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Abstract. Integration over Gaussian matrix ensembles was used to obtain the
virtual Euler characteristics of mapping class groups. We present some simplifica-
tions in the combinatorial part of the calculation.

1. Introduction

In a beautiful work, Harer and Zagier [1] obtained the (virtual) Euler character-
istics of the mapping class (or modular) group of punctured orientable compact
Riemann surfaces of genus g in two steps. The first of topological nature is the
reduction to a purely combinatorial problem. The second one is the solution of
this combinatorial problem using a variety of techniques, including at some stage
an integration over a Gaussian ensemble of random matrices. This point was
further elaborated by Penner [2] who used a dual version of this integration.
Penner made contact with physicists' work initiated by 't Hooft [3] and further
developed in [4-7] on the topological interpretation of the large JV expansion of
(field theoretic) models. In this note we shall not attempt to describe the
topological background, referring the reader to the expositions of the previously
mentioned authors [1,2] as well as the review by Ivanov [8]. Rather we would like
to show that the combinatorial calculations in both references [1] and [2] can be
substantially reduced if one appeals to fairly standard tools. We shall present three
elementary calculations. The first is purely group theoretical, and relies on the
Frobenius duality formula between the linear and symmetric groups. In essence, it
had already been sketched in the last appendix of [6] and was based on a
suggestion of J.-M. Drouffe. Parenthetically, we obtain a strikingly simple
expression for the average of an irreducible polynomial character over the
Gaussian Hermitian ensemble [formula (2.13) below], which awaits presumably
adequate generalizations.

A second calculation is even simpler and only requires an elementary
knowledge of the harmonic oscillator. It is candidate for generalizations based on
an interpretation in terms of free fermions, too.
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For completeness, we also review the combinatorial part of Penner's work
showing that there is in fact no real need to introduce orthogonal polynomials [6]
to obtain the required expressions in a fairly straightforward way.

2. Group-Theoretic Method

We are interested in averages over a Gaussian ensemble of hermitian NxN
matrices M of monomials of degree 2w,

(2.2)

dM= Π dMti Π d(ReMy)d(ImMy), (2.3)
ίN J

ίχ(M) = ( trM) V l . . . (trM p)^ ... , (2.4)

where ΣJv J =2n, and the multi-index v denotes the partition of 2n: v = [ l V l . . .
(2nΓ«].

The symmetric group S2n of permutation of In objects \ îll play a central role in
our discussion. Its classes are in one-to-one correspondence with partitions
v = [ 1 V l . . . (2n)V2n] which allows an abusive identification so that we sometimes use
the same notation. To refer to a class of an element σ in S2n we write [σ] instead of
the heavier notation v(σ). The number of elements in class v reads

(2 5)

The irreducible characters χγ of S2n are labelled by Young tableaux Y.
The "propagator" which follows from (2.2) is simply

{MijMkl) = δilδjk (2.6)

and may be represented as a double line with opposite orientations (Fig. 1). The
quantity <ίj,> is a sum of products of connected contributions (labelled by the
index a) arising from all possible Wick contractions between the "vertices"
(tr Mm)V m. These ΣVa=v=Σvj vertices and £ La = L = \ X pj = n lines thus build
up a set of connected orientable surfaces with F=JjFa faces (each connected
component has a genus ga such that 2 — 2ga =Va — La + Fa\ which contributes NF

to <ί¥>. An alternative procedure to sum all these contributions consists in
labelling each double line incident on a vertex by an integer running between 1 and
In. The connectivity of the lines at the vertices then defines a fixed permutation σ:

Fig. 1. The double line representation of the propagator and of the vertex trM 3
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Fig.2. A typical contribution to <trM 5 trM 2 trM>; σ = (23451687) e [1,2,5] and

τ = (67583124)e[24], hence στe[8]

in the example of Fig. 2, σ maps (12345678) onto (23451687); σ belongs to the class
[σ] = v = [lVl...2wV2n]. The contractions define another permutation τ, which
specifies which pairs of double lines are connected [τ = (67583124) in Fig.2].
Clearly, τ is in the class [2Π], and the number F is the number of cycles of στ. Thus

