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We apply the block-spin renormallzatlon group method to the O ( N )  Helsenberg spin model 
Extending a previous work of  Hlrsch and Shenker, we find the renormahzed trajectory for 0(00) 
m two &mensxons For fimte N models,  we choose a four-parameter action near the large-N 
renormahzed trajectory and demonstrate a remarkable ~mprovement m the approach to cont inuum 
hmlt  by performing Monte Carlo simulation of 0(3)  and 0(4)  models 

I. Introduction 

Cri t ica l  b e h a v i o r  o f  la t t ice systems is o f  specia l  interest  s ince it is only  in the 

a p p r o a c h  to cr i t ical  po in ts  that  a universa l  behav io r  is recovered  and  contac t  m a d e  

with the  c o r r e s p o n d i n g  con t inuum field theory .  The ques t ion  then  arises as to how 

to acce le ra te  this a p p r o a c h  to con t inuum behav io r  This is a ques t ion  of  prac t ica l  

i m p o r t a n c e  in numer ica l  Mon te  Car lo  s imula t ions  (MC) ,  where  one would  like to 

observe  the  scal ing b e h a v i o r  o f  the c o n t i n u u m  l imit  a l r eady  on small  latt ices,  ~ e 

when the cor re la t ion  length  s c cannot  be much  larger  than  the la t t ice  spac ing  a In 

a series o f  pape r s  [ l ] ,  Symanz lk  has shown how to mod i fy  the la t t ice  ac t ion in such 

a way tha t  the O(a2/~2) correc t ions  to scal ing be cance l led  and  r ep laced  by O(a4 /~  c4) 

His m e t h o d  is o f  pe r tu rba t lve  essence and  seems to be effective in mode l s  where  

some scal ing b e h a v i o r  is a l r eady  obse rved  before  i m p r o v e m e n t  An  a l ternat ive  Idea,  

ba sed  on the real space  r e n o r m a h z a t l o n  g roup  and  b lock - sp in  methods ,  is to 

de t e rmine  the r e n o r m a h z e d  t ra jec tory  (RT) In c o u p h n g  cons tan t  space  under  some 

b lock  sp in  ope ra t i on  [2] A long  such an RT, there  is a o n e - p a r a m e t e r  r e n o r m a h z a t l o n  

g roup  and  scal ing shou ld  be observed  in some op t ima l  way s ince poin ts  on the RT 

are d i rec t ly  connec t ed  to the euc l id ian  lnvar lan t  con t i nuum l imit  (fixed po in t )  by  

an exact  r e n o r m a h z a t l o n  g roup  t r ans fo rma t ion  Also,  in the vicini ty  o f  such an RT, 

the M o n t e  Car lo  r e n o r m a h z a t i o n  g roup  m e t h o d  shou ld  be an accura te  and  power fu l  

one [3] 
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Although the idea of an RT is simple conceptually, it 1s difficult to find its location 
exactly To apply this idea to an actual model one has to introduce some approximate  
trajectory which is supposedly not far from the RT For example, in asymptotically 
free theories, the trajectory can be determined by perturbatlve calculation in the 
weak coupling region In fact, this possibility has been recently explored by several 

authors [3, 4] In this paper,  we investigate the usefulness of  the RT by using another 
approximat ion Using the block-spin transformations we find the RT for the O ( N )  
non-hnear  spin model In the large-N limit Extending a previous work of Hlrsch 
and Shenker [5], we show that these transformations are given by a simple set of 
equations We determine numerically the fixed trajectory and discuss its features 
(sect 2) We then propose to use this la rge-N RT as an approximate trajectory for 
finite-N models Of  eourse, this cannot be justified a priori but Monte Carlo results 
show that using this approximate  trajectory 0(3)  and 0(4)  models improve consider- 
ably (sect 3) We hope that our analysis will illustrate clearly the mechanism of 
improvement  by the renormahzed trajectory and help extend these ideas to other 
interesting models 

2. The renormalized trajectory for O(oo) model 

The classical O ( N )  symmetric Helsenberg model is described by N-component  
unit vectors Sm defined on the sites m of a d-dimensional lattice interacting through 
a translatlonally mvariant  short-ranged interaction Pmn The partition function Z is 

