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ROUGHENING OF WILSON'S SURFACE 
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We suggest that surface roughening, well known in three dimensions, also affects the computation of the Wilson loop m 
4-D gauge theories. We propose an observable to locate this singularity. We also discuss the consequences of this singularity 
for actual calculations. 

The lattice gauge theory [1 ] is now rapidly evolv- 
ing into a formalism which allows quantitative compu- 
tations in strong-interaction dynamics. Recent develop- 
ments of  strong-couphng [ 2 - 5 ]  and Monte-Carlo 
methods [6] offer the possibility of  actually comput- 
ing the string tension of  QCD, the coefficient of  the 
hnearly rising term in the quark-confining potential. 
However, both methods of  calculation make strong 
use of  an assumption that the physics of  the lattice 
gauge theory is smoothly varying from the strong- 
coupling region, where these methods are most accu- 
rate, to the weak-coupling continuum limit. We sug- 
gest, in this letter, for the specific case of  the string 
tension, this assumption is not correct. We will argue 
that the string tension, as a function of  the gauge cou- 
phng, has an essential singularity at a finite value of  g, 
even if the vacuum state shows no phase transition 
between strong and weak coupling. 

The origin o f  this singularity is a phenomenon, 
well known in the statistical mechanics of  interfaces 
in three dimensions, ]o:own as surface roughening [7]. 
It concerns the fluctuations of  a two-dimensional inter- 
face between ordered media; at a certain roughening 
temperature, the mean square fluctuation of  the posi- 
tion of  the interface diverges. This introduces non- 
analyticity into all quantities which characterize the 
interface, including the surface tension. 
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We wilt briefly review interface roughening in three 
dimensions and we will introduce a new observable 
useful for locating the roughening transition. Then, 
we will show that this whole analysis generalizes to the 
case of  the surface which spans the Wilson loop in the 
quark-confining phase of  an abelian or non-abelian 
4-D gauge theory. We will locate the roughening transi. 
tion approximately in the Z 2 and SU(2) pure gauge 
theories by extrapolations of  high temperature expan- 
sions. Finally, we will offer an argument which deter- 
mines the form of the singularity in the string tension 
at the roughening transition. 

We begin our study by considering the 3-D Ising 
model, known to be dual to a Z 2 gauge theory [8]. 
Let us write the partition function of  this model as 

(o~=-+1) <i,/> 
neighbors 

In the low temperature phase of  this model, corre- 
sponding to the strong-coupling phase of  the gauge 
theory, it is possible to set up boundary conditions in 
such a way that an interface between two oppositely 
magnetized regions forms on a surface perpendicular 
to, say, the 3-axis. For future use, we call 7 w = In Z 
the free energy with these boundary conditions, 7 the 
free energy with uniform boundary conditions. At 
T = 0 ,  o z = + l  fo rx  3 / > 0 , 0  i = - I  fo rx  3 < 0 . A t  
finite temperature, thermal fluctuations move the 
position of  the surface. Eventually, at some tempera- 
ture, these thermal fluctuations destroy the magnetic 
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ordering: this IS the critical point T = T c. However, 
even if we restrict ourselves to T < T c, there are two 
distinct regimes characterized by qualitatively different 
behavior of  the fluctuations in the position of  the inter- 
face. This can be seen as follows. 

Consider the fluctuations Ah of  the height of  the 
surface at a given point * x. We can imagine computing 
this quantity in two different approximation schemes, 
one valid at very low temperature, the other valid near 
T c. At low temperature, one may derive an expansion 
by beginnmg from the zero-temperature state just de- 
scribed and then, successively, overturning spins. 
From (1), the expansion parameter for this series is 
t = e -2/T, the relative weight of  a mismatched bond. 
Each excursion of  the surface parallel to the 3-direc- 
tion then costs powers of  t for each step of  a lattice 
spacing. For sufficiently small t, such excursions are 
suppressed and the thermal average <(Ah) 2) is obvious- 
ly finite. Near Tc, however, one should calculate from 
a different picture. For values of  T still in the low- 
temperature phase, but sufficiently close to Tc, the 
interface should be viewed as a continuum surface. Its 
fluctuations may be computed from the continuous 
mtegral: 