<ί*>= Σ Σ ^ Σ ί " = Σ tfΣwΣ*wW[«].β. (2 7)
μ τe[2n] μ τ

partition of 2n στeμ class of S2n

Thanks to the completeness and orthogonality of the real characters χy,

Σ X V)/(τ) = TjΛj- K], [τ] > (2 8 a)

? χ W ' ( σ τ ) = ( 2 n ) ! ' y y ' ? f ^ ϊ ) (18b)

this may be rewritten as

v IΓ2"]| lul V / , V/i_Λ π , v,, , v , x
< ί ϊ > = £ A^L/iί J] ^ — — ^ - ^ - χ (τ)χ ([2w])χ (στ)χy (μ), (2.9a)

class of S2n

y

\ (2n)l f(W-\) •
ClaSS Of S2n

This formula may be reexpressed by saying that the contribution <Oμ of class μ to
<ίv> is such that

<Qμ _ |[2"][ χγ(ί2nl)χγ(μ)χγ(γ) π i m

|_μ|iVΣ- - (2n)l $ χ^([l2"]) ( 2 J U J

which exhibits a symmetry in the interchange μ <-• v, reflecting the duality between
vertices and faces of the surfaces. Contributions to (tγ}μ come from surfaces with
V=ΣVj vertices, L = \Yjjvj=\Yjjμj = n lines and F=Yjμj faces. Duality ex-
changes v and μ.

The irreducible polynomial characters chy of the linear group GL(N) associated
with the same set of Young tableaux Y satisfy the Frobenius reciprocity
relation [9],

tv(M)=Σchγ(M)χγ(v). (2.11)
Y
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Since chr(M) is a polynomial in the matrix elements of M, Eq. (2.11) can be
extended to any matrix, in particular to an hermitian matrix. Taking the average
and comparing with (2.9), we find

<ch r>=(2n-l)ϋ-

Class θf 52n

(2.12)

The last sum is identified as the dimension chy(l) of the representation of the
linear group associated with Y, using again the Frobenius formula. Thus we find
the remarkably simple expression

(2.13)

which admits a trivial generalization in the form

< c h y ( M M ' ) > M = ( 2 n - l ) ! ! - ^ (2.14)

where the index M on the bracket indicates that the average is taken over M.
In conjunction with (2.11), formula (2.13) could be useful in deriving some new

results. Here we shall show that it leads to a simple derivation of the combinatorial
results of [1]. An intermediate step in the determination of the virtual Euler
characteristics /(Γ1) of the moduli space of once-punctured orientable compact
Riemann surfaces is the calculation of the number εg(ή) of pairwise identifications
of the sides of a 2rc-gon leading to a surface of genus g. This is immediately seen to
be equal to the number of contractions between the lines of the trM 2 n vertex
(Fig. 3), hence

Φ)= Σ ^ ^ (2-15)

(2.16)

computed as above. Combining (2.13) with (2.11) leads to

jn+l-2gp (n\—

The non-vanishing of the characters χγ{[2ή]) restricts the sum over Y to a subclass
of Young tableaux, namely those with at most one row of length q +1 ^ 1 and p ̂  0

Fig. 3. Equivalence between a pairwise identification of the sides of an octogon and a set of

contractions of lines of the vertex trM 8 . The graph is dual to the graph of Fig. 2
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rows of length 1, p + q +1 =2n. All the expressions that appear in (2.16) are quite
explicit [6],

χγ"&2ri]) = (-ίγ, (2.17a)

(_l)P/2

The constraint p +1 ^ JV is taken into account by the vanishing of — —- for
V (iV-p-1)!