Z = f d/x(S) exp ( - H ) ,  

H = - N  ~ p~m(Sm S ~ - I ) ,  
(re, n) 

d/., (S) = [I d N s , . 6 ( S ~  -- 1) (1) 
r n  

One convenient way of introducing block-spin variables is to &vide the d- 
dimensional hypercubic lattice into cubes of  L sites per side and to define an average 
spin t~ (of umt length) within a block " a "  which interacts through the renormalized 
hamlltonlan H ' ( t ' )  defined by 

e x p ( - H ' ( t ) ) =  d~ (S )  H 8  ta- i iZ , , ,~aS, . i  I e x p ( - H ( S ) )  (2) 

It is, m general, difficult to find a closed expression for the renormalized hamdtoman 
H '  However,  in the limit N ~  oo, there is considerable simplification due to the 
property of "factorlzat lon" [6] This lmphes, for example,  that the two-point correla- 
tion functions for block-spins t can be related to the two-point correlation functions 
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for the original spin S as 

F'~.b = (t~" tb)H' -- 

F,~ = ( s , .  s , ) .  

liE,,, ~o F,,,,[I 

(3) 

Similarly, all h igher-order  correlation funct ions factor  into products  o f  two-point  

correlat ion funct ions Now,  for d = 2, it is believed that the O ( N )  symmetry  remains 

unbroken  which, in turn, implies that eq (3) completely defines arbitrary correlat ion 

funct ions o f  the block-spin variables m the limit N ~ oo Thus,  a l though it is difficult 

to get an exact expression for H ' ( t ) ,  it is not  unreasonable  to assume a form blhnear  

in spins and determine the effective coupl ing constants f rom eq. (3) as described 

below. 
In the limit N-~  oo, the Fourier  t ransform of  F,j is related to that o f  Pmn In eq 

(1) as [5] 

1 
F ( k )  = (4) 

2[A -p(k)]' 

where A is de termined f rom the gap equat ion 

F. = 1 =½E (A - p ( k ) ) - '  (5) 
k 

Then, eq (3) in Fourier  space becomes 

FL(k) = C--Z ,~o L \ ~ ] ,  

d sin2 (½Lk.) 
U~(k)  = ~=,I] sin 2 (½k,~) ' 

where we have used a subscript " L "  in FL to remind us that it refers to a block-spin 
for L x L blocks (from now on we shall be discussing the d = 2 case only a l though 
it applies in any dimension in an O ( N )  symmetr ic  phase) Now,  assuming the 
effective block-spin hamll tonlan to be bilinear in the spin variables (1 e H~. ~=  

--Em.n tm t.pL(m- n)), the coupling constants  can be determined from 

I ~ ddk e x p ( l k . n )  
pL(n) = - -~ (2~.)d 2-F-~/~)- (7) 

The renormal izat ion group (RG) t ransformat ions  p ~ PL embodied  in eqs (4 ) - (7 )  
have the merit o f  being explicit One may easily verify that they form a (semi-) 

group;  an L x L blocking followed by an L' x L'  blocking amounts  to an LL' × LL'  
blocking 
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Although eq. (6), as it stands, is not fit for a continuation to non-Integer L, one 

may (numerically) verify that block sizes of consecutive integers give consistent 
results, for example, the interaction 19 resulting from a 3 x 3 blocking interpolates 

between a 2 x2 and a 4 x4  blocking, and so on Also, it may be worth recalling that 
our block-spin transformatmn does not affect the long-distance behavior of the 

system, as wanted, from eq (6) one reads that the low-k behavior of FL(k) is 
dominated by the l = 0 terms and hence 

1 [ k \  2 (k-0)  (8) 

So the correlation length in physical units remains unchanged 
We have numerically evaluated the various block-spin couplings for blocks of 

size 2 x 2 ,  4 x 4 ,  8 x8, etc,  from eq (7) for various choices of  F ( k )  Some of the 

results are shown in fig l where we have plotted the couphngs K2 (interaction 

between spins ~/2a apart), K3 (for spins 2a apart) and K4 (for spins 3a apart) 

against K~ (nearest-neighbor interaction) for successive blocking For example, 
starting with the point Ao (KI = 10, K, = 0  for 7# 1), we evaluate K l ( t =  1,2 . ) 

for blocks of size 2 x2 (point A~), 4 x4 (point A2) etc up to 128 x 128 (point A7) 
This process is repeated for different choices of  initial interactmn p(k) After a few 

blockmgs, all the trajectories seem to approach a limiting curve usually referred to 

as the renormahzed trajectory (RT). Actually, what we see in fig 1 is a projectmn 

of the RT on various subspaces such as the K1 - K2 plane, etc., the true RT is a 
one-dimensional curve m a possibly infinite-dimensional couphng constant space 

