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We apply the block-spin renormalization group method to the O( N} Heisenberg spin model
Extending a previous work of Hirsch and Shenker, we find the renormalized trajectory for O(c0)
in two dimensions For fimte N models, we choose a four-parameter action near the large-N
renormalized trajectory and demonstrate a remarkable improvement in the approach to continuum
Iimit by performing Monte Carlo simulation of O(3) and O(4) models

1. Introduction

Crnitical behavior of lattice systems 1s of special interest since it is only in the
approach to critical points that a universal behavior 1s recovered and contact made
with the corresponding continuum field theory. The question then arises as to how
to accelerate this approach to continuum behavior This 1s a question of practical
importance 1n numerical Monte Carlo simulations (MC), where one would like to
observe the scaling behavior of the continuum limit already on small lattices, 1 e
when the correlation length £ cannot be much larger than the lattice spacing a In
a series of papers [1], Symanzik has shown how to modify the lattice action 1n such
a way that the O(a°/ £°) corrections to scaling be cancelled and replaced by O(a*/ £*)
His method 1s of perturbative essence and seems to be effective in models where
some scaling behavior is already observed before improvement An alternative idea,
based on the real space renormalization group and block-spin methods, 1s to
determine the renormalized trajectory (RT) in coupling constant space under some
block spin operation [2] Along such an RT, there 1s a one-parameter renormalization
group and scaling should be observed in some optimal way since points on the RT
are directly connected to the euclidian invariant continuum hmit (fixed point) by
an exact renormalization group transformation Also, in the vicinity of such an RT,
the Monte Carlo renormalization group method should be an accurate and powerful
one [3]
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Although the 1dea of an RT 1s simple conceptually, 1t 1s difficult to find 1ts location
exactly To apply thisideato an actual model one has to introduce some approximate
trajectory which 1s supposedly not far from the RT For example, in asymptotically
free theories, the trajectory can be determined by perturbative calculation 1n the
weak couphing region In fact, this possibility has been recently explored by several
authors [3, 4] In this paper, we investigate the usefulness of the RT by using another
approximation Using the block-spin transformations we find the RT for the O(N)
non-hinear spin model 1n the large-N limit Extending a previous work of Hirsch
and Shenker [5], we show that these transformations are given by a stmple set of
equations We determine numerically the fixed trajectory and discuss 1its features
(sect 2) We then propose to use this large-N RT as an approximate trajectory for
fimte- N models Of course, this cannot be justified a prior1 but Monte Carlo results
show that using this approximate trajectory O(3) and O(4) models improve consider-
ably (sect 3) We hope that our analysis will illustrate clearly the mechamsm of
improvement by the renormalized trajectory and help extend these 1deas to other
interesting models

2. The renormalized trajectory for O(c0) model

The classical O(N) symmetric Heisenberg model 1s described by N-component
unit vectors S,,, defined on the sites m of a d-dimensional lattice interacting through
a translationally invariant short-ranged interaction p,,, The partition function Z 1s

Z=J du(S)exp(-H),

H=-N Z pnm(sm Sn_l)’

(m,n)

du(S)=11d"S,8(S7,— 1) (1)

One convenient way of introducing block-spin vaniables 1s to divide the d-
dimensional hypercubic lattice into cubes of L sites per side and to define an average
spin t, (of umt length) within a block “a’” which interacts through the renormalized
hamiltonian H'(t') defined by

’ Zmea Sm
CXP(—H(I))=JdM(S)ﬂ5(%—W exp (—H(S)) (2)
It 1s, 1n general, difficult to find a closed expression for the renormalized hamiltoman
H' However, in the limit N -» oo, there 1s considerable simplification due to the
property of ““factorization” [6] This implies, for example, that the two-point correla-
tion functions for block-spins t can be related to the two-point correlation functions
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for the original spin § as

Zlea Zmebllm

’ 3

: <t . t) === =rE S
’ ||ZI,I€a 1 U'” ’

EJ=<SI. S})H (3)

Similarly, all higher-order correlation functions factor into products of two-point
correlation functions Now, for d =2, it 1s believed that the O( N) symmetry remains
unbroken which, 1n turn, implies that eq (3) completely defines arbitrary correlation
functions of the block-spin variables 1n the limit N » oo Thus, although it 1s difficult
to get an exact expression for H'(t), 1t 1s not unreasonable to assume a form bilinear
1in spins and determine the effective coupling constants from eq. (3) as described
below.