Zsurfac e ~ f h(xl, x2 ) exp ( -kA [h] ) ,  (2) 

where (x 1, x2) are coordinates of  a point on the zero- 
temperature surface, h(Xl, x2) is the height of  the sur- 
face at this point, A [h] is the area of  the surface of  
height h, and k is the surface tension. Eq. (2) imphes 
that ((Ah) 2) diverges logarithmically due to long wave- 
length fluctuations: 

(Ah 2> ~ k -  1 f "d2p . (3) 
p2 

Similarly, the correlation function between heights at 
different points diverges logarithmically with the 
separation for T close enough to T c. Crudely speaking 
the surface becomes delocalized. The boundary between 
these two regimes occurs at some temperature T r, the 
roughening temperature. 

Before presenting numerical evidence for the exls- 

,1 This can only be an approximation since the surface can 
have "overhangs", and disconnected islands of reversed 
spms can appear at a distance of the mimmal surface, thus 
h should be mtfltl-valued. We shall see how to remedy this 
later. 

tence of  this T r and for the determination of  its loca- 
tion, let us make contact with the 3-D Z 2 gauge theory. 
The partition function of  this theory IS: 

Z =  ~ e x p [ 3  ~ (UilUikUklUli)l .  (4) 
{U O =+ 1 } plaquettes 

We wall be interested in the expectation value of  the 
Wilson loop W: 

(5) 
{ U }  \-I L~ "J 

which decreases exponentially with the mimmal area 
enclosed by W. 

<W> ~ e x p ( - k A ) .  (6) 

Duality [8] relates the models (1) and (4) through 

t = tanh 3 = e -2/T , (7) 

and also enables us to write 

<W> = exp(fir w - fir), (8) 

using the Ising free energies defined above. 
A strong coupling expansion of  - k  (or a low tem- 

perature series in the dual Ising model) yields [9] 

- k = l n t + 2 t  4 + 2 t  6 + 1 0 t  8 + 1 6 t  l ° + 8 0 ~ - t  12 

+ 150t  14 + 734 t  16 + 1444~-t 18 + .... (9) 

We expect k to be a decreasing function of  t which 
vanishes only at t c = 0.6418 with a behavior suggested 
by the renormahzatlon group: 

k ~ const, a2/~ 2 , (10) 

where ~ is the bulk correlation length, 

~ ( t  c - t )  - v ,  v ~ 0 . 6 4 .  (11) 

Any extrapolaUon of  the series (9) is inconsistent with 
this picture (see fig. 1), showing that k must be singular 
at some t r less than t c. However, it is hard to locate t r 
from the analysxs of  the expansion (9). Indeed, we shall 
see that the singularity in k at t r is expected to be very 
weak. 

Weeks and collaborators [7,9] have proposed various 
observables which have a stronger singularity at t r, thus 
providing one a better signal of  the transition. They 
consider, for example, the susceptibility X of  the Islng 
model with respect to a uniform magnetic field, In the 
presence of the boundary conditions defining firw. 
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Fig. 1. k(t) m the 3-D Ismg model.  The solid line xs the result 
of  extrapolat ing the  series expansion (9); the dot ted lane shows 
the expected behavior near t e. 

They find: 

× = 2 t  4 + 14 t  6 + 128 t 8 + 8 6 4 t  1° + 6178 t 12 
(12) 

+ 40 086 t 14 + 263 792 t 16 + 1 671 444 t 18 + . . . .  