(2n-l)ϋ
p k

n-\\tdx
Λ

,dx (ί+xf{ί+2xγ

2n

N + 2n-2p-2

2n

,

_1 dy 1 (ί+y\»
( 1 1 8 )

where y = 1/(1 +2x). This is the form given in [1],
There is an intriguing feature in this last result. A generating function for the

characters chy for the Young tableaux Ypq is given by

(2.19)

which follows from chy nchYn =ch y
J p 0 I O q I

+chy where of course chyy nchYn =ch y ^,+chy M1 , where of course chy
Jp,0 IO,q - I p . g + l i p + l , q ' * P, 9

vanishes if p^N. Evaluated for y = z, M = l, this is the integrand of the last
equation (2.18). Thus this last formula (2.18) involves the same family of Young
tableaux, but with the condition that p + q = n instead of p + q = 2n — 1 in (2.17).
The following observation may be in order. Let p, q be non-negative integers with

= n fixed, xu ...yxN N indeterminates and Vpq the space of forms

4 Σ Plι...ip(xι,-,XN)dxlί...dxlp,
P' lί,.-,lp

(2.20)
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where the indices ik run from 1 to AT and the P's are homogeneous polynomials of
degree w + 1— p = q + lso that the total degree in x is n + 1 . The exterior derivative
d maps Vp_lq+ι into Vvq. Then the factor space

Ep,q=VPtqmodd{Vp-Uq+1) (221)

supports the representation of the linear group corresponding to Ypq and the
direct sum

E = E=φE^=φ 0 EPtq (2.22)
n n p+q=n

is the graded representation space introduced above. This suggests to look for a
simple (cohomological) explanation for the above relations.

3. Harmonic Oscillators

In this section, we derive a close expression for the generating function of
the <ί[2M]>

2x(treyM}= 1+2 $ydye 2x(tre
o

since the odd powers do not contribute, <ί[2« +1]> = 0. The trace may be expressed
in terms of the eigenvalues λt of the matrix M, and the average is now performed
with the measure

\ (3.2)
i

where Δ(λ) stands for the Vandermonde determinant

)= Π

Σ (-i)pHN_MPl)-H0(XPN). (3.3)
P

permutat ion of 1,...,N

The Hk denote the orthogonal (Hermite) monic polynomials for the measure
dλe~(λ2/2); Hk is of degree k and its term of highest degree has coefficient 1. Thus

t

Σ(-tfHN-i(λPl)...HάλPlf)Σeyi (3-4)
P s
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N

with a normalization factor Jί = (2π)N/2γ\pl When the contribution of the term
1

eyλs is considered, orthogonality forces Pj=j for all jφs, hence P is the identity
permutation.

s=l

Not only have all the variables λt been decoupled, but the whole calculation
reduces now to a single harmonic oscillator

T(x} = 1 +2 J ydye~*NΣ <s|e^|s>, (3.6)
0 s = 0

where we have used quantum mechanical notations to denote the ortho-
normalized wave functions

[jdλe

One introduces the "annihilation" and "creation" operators a and a\

_λ d

(3.8)

which satisfy [a, α f] = 1, λ = a + a\ α|0> = 0 and generate the state \s) according to

5!

It is again convenient to introduce generating functions for the quantities (s\eyλ\s},

G(y,υ)=Σ-, <s\eyλ\s> =lAi ^ K ^ t f e ^ V ' V f i O ) (3-10)
s SI s \Sl)

with υ positive. If we set z = vί/2eίΘ, this may be written as

G(y,υ)= f~-<0|^V(α+fltVflΐ|0> (3.11a)
2π

= ^ e i y 2 + \z\2 + y(z + t) (3.11b)

oo v

2 n n n Af)

( 3 l l d )
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where use has been made of the Baker-Campbell-Hausdorff formula to transform
(3.11a) into (3.11b). It is now easy to carry out the y-integration

if oo y 2 oo y2 y 2 n v n

 x 2 - L

Σ—$dye 2x(s\ey \s)= J dye 2xΣ , ^2 e

» tf J 2x \n +

2x »i

1-x

2x

1 — X s = 0 λl \ 1 — X J

which allows us to identify

f dy2e ~ ̂ <s|eΛj> |s> = — — ( - ^ ) , (3.13)
0 -*• -^ \ J- X J

and thus

which is equivalent to the former statement (2.18) and completes this second
derivation.