In the lmit N > oo, the Fourner transform of F, 1s related to that of p,, 1n eq

(1) as [5]

F(k)= , (4)
2[A = p(k)]
where A 1s determined from the gap equation
F,=1=3L (A ~p(k))™" (5)
k
Then, eq (3) in Fourier space becomes
1 LY (k+27 k+2m
Fi(k)=— Y F|——) U}
=5 &, ( LI) L( LI>’
d sin’ (ALk,)
Ui(k)= — =
(k) ,Ll_:[] sin® (k)
T d% L (k+2vrl> (k+27rl>
C. = F Ui 6
" L(zw)d 5, L oL ) (©)

where we have used a subscript “L” 1n F; to remind us that 1t refers to a block-spin
for L x L blocks (from now on we shall be discussing the d =2 case only although
it applies 1in any dimension in an O(N) symmetric phase) Now, assuming the
effective block-spin hamiltomian to be bilinear in the spin variables (1 ¢ H =
=2 mntm tpL(m—n)), the coupling constants can be determined from

)__J'" dk exp (ik- n)
plm="] Gm) 2R

(7)

The renormalization group (RG) transformations p » p; embodied 1n eqs (4)-(7)
have the merit of being exphcit One may easily verify that they form a (semi-)
group; an L X L blocking followed by an L' x L’ blocking amounts to an LL' X LL'
blocking
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Although eq. (6), as 1t stands, 1s not fit for a continuation to non-integer L, one
may (numerically) verify that block sizes of consecutive integers give consistent
results, for example, the interaction p resulting from a 3 x3 blocking interpolates
between a 2 X2 and a 4 X4 blocking, and so on Also, 1t may be worth recalling that
our block-spin transformation does not affect the long-distance behavior of the
system, as wanted, from eq (6) one reads that the low-k behavior of F,(k) 1s
dominated by the I =0 terms and hence

FL(k>~CiF(%)L2 (k~0) ()

So the correlation length 1n physical units remains unchanged

We have numernically evaluated the various block-spin couplings for blocks of
size 2x2, 4 x4, 8x8, etc, from eq (7) for various choices of F(k) Some of the
results are shown 1n fig | where we have plotted the couplings K, (interaction
between spins J2a apart), K; (for spins 2a apart) and K, (for spins 3a apart)
agamnst K, (nearest-neighbor interaction) for successive blocking For example,
starting with the point A, (K, =10, K, =0 for 1# 1), we evaluate K[(1=1,2 .)
for blocks of size 2 X2 (point A,), 4 x4 (point A,) etc up to 128 X128 (point A,)
This process 1s repeated for different choices of initial interaction p(k) After a few
blockings, all the trajectories seem to approach a limiting curve usually referred to
as the renormahzed trajectory (RT). Actually, what we see in fig 1 1s a projection
of the RT on various subspaces such as the K, — K, plane, etc., the true RT 1s a
one-dimensional curve 1n a possibly infinite-dimensional coupling constant space

Let us now discuss some interesting features of the RT

(1) As the ratio of correlation length to current lattice spacing decreases under
the block-spin operations, one expects the couplings K, to go to smaller (higher-
temperature) values and ultimately to approach the origin Actually, what we find
1s that the RT 1s located tn the region K, >0, K, <0, K;<0, K,> 0, etc., but this
does not exclude the possible existence of other RT’s approaching the origin in
different directions

