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The study of unitary conformal invariant theories on a toms reveals two important  proper- 
ties: the partition function and correlation functions may be expressed in terms of free (gaussian) 
field modes,  and the modular invariance dictates the operator content of the theory: for a generic 
value of the central charge c = 1 - 6/m(m + 1), there exist at least two distinct models depending 
whether m = 0, 3 mod 4 or m = 1, 2 mod 4. The case of non-unitary c < 1 theories is also briefly 
discussed. 

I. Introduction 

A major breakthrough has occurred in the study of critical 2-dimensional field 
theories and their conformal invariance, as a result of the work of Belavin, Polyakov 
and Zamolodchikov (BPZ) [1]. Relations with string theories and infinite Lie 
algebras has provided a very rich material. Friedan, Qiu and Shenker [2] have 
classified unitary representations of the conformal and superconformal Virasoro 
algebra. Dotsenko, Fateev and Zamolodchikov [3] have computed correlation func- 
tions using several techniques including a Coulomb gas representation due to Feigin 
and Fuks [4]. Cardy, Bl~Ste and Nightingale, and Affleck [5, 6] have related finite size 
effects with the representation theory developed by Kac, Feigin and Fuks [7] and 
Rocha-Caridi [8] for the conformal algebra, part of which was common lore among 
string theorists. 

It is perhaps not too surprising that the construction of critical 2-dimensional 
theories can be based on free field theory as advocated by Kadanoff [9]. An 
interesting aspect is the role of the energy momentum tensor, with its associated 
Virasoro algebra, a tool not frequently used in the context of statistical mechanics. 
This introduces the so-called central charge c which characterizes to a large extent 
the nature of the model. As pointed out in refs. [5, 6] the physical significance of c 
appears in restricted geometries as a kind of Casimir effect, i.e. a finite displacement 
of the free energy. In complex coordinates z, ~ the energy-momentum tensor is split 
accordingly in T = Tz~ and T-T~r .  A con formal change of coordinates z ~ z' 
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induces a transformation T ~  T '  such that [1] 

where 

dz'  ]2 
T ( z ) =  T'(z')(--~z I + ~2c{z ' , z} ,  (1.1) 

{z ' , z}  d3z'/dz3 31d2z'/dz2|2[~ (1.2) 

dz ' / d z  2 ~ ] d z ' / d z  

is the schwarzian derivative of the transformation. A similar formula holds for T. As 
an example if z varies in a (periodic) strip IRe z I < ½ the transformation z ' =  
exp(2~riz/L) maps the vertical strip in a plane where we may assume ( T ' )  = 0. One 
should beware of the fact that rotating the strip by 90 ° changes the sign of (T) .  As 
a consequence 

(T)suiP= T 2-4" (1.3) 

An infinitesimal deformation (which need not be conformal) of a domain 
induces a corresponding change of the free energy according to 

f d2z( 
a In Z + j - ~ .  T~.(z, 5)) O"Sr" = 0 (1.4) 

We may apply this to a transverse dilatation of a strip 8 Re z = e Re z, 8 Im z = 0. 
By a procedure familiar to physicists but not mathematically very rigorous, we may 
extract the free energy per unit longitudinal length (denoted by T) [5, 6] 

1 1 
--In Z = fo L + ~¢rc-- (1.5) 
T L '  

with f0 an unknown constant. Not only does this vindicate the above statement but 
it also provides a direct access to a numerical determination of c using finite size 
scaling methods [5, 6]. A generalization of (1.4) holds even when the domain 
cannot be obtained by a straightforward one to one map on the plane. Indeed as 
suggested in ref. [5] a thorough investigation of critical models on tori completely 
unravels the structure of a given model including its operator content. This will be 
shown in detail in the sequel together with the relation with characters of the 
conformal algebra. On the other hand the derivation of (1.5) assumes that the state 
in which  (T')plane = 0 corresponds in the strip to the lowest energy level of the 
corresponding 1-dimensional quantum hamiltonian and hence that all operators 
have non-negative dimensions. This may fail for non-unitary models where negative 
dimensions occur in the spectrum as discussed in sect. 6. 
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The point of this paper is to study in some detail the connection of free field 
theory with critical models starting from the gaussian model in a lagrangian 
formalism. The line of argument is due to Cardy [5]. We will show that sums of 
(renormalized) partition functions on tori, for free fields subject to specific boundary 
conditions yield the conformal dimensions of operators, the characters of the 
associated Virasoro algebra, together with the central charge. The fact that partition 
functions of conformal theories are given by free field determinants with ap- 
propriate boundary conditions was implicit in the work of ref. [6]. What remains an 
art is to obtain the connection with the statistical models as initially formulated on a 
lattice away from criticality with their non-universal features. What underlies the 
above construction is some connection with a Coulomb representation of the 
observables in a gaussian model [9]. It would be very instructive to obtain some kind 
of direct formulation which would naturally include such aspects like the role of 
discrete symmetries and "parafermionic" operators [10]. 

Interestingly the crucial computations needed to obtain the partition functions 
date back to Kronecker according to Weil [11], who calls them Kronecker's limit 
formulas. 

These formulas must have been reobtained a great many times, in particular in 
recent investigations of the string model [12,13]. As discussed in the next section the 
canonical example is provided by the free Bose field on a torus 1" characterized by 
two periods 60~, 602 generating a lattice L with l- = C / L .  With 601 and 602 given as 
complex numbers such that r = 602/60~ has a positive imaginary part, the dual lattice 
L is generated by k ~, k 2 such that Re(kiWi) = 8j. The fundamental cell of L, i.e. T, 
has area A = Im 60281 . The eigenvalues of minus the laplacian in T are of the form 
(2rr)2inakl+ nzkZI 2= (27r/A)Zin2601- n160212 and the omission of the zero mode 
is indicated by a prime on sums or products. The meaningless expression Z 1 = 
A~/2rI' (1/2~r)inlka+ nzk2i is defined through a procedure of analytic continua- 
tion involving the meromorphic function 

[ A t 2s , 

leading to 

[#'/2601 - -  n1602[ 2s ' 
(1.6) 

Z, = A'/2exp(~zG'(O)) = 
16011 (1.7) 

where il[~-] is Dedekind's function 

~[T] =exp(2i~,/24) I~-I(1 -e2'~"). 
n = l  

(1.8) 

When 601 = L, ¢02= iT, ? = i T / L ,  T--+ 00, the torus degenerates into a periodic 
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strip, ( 1 / T ) l n  Z 1 ~ ~rr(1/L) in agreement with (1.5) for a central charge c = 1. 

This discussion will be pursued in sect. 2. 
In sect. 3 we reobtain the expression given by Fisher and Ferdinand for a critical 

lsing model on a torus corresponding to a free (Majorana) Fermi field with c = ½. 
We exhibit the relation with the conformal characters and discuss correlation 

functions. 
In sect. 4 we study generalizations of the above formulas for the models with 

central charge in the unitary series of Friedan, Qiu and Shenker. Using modular 
invariance of the partition functions on a torus, we observe the existence of two 
sequences of critical models with central charge c = 1 - 6 / m ( m  + 1), m an integer 
> 3. In the main sequence all scalar primary conformal operators occur 
(eqs. (4)-(12)) whereas in the complementary series there appear chiral (i.e. angular 
momentum carrying) operators, and some typical subset of conformal dimensions 
(eqs. (4)-(17)). 

In sect. 5, generalizing results of Rocha-Caridi [8], the same partition functions 
are expressed in terms of determinants of Bose and Fermi fields coupled through 
boundary conditions. 

The final section presents a summary, discusses several open problems and 
contains a short discussion of non-unitary representations exemplified by the case of 
the Lee-Yang singularity. 

2. Gaussian model 

A free field qv(z, ~), assumed real, has a lagrangian given by £f'= ½(O~q)) 2 and the 
action is diagonalized by expanding ¢p in proper modes of (minus) the laplacian 
with eigenvalues ?~ > 0. Omitting the zero mode the partition function is the 
ill-defined expression (because of an ultraviolet divergence) Z l = A1/2I-[ '~-1/2.  We 
intend to study this expression for the torus described in the introduction g = C / L ,  
where the lattice L is generated by 0al, %;  r is the modular ratio r = % / %  defined 
to lie in the upper-half complex plane. To be specific % and % generate the system 
of closed geodesics on T; any change of basis a~ = nijc0 j with the matrix {nij } in 
SL(2, Z) generates a modular transformation on r ~ r '  = (n2a + n = r ) / ( n  n + n12,r ). 
In such a transformation the area A = Im~%~l, remains invariant, disclosing the 
symplectic invariant form. The dual lattice L is generated by 

k 1 = - i ~ 2 / A  , k 2 = i ~ l / A  , 

Re k i ~ j  = 6j , (2.1) 

is therefore such that r k = k 2 / k l  = - ' r -1 ,  implying conformal equivalence between 
L and L With periodic boundary conditions for the field ¢p the eigenvalues ~ of 
minus the laplacian are of the form (2~)21nl kl + n2k212 = (2~r/A)2]n1¢o2 - n2oal] 2. 
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We therefore define Z 1 using the analytic continuation procedure alluded to in the 
introduction, as 

Z 1 = AX/ZexP(½G'(0)), (2.2) 
with 

2 @ '  2Sc(s) = E '  1 

. , . .  I m + nrl2 s . (2.3) 

The prefactor A 1/2 insures that the renormalized determinant is scale invariant. 
Eq. (2.3) defines an analytic function for Re s > 1 which can be continued using a 
Mellin transformation following [11]. Summing first over m then over n, with the 
function given by ~(s) = E~=,(1/m~),  2~(0) = - 1, 2~'(0) = - ln2rr, one finds 

12A601 2s ~ ,  I m +1 - -  G(s)  =2~(2s )  + ~m n~] 2s " 

Since the last sum over m is a periodic function in n ~, of unit period it reads 

1 
~., I m +lnr[ 2" - ~'exp(2irrlnRer)fldye-2i~'v~-'lm+l 0 ., y + in lmr l  2. 