Let us now discuss some interesting features of the RT 

(i) As the ratio of correlation length to current lattice spacing decreases under 

the block-spin operations, one expects the couphngs K, to go to smaller (higher- 

temperature) values and ulttmately to approach the origin Actually, what we find 

is that the RT is located m the regmn K~ >0 ,  K 2 < 0  , K3<0,  K4>0 ,  etc., but this 

does not exclude the possible existence of  other RT's approaching the origin in 
&fferent dwectmns 

(n) One expects the iterated block-actmns to approach the RT when the correla- 
tion length becomes of the same order of magmtude as the current lattice spacing 
This is what is quahtatively observed For example, using the standard action (K, = 0 

for t >  1), point Ao (K1 = 1 0) m fig 1 corresponds to ~/a~-95 and it takes about 

five blockmgs to approach the RT In contrast, starting with Shenker-Tobochlnk 
actmn (ST) (K l K2 K3 K4 = 1 13-2 113 0) [3], s e / a -  14 at KI = 1.5, and one 
approaches the RT much faster than starting from standard action or from "tree- 
Improved" actmn (TIA) (K1 K2 K3. K4 =4 0 -112 0) [7] For the latter cases, there 
is a transient regime where the couphngs K, first mcrease (m absolute value) before 
receding along the RT Such behavior has also been observed in the Mlgdal-Kadanoff 

approximate renormalization group for SU(2) lattice gauge theory, in the /3f-13A 
plane [8], as well as in some hlerarchlal models [9] where an exact RG exists In 
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K l =  I 5, K 2 = - 0 2 3 0 8 ,  K 3 = - 0  1154, K , = 0  for 1>3 (squares, corresponds to ST action), K l = 2 0 ,  

K 2 = - 0  186, K s = - 0  430, K .  = 0 095 (pluses) 

the case o f  SU(2) gauge theory that behavior  was tacitly interpreted as a consequence 

o f  the existence o f  a singular (critical 9) point  in the upper -ha l f  plane ~ A  ~ 0. In our  

case, we do not know if such an explanat ion also applies 

(m) It is easy to determine the shape o f  the RT at small and large couphngs  For  
small K, 's ,  one assumes that K2, K 3 - O ( K ~ ) ,  K 4 ~ O ( K ~ ) ,  and gets for the 2 x 2  
b lockmg 

K| 
~ 2 + K 3 + K ~ +  , (9a) I 

K t  2 + 2  

Kl K2 2 
K'2 =K2+ + K ~ + 9 K 3 +  • (9b) 

4 2 4 

, 1¢,.-2 3i,-2 K I K 2 + K  K 3 = _ ~ . ~  _~,,~ 2 3+ (9c) 
2 

t I 3 K 4 = ~ K I +  "" ( 9 d )  

Eqs (9a, c, d) show that  the RT approaches  the o n g m  along the curve K3 = - K  2, 
K4 = K 3 whereas (9a, b) are consistent with K2 p roporhona l  to K 2 
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For  large K,, the behavior  is even simpler  In eq (4), A is de termined by the low-k 

behavior  of  p ( k )  and so is exponential ly small for large K,'s This means that the 
model  is asymptot ic  to the gausslan model  which is free o f  the non-l inear  constraint  

S 2= 1 and whose f x e d  point  for the previous block-spin t ransformat ion is known 

[10] Then p should approach  

const  
p (gausslan model  fixed point)  - 

s 2 * '  

~ * ( k ) =  }~ ~ ½sin 2 k .  ] 1 
,,.,2=-o~ .~ ,  (½k~ ~-/~)2j (k 2 +-2 ~rl) 2 (l O) 

This gausstan model  projects on our  four-parameter  space along the line 

K1 K2 K3 K4= 1 - 0 0 9 4 8  -0 .2187 00492 ( l l )  

We have seen that  thls asymptot ic  is indeed approached  very early (down to 

K~ ~ 0  8) and it is only for very small K, that there is a crossover  to the power  

behavior  discussed above 
In the for thcoming section, we intend to use the action given by the RT for small 

values o f  the couplings It is then convenient  to take the curvature towards  the 

origin into account  and to fit the RT by 

( K , - 0 5 )  ( K 2 + 0 0 4 5 ) ( K 3 + 0 1 0 2 5 ) ( K 4 - 0 0 2 1 )  

= 1 0  -0.1011 - 0 2 4 1 2  0.056 (12) 