Analysis of  this and of  analogous series reveals a singu- 
larity at 

t r ~ 0 .4593 .  (13) 

We propose now a new observable which generalizes 
to the case of  other groups and higher dimensions, and 
admits a gauge invariant definition even for a finite 
loop where the language of  phase separation is inade- 
quate. Consider in the gauge version of  the model  the 
effect of  changing the sign of  the coupling of  one 
plaquette belonging to the minimal surface by W. The 
ratio o f  the new to the old expectat ion value of  W is 

PW = (W e -  2~(UUUU))/(W) . (14) 

Let P0 be the equivalent quanti ty in the absence of  W: 

Po = (e -  2O( u u u u ) )  . (15) 

The "pinch operator"  PW measures the probabil i ty  
that the surface that spans the Wilson loop includes 
the selected plaquette on the mimmal surface. In the 

dual Ising model,  PW and PO read: 

P w = ( ° + ° - ) W  , PO = ( a + a - )  , (16) 

where o+ and o_ are two spins just above and below 
the minimal surface. At t = 0, P w  = - I ,  while above 
tr, where the surface is delocalized, PW should equal 

P0" Thus t r may be identified as the singularity of  
(Po - P w ) - 1 .  The series expansions for PW, PO are: 

PW = - l + 4 t  4 + 1 6 t  6 + 6 8 t  8 + 2 8 4 t  1° 

+ 1260t  12 + . . . .  

P0 = 1 - 4 t  6 - 2 0 t  1° + 28 t 12 + . . . .  (17) 

so that 

2(p 0 - p w )  -1  = l + 2 t  4 + 1 0 t  6 + 3 8 t  8 + 1 9 2 t  10 

+ 860 t 12 + . . . .  (18) 

The ratios of  successive coefficients show a singularity 
at 

t r ~ 0 . 4 7 ,  (19) 

a value in reasonable agreement with the more precise 
one quoted above. 

It is of  utmost  importance to understand bet ter  the 
nature of  the sangularity at t r. In three dimensions, it 
is possible to define a simpler model,  the so-called 
solid-on-solid (SOS) model [7], by considenng an 
anisotropic Z 2 gauge theory with 3 = 313 = ~23 finite, 
/312 ~ O. For  a Wilson loop in the 12-plane, the tension 
reads 

k = - I n  tanh 312 - Osos(t)  • (20) 

In this limit,  the properties of  the bulk system become 
trivial, and t c = 1. Then (W)is  given in terms of  sur- 
faces bounded by W, without  overhangs or disconnected 
parts, hence described by the height h i of the actual 
surface above each plaquette Pi of  the minimal surface: 

t 

neighbors (21) 

Here the summation ~ '  runs over all integer heights h i 
at all but  one plaquettes of  the minimal surface. This 
surface model  is close to a dual form of  the 2-D X -  Y 
model [10] ; this lat ter  would have Ih i - hll replaced 
by I h~ - hjl 2. The critical properties of  these two 
models are expected to be identical; this is shown by 
numerical studies, renormalization group arguments, 
by the exact solution, due to van Beijeren [ 11 ], of  the 
SOS model on a certain face of  a body centered cubic 
lattice. I f  t r denotes the roughening transition point  of  
the SOS model,  Oso s in (20) behaves for t ~ t r as 
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Osos(t  ) ~ (smooth background) 

+ const, exp [ -cons t . / ( t  - tr) 1/2 ] . (22) 

TIns form is famihar as the free energy singularity in 
the 2-D X -  Y model. In the van Beijeren model, con- 
nected to the six-vertex model,  o is described by two 
distinct analytic functions for t < t r and t > t r, which 
coincide with all their derivatives at t = t r, thus exhib- 
iting a transition of  infinite order. Numerically, o(t) 
and a s o s ( t  ) are rather close, and there is evidence [7] 
justifying our expectation that they have the same 
critical behavior (22). One can prove [ 11 ] the inequal- 

ities 

2) < t s ° s  tr ,  (23) 

where t~ 2) = X / ~ -  1 is the critical point of  the 2-D 
Ising model. Numerically [7,9], 

tr SOS ~ 0 .4256 ,  (24) 

so all three points are rather close. Our indicator 2(1 
_ pSOS)- 1 calculated to order 12 gives t SOS ~ 0.45. 

The roughening transition which we have seen in 
the 3-D Z 2 gauge theory is hkely to occur also in other 
3-D gauge theories. It is possible to define an SOS 
approximation to k for any gauge group; the resulting 
theories are ldenttcal, up to a redefinition of  t. Similar- 
ly, the observable p can be generalized. We postpone 
tins systematic analysis to a future publication. 