1 
= ~ f+~dyexp(2i~rl(nRer-y))oo l y+  in lmrl  2s 

1 +e/a oo 
- r ( s ) E f  ~ dYfo dttS-'exp{2iTrl(nRer-y) 

- t ( y 2 + n 2 ( I m r ) 2 ) }  

({ }) - Y~.f dtt*-3/2exp - t n 2 ( I m r ) 2 + - - - 2 i l r l n R e r  
9 

t 

where the last expression is a modified Bessel function. For l = 0 the integral is 
In Imrl l -2*F(s  - ~). For the other terms change t into I~rl/nlmrlt. Using the 
functional equation for the ~ function [11] one finds 

] A \ ~ ) G(s) = s-1/2F(s)~(2S) 

+ 2( ~ - ~  ) l /2 -~F(1-  s )~(2 - 2s ) 

' Re~') / s-1/2 
+ Vr~ Y'~' ~_~ exp(Zi~rln 

1 n 

X fo~d-~/ts-X/2exp(-~rlln] I m r ( t +  t - l ) ) .  (2.4) 
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The last double sum is an even entire function of s -  ½, so that (2.4) exhibits both 
the symmetry  s ~ 1 - s  of the combination {2~rO~l/A {2S(Im.r/Tr)s-1/2G(s) and its 
meromorphic  properties providing the required analytic continuation. Since for 
positive x 

fo  I d t  t t + - X / 2 e x p ( - x ( t  + t - l ) )  = ~ - e  -2x 

using f ( 2 ) =  ' 2 ~r  , one finds that in the vicinity of s = 0, 

s i n  ~ 2 G( s ) = - 1 - - s ln(2rr) 2 + ~s~r Im ~- 

t p 1 
+ s ~  Z 7--7. exp(2i~rp n Re r - 2¢rlpn{Imz ) + O(s2 ) .  

p , IPl 

oo 

q = e2i. , ,  p ( q )  = I " I  ( 1 _ qn), (2.5) 
1 

Set 

with p ( q ) - i  = y~p(n)qn  the generating function for partitions; then 

and 

G(O) = - 1 ,  

G'(0) = - 2 1 n  - -  
(d 1 

( q{l )1/24p( q)P(  q) (2.6) 

T 
= t ~ )  ~ = ( 0~cp)2, (2.9) 

for which we also use the notation ,/[~'], q = e 2i~*, as in (1.8). 
The free scalar field has an energy-momentum tensor [1] given by 

oo 

~l(q) = ql /2 ,p(q)  = ql/241-i ( 1 _ q , ) ,  (2.8) 
1 

with ~/(q) the Dedekind function 

l~ll 1 
_ _ ,  ( 2 . 7 )  Zl = A1/aea'(°)/2 A1/2 ~l( q)*l( q) 
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with a Wick ordering prescription implied. In infinite space the field propagator is 

1 R 2 
( ¢p(z 1, 5a) cp ( z 2 , 52)) = - - l n - - ,  (2.10) 

4~r Z12Z12 

with z12 = Z 1 - -  2 2 and R an arbitrary scale. The central charge is such that 

£ 

(T(zl)T(z2)) = ( T ( S a ) T ( 5 2 ) ) * =  2z42. (2.11) 

From the above this yields 

c = 1. (2.12) 

Therefore the behavior of Z 1 in the limit of a periodic strip agrees with Cardy's 
expression (1.5). More generally in the limit q ~ 0 

Zc ~ (qct) -c/24 (2.13) 
q,--, 0 

The expression (2.7) is remarkable for its modular properties. Indeed the analytic 
function G(s), and therefore Z 1 itself is clearly invariant in a modular transforma- 
tion, i.e. an SL(2, 7/) change of basis vectors in L 

~0] ~ Y / l l ~ I  -~- F/12¢,.02 

0)~ = n 21~01 + n220a  2 , 
Y / l l n  22 - -  / /127/21 -~- 1, (2.14a) 

/1 21 q- / /22 '1" 
T t 

r / l l  -1- /.112,/- ' 

It follows therefore that 

A'--A. 

(nn+n12r)-t/2~(exp(2i~rn21+n22r))nn +/'/12"i" = e~(exp2irr r ) ,  (2.14b) 

where e is a phase (in fact e 24"~- 1, see sect. 4). 
This property is of course crucial to express that Z 1 is attached to the torus 3- and 

not to the manner in which we describe it. More generally it will have to hold for 
any partition function constructed in the sequel. 

The modular group is generated by the two transformations "r ~ r + 1 and 
r --, - r 1, the latter having square one, so that a closed fundamental domain in the 
upper-half plane is IRe ~l < ½, Lrl > 1. The factorized form observed in (2.7) is also 
typical. Up to the prefactor I%/A1/21 special to the c = 1 case, one finds the 
modulus square of a function of q alone, which is a projective invariant of SL(2, 7/). 
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This generalizes to the contribution of a so-called "conformal block" in the 
terminology of BPZ up to slight complications which will appear below. It is also 
typical that we find a reciprocity relation between two toil, namely T associated to 
the lattice L and T associated to the reciprocal lattice [,. Since from (2.14) 

[¢0f ]/2~ ( exp ( -  2i~r¢-' ))[ = [~0{ 1/2r/(exp 2i~rr )[, 

it follows that 

1 k 2 
AA= 1, Ikll = A ~ 2 ,  k l  - y  1 

Z I ( T  ) = ZI(-B- ) (2 .15)  

expressing the conformal equivalence of the two lattices L and L With c = 1 we can 
rewrite Z 1 as 

I Ca) l Trq L 0 c/24-Lo- c/24 
Z1 = 1 7 7 ~  q 

=[A-~2 Trexp(2i~rRe~'(Lo-Lo)-2~rlm,r(Lo+Lo-~C)), (2.16) 

with Lo(i,o) related to the expansion of the energy-momentum in the plane through 
(the bar partners obey similar relations) 

+o() 

T ( Z )  = E z - 2 - P L p ,  [L,,Lp]=(n-p)L,+p+-~cn(n2-1)d,+p,o, (2 .17)  
- oo 

which define the generators of the commuting isomorphic Virasoro algebras. In a 
rectangular situation, q = ~/, and L 0 + T, 0 is a hamiltonian in a transfer matrix 
formalism. In agreement with (2.13) Lo(L0) is displaced by an amount - 214 c. For 
both L o and Lo the spectrum is real, starts at h = 0, is integer spaced and the 
eigenvalue n is p(n) times degenerated. In general for an irreducible representation 
of the Virasoro algebra of central charge c with "highest" weight h (i.e. lowest 
eigenstate of L 0 with eigenvalue h, annihilated by the Lp for positive p) and such 
that the eigenvalue h + n of level n is dim n degenerate, one defines the associated 
character 

Xc, h(q) = Trq L° = qh ~ dim,q" ,  (2.18) 
n=0 

a convergent series for [q] < 1. With a small abuse of notation (since the free field cp 
is not a primary field), Z 1 is expressed in terms of 

Xl,o(q) = p ( q ) - l ,  (2.19) 
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the easiest of a series of results obtained by Kac, Feigin and Fuks, and Rocha-Caridi 
[7, 8]. 

Let us quote the important results for the unitary subseries of the so-called 
"degenerate" representations analysed by Friedan, Qiu and Shenker [2]. For the 
values of the central charge 

c = 1  
m ( m + l )  ' 

m i n t e g e r = 3 , 4 , . . . ,  

[r(m + 1) - s m ]  2 -  1 

h = h,~= 4m(m + 1) ' l < s < r < m - 1 ,  

+oo 
P(q)Xc ,  h ( q ) =  Y'. 

7 1  ~ - oo 

{ q ( [ 2 n m ( m + l ) + r ( m + l , - s m ] 2 - 1 ) / 4 m ( m + l )  --  ( S  ~ -- S)}. (2.20) 

These expressions will be useful in the sequel. 
It is important to realize that there exists no one to one continuous map (let alone 

conformal) of a torus onto a (Riemann) sphere, i.e. the complex plane completed by 
a point at infinity and its system of neighborhoods. Their genus g or Euler 
characteristic 2 -  2g are distinct. Conformal invariance alone does not allow to 
derive directly expressions for the torus from similar results in the plane. But 
because a torus can be viewed as a factor space C / L  the method of images familiar 
from electrostatics is a powerful tool. For instance an important quantity is the 
two-point function generalizing (2.10) which will also be useful later on. Because of 
the zero mode subtraction this quantity cannot be defined as the elementary 
solution of (minus) the laplacian. Another way to put it is to note that on a compact 
space a source of given intensity has to find a sink to absorb an equal amount of 
flux. Therefore on a torus the relevant equation is 

1 
-A(f~(Zl ,  ~l)~(z2,  ~2)) = 82(z12) A ' (2.21) 

with the zero mode subtraction on the r.h.s, to insure a vanishing integral. The 
&function is understood as a (doubly) periodic function. The symmetric solution is 
neatly expressed in terms of Jacobi's 0-functions [11]. Set 

q = e 2i~rr , 

y = e2i~rz/~l . 

oo 

F(z )  = P(q)-2(1  - j - l )  I-I (1 - j q " ) ( 1  _ y - l q , ) .  (2.22) 
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Then 

/12 = exp( -4qr< ¢p( z,, 5a)q0 (z2, z2)> } 

2( ii imz12,j l,2 }) 
= ~-~F(z12 ) exp -2~" I m 7  + (Ira z12)/oq 

= Z 1 2 Z 1 2  . (2.23) 
Z12 ~'~ 0 

The normalization has been chosen such that (2.23) agrees with (2.10) for R = 1. 
Observe that (2.23) cannot be written as the modulus square of an analytic function 
in contrast to what happens in the plane or in a periodic strip. It is tedious to verify, 
but of course true, that the normalization guarantees modular invariance. 