These slopes differ only shghtly from the gaussian values but  the resulting approxima-  

tion is an excellent description o f  the RT m the range 0 15 <~ K~ ~< 0 8 
Let us summarize  what  we have done  so far Using the block-spin techmque,  we 

have derived effective block-spin hamll tonians  for any L × L blocking in the hmlt  
N -~ oo The only assumpt ion  was that it is sufficient to consider  hami l tomans  b lhnear  

m spins, which is plausible in the sense that in the O ( N )  symmetr ic  phase, any 
arbitrary correlat ion funct ion can be obta ined from two-point  correlat ion funct ions 

by fac tonzat lon ,  and these two-point  funct ion are in one- to-one correspondence  

with bll inear hamlltonlans.  We emphasize that there has been no truncation such 

as assuming that the block-spin hamil tonlans  have only a finite number  o f  coupl ing 

constants  

3. Monte Carlo simulation of 0(3)  and 0(4)  models 

Let us now turn to the quesUon of  how a knowledge o f  the RT helps in finding 

a model  with a better con t inuum limit It Is well known that in the formal hmlt the 
lattice spacing a ~ 0, the Hetsenberg model  reduces to an O ( N )  non-hnear  sigma 
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model (NLSM) defined by the euclidian action 

H ~ a c t l o n = ~ g g  (O,S)2ddx ( ~ = l , 2 , . . . , d ) ,  (13) 

where the continuum coupling constant g is related to the K, 's It is also known 

that NLSM is asymptotically free at space-time dimension d = 2111, 12]. To verify 
this, one has to show that physical quantities such as correlation length ~:, magnetic 
susceptibility 1", obey the scaling relations (see later) predicted by the renormahzatlon 
group equation 

Various authors have discussed the significance of  choosing a lattice action near 
the RT An intuitive way of understanding this is as follows Let us consider the 
points Ao and A5 in fig 1. Let us denote the hamiltonians associated with these two 
points as Ho({K}, a)  and Hs({K'}, 25a) respectively since the point A5 is obtained 
from Ao by a 2 s x 25 blocking, they describe the same physics, the important point 
is that simulating Hs({K'}, 25a) IS equivalent to simulating Ho({K}, a),  which has 
a much smaller lattice spacing. Thus, even for finite {K'}, we would expect /-/5 to 
show an earlier scaling, i e at lower values of  ~ /a  

Finally, we turn to the practical aspects of an MC simulation First, we are 
interested in an O ( N )  NLSM for finite N (such as N = 3, 4, etc ). Second, even if 
we knew the RT for finite N, it would be difficult to work with a lattice action very 
near the RT as that would necessarily involve a large number  of  interactions So, 
faced with these difficulties, we are forced to make some additional assumptions 
which are not obvious a priori but are only justified by the end results. These are 
(i) the RT for finite-N models such as 0(3) ,  0(4) ,  etc are in some sense close to 
the O(oe) RT (with the appropriate factor of  N taken out in the lattice action), and 

( n )  it is sensible to keep only four coupling c o n s t a n t s  (KI ,  K2, K 3 and K4) in the 
block-spin hamiltonians and neglect all longer-range interactions This is supported 
by the fact that longer-range interactions such as K5 (coupling between spins x/5a 
apart) are observed to be rather small compared to Kt for hamlltonlans near the 
RT (for example,  Ks/K~ ~--0.003 for point As). From now on we shall refer to 
these four-parameter  actions as "renormahzat ion group improved models"  (RGIM).  

So the lattice action we choose for MC simulation is 

S=N[K, ~ S. S.+.+K2~S. (S.+~+y+S.+x_y) 
L t l , ~  n 

+ K 3 Y ~ S . ' S . + 2 ~ , + K 4 ~  S . S . + 3 ~ , ] ,  (14) 
n/x n/.t _l 

where K~, K2, K 3 and K4 lie on the approximate  RT given by (12) In the continuum 
limit, the continuum coupling constant g given by 

g =/3 -1 = (K~ + 2 K :  +4K3 +9K4) - '  (15) 
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is small, and the mass-gap m (inverse correlat ion length) and suscepttbllity X for 
the O ( N )  model  scale as [12] 

m = BN(I +2~Tfl)'/(N-2)e-2~'~/(N-2)(I + O ( f l ) )  , 

X =  C~(1 +2frfl) -(N+I)/~N 2) e4~/(s-2)(1 + O ( ; ) )  , (16) 

where we find it convenient  to write the power  behavior  in/3 in terms of  (1 +2~r/3) 