(11) One expects the iterated block-actions to approach the RT when the correla-
tion length becomes of the same order of magnitude as the current lattice spacing
This 1s what is qualitatively observed For example, using the standard action (K, =0
for 1> 1), point A, (K;=10) 1n fig 1 corresponds to £/a=95 and 1t takes about
five blockings to approach the RT In contrast, starting with Shenker—Tobochink
action (ST) (K, K, K; K,=1 —3&.—1 0) [3], £/a=14 at K,=1.5, and one
approaches the RT much faster than starting from standard action or from ‘‘tree-
iumproved” action (TIA) (K, K, K;.K,=% 0 —15 0) [7] For the latter cases, there
is a transient regime where the couplings K, first increase (1n absolute value) before
receding along the RT Such behavior has also been observed in the Migdal-Kadanoft
approximate renormalization group for SU(2) lattice gauge theory, in the B¢— Ba
plane [8], as well as in some hierarchial models [9] where an exact RG exists In
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Fig 1 Trajectories starting with K, =08, K, =0 for 1> 1 (crosses), K, =10, K, =0 for 1 > | (tniangles),
K,=15, K;,=-02308, K;=—-01154, K, =0 for :>3 (squares, corresponds to ST action), K, =20,
K,=-0186, K;=—-0430, K,=0095 (pluses)

the case of SU(2) gauge theory that behavior was tacitly interpreted as a consequence
of the existence of a singular (critical?) point 1n the upper-half plane 84> 0. In our
case, we do not know 1f such an explanation also applies

(1) It1s easy to determine the shape of the RT at small and large couplings For
small K,’s, one assumes that K, K;~O(K?}), K,~O(K?3), and gets for the 2 x2
blocking

r__Kl K2 2
K —+7+K3+K1+

=3 - (9a)
K, K/ K, K3
K’:—+—+_+ K3+ N
= PIRELY , (9b)
K, K
K;:—%K%—%K%——'z—z+K?+ , (9¢)
Ki=iKi+ - (9d)

Egs (9a,c, d) show that the RT approaches the origin along the curve K;=—K3,
K,= K} whereas (9a, b) are consistent with K, proportional to K3
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For large K,, the behavior is even simpler In eq (4), A 1s determined by the low-k
behavior of p(k) and so 1s exponentially small for large K,’s This means that the
model 1s asymptotic to the gaussian model which 1s free of the non-linear constraint
S§?=1 and whose fixed point for the previous block-spin transformation 1s known
[10] Then p should approach

p (gaussian model fixed point) = —E?% ,
0
25t0= 3 [121 ELLEA 2] . - (10)
him—w Lu<1 GGk, +7l,)" ) (k*+271)
This gaussian model projects on our four-parameter space along the line
K, K, K; K;=1 —-00948 —-0.2187 00492 (1)

We have seen that this asymptotic 1s indeed approached very early (down to
K,~038) and 1t 1s only for very small K, that there 1s a crossover to the power
behavior discussed above

In the forthcoming section, we intend to use the action given by the RT for small
values of the couplings It is then convenient to take the curvature towards the
origin into account and to fit the RT by

(K,—05) (K,+0045) (K;+01025) (K,—0021)
=10 —0.1011 —02412 0.056 (12)

These slopes differ only shghtly from the gaussian values but the resulting approxima-
tion 1s an excellent description of the RT in the range 0 15< K, <08

Let us summarize what we have done so far Using the block-spin technique, we
have derived effective block-spin hamiltonians for any L X L blocking in the limit
N > 00 The only assumption was that it 1s sufficient to consider hamiltomans bilinear
in spins, which 1s plausible in the sense that in the O(N) symmetric phase, any
arbitrary correlation function can be obtained from two-point correlation functions
by factorization, and these two-point function are in one-to-one correspondence
with bilinear hamiltomans. We emphasize that there has been no truncation such
as assuming that the block-spin hamiltomans have only a fimite number of coupling
constants

3. Monte Carlo simulation of O(3) and O(4) models

Let us now turn to the question of how a knowledge of the RT helps 1n finding
a model with a better continuum himit It 1s well known that in the formal limit the
lattice spacing a - 0, the Heisenberg model reduces to an O(N) non-linear sigma
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model (NLSM) defined by the euclidian action

1
H—>act10n=£-[(a“5)2ddx (r=12,...,d), (13)

where the continuum coupling constant g 1s related to the K,’s It 1s also known
that NLSM is asymptotically free at space-time dimension d =2[11, 12]. To verify
this, one has to show that physical quantities such as correlation length £ magnetic
susceptibility x, obey the scaling relations (see later) predicted by the renormalization
group equation