Consider (2.23) when z12 is expressed as 

k l 
Z12- ]~oo I - ~ % .  (2.24) 

Care must now be taken in expressing modular invariance since of course the real 
coordinates k /N,  I /N will be affected by a change of basis. Then one has y = 
e -  2iwk/Nq-t/N 

A Z~llD~/.,,/u(q)l~, 
( 2 ~ ) :  

Dk/u,t/u( q) = q -{6t'N-I)/N2-1]/12 f i  (1-- e2i~k/Uq "+t/N) 
n = O  

xfl - e - 2 ' ° * / ~ q ° + ( ~ - " / ~ ) .  (2.25) 

By construction [Do, ol 2 vanishes, Z~ -2 being a "renormalized" version of this 
quantity. It would therefore appear legitimate to define IOoRo] 2= A/(2qr)2Z21 in 
which case the above expression would appear as the ratio }Dk/N,I/N/D~oI Z. 

AS the quantities Dk/u,t/u will appear repeatedly in the following, we mention 
some of their modular properties. 

If ,?/-- exp( - 2icr/r), one has 

IDk/N,,/N(q)}=[D(N_k,/N,(U_t)/N(q)[=IDt/N,(U_k,/N(~) I. (2.26a) 

Our notation always implies that q = e 2i~r*, so that in the change r ~ ~" + 1 

( Dk/N,l/N~[^2i~r-]q] = D(k+I)/N,,/u(q)exp -- a~lTr' " ~ -  1 (2.26b) 
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and for integer p 

Dk/U+p,,/N( q) = Dk/N,,/N( q) ,  

Dk/N.,/N+p(q ) = (--1)P--2J'kp/N'~ t,,~ I-~k/N,l/N\ ,.t ) • (2.26c) 

The notat ion suggested - but did not require - that k, 1 and N were integers (and 
N positive). This is now what we assume. Under those circumstances we will now 

show t h a t  D k / N , l / N ( q ) -  when at least one of k, l is not equal to zero rood N, 
otherwise we would get z e r o -  can be interpreted in terms of free field path 
integrals. Namely  let us repeat the same calculation that we performed to obtain Z 1. 
But we make two modifications: 

(i) We sum over modes which in complex notation read 

This means that the fields are no longer periodic but are multiplied by a phase 
e -2i'rl/N as they wind around the torus along the generator % and e 2iÈk/N along ¢02. 

To do so we must express a real field as the real part of a complex field. 

(ii) Instead of computing a (renormalized) inverse square root determinant, we 
simply compute the (renormalized) determinant exp(-G~k/N,I/N(O)) omitting any 
A-dependent  prefactor, with 

G k / N , I / N ( S )  = ~ , ]rn+nr+(k+lr)/N]2. (2.28) 

When k and l are not both zero mod N the sum runs over all integers m and n. The 
calculation proceeds as before with the result that Gk/N. i/u(O)= 0, and 

~n i e 2i~ln/N ) I m r  
exp(- -G'k /N ' t /N(O))=exp - ~r --~ 

x{ 0 - e: ' '*/ 'q"+'/N) ,,=o 

= [Dk/ , , , /u (q){2 .  (2.29) 
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One recognizes that 

~r --~ N-~ ~ + sin(2~rs/N) ' ?1 S~1 

1 , 1 --7/" [1 N-1  1 

5,/r_1 _ _  y', -~  = N2 / + s=l ~ sin(2~rs/N) 

Hence 

1 E '  e2i~rln/N 

"l'r n 2 
n 

2~r ~ l  ( sin(~rls/N) ) 2 
- -  : l'Tr --  ~ s = l  sin(~rs/N) 

[ 6 1+J t2)] E e2iCrsm/N __ l 2 
= ~ ,  1 - ~  ,=0 , .=-/  / 

=~,~ 1 -  - l )  , (2.30) 

so that (2.29) agrees with the previous expression (2.25) of D. We could of course 
also identify [DI 2 as a grassmannian integral over a complex free fermi field 
obeying the above mentioned boundary conditions. 

Before leaving this section we add a remark concerning the energy momentum 
tensor. Let us apply formula (1.4) to express the result of a small deformation of the 
torus. In particular we can choose a quasi-conformal transformation 8r ~ = 6e~"ro 
with a constant 6t matrix. Writing ~o 1 and w2 in vector (instead of complex) form 
6% = 6e¢o i <T~.)O"Sr ~ = (T~)Se ~ = (T)[6fl 1 - ~e 22 q- i(~812 + 3822)] q- C.C.. On a 

torus (T(z))  is a constant. Therefore we have 

8 In Z = - ~ (T )  [ ~ 1 1  --  (~/722 + i(Se 12 + 8e21)] + C.C.. (2.31) 

This formula applies in the general case; we restrict it here to c = 1 with 

3 l nZ  t - 
81~oll 1 8A &q(q) &q(q) 

I ~ l  2 A ~(q)  n (q)  

t !  ~1 (~1 ~2) '0t(q) } = [~E11--~E 22 "1- i(~e12 _~_ ~E21)] ~ 4 ¢01 + iTr'r ~°l 0~2 q - ~ -  + C.C.. 
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Comparing with (2.31) this yields for the free field Bose case 

'/r w 1 (2 ' r r ]2  r / ' (q)  
= + q , c = 1 (2.32) 

as a generalization of (1.3). The first term is a peculiarity of the case c = 1. The 
second term reads explicitly 

~ ' (q )  [ ~ nq" 
24q--7--= = 1 - 24 2 - - -  [ n~q)  1 1 - q "  

OQ 
1 - 24~_,oa(p)q  p 

= 1 + 6 ~  
1 (sin ~rP~) 2 '  (2.33) 

where ox(p)  is the sum of the divisors of p. 
Therefore one can also write 

~" ~ i  q_~ ~ 1  ' 1 (2.34) 
(T)t°r~s 2A 0q ,,,p (n~% + p ~ 2 )  2 '  

where the last sum is understood as a double limit, summing first symmetrically on 

p then on n. 
With the help of the previous formalism we turn to specific cases. 

3. I s i n g  m o d e l  m = 3,  c = 

At the critical temperature the Ising model reduces to a free massless Majorana 
field theory with a lagrangian 

co= ~(~k 0 + +  ~ O~) (3.1) 

provided one uses anticommuting variables in a grassmannian path integral. The 
partition function is formally the product of pfaffians Pf( 0 )Pf(c~) times a constant, 
i.e. the positive square root (det - A) a/2. On a compact toms care must be taken of 
boundary conditions [14]. The partition function splits into the sum of four distinct 
terms, each one corresponding to a choice of periodic or antiperiodic boundary 
conditions for the field. This looks at first slightly puzzling but has to do with the 
following circumstance. It must be remembered that it is the original Ising spin 
system which is periodic. The Jordan-Wigner transformation needed to change spins 
into fermionic variables singles out the last coupling which closes one of the 
generators of the toms. This has the result of splitting the transfer matrix into two 
distinct blocks corresponding to even or odd boundary conditions for the fermion 
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operators (in hamiltonian language). In a path integral for a torus such a splitting of 
boundary conditions should be applied to both directions since the same hamilto- 
nian is valid in both directions. The required square roots of determinants have just 
been computed as ID0,0l = 0, IO1/2,01, ID0,1/2[ and 1D1/2,1/21 and it is therefore no 
accident that relevant D's  appeared as squares. We write 

= 2,,~-1/24d2 ,, 1/24.4 2 ,.~-1/24d2 
D1/2,0 -t 1/2,0, Do,t/2 = ~/ "0 ,1/2 ,  D1/2,1/2 = t/ '*1/2,1/2, 

dl/2,0=q 1/16 f l  (1 + q " ) : q  ' /16P(q2) 
n=l  e ( q )  ' 

do,l/2~-- 1~ I ( 1 - q " + 1 / 2 )  - p(ql/2) 
n=O P - - ~  ' 

p(q)2 

dl/2,1/2 = H ( 1 4 - q n + 1 / 2 ) =  ,,=0 p ( q 2 ) p ( q l / 2 )  ' 

- 1 / 1 6  d q dx/2,1/2(q) o,1/2(q)dx/2,o(q) = 1, 

(3.2a) 

dtS/2,1/2( q) = 16dlS/2,0(q)+ dg, l/2( q).  

(3.2b) 

The critical partition function of the Ising model is therefore equal, up to an 
overall constant, to the sum 

i.e. 

ID1/2,01 + ID0,1/21 4-ID1/2,1/21, 

= +ldo.x/e(q) +2[d,/2o(q)l 2} (3.3) z1/2 (qO)-l/4a{ldl/2.1/dq)l 2 12 , , 

in agreement with the result of Ferdinand and Fisher [15], Since as q ~ 0 the 
bracket goes to 2, we read from (3.3) that 

1 (3 4) C = 5 ,  

a well known fact. More interestingly as shown by Cardy [5] this should also agree 
with a sum of characters in modulus square. Before we compare with (2.20) it is 
good to notice that for the two generators of the modular group we have the table of 
changes 

IDt/2,ol I/)o,1/21 IO1/2,1/2] 
~" ~ ~- + 1 1D1/2,01 1D1/2,1/21 IOo,1/21 (3.5) 
r ~ - T  1 IDo,1/21 ID1/2,ol 1D1/2,1/21 . 
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Since permutations on three objects are generated by two transpositions the only 
linear modular  invariant is the sum of the three I Dl's. This offers another direct 
justification for (3.3). 