We now turn to the case of  4-D gauge theories. We 
notice first that,  even though the embedding of 2-D 
surfaces in 4-D space cannot be interpreted as separat- 
ing two distinct regions, the qualitative arguments 
given above about the size of  surface fluctuations 
carry over to this case whenever the bulk transition is 
a continuous one. When the model has a first order 
transition, as in the case of  Z 2 , it is a numerical matter 
to determine the relative location of  t r and t c. How- 
ever, for continuous groups all indications point to 
the fact that  the only transition is a continuous one 
occurring at vanishing coupling; our earlier argument 
therefore predicts a roughening transition at a finite 
value of  the coupling. 

The simplest observable (of  course not  the only one) 
designed to give information about roughening is a 
simple generalizanon of  the quanti ty p defined in three 
dimensions. For the case of  a Z 2 gauge theory the def- 
inition (14) makes sense in any number of  dimensions. 
In four dimensions, the selected plaquette P of  the 

Fig. 2. The plaquette P dual to a plaquette of the minimal 
(shaded) surface. 

original lattice has associated with xt a plaquette P of  
the dual lattice; in this case, our construction corre- 
sponds precisely to computing the expectat ion value 
of  an ' t  Hooft  frustrahon operator [12] defined on the 
loop which is the boundary of  1 ~ (see fig. 2). We may 
define p for a general group G as the expectation value 
of  the ' t  Hooft operator on P; this entails modifying 
the coupling on P by an element of  the center of  G. 
For  SU(2), we replace/3 ~ -13 on P, as in the Z 2 case. 

The series expansions for PW and P0 are easily ob- 
tained to a given order in t by inspection of  the dia- 
grams contributing to the string tension and the free 
energy to that order. To compute the senes presented 
below, we have used, and verified, the tabulations to 
order t 12 given by Munster [5]. 

In the Z 2 case 

PW = - l + 8 t  4 + 3 2 / 6 + 2 0 0 t  8 + 1 0 3 2 t  10 

+ 6248 t 12 + . . . .  (25) 

P0 = 1 - 8 /6  - 120 t  10 - 8 t  12 + . . . .  (26) 

Our indicator 

2(p 0 - p w )  -1 = l + 4 t  4 + 2 0 / 6 + 1 1 6 t  8 + 7 3 6 t  10 

+ 4392 t 12 + . . . ,  (27) 

points to a value of  t r which is hardly distinguishable 
of  the bulk critical point t c = X ~ - -  1. More accurate 
numerical work is required to locate t r with respect to 
tc, that is, to tell whether the roughening transition 
occurs in the metastable or the physical region of  t. 

For the group SU(2), we use the Wilson action 

A = ~/3XI/2(UUUU), 

where X1/2 is the spin 1/2 character. It is useful to ex- 
pand m the parameter 

1 f dUx1/2 (U) exp[~/3X1/2(U)] 

u = ~ f dU exp [}/3X1/2(U)] ' (28) 
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which varies between 0 and 1. We find 

Pw = - 1  + 2(4u 4 + 24u  6 + 102~ u 8 + 497~s u 10 

+ 2741:~gs u 12 + ...), (29) 

P0 = 1 - 2(16u 6 + 240u 10 - 416u  12 + ...), (30) 

and 

2(p 0 - p w )  -1 =1 + 4 u  4 + 4 0 u  6+118~-u  8 

+ 1057~ u 10 + 4522~s u 12 + .... (31) 

This series is short and still rather irregular but it seems 
to indicate a roughening singularity around u r ~ 6-1/2 
with a large error. It is amusing to note that this value 
would correspond to/3 r around 2 which coincides with 
the shoulder in the numerical plot o f  k versus/3 found 
by Creutz [6] where the behaviour of  the tension de- 
parts from its strong-coupling regime. 

