x)/8C;(¥)2Cy y) is anti-
symmetric in the group indices 7 and j and thus
symmetric in space-time variables (x,y). This
property is trivial for operators of dimension d<8,
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since one may proceed by inspection of the inde-

pendent polynomials. For operators of given twist,

this property is not obvious, and we indicate only
the successive steps of the rather intricate deri-
vation. The application of three derivatives on
Eq. (A8) yields the following equation:

3201
fijab(x —y) BCk(z)BCa(x)

. x z
+|:2 permutations <1> - <]y> - <k>] =0,
(A12)
which after some algebraic manipulations says
that the ¢j-antisymmetric partof 820’/9 C;(x)0 C;()
can be cast in the form

L 820’ 820’
502<ac,-(x)ac,(y) METATE cj(x)>

32 0/

5C,@oC, () ALY

=fijkfklm6(x"‘y) f dz

C, denotes the eigenvalue of the Casimir operator
in the adjoint representation:

Siiefi51=Ca0p; . (A1)

Equation (A13) yields the announced result (Al1)
for the antisymmetric part 0.2,

o'/@=1 f dxdy CA(y)C-(x)—-a—z-O—'!‘(z)—
e T2 P a0 (x)aC,(y)
=56,
320'

1
G= &= fun f dy dz C,(») (A15)

0C,,(1)9C,(2)

0/ gatisfies all requirements and we are now
able to show that the symmetric part O;‘%’ must
vanish in view of Eq. (A13) and Eq. (A5b). The

application of two derivatives on the latter equation
implies type-1 invariance for 3%20}‘%/3C;()9C; (x),
820" (2) '

RN (419

which must thus be proportional to 5, ;:

82012 (1)

5C,(00C,(x) 2125 %) (a1

By insertion of the expression (A17) into identity
(A12), the latter reduces to

o(x=y)®(u;y,d+(x~y=2)=0

and one can convince oneself that this implies the
vanishing of the distribution & which is of finite
order. Thus we have achieved the proof.

(c) Operators of higher degree in C

This method fails for operators of degree three
in C. Indeed, there exist solutions of Eqs. (A5)
which are not of the form 8F; for example, the
polynomial f;;, C;(x)C; (x)Ck(y) satisfies (A5) be-
cause of the Jacobi 1dent1ty Cx(CxC)=0 but
cannot be cast in the form 8F. However, we have
found no simple counterexample of a ghost-num-
ber conserving operator which would be a solution
of Eq. (A5) and which is not of the form 3F; for
example, consider O’:

0'= f, 14 C;(X)C,(¥)C, (MK, (x)DI™(B)J ,* (x) = 6F,

where F denotes F=%(CxC)+C(K-K). The ghost-
number conservation plays a crucial role for the
validity of our conjecture, for which a general
proof is probably not trivial. The first step, to
our view, would be to set up a basis of polynomials
which are independent by Jacobi identity and which
separate the C variables and (C xC) variables.
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