Eq. (3.3) can be rewritten in the form 

Z1/2( q, g / )=  2( qc])- 1/48{ ~+_ 1½( dl/2.1/2(q) ++- do.1/2(q))12+ I dl/2, O(q) 12} 

= + 1 1 1 / 2 , 1 / 2 ( q )  +lX1/2,x/16(q)l 2} (3.6) 2(q ) 1/48{IX1/2.o(q)l 2 12 , 

where we recognize the characters of formula (2.20) for c = ~, namely m = 3. The 
factor 2 in front could be scaled away. 

hll  = 0, related to the identity operator I 

X1/2'°(q)= ½(dt/2'l/2(q)+ d°'l/2(q))= 1{ I~I (1 + o  q,,+1/2)+ I~I(1 - °  q,,+1/2)} 

1 
E { q ((24k+1)2 1) /48  __ q((24k+7) z 1 ) / 4 8 }  - -  1" 

P(q) k q~O ' 

= ± related to the energy operator h2,1 ~, 

X1/2,1/2(q) = ½(da/2,1/2(q)-do.1/2(q)) = ~ l-I(1 +q,,+t/2)_ (1_q,,+1/2) 
o o 

1 p ( q )  E ( q((24k+5)2-1)/48-q ((24k+lt)2 1)/48) _ q l /2 ;  

k q '---~ 0 

h 22 = 1~6, related to the spin operator o 

X1/2,1/16(q) = dt/2,o(q) = q l / 1 6 H ( 1  + q " )  
o 

1 P(q) ~2 { q((24k-2)2-1)/48_ q((24k+lo)~-l)/48} - qt /16.  (3.7) 
k q~0  

These formulas appear in [8] and follow from well known identities on 0 functions. 
As claimed by Cardy, the partition function on a torus exhibits not only the central 
charge (see (1.5)), the dimensions of the (finite) set of conformal primary fields [1], 
or observables but also the number of their "descendants" at a given level n. In 
short it is built on characters X,,h(q)x~,h(q) of the direct product of the two 
commuting Virasoro algebras operating on analytic and antianalytic fields. 
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The relation between fermions and bosons is slightly involved. Namely a naive 
view would be that Z1/2Z 1 is a constant reflecting the usual correspondence used 
for instance as an alternative to replica methods in applications to disordered or 
constrained systems. Aware of the existence of anomalies we want to obtain the 
precise form of this relation in the present case. For this purpose associate to the 
torus ql- with periods oa 1, 602 the two tori T '  with periods 2001 and 602 and T "  with 
periods 601 and 2602 , then from (2) 

f ~ ( q l / 2 )  2 

=/I 
zl( ) 

= ¢2 z l ( v ' )  

/ ] (q2)  2 
+ + 

z , ( r )  
- -  "1- V~ Zl(Ttt ) (3.8a) 

~2(q) 2} 

~(qR)~(ql/2) 

} 
- -  . .{-  Z I ( T ) 2  " 

Hence ZI/2(T)ZI(r)  which tends to one.in the infinite volume limit, differs from 
unity on the torus by an amount dictated by (3.8), which exhibits what might be 
termed an anomaly of naive supersymmetry. Using eq. (2.25) an alternative form of 
(3.8) is 

2~r 
Z1/2(-[)ZI(T) = A1/2 E '  exp(-2~r(~(0)qo(½(k601 +/°~2)))) ,  (3.8b) 

k, l=0,1 

where we recall that the term with k = l = 0 vanishes. 
In the plane the correlation function of the Fermi field ~ is the Cauchy kernel 

1 
qT(~Pl~2 ) = - -  (plane). (3.9) 

z~2 

Under the conformal map on a periodic strip of width L, z ' =  e 2~iz/L, with 
q,( z ) dz 1/2 invariant, one finds 

~r/L 
~r(qqqJ2) NS -- sin(~rz~2/L) (strip), (3.10) 

which obeys antiperiodic boundary conditions across the strip and corresponds to 
the so-called Neveu-Schwarz (NS) boundary conditions. It would also appear 
natural to have another propagator corresponding to periodic (Ramond) boundary 
conditions (but still odd in the interchange 1 ~ 2) namely 

~r/L 
rr(q~l~P2) R - tg(~rz12/L ) (strip). (3.11) 

On a torus, we recall that, in our previous notations 1 (sk, 5l), the first index refers to 
(anti) periodicity in the direction 2 while the second refers to (anti) periodicity in the 
direction 1. We would still like to solve 

c~(~b1+2) = 62(z12). (3.12) 
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If we cut the torus along the generators w, and w 2 and integrate S(z) = @(z)q,(O)) 
(assumed meromorphic in z) along the closed contour ff generated by to I and %, in 
the positive direction, one finds 

i= l fS(z)dZo 

= l[1--(--a) l,o,fo S(zo+t,o,)dt--lll--(--1)'l,O2fo dtS(Zo+.02) (3.13a) 

and we recall that k and l are not both zero (mod 2). One has therefore three 
possibilities which we denote Sk/2,1/2(z ) constructed from ratios of Jacobi 0- 
functions. We use the notations (2.22), 

$1/2,o- F ( z -  ½%) _ y + 1  f i  (1 +yq")(1 + y - l q " )  
F(z) y - 1  , ( 1 - y q " ) ( 1 - y  lq,,) ,  

~o,,/2=e_i~z/,o F(z-½w2) = 1 ~ (X_yq,- l /2)( l_y- 'qn ,/2) 
F(z) y,/e_y-1/2 *"1 -~--yq'q~ y-Xqn) ' 

3 1 / 2 , 1 / 2  = e - i~ ' z /w l  F( z - 1(~ 1 -1"- ~d2) ) 
F(z) 

1 1-~ (1 +yq" '/2)(1 + y  ,q,,-1/2) 
(3.13b) ya/2_y ,/2 111 ( l _ y q ~ ) ( l _ y  lqn) 

For the sake of simplicity we did not factor out the normalization; when z ~ 0 
(y ---, 1) 

(y_1)~1/2,o~O1/2,o=2 = 2  P(q2)2 da/2,o(q) p(q)4 2q -1/8 p(q)2 ' 

1i~ ( 1 -  q"- ' /2 )2  P(q'/2) 2 dg,1/z(q) 
(Y-- 1)8° '1/2-)°° '1/2= l - q "  p--~q)4 - p(q)2 ' 

°l/2"/2= f i [  l +q"-'/2121) p(q)2 d12/2,0(q) (Y-1)ff1/2,1/2 - - ,  - _ , 
1 p(q2)2p(q1/2)2 p(q)2 

(3.14) 

so that 
2 i ~  1 

S k / 2 ,  Z/2 ( Z ) -~- - -  S k / 2 ,  I/2 ( Z ) / O k ~ 2 ,  l /2  ( q ) -- - -  
~1 qTZ 

(3.15) 

In the limit of a vertical periodic strip (q ~ 0), $1/2, 0 approaches (3.10), while So,,/2 
and $x/23/2 tend to (3.11) as they should. The energy operator e is described by ~bq, 
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up to a normalization factor. One could therefore conjecture that the "connected" 
correlation function reads up to a normalization factor 

= ~r2Z~J2 E'IDk/=,,/211Sk/2,,/2(Z12) I = 

= 4~r2)P(q) 14 

Io011 z 

~X/2,X/2(Z12 ) 2 "+ 

dx/2,1/2 
~0,1/2(Z12 ) d O , l ~  2 2 + ½(q~)1/8 ~X/2,0 (212) 2 

dx/2,o 

]dl/2,x/212 + 1d0,1/212 + 2]dx/2,0l 2 

(3.16) 

Each term is the modulus square of an analytic function in contradistinction with 
(2.23). 

It is interesting to compare this with a bosonic expression. From (2.23) 

exp47r{ ~qO(Zx)~(22) ) -- ~(Zx)f/O(22 + I*0X) ) } = 181/2,0(z12) 12 

exp 4~r { (~(zx)~(z2)  ) - (rp(zx)q~ ( z 2 + ½o02) ) } = (qgl)-1/81So,1/z(Zx2) 12 , 

exp 4rr { (q~(Zx) ~0 ( z 2 ) ) - (  ~(Zl) tO (z2 + ½('01 + *02))) } = (qg/)- 1/Slsx/2,1/2(zx2)]z. 

(3.17) 

Hence the conjecture 

e( zl)e (z2)) = exp (4~r (rp( Zx)~(g2) ) ) 

× 
Y'. 'exp(27r ( ~0 (0)q~ (1( k %  + 1.02) ) ) - 4Tr( ~(zx) ep ( z 2 + ½( k*0 1 +/o,)2))) ) 
kl 

~ "  exp( - 2rr(~o(O)cP(½(k*01 + 1.02))) ) 

k,, (3.18) 

In the plane or a periodic strip 

1 
(E(Zl)e(z2) ~ _ (plane), (3.19a) 

Zx2212 

¢r 2 1 

( e( zl)e( z2) ) = ~ sin( ~rz~2/L )sin(rrSx2/L ) (strip). (3.19b) 

One can check that (3.18) agrees with these limits. At half periods it has a very 
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symmetric structure 

with 

C. lt,~vkson, J.-B. Zuber / 2D conformal invariant theories 

U 3 nt- W 3 
/ / x l /  x \  
x~to~t~,o , j /=  ,,(u~w)(u + ~ + w t '  

w 3 + u 3 
/ / x t /  ~\ 
~ o ~ / =  ~(u~w)(~ + ~+ w), 

//3-1-03 
~ ; ' , t i t  
~to~t~t,Ol + , ~ ) ) / =  w I . v w ) I u  + ~ + w)  ' 

(3.20) 

u = e x p ( -  27r(cp(0)~(½~01))), v = exp( - 27r(q~ (0) cp (½¢%))), 

w = e x p ( -  2~r( qo (0)q~ (½(,o I + c%)))) .  

If true (3.18) would express an interesting departure from a naive expectation that 
the energy correlation is given by exp(4~r@(zx)q~(z2))) which has the correct 
limiting behavior but wrong analytic structure. Both functions are also positive 
within the torus. 