4. The Virtual Euler Characteristics

We finally turn to Penner's approach. Using the duality and symmetry noticed
above in (2.10), the quantity εg(n) of (2.15) may also be computed as

The counting implied in εg(n) is not quite the one required. In (4.1) we have to
discard graphs with vertices of valency one ("tadpoles") or two ("self-energy"
insertions), (as in Fig. 2), obtaining the required quantity λg(ή). The "virtual" Euler
characteristics χ{Γg) of the modular group of once punctured surfaces of genus g is
then

6 0 ~ 3 λ (ή)

Σ ( - I Γ 1 ^ , (4.2)

where λg(ή) is obtained by the same formula (4.1) as εg(ή) with the additional
constraint that μ i = μ 2 = 0 Thus a superficial view seems to indicate that by
computing the coefficient of N in

ίdMe χ2t* k
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one obtains the asymptotic expansion £ x4g 2χ(Γg

1). This is, however, dangerous

since as it stands the numerator of (4.3) is not defined. The situation is analogous
(and the analogy is of course not fortuitous) to the one prevailing in the derivation
of Stirling's formula for Euler's Γ function. Starting from

) = jdue~u+slnu

o

for s positive and setting u = s — ι;]/s,

(4.4)

sΓ(s) = I - 1/s f dve 2 k\V*l
\eJ v -on

(4.5)

we find for x real and positive

JΛ
J

(4.6)

The above integral is well defined and sensible. In an asymptotic expansion for
x-> +0, we can, however (up to exponentially small turns), take the upper limit to
+ oo and obtain term by term the coefficients as sums over simple graphs. This is
the sense in which one can understand Eq. (4.3) provided (i) one assumes x-> +0;
(ii) one reduces it to an integral over the eigenvalues λt of M, each one restricted to
λι<l/x. The computation is straightforward

Z(x,N) =
1

A

2(λ), (4.7)

where θ is the step function. Changing variables to y ; =(l— xλt)/x2 we readily
obtain

Z(x,N) =

Using

we have

Z(x,N) =

N2

π

1

Γ
I

(ex2f r i l
, - i V 2

det

Π

r + s

(4.8)

(4.9)

(4.10)
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J V - l J V - l

The last determinant is evaluated as χN{N~X) γ[ p\ γ\ (l+pχ2)N~p so that we
obtain 1 x

1

Z(x,N) =
N-ί

Π I (4.11)

To extract the required quantities we now use Stirling's formula (x-> +0),

In
(ex2)

1

2U2-

Γ
B2n v4n-2 (4.12)

where the symbol ^ means the equality of (right) derivatives as x->0 I of course

the right-hand side diverges, more properly it should be written
k-l β \

Σ ^ ^ 2 n

 4,x
4n~2 + O{x4rk~2) . We also introduce the Bernoulli polynomials

n=i 2n(2n—l) )

tpt fn

such that for fc^l,

Therefore, when x-» + 0

Φ(x,N) = lnZ(x,N)

k=

Bk+1(N)-Bk

k + ί

Bo

£12n(2n-l)

The coefficient of JV is the asymptotic series

oo Ώ oo
V 2β ^4g-2 , v

For kέtl, Bk+1 vanishes unless k + 1 is even, therefore,

(4.13 a)

(4.13 b)

(4.14)

(4.15)

(4.16)

2 g

(4.17)
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or alternatively (for g > 0)

z(Γ/)=-^=C(l-2g). (4.18)

Interestingly, the general coefficient of Ns in Φ (connected diagrams with s
faces) is (for g > 0)

y 40-4 + 25/ ^ s ^2g

According to Penner, the coefficient of this expansion is the virtual Euler
characteristics χ(Γg

s) of the mapping class group of a Riemann surface of genus g
with s punctures (allowed to be permuted) so that for s > 0, 2g — 2 + s > 0, one has

In conclusion it is perhaps worth mentioning that by evaluating integrals over
matrices one can expect to capture more information on various aspects of spaces
of Riemann surfaces and find a bridge with current developments in conformal
field theory.
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