Various authors have discussed the significance of choosing a lattice action near
the RT An intuitive way of understanding this 1s as follows Let us consider the
points Ay and As1n fig 1. Let us denote the hamiltonians associated with these two
points as Hy({K}, a) and Hs({K'}, 2°a) respectively since the point As is obtained
from A, by a 2° xX2° blocking, they describe the same physics, the important point
1s that simulating Hs({K'}, 2°a) 1s equivalent to simulating Hy({K}, a), which has
a much smaller lattice spacing. Thus, even for fimite {K'}, we would expect H; to
show an earlier scaling, i e at lower values of £/a

Finally, we turn to the practical aspects of an MC simulation First, we are
interested 1n an O(N) NLSM for fimte N (such as N =3, 4, etc ). Second, even 1f
we knew the RT for finite N, 1t would be difficult to work with a lattice action very
near the RT as that would necessarily involve a large number of interactions So,
faced with these difficulties, we are forced to make some additional assumptions
which are not obvious a prior1 but are only justified by the end results. These are
(1) the RT for finite- N models such as O(3), O(4), etc are 1n some sense close to
the O(cc) RT (with the appropriate factor of N taken out 1n the lattice action), and
(1) it 1s sensible to keep only four coupling constants (K, K,, K; and K,) in the
block-spin hamiltonians and neglect all longer-range interactions This 1s supported
by the fact that longer-range interactions such as K (coupling between spins J5a
apart) are observed to be rather small compared to K, for hamiltomans near the
RT (for example, K5/ K,=—0.003 for point A;). From now on we shall refer to
these four-parameter actions as “‘renormalization group improved models”” (RGIM).

So the lattice action we choose for MC simulation 1s

S= N[Kl Z Sn Sn+;¢ +KZZ sn (Sn+x+y +Sn+x—y)
" n

+K32 Sn'sn+2p+K4Z Sn Sn+3u] s (14)
np nu

where K, K,, K; and K, lie on the approximate RT given by (12) In the continuum
limit, the continuum coupling constant g given by

g=B"=(K,+2K, +4K;+9K,)™' (15)
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1s small, and the mass-gap m (inverse correlation length) and susceptibility y for
the O(N) model scale as [12]

m= B\(l +27TB)1/(N—2) eAZn-B/(sz)(l +O<é>> ’

x = Cn(1+27B) NTD/N=2) e“"‘*“N-”(l +o<%>) , (16)

where we find 1t convenient to write the power behavior in 8 in terms of (1 +278)
In fig. 2, we show the result for the mass-gap of the O(4) model for different values
of A,=(1+27B)"? exp(—=B). We used a heat bath algorithm on a lattice of size
from 20 X20 to 50 X 50 with a periodic boundary condition We made 3-6 runs at
each temperature with different imitial conditions, each run being about 3000-6000
sweeps This was found to be better than a single long run because of the presence
of metastability in low-temperature configurations. The mass-gap was obtained from
zero-momentum correlation functions The mass-gap for the standard model (K, # 0,
K,=0for 1> 1) are taken from ref [13] Itis clear that in our model (RGIM) scaling
starts at a much smaller value of £=1 1-1 2, compared to standard model where
scaling seems to start at £ =3. The constant B, 1n eq (16) is estimated to be 4 98
Of course this verification of scaling, which 1s sensitive to the details of the relation
between the K’s and g, is not the defimitive test that our improvement 1s operative
Computation of mass ratios or investigations of the energy-momentum dispersion

B/N
020 022 024 028 032 038
‘01 1 1 L L 1 L1 11
§ RGIM 0(4)
a4 STANDARD
ma
o5}
A
A
0 1
020 010 N 0
4

Fig 2 Mass-gap (1in units of 1/a) for O(4) models versus A4=\/1 +2mBe ™
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Fig 3 Mass-gap (in units of 1/a) for O(3) models Data for standard model taken from ref [13]

relations [19] would be more canonical tests of improvement These computations
are, however, time consuming, and have not been carried out 1n this exploratory work.