Pushing the conjecture further this would suggest for an operator Ah,h(z, 5) with 
vanishing mean value a correlation 

( Ah,h(za) Ah, h (z2))  = exp(8h qr(¢p(za) cp (z2) ) )  

) 

E'exp((8h - 2) ~,( ~(0)¢p(½(k~0, + lo~2))) -Sh~(~(z l )~;(z  2 + 1(k6Ol "['- /~2)))) 
k,I 

2 '  e x p ( -  2~r(cp(0)q0(½(k~% + Ro2)))) 
k,I 

( Ah,h( zl)A~,h( z2) ) 
z12~o lz1214h ' 

1 

( Ah'h(  z1 )Ah 'h (Z2) )  st'~p l( L//T7)sin(  ~zz~JL)[4h" (3.21) 

This would apply to the spin operator (h = ~).  
A possible mean to check the validity of (3.21) would be to study the susceptibil- 

ity as a function of the aspect ratio (q). It would certainly also be interesting to 
obtain the multipoint correlation functions. 

4. M o d u l a r  invar iance  in the  genera l  c a s e  c = 1 - 6 / m ( m  + 1) 

Modular invariance of the partition function on a torus, i.e. its independence with 
respect to the basic periods (,01,~o2), is a key property, and turns out to put 
stringent restrictions on the operator content [5]. 
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We have already dwelt on the modular invariance of Z 1 (eq. (2.7)). It relies on the 
following modular transformations of ~ ( q ) =  ql/24p(q): 

~" ~ "r + 1: r/(e 2i"('+1)) = e2i"/24~l(e2i'~"), 

q" ~ ' r - i :  ~ ( e  -2i~r~'-1) = (~-e ifr/2)l/27](e2i~rr). (4 .1 )  

Similarly, the modular invariance of the Ising partition function Z1/2 is easy to 
check on its expansion (3.8a): the two transformations ~,--,~-+1 and ~ . ~ . - 1  
permute the three terms. In the general case, we proceed to study X,.. hrs which in the 
following we also label X[r.,]. According to (2.20) we have 

P ( q ) X[r,s]( q ) = q-1/4m(m + 1 ) E (  ql2nm(m+ 1)+ r(m+ 1)-sml2 /4m(m+ 1) 
n 

Since 

it follows at once that 

--q[2nm(m+l)+r(m+l)+smle/4m(m+l)). (4.2) 

[r(m + 1) - s m ]  2 -  1 
hr's = 4 m ( m  + 1) ' (4.3a) 

h r _ , - h r ,  s = h  r , s -h~ , s=rS ,  (4.3b) 

X r°2i~('+1) e 2i~h (e2'" ' ) .  (4.4) Jr, s) t~ ] . . . .  X[F,S] 

Eq. (4.3b) also explains why X(r,s] has non-negative integers in its expansion in 
powers of q. To obtain the transformation law under the second generator, T ~ ~--1 
one uses Poisson's formula in the form 

[ 2 n m ( m + l ) + r ( m + l ) - s m ]  2 
Y~exp 2i~'~ 4 m ( m  + 1) 
tl \ 

= ( 2 m ( m  + 1)~-e - i ' / z )  1/2 exp ~- 4 m ( m  + 1) t-i~rp rn 

Combined with (4.1) this gives 

e-2i~rrc/24X[r,s](e2i~rr ) 

s>) 
m + l  

e2i,~, %/24 { -- 2i~r 

[2m(m + a)]l/2P(e-2"~" 1) p~eXp ~- 

p2 - -1  

- -  4 m ( - m + l )  } 

( l (  r 
× exp i~rp m -7 - exp i~rp + - -  . 

m + l  m 
(4.5) 
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Now Xtr, sl(q) defined for r and s integers is invariant under translations (r, s) 
(r + 2kin, s + 2 k ' ( m  + 1)) 

X[r+Zrnk,s+2(m+l)k'] = X[r,s],  k ,  k'  integers, (4.6a) 

XEr,-sl = XI-,,,I = -XI , , , I ,  (4.6b) 

X [ m - t . m + l - s ]  = X[r,s] • (4.6c) 

This implies that Xtr.,l vanishes for r = 0 (rood m) or s = 0 (rood (m + 1)) and that 
it is entirely determined by its l m ( m  - 1) values corresponding to I < s < r < m - 1. 
We split the r.h.s, according to residue classes of p m o d 2 m ( m +  1) with the 
understanding that the last two exponentials in (4.5) can be replaced by sines. 

Only p ' s  which are not multiples of m or (m + 1) need be considered, otherwise 
the r.h.s, of (4.5) vanishes. Under those circumstances one can write [5] p2=  
( 2 n m ( m + l ) + p ( m + l ) - o m )  2 in a unique way, with < l o l < p < m - 1 .  This 
means 

[ 2 
-2i¢¢rc/24 [ 2iwr'~ 2 ~ ( -  1) {'+'){°+") 

e XIr'*lte J'= r e ( m +  1) l<_o<_p<__m-1 

7 7 / )  ,. % - , ~ /  x 

(4.7) 

Eq. (4.4) and (4.7) summarize the behavior of Xt,,,} under the modular group. 
The real symmetric ½m(m - 1) x ½m(m - 1) matrix 

[ 2 ]  1/2 
Ar'*l"t° '°]-2 m ( m +  l)  ( -1) ( '+s) (°+°)s in(~rrO]s in(o- -~"  m i  t m ± l l  (4.8) 

is such that in the range 1 < s  < r < m -  1, 1 _< o < p < m -  1 

At,,,l,lp, olAtr',s'l,[o, ,1 = 3t'.'];Lr',*'l' (4.9) 
l_<o_<p_<m--I 

i.e. it is orthogonal, with square equal to one as it should, given the meaning of (4.7). 
In general 

t r A = ½ ( 1 - c o s ½ ~ r m - s i n ½ ~ r m ) = { ~  i f m ~ 0 , 1 m o d 4  (4.10) 
if m = 2 , 3 m o d 4 '  

and has a set of X+ (X_) eigenvalues +1 ( - 1 )  with 

m = 4p,  4p + 1, 4p + 2, 4p + 3, 

X+ = p ( 4 p -  1), p(4p  + 1), p(4p  + 3) + 1 , ( p  + 1)(4p + 1) + 1, 

X _ = p ( 4 p - 1 ) , p ( 4 p + l ) , p ( 4 p + 3 ) ,  (p  + 1)(4p + 1). (4.11) 
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Eqs. (4.4) and (4.7) imply that the combinat ion 

Z c ( q  ' ~) = (q~/)-,./2,* E Ixt~.sj(q) 12 
l<~s<~r<~m-1 

(4.12) 

is always a modular  invariant. The question is to find out which other similar 

combina t ions  if any are also invariant. Of course they should qualify as real 

characters  of  the direct product  of  Virasoro algebras, i.e. have non-negative integral 

coefficients in terms of XIr, sl(q)xtr,.sq(gl), and be such that if [r, s] 4: [r ' ,  s ' ]  the 

cor respond ing  dimensions differ by  an integer, so that the associated operators have 

integer spin. In  fact this is equivalent to the invariance under the t ransformat ion 

(4.4). In  summary,  one looks for combinat ions  F, Qir. sl.lr, s,lXtr,~l(q)xIr,~,l(q) , 
where Q is symmetric,  integer-valued (up to an overall positive scale) invariant 

under  (4.4) and (4.7) and the summat ion  implies that the pair [r, s] is in the range 

1 ~< s ~ r ~ m -  1. By integral Q ' s  we mean non-negative integers. Non-vanishing 

off -d iagonal  elements imply that htr, sl=hEr,~,lmodl. This does not  occur for 

m = 3, 4 bu t  does occur for m = 5 (see below). 

In  general it is possible to enumerate  all possible circumstances when h [ r , s  ] - 

her, ~, l is an  integer. We assume 1 ~< s ~< r ~< m - 1, 1 ~< s '  ~< r '  ~< m - 1 and look for 

h[r , s  ] - h[r ,  s, 1 = k an integer, i.e. 

4km(m + 1) = {( r  + r')(m + 1) - (s + s')m } { ( r -  r ')(m + 1) - ( s -  s ')m }, 

which implies 

r 2 = r ' 2 m o d  m,  

s 2 = s ' Z m o d ( m  + 1).  

A m o n g  the possible solutions, we have either (i) r '  = m - r and s '  = s, or (ii) r '  = r 

and s '  = m + 1 - s. The combinat ion r '  = m - r, s '  = m + 1 - s leads to identical 
dimensions.  In  both  cases we have 

hLr, s l-hEm_r,s l=hEr., l-hLr,,.+l_sl= ¼(m+ l - 2 s ) ( 2 r - m ) .  (4.13) 

Since both  factors cannot  be even, one of  them is a multiple of  4. Hence the various 
possibilities for the first case: 

m-= 0(4) ,  l ~s<~reven < ½rn, r ' = m - r ,  s ' = s ,  

1 Fp S t , m--- 1(4) ,  1 ~< Sod d ~< r < 7rn, = m - -  r ,  = s 

m-= 2(4) ,  l<~s<~rodd<½m, r ' = m - - r ,  s ' = s ,  

m = 3(4) ,  1 ~< Seven ~< r < 21m, r ' =  m - -  r ,  s '  = s ,  (nAn) 

and the second case is obtained by changing ( r ' ,  s ' )  into (m - r ' ,  m + 1 - s ' ) .  This 
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has a typical  periodicity 4, with the first possibility of integral difference of 
d imens ions  occurr ing for m = 5 as noticed already. 