In fig. 2, we show the result for the mass-gap of  the 0 ( 4 )  model  for ddterent  values 

o f  A4-- (1 + 2 ~ f l )  1/2 exp(-~-/3).  We used a heat bath algori thm on a lattice o f  size 

f rom 20 x 20 to 50 × 50 with a periodic b o u n d a r y  c o n d m o n  We made  3-6 runs at 

each temperature  with different initial c o n d m o n s ,  each run being about  3000-6000 
sweeps This was found  to be better than a single long run because o f  the presence 

of  metas tablhty  in low-temperature  configurations.  The mass-gap was obtained f rom 

ze ro -momen tum correlat ion funcUons The mass-gap for the s tandard  model  (K, ~ 0, 

K, = 0 for  t > 1) are taken f rom ref [ 13] It is clear that  in our  model  ( R G I M )  scaling 

starts at a much smaller value of  g:= 1 1-1 2, compared  to s tandard  model  where 

scaling seems to start at g:= 3. The constant  B4 in eq (16) is est imated to be 4 98 
Of  course this verification o f  scaling, which IS sensitive to the details o f  the relation 
between the K ' s  and g, is not  the definitive test that  our  improvement  is operative 

Compu ta t i on  o f  mass ratios or investigations o f  the ene rgy-momentum dispersion 

mcl 

,8/N 
0 2 0  0 2 2  0 2 4  0 2 8  0 3 2  0 3 8  

I 0  I I I I I I I I I 

~ ,&~ RGTM 0(4) 
STANDARD 

05 

L 

0 20 o IO ^ "4 

Fig 2 Mass-gap (m umts of l /a)  for 0(4) models versus A4=x/1 q-2Tr~ e =~ 
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Mass-gap (in umts  of  1/a) for 0(3)  models  Data for standard model taken from ref [13] 

relations [19] would be more canonical tests of improvement These computations 

are, however, time consuming, and have not been carried out m thts exploratory work. 

Encouraged by the 0(4)  result, we looked at 0(3) model where we used lattices 

of stze rangmg from 20 x20 to 70 x70 The mass-gap is shown in fig 3 Scalmg 

starts at s c-~ 1 8-2 0 The constant B3 is estimated to be 10 25 
Unhke the case of 0(4),  there are several "improved" 0(3) models (as discussed 

earlier) In addition to TIA and ST models, there is a one-loop improved Symanzlk 

action (1LSA) [14] (another model has been proposed m ref. [4], but this Is eqmvalent 

to an ST in the scaling region) For comparison, scalmg starts at sc~-4 for TI, 

-~ 1 5-2.0 for I LSA, and s ¢ ~-3 for ST It is gratifying to see that our model based 
on the RT for O(oe) compares quite favorably to these other models even for N = 3 

We also evaluated magnetic susceptlblhty scaling defect 8 x = 
g(1 +2Ir/3) (N+~)/(N 2) e x p ( - 4 7 r / 3 / ( N - 2 ) )  which should approach a constant value 

in the scaling region. The results for 0(4) and 0(3) are shown in figs 4 and 5 They 

are also consistent with the observation that scaling sets m early in RGIM 
Finally, we computed the ratio of A-parameters (up to one-loop), and the result 

1s 

! 7 8  for 0(3) 
ARGIM -- 99 for 0(4) 

ASTANDARD 54 for O(oe) 

The observed values are 8 49 for 0(3) and 3 12 for 0(4) The dtscrepancy for 0(3) 

model may be due to one or both of two reasons 
(t) there might be a large O(g) correction to the one-loop formula, and 
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Fig 4 Magnetic susceptlbdlty scahng defect for O(4) model Data for standard model taken from ref [l 3] 

(n) scaling curve for the standard model might have a shght preculiarity as 

suggested in ref [16] leading to some change m the value of the ratio of  A-parameters 

One of us (J B Z ) was  v is i t ing  Stony Brook when this work was started He wants 
to thank Prof Yang for his hospttahty at the ITP 

The numerical work was done on a VAX I 1/780 at the State University of New 

York at Stony Brook We thank the Nuclear Theory Group for making the necessary 
time available After this work was completed, we received two preprmts [17, 18] 

on related subjects In [17], a different blocking procedure is investigated for the 

8× 
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~/ RGIM 

STANDARD 

i l  • 
T 

I I I I I 

0 6  0 8  I 0 I 2 14 I 6 
/3 

Fig 5 MagneUc susceptlbdlty scahng defect for 0(3) model Data for standard model taken from ref [15] 
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O(oe) model.  In refs [18], the author claims to be domg finl te-N models while at 

the same time assuming an effective hamdtontan  bthnear  m spms 

This work was supported m part by NSF grant no. PHY 81-09110 A-01. 
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