Encouraged by the O(4) result, we looked at O(3) model where we used lattices
of size ranging from 20 x20 to 70 x70 The mass-gap 1s shown 1n fig 3 Scaling
starts at £=1 8-20 The constant B, ts estimated to be 10 25

Unlike the case of O(4), there are several “improved” O(3) models (as discussed
earlier) In addition to TIA and ST models, there 1s a one-loop improved Symanzik
action (1LSA) [14] (another model has been proposed in ref. [4], but this 1s equivalent
to an ST in the scaling region) For companson, scaling starts at £=4 for TI,
¢£=15-2.0 for ILSA, and ¢=3 for ST It 1s gratifying to see that our model based
on the RT for O(c0) compares quite favorably to these other models even for N =3

We also evaluated magnetic susceptibility scaling defect §,=
x(1+27B) NV IN"D exn(—4mB/(N —2)) which should approach a constant value
in the scaling region. The results for O(4) and O(3) are shown 1n figs 4 and 5 They
are also consistent with the observation that scaling sets in early in RGIM

Finally, we computed the ratio of A-parameters (up to one-loop), and the result
18

578 for O(3)
=299 for O(4)
154 for O(co)

ARGIM

ASTANDARD

The observed values are 8 49 for O(3) and 3 12 for O(4) The discrepancy for O(3)
model may be due to one or both of two reasons
(1) there might be a large O(g) correction to the one-loop formula, and
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Fig 4 Magnetic susceptibility scaling defect for O(4) model Data for standard model taken from ref [13]

(1) scaling curve for the standard model might have a shght preculiarity as
suggested 1n ref [16]leading to some change in the value of the ratio of A-parameters

One of us (J B Z ) was visiting Stony Brook when thts work was started He wants
to thank Prof Yang for his hospitality at the ITP

The numerical work was done on a VAX 11/780 at the State University of New
York at Stony Brook We thank the Nuclear Theory Group for making the necessary
time available After this work was completed, we received two preprints [17, 18]
on related subjects In [17], a different blocking procedure 1s investigated for the
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Fig 5 Magnetic susceptibility scaling defect for O(3) model Data for standard model taken from ref [15]
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O(o0) model. In refs [18], the author claims to be doing finite-N models while at
the same time assuming an effective hamiltonian bilinear in spins
This work was supported 1n part by NSF grant no. PHY §1-09110 A-01.

References

[1] K Symanzik, in Mathematical problems 1n theoretical Physics, eds R Schrader et al (Springer,
Berlin, 1982) (Lecture notes in Physics 153),
Nucl Phys B226 (1983) 187, 205
[2] K G Wilson and J Kogut, Phys Reports 12 (1974),
K G Wilson, in Recent developments 1n gauge theories, eds G 't Hooft et al (Plenum, 1980)
[3] SH Shenker and J Tobochnik, Phys Rev B22 (1980) 4462
[4] A Hasenfratz and A Marganitis, CERN preprint TH 3683 (1983)
[5] JE Hirsch and S H Shenker, Phys Rev B27 (1983) 1736
[6] E Witten, in Recent developments 1n field theory (Plenum, New York, 1980)
[7} M Falcioni, G Martinelli, M L Paciollo, G Parisi and B Taglienti, preprint LNF-83/7(P)
[8] K Bitar, S Gottheb and C Zachos, Phys Rev D26 (1982) 2853,
D Horn and C K Zachos, Phys Rev D29 (1984) 1202,
M Imachi, S Kawabe and H Yoneyama, Prog Theor Phys 69 (1983) 221, 1005
[9] J M Luck, private communication
[10] TL Bell and K G Wilson, Phys Rev Bl1 (1975) 3431
[11] AM Polyakov, Phys Lett 59B (1975) 79
[12] E Brezin and J Zinn-Justin, Phys Rev Lett 36 (1976) 691, Phys Rev Bl4 (1976) 311,
W A Bardeen, BW Lee and R Shrock, Phys Rev D14 (1976) 985
[13}] M Fukugita and Y Oyanagi, Phys Lett 123B (1983) 71
[14] B Berg, S Meyer, I Montvay and K Symanzik, Phys Lett 126B (1983) 467
[15] B Berg and M Luscher, Nucl Phys B190 [FS] (1981) 412
[16] B Berg, preprint DESY 83-031
[17]1 A Hasenfratz, P Hasenfratz, U Heller and F Karsch, CERN preprint TH 3818 (1984)
[18] Y lIwasaki, preprint UTHEP-117 (1983)
[19] B Berg, S Meyer and I Montvay, Nucl Phys B235 [FS11] (1984) 149