Ins tead  of  working with r and s restricted by 1 ~< s ~ r ~< m - 1 it will be more  

convenient  to consider the full range 1 ~< r ~< m - 1, 1 ~< s ~< m with the points  [r, s] 
and  [m - r, m + 1 - s] identified. With this convent ion we need not distinguish the 

two t rans format ions  [r, s] ~ [m - r, s] and [r, s] ~ [r, m + 1 - s]. We shall there- 
fore use the symbol  

[r-5] 
for any  one of those. Inspired by (4.14) it is suggested to study the action of the 

matr ix  A on the combinat ions  

e 2iwI-c/24{ [ 2iw'rX ~ 2iw'r 
Xf~,slt e )+-  X[r, sl (e )} = '/'(±)'f[r,s] ( r )  " (4.15) 

A case-by-case  study shows that  according to the residue of m modulo  4 one 
finds two complemen ta ry  or thogonal  subspaces V~ and V 2 invariant  up to a p h a s e  

under  modu la r  t ransformations,  i.e. under  both (4.4) and (4.7). They are generated 

by  
m - 0(4)  

m = 1(4)  

'L(+) ( ) [r~ . . . . .  ~ ]} ,  Vl :  { +};,!en,S' ' ~f'[road,S ] ' +[road,S] } '  V2: ( + ( - )  

( - )  
V1 : { + [ r .  soad] A( + ) t~.(-) \ ,L( + ) \ vl ....... 1, V[r,,~ve°lj I/2: { , V Jr, soadl j , 

rn - 2 (4 )  

m = 3(4)  

V]: {,t,(-) ,,r,(+) +(-) } "if[road,S] "ff [ re . . . .  S]' [r e . . . .  s] , 
f ,t,(+) v~: [ Vlroaa,s] J , 

( - )  
r l  : f ,L( +,  ,L( + ' ,L(- )  \ g2:  { + [  . . . . . .  ]} (4.16) ~ W[r,scve,]' W [r, soaa]' V[r .soaal j  , 

The  split t ings r or s even or odd are compat ib le  with the identification [r, s] - 
[m - r, m + 1 - s], according to whether  m is even (split the r ' s )  or m is odd  (split 

the s ' s ) .  The  combinat ions  occurring in +-+ are such that  the differences of 

h ~  is an integer according to (4.14). Moreover  the +( ) d imens ions  h[r .s  1 -  [r,sl 

combina t ions  involve minus signs which must  be compensa ted  for a physical  
par t i t ion  function.  This means that  besides Z c given by  (4.12) valid for any m >/2, 
we have for  m > 4, m = 1 , 2 m o d 4 ,  the following new invariant  qualifying as a 
par t i t ion  function,  and generalizing Cardy ' s  result for  m = 5, i.e. essentially the 
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hermitian form restricted to V 2. Specifically 
m = 4 p +  l 

Z~+)(q, ~) = (q~)-c/24{ E 
l <~r<~2p 

1 ~soao~<2 p-  1 

I Xtr,,l (q)  + X[4p+ 1-r,s](q) [2 

-t-2 2p+l<~r~<4pE IXtr,2,+!l(q)12), 
m=4p+ 2 

Z(+)(q, ~) = (q~)-c/24 E 
1 ~rodd-N< 2p-- 1 

l~<s~<2p+l 

[Xtr,sl(q) + g[4p+2 r , , j (q ) [  2 

603 

+2  • ]XE2p+l,,l(q)[ 2 , (4.17) 
l~<s~<2p+l 

For m = 5, c = ~ (3-state Potts model), and for m = 6, c = 6 (tricritical 3-state Potts 
model), one finds 

(qgl)l/3°Z(4,~d(q, O) = [Xtx,q(q) + X[4,1](q)12 + IX[2,t](q) -t- X[a,l l(q)12 

+ 21xt3,~j(q) [' + 2]X14,3](q) [ 2 

= I X4/s,o(q) + X4/s.3 (q)12+ I X4/s,2/5 (q) + Xa/5,v/s(q)12 

+ 21x4/s,1/15(q)12+ 2[Xa/5,2/3(q)l 2 (4.18) 
and 

(q#)1/28 Z(617)( q ' El ) 

= I + X[5,,I (q)12+ [Xts,5}(q) + X{5,=l (q)12 

+ IXts,4j(q)+ xts,31(q) I =+ 2lxt3.,~(q) I" + 21xt~,21(q) I" + 2lxt~,~l(q) I" 

= I X6/7,0(q) + X6/7,5 (q)  12+ IX6/7,x/7 + X6/7,z2/v(q) 12 

+ I x6/7,5/7(q) + X6/7,x2/v(q)[ 2+ 21x6/7.4/3(q)l 2 

+ 21x6/7,10/2~(q)12+ 21x6/7,1/zx(q)12, (4.19) 
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where use has been made of the two alternative notations X[r,s] and Xc, h. These 
expressions involve primary operators Ah, z, which are either scalar (real) (e.g. 

Ao, o, A2/5,2/5 .. . .  for c = 4/5),  or "chiral" (e.g. Ao,3, A3,0, A2/5,7/5,... ). The "spins" 
of the latter are + 3, + 1 for c = 4, + 5, + 3, + 1 for c = 6. For the general case, we 

see from eq. (4.13) that the spin o = h -  h may take the following (odd or even) 
values: 

i f m = 4 p + l ,  o =  + _ ( p + l - t ) ( m - 2 r ) ,  l<~t<~p, 

if m = 4 p + 2 ,  o =  + _ ( p + l ) ( m + l - 2 s ) ,  l<~t<~p, 

l <~ r <~ 2 p,  

l ~ < s ~ < 2 p + l  

It would seem that for m - 0, 3 mod 4, m > 4, the traces restricted to V 1 would also 
fulfill the requirements of invariance and non-negative integer coefficients, but in 
contradistinction to the previous solutions (4.13) and (4.20) they involve a coeffi- 

cient 2 in front of ]Xix,ll(q)l 2, and seem to imply a degenerate ground state. For 
this reason they seem questionable. These combinations read 

m = 4p 

Z~c+)(q, ~/) = (q~/)-c/24( 2 l~<s<~r~d<~4p-XE [X[r,sl(q) 12 

+ E [Xlr, sl(q) + Xl4p-r, s l (q ) l  2 
2~< re~. ~ 2 p 1 

l <~s<~2p 

+2~s.<ZpE [xt=,,sl(q)[=}, 
m = 4 p +  3 

Z~+)(q, ~/) = (qq)-'/24{ 2 l~<se~d<~r<~4p+2E IXIr,,l(q) 12 

+ E [X[r,s](q)+X[4p+3 r, sl(q)] 2 
l~<r~<2p+l 
2 ~< Seven ~ 2p 

+ 2  l~<r~2p+lE [Xtr,2p+2l(q)12} • (4.20) 

While our analysis cannot claim to be exhaustive and does not bar a possible further 
splitting of the solutions, it shows at least the existence of two sequences of 
candidates to physical unitary statistical models. One which we might call the main 
sequence is defined for all m >/3 and corresponds to the partition function Z c given 
by eq. (4.12) with only real (non-chiral) primary operators. The complementary 
sequence is defined for m >/5, m = 1,2 modulo 4, with a partition function Z~ +~ 
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given by (4.17) and involve pairs of chiral operators. The cases m = 0, 3 modulo 4 of 
the complementary sequence look doubtful*. The main sequence starts with the 
Ising model (m = 3), the complementary one with the three-state Potts model 
(m = 5). While no chiral operators appear as primary in the main sequence it is 
nevertheless true that they underlie the construction as in the case of free fermions 
for the Ising model. Similarly, the fact that some operators do not appear in the 
parti t ion function of the models in the complementary sequence does not mean that 
they do not play any role in the physics of those models. For example, Nienhuis and 
Knops [16] have constructed in the Potts models some of the operators that do not 
contribute to (4.18) or (4.19). 

5. Free field realization 

From the preceding sections it is suggested that the combinations ~+) +iT, sl(q) of 
characters defined in (4.15) are natural candidates for an expression in terms of free 
field determinants Dk/u,i/N(q). 

We recall from (2.29) that I Dk/N,//N(q)] 2 stands for the functional determinant 
of - A  with corresponding boundary conditions 

Dk/N, / /N(q)=q -x'/N I--I (]--e2i~k/Nq"+l/N)(l--e-2i~k/Nqn+(U-I)/N), (5.1) 
n=O 

where we have introduced the notation (for fixed N)  

~,=~2( 61(N-l)N2 1) . (5.2) 

We set 

D . t ( q ; N ) =  

and for N even 

I-[ Dk/N.,/u(q)=q-X'fi (1--qU"+Z)(1--q N"+N-t) 
O~<k~N-1 n = 0  

(5.3a) 

D+.,(q; N)  = 17 Dk/u,t/N(q) 
0 ~< keven ~< N 2 

= q  X,/2 f i  (I_qN./2+Z/2)(I_qN./2+(N-,)/2), 
n = 0  

(5.3b) 

D_,,(q; N)  = I-[ Dk/u,,/lv(q) 
O~k~d <~N-1 

= q-X~/z f i  (1 + qNn/2+l/2)(l + qNn/2+(N 1)/2). 
n~O 

(5.3c) 

*Note added in proof: For m = 0,3 mod4, the trace restricted to V 2 may be subtracted from (4.12), 
yielding a physically sensible modular invariant. This and still other invariants will be discussed 
elsewhere [26]. 



606 C. ltzvkson, J.-B. Zuber / 2D conformal invariant theories 

For a given m and c = 1 - 6/m(m + 1), we have the following factorized forms for 
t~( -+ ): 

vt,,s]'r"+-) (q)= q-~/Z4(X[r,~,l(q ) --+ Xl,~-,,sl(q)} 

e(q)  ,=0 

X (1 + q ( n + l / 2 , m ( m + l ) / 2 + r ( m + l ) / 2 - s m / 2 )  -- qr'(s ~ --S)}.  (5.4) 

Using various arithmetic identities (see appendix A) it is readily checked that the 
following results hold. First concentrate on the complementary series. Assume 
according to (5.17) that if 

m ~- 0(4), r is even, 

m--  1(4), s is odd,  

m ~ 2(4), r is odd,  

m ~ 3(4), s is even. (5.5) 

Then the combinations 

are both even, and 

k= ±m(m+ l ) - r ( m +  l) + sm 2 

k'= ½m(m + 1) - r(m + 1) - sin, (5.6) 

~b}+), l (q)=D"k/2(q ' lm(m+l))+D"-k ' /z(q '½m(m+l))  (5.7) 

D.,,(q,½rn(rn+ l)) 
~ /=1 

where D. t is defined in (5.3a). Inserting this in formulas (4.20) one obtains a free 
field realization of the partition function in the complementary sequence. Notice 
also that in this complementary sequence, the integer N = ½m(m + 1) takes only odd 
values. 