We have now motivated the occurrence of  a rough- 
ening transition in 4-D gauge theories and attempted 
to find its location in two examples. We turn to the 
question of  the behavior of  k at t r. In 3-D we saw that 
k has an essential singularity of  the type (22). A rough 
argument can be given in 4-D which yields the same 
type of  singularity. 

Assume that the fluctuations o f  the surface can be 
characterized by assigning to a point n -- (n 1, n2) of  
the mimmal surface two integers (h3, h4) which give 
the position in the 3 and 4 directions to which this 
point has moved. We ignore overhangs and vacuum 
diagrams by assuming that (h3, h4) is a singie-valued 
function of  (nl, n2) and of  course we disregard all 
group theoretic decoration. In 4-D space the values 
(h 3, h4) do not uniquely specify the fluctuating sur- 
face, but we may sum over all possibilities keeping the 
sets (h3, h4) fixed to obtain an effective partition 
function 

Zef f = ~ '  
ha(n),h4(n) 

X exp F ~ f (h3(n) ,  h3(n'), h4(n), h4(n')) l  , (32) 
L n,n' _1 

where f is short range and falls off  rapidly when I h(n) 
- h(n')l becomes large. It is globally invariant sepa- 
rately under h l -+ - h  i and translations of  h i for each 
of  i = 3, 4, and under the interchange h 3 o h 4. Under 

a duality transformation the variables hi(n ) are re- 
placed by angular variables 0~ with an action invananl 
under the corresponding transformations: translations 
and reflections of  0t and the interchange 03 ° 04" 
This is a model for two interacting 2-D X -  Y systems 
with the original strong-coupling region of  the gauge 
theory mapped onto the high temperature regime of  
these X -  Y models. Near the roughening transition the 
long-range behavaor is determined by a universal renor- 
mahzable model possessing the above symmetries; the 
only candidate is described by a lagrangian 

£ = ~(a03)2 + ~(~04)2 , (33) 

a theory of  two-decoupled X -  Y models. The critical 
point of  the X - Y  models is an effect not  of  the spin 
waves but rather of  the vortices. However, at the criti- 
cal point vortices of  quantum number higher than the 
minimal value and vor tex-vortex interactions are neg- 
ligible. Hence this decoupling extends to vortices as 
well. We conclude that the roughening singularity in 
4-D is of  the same type (22) as in 3-D. 

The roughening transition is a natural barrier to the 
extrapolation of  strong-coupling series for the string 
tension. This we saw explicitly in the Z 2 gauge theory 
in 3-D. The same might be true for gauge theories in 
4-D. This is the most Important consequence of our 
analysis. For Monte-Carlo computations of  the string 
tension, the influence of  roughening is more difficult 
to quantify, but it is clear that such computations are 
endangered by two phenomena: an increase in the 
number of  configurations building the equilibrium 
state of  the Wilson surface, and an increase of  the 
range of  finite size effects beyond  t r. In neither of  
these cases does the location of  t r make itself felt in 
the process of  computing k, precisely because the 
singularity is so weak. We suggest that those who at- 
tempt computations of  k use a measure such as our 
quantity PIg to locate t r accurately and exercise great 
care in interpreting results in the region t > t r. 

In this paper, then, we have argued for the exis- 
tence of  a singularity in k at a finite coupling t r. Our 
arguments were, in 4-D gauge theories, for the most 
part, intuitive; clearly more work is required to estab- 
hsh definitively the presence of  this transition. But it 
is important, as well, to already explore the conse- 
quences of  this idea, and especially to investigate how 
one can compute numerically in the region between t r 
and the continuum limit. 
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While this work was being completed we heard that 
A., E., and P. Hasenfratz have developed similar con- 
siderations about the possibility of roughening in lat- 
tice gauge theories. 

We are specially thankful to P. Hohenberg who in- 
troduced us to the vast literature on crystal growth 
and was kind enough to communicate to us unpub- 
lished results of Weeks and his collaborators. One of 
us (M.E.P.) is grateful to Eytan Domany for discus- 
sions of surface roughening. He also thanks the Society 
of Fellows of Harvard University for fellowship support 
during the course of this work. 
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