In the case of the main sequence we note that N = m(m + 1) is even, hence (5.3b) 
and (5.3c) make sense. Then with k, k '  still given by (5.6), we find 

(+)  
~ [ " " l ( q ) = { D ± ' k ( q ; m ( m + l ) ) - D + - ' k ' ( q ; m ( m + l ) ) }  m ( m +  1) 

X H 1/2 D¢/m(m+l).o(q ) . (5.8) 
2 <~peven<-Nm(rn+ l) 2 
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The infinite product representations of characters provided by eqs. (5.4), (5.7), (5.8) 
generalize expressions obtained by Rocha-Caridi [8] for m = 3,4. For m = 3, 
eq. (5.8) seems to imply boundary conditions modulo N = m(m + 1)= 12. Using 
arithmetic identities, it is easy to recast it in the forms displayed in (3.7). More 
generally, we have found a host of such alternative expressions of the X'S as sums of 
infinite products. In the absence of a good interpretation of these formulae, we 
refrain from presenting them. 

It seems worth writing explicitly these expressions in the cases m = 4, 5, 6. 
Various authors have suggested that the tricritical Ising model should be de- 

scribed by a value c = 7 of the central charge, i.e. m = 4 in the parametrization 
(2.20). In this case, the formulae (5.5) above seem to imply determinants of free 
fields with boundary conditions twisted by multiples of 2~r/m(m + 1) = 207r. It is 
possible to rewrite them only in terms of twists of ~ r .  Writing for compactness 
D+. / for D+,z (q, 10) we have 

/ 3 1 / 2  
- 7/240 [ ,,~ ~ 1 / 2 , 1 / 2  

t/ ~.A. 7/10.0 -t- X7/10,3/2)  -- D , 1D+~4  ' 

D1/2 
0,1 /2  q- 7/240 [ -v 

\ A - V / 1 0 , 0  - -  X7/lO,3/2) D+.ID+,4 

D1/2  
1 /2 ,1 /2  

q-V/Z4°(X7/1o,1/aO + X7/ lO,3/5)  - D+.2 D ,3 ' 

D1/2  
0, 1/2 

q-7/240(X7/ lO.1 / lO -- X7/10,3/5)  - 0 + , 2 D + , 3  , 

O 1 / 2  
1/2,0 

q 7/24°X7/lO,7/16 -- 1~-D+,4D_4' 

D1/2  
1/2.0 (5.9) 

q- 7/24°X 7/10, 3/80 - -  v~-D +, 2 D_,2 ' 

The partition function of the tricritical Ising model is therefore, up to an overall 
normalization 

Z7/ao = 2(qg/) 7/24°{Ix7/m,o12+ 1x7/10,3/212+ [Xv/m,1/1012 

q'- 1X7/10,3/5121X7/10,7/1612 -[- 1X7/10,3/8012 } 

I01/2,1/21 IO0,1/21 ID1/2,1/21 
- + + 

10_ 1D+,412 1D+,1D+,412 1D+,20_ 312 

1D0,1/21 ID1/2,0l ID1/2,0l + + + 
1D+,2D+,312 [D+,4D ,412 [D+,2D_ 212 " 

(5.10) 
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The free field realization of this model is quite puzzling. Massless Bose and Fermi 
fields, which contribute respectively to the denominators and numerators in (5.10), 
are "coupled" by boundary conditions modulo 10, a fact which would require some 
physical explanation, and which might throw some light on the hidden supersymme- 
try of the model [17]. One also notices some relationship with the case c = +, (3.3) 
where each term has been split into two contributions. 

Such a relationship does not seem to appear between the expressions relative to 
the critical (m = 5, c = _4)5 and tricritical (m = 6, c = 6) Potts model. Their respective 
partition functions read: 

Z4/5 = {I D.,7(q, 15) - D.,2 ( q, 15)12 + I D.,,(q, 15) + D.,1 (q, 15)12 

+21D. 3(q,15) 12 + 2[D. 6(q,15) I 2} 

14 

× VI ID.S?(q,15) 1, (5.11) 
/ = l  

Z6/v = { I D.,lo(q,21) - D.,4 (q,21) 12+ [D. 8 (q,21) - D.,1 (q,21) 12 

+ ID. 5(q,21) + D. 2(q,21)12 + 21D.,3(q,21)12 + 21D. 6(q,21)12 

20 

+ 21D.,9(q,21 ) z 1 l} t=I~Ill D-7, (q, 21) I • (5.12) 

Here also, a physical interpretation of these expressions and a clear understanding 
of their connection with the symmetries of the model would be most desirable. One 
notices that the contributions of chiral operators in (5.11), (5.12) involves linear 
combinations of D.,~ where l takes all the integral values between 1 and 5[5m(m~ 1 + 
1 )  - 1], that are multiples neither of m nor of ~(m + 1) if m = 4p + 1 (resp. of ½m 
and m + 1 if m = 4p + 2). Scalar operators (that come with a factor 2) contribute 
D . / w i t h  l multiples of ½(m + 1) (resp. of ½m). 

Besides their series expansion (2.2a), and product expressions (5.4), (5.7), (5.8), 
the characters Xc.h still have another representation, in terms of appropriate 
correlation functions of the gaussian model. This has already been exemplified on 
the Ising model in eq. (3.8b). 
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6 .  S u m m a r y  a n d  c o n j e c t u r e s  - r e m a r k s  o n  t h e  n o n - u n i t a r i t y  c a s e  

In this paper, we have seen that the study of a conformal theory in a finite 
geometry, in particular on a toms, may be extremely fruitful in elucidating the 
content of that theory. 

On the one hand, we have shown that all partition functions of 2-dimensional 
unitary conformal theories with c < may be expressed in terms of free field modes 
with appropriate boundary conditions. For correlation functions, the construction is 
quite involved and requires a more detailed analysis. 

On the other hand, modular invariance of the partition function has proved to be 
a very stringent constraint [5]. This has led us to two series of unitary models with 
c < 1: the principal one, involving all the scalar primary operators, starts with the 
Ising model: the complementary series involves some chiral primary operators, and 
starts with the 3-state Potts model. One may wonder about the nature of these two 
series of conformal models. There exist speculations that some "continuations" of 
O(n) invariant models (1 ~< n < 2) or of q-state critical (or multicritical) Potts 
models (2 ~< q ~< 4) such that n = 2cos (Tr /m)  or q = 4cosZ(~r/(rn + 1)) (resp. 
4cosZ(~/m))  have some relation with conformal theories at c = 1 -  6 / m ( m  + 1). 
These models have already been discussed by a number of authors [3,18]: in 
particular, Dotsenko and Fateev have proposed to identify the thermal and mag- 
netic operators of the Potts model (m odd) with A[,+l,ll, n = 1 , 2  . . . . .  and 

A[(m_l)/2_n,(m+l)/2], n = O, 1 ,2 , . . . .  
Similarly, Gehlen, Rittenberg and Ruegg suggest that the energy and order 

operators of the tricritical Potts model (m even) are A1, 2, and Am/2, m/z respec- 
tively. As for the principal series we also recall that Huse [19] has proposed to 
interpret the multicritical point of the RSOS model of Andrews, Baxter and 
Forrester [20] as a realization of the generic conformal model. Their magnetic 
exponents are h tl, 11, h [2,2] . . . .  , h t,,- ~, m- 11' with even and odd labels and therefore 
cannot originate from the complementary series. 

The expressions (5.1)-(5.5) of the unitary characters of the Virasoro algebra entail 
the following formula for the conformal weight h[r,s]: 

N 2 - 4  
2hEr sl = - ! .y  + _ _  ( 6 . 1 )  

, ~ k 8 N  ' 

1 r ( m  + 1) + s m  and where N =  m(m + l), k = 2 N -  

k ( N - k )  
"Yk N (6.2) 
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This expression is readily checked against the Kac formula (2.20). We find it 
intriguing and suggestive in view of the interpretation of ~k as the square length of 
the k th fundamental weight of SU(N).  This might suggest that the corresponding 
representation can be constructed from exponentials of scalar products of free fields 
with weights of SU(N). Such realizations are known to exist for some represen- 
tations of the Virasoro algebra [21], but not in the unitary case for m >1 5, to the best 
of our knowledge. 

One crucial point missing in all this discussion is the relation between the discrete 
group of symmetries broken at the phase transition and the structure of the critical 
models. 

A further direction of study, not unrelated to string theory, is the study of free 
fields on compact riemannian 2-dimensional manifolds of higher genus. 

Finally, it would be interesting and physically important to extend these results to 
other cases: unitary representations with c > 1, superconformal models. . .  

We want to finish this paper with a short discussion of the c < 1 non-unitary 
representations, where new difficulties arise. Belavin, Polyakov and Zamolodchikov 
[1] have shown that there exist minimal degenerate representations of the Virasoro 
algebra admitting a finite number of primary conformal operators Atr ,  s ] (see 
appendix B for a brief summary). 

An important case discussed by Cardy [22] pertains to the Lee-Yang edge 
singularity or scalar field theory with an (imaginary) cubic coupling. This is the only 
case with a unique scalar operator ~ beside the identity d. The dimensions are 
h ,  = - ~, h 1 --- 0 and the central charge is c = - z~, Following the lines of sect. 4, 
one may write expressions for the corresponding characters X and study their 
modular transformations. We relegate all general formulae to appendix B and only 
quote the result for the Lee-Yang case. The only modular invariant partition 

function involving X- 22/5.0 and X- 22/5, - 1/5 is 

- 1 1 / 6 0  2 
Z-22/5 = (qq) {IX-22/5,01 -1- IX 22/5, 1/512} " (6.3) 

Since c is negative, the exponent of the prefactor is positive. On the other hand, 
due to the negative dimensions h = h = - 1 /5  of the field ~, the leading term in the 
bracket for small q is (q~) 1/s. Therefore Z_22/5(q, q) - q~o(qq) 1/60 and this is 
different from (q~/)-c/24 as claimed in the introduction. This is clearly due to fields 
with negative dimensions (hence growing correlations at large distances), a fact 
which explains why the derivation of the "Casimir effect" on strips is not valid, 
since one should apply the same reasoning to the state with the lowest negative 
dimension h 0. This has the effect of shifting the "effective" central charge to 

c' = c - 24h 0 [24]. 
More generally, even with 0 < c < 1, a non-unitary degenerate model of the type 

discussed in appendix B always has fields with negative dimensions, and the 
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partition function no longer behaves as (q~)-c/24. This looks rather puzzling in view 
of the numerical experiments which tested this leading behavior [6, 23]. We can see 
two possible ways out of this puzzle, which might be realized in different situations: 

either negative dimension fields effectively contribute to the partition function 
and the small q behavior of Z is no longer given by (q~)-c/24, but by (qq)-C'/24, 

or a modular invariant partition function may be constructed in which only fields 
of non-negative dimension contribute; this is analogous to the situation discussed 
above in sect. 4. In the case c = - ~ ,  this cannot occur if only the minimal set of 

representations h = 0, - ~ is used. It seems plausible that the introduction of higher 
representations will force one to have an infinite number of fields. This looks much 
more difficult than the situation analyzed in this paper, and we hope to return to 
this question [24]. 

Appendix A 
We gather here a few useful formulae and arithmetic identities. Here q denotes a 

complex number satisfying I q l < 1: 
Euler identity 

(1 - q2"-1)(1 + q") = 1, (A.1) 
n = l  

Jacobi triple product identity 

(9(y,q)- ~ Ykq k2= [I(1-q2")( l+yq2"-')( I+y lq2,,-1), (A.2) 
k =  o~ n ~ l  

where y is an arbitrary complex number. 
Euler's identity (A.1) is easily proved; for a physicist's proof of (A.2), see [25]. A 

famous particular case of (A.2) is Euler pentagonal identity 

(-1)kq Ok+l)k/2= f l  ( l -q")=P(q) .  
k ~  - o o  n = l  

(A.3) 

In this article, use is made of (A.2) in the form 

( + l)kq(Nk2+rk)/2= f i  (l__q("+l)N)( 1 +__ qnN+(N-r)/2)( 1 _[_ qnN+(N+r)/2). 
k =  - o o  n = 0  

(A.4) 
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Finally, if 60 denotes the Nth root of 1, ~0 = exp(2cri/N), Gauss' sum is 

l N - 1  

Y'~ ~a"~ = ½(1 + i1(1 + ( -  l l N ) .  
n=O 

(A.5) 

Appendix B 

According to BPZ [1], whenever p and p' are coprimes, there exist minimal 
degenerate representations of the Virasoro algebra, with a central charge 

6(p _p,)2 
/ c = 1 (B.1) pp' 

and the dimensions of primary operators are, assuming p > p' 

1 
h,= { ( rp - sp ' )Z - (p -p ' )  z} 

4pp' 

= h p ' - r , p  s ,  r, s positive integers. (B.2) 

BPZ observe that among this infinite set of primary operators, it is consistent to 
restrict one self to the finite set labelled by 

l ~ r ~ p ' - l ,  l ~ s ~ p - 1  (B.3) 

(whence the denomination "minimal"). The unitary c < 1 case corresponds to 
p '  = m, p = m + 1. From the analysis of the embeddings of Verma modules [7, 8], 
the corresponding character may be derived and reads, for (r, s) in the rectangle 
(B.3) 

Xt,,sl(q) = - -  

This satisfies 

"(q) 

XEr, J(q) =Xrp . . . .  (B.5a) 

(B.5b) 

(B.5c) 
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Caution! As the reflections or translations of (r,  s) implied by (B.5b, c) take them 

out of the domain (B.3), these relations must be understood as satisfied by the 
continuation of Xir.sj as a function of r and s. Expressions for the characters X 
beyond the domain (B.3) will be given below, see (B.16). 

Modular  transformations of the X's are derived as in sect. 4. Since hr. s - hr. ~ = rs 
is an integer, 

XEr,sl(e2"~q ) = eZ"h"Xfr ,  sl( q ) . (B.6) 

The transformation under q = e 2i~ ~ ~ = e - 2 i ' ' - I  is 

( 2 n p p ' + r p - s p ' )  z 
~ e x p  2i7r~ 
,1 ~ 4 p p '  

( = ( 2 p p ' z e - i ' ~ / 2 )  -1/2 " = 1 ~  exp - - - - ~ .  4 p p '  +i~rn P'  P . (B.7) 

Combined with (4.1), with c given by (1), q = e 2i~, ~ = e -2 i~  1 

q-C/24X[r . s] (q  ) = 2 o c,. ( .rtsin( ) ~ P ( O )  n=E-o~ O(nz (P-P')2'/4Pp'sin ¢r7] k 7]" 

Since (p ,  p ' )  are coprimes, integers a and b exist such that 

ap - b p ' =  1 (B.8) 

and the pair  (a,  b) can be replaced by (a  + kp' ,  b + k p )  and chosen so as to satisfy 

1 < ~ a < ~ p ' - 1 ,  1 < ~ b < ~ p - 1 .  In the r.h.s, one can sum over integers n which are 
neither multiples of p nor of p ' .  This means that 

n = p + a p ' ,  l ~ p ~ p ' - I  

= o + t i p ,  1 ~< o ~< p - 1, (B.9) 

hence n can be uniquely written for a given choice (a ,  b) as 

n = a p p  - b o p '  + k p p ' ,  1 <~ p <~ p '  - 1 

1 ~< o ~ < p -  1. (B.10) 

Inserting this in eq. (B.8), distinguishing even and odd k, and noticing that not both 
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a and b may be even yields 

7, c/24~ q-C/a4XI~,sl(q) = ~-" Atr, sl, t~,~lu ,tt~,~l(0), (B.11) 
l~<?~<p'-I 
l~<g~<p-1 

gp' < ?p 

where 

8 1 (r+s)(~+e)sin ~rrF -p ' )  (B.12) At~,sl,[~,~] = ~ p ~  ( - ) ( - -~) (P-P ' ) s in (~-~) (P  , 

which agrees with (4.8) in the case (p, p ')  = (m + 1, m). 
The 1 v(p - 1)(p' - 1) × ½(p - 1 ) ( p ' -  1) real symmetric matrix A is orthogonal. 

Hence, the expression 

Z= ( qq)-,./24 y, ixt,,sll 2, 
l <~r<~p'-I 
l<~s<~p-1 

sp' <~ rp 

(B.13) 

where all the scalar primary operators of the minimal set contribute, is always a 
modular invariant, therefore a candidate for a partition function on a torus. In the 
Lee-Yang case, p = 5, p '  = 2, c = - ~ ,  eqs. (B.11), (B.12) boil down to 

--c/24{ X[1,1](q) _ ~-c/24( - s l  

q / Xi1,21(q) ) - s2 sl Xtl,2l(q) ' 

sk = sin27rk, sZ = ~(5 _+ ¢3-), 

and it is easy to see that 

(B.14) 

z_22/5(q,q)=(qq)n/6°(Ix~1,1j(q)12+lxi1,21(q)] z) (B.15) 

is the only invariant. 
In general, among the dimensions given by (B.2), (B.3), some are negative (for 

example, take r = a, s = b from eq. (B.8)) and their contribution dominates the 
small q behavior of (B.13). In a way similar to the method of sect. 4, one may try to 
construct other modular invariants than (B.13). This is possible in particular 
whenever p and p'  are of opposite parities (and larger than 2), but it seems 
impossible in this way to get rid of all negative dimension operators. As discussed 
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at  the  end of  sect. 6, this suggests that  opera to rs  outs ide  the min ima l  set m a y  be 

coupled .  W e  end up with a list of  the cor respond ing  characters .  

1 Z (q((2kpp'+PP-°P')2-(P-P')2)/4pp'--(O ~---~ - - 0 ) ) ,  
XEo+2,p',ol(q) = p ( q )  k ~ [ - , , , - 1 ]  

X[o+(2n+a)p',a](q) 

1 
-- E (q(((2k+X)pp'+oP-°P')2-(p-p')2'/4pp'-- (0~---~ - - 0 ) ) ,  

P ( q )  ,~'~[-,, 1 ,n- l ]  

Xt(Zn+l)p' o,ol(q) 

_ 1 ~ (q(((2k+l)pp,+,p+op,)~_(p_p,)2)/4pp,(o~..~_O)) 
P ( q )  kf~[-n,n-X] 

X[2(n+l)p'-o,a](q) 

1 
- - -  ~_~ 

e ( q )  k ~ [ - ~ - x , ~ - l ]  

qf(2(k+ 1)pp'+ pp+op')2-(p-p')Z)/4pp ' _ ( 0 ~ -- 0 )) 
w 

(B.16) 

In  al l  these expressions,  1 ~< p ~<p' - 1, 1 ~< o ~<p - 1. The  excluded interval  in the 

s u m m a t i o n  over  the integer n makes  the s tudy of the modu la r  t r ans format ions  of  

these  quant i t i es  more  compl ica ted .  

In  the  course  of  this work  we have benef i ted  f rom interes t ing discussions with 

J .M.  Luck,  Th. Nieuwenhuizen,  and  H. Saleur. 
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