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We consider the lagrangian form of a q-state generalization of Ising gauge theories with matter 
fields in d = 3 and 4 dimensions. The theory is exactly soluble in the limit q -* oe and corrections are 
easily calculable in power series in 1/q 1/d. Extrapolating the series for the free energies and latent 
heats by the method of Padd approximants, we have constructed the phase diagrams for all values of 
q. Our results agree well with known results for pure spin systems and, for the case q = 2, with Ising 
Monte Carlo data. 

1. Introduction 

R e c e n t  in te res t  in the  phase  d i ag ram of  Ising la t t ice  gauge  t heo ry  with m a t t e r  fields 

has led K o g u t  [1] to inves t iga te  a q - s t a t e  Pot ts  genera l iza t ion .  T h e  mode l ,  de sp i t e  its 

re la t ive  s implic i ty ,  possesses  some  i m p o r t a n t  fea tu res  in c o m m o n  with la t t ice  

q u a n t u m  c h r o m o d y n a m i c s .  The  Wi l son  cor re la t ion  funct ion ,  for  example ,  exhibi ts  a 

p e r i m e t e r  law behav io r  in bo th  theor ie s  due  to m a t t e r  sc reen ing  and  no longer  serves  

as a s igna tu re  d is t inguish ing  conf inemen t  and f ree  charge  phases .  In genera l ,  we are  

led to try to u n d e r s t a n d  as much  as poss ib le  a b o u t  the  phase  d i a g ra m of c o m b i n e d  

g a u g e - m a t t e r  systems.  

The  in te r io r  of phase  d i a g r a m s  is gene ra l ly  inaccess ible  to conven t iona l  expans ion  

me thods ,  typica l ly  val id  on ly  nea r  the  e x t r e m e s  of p a r a m e t e r  domains .  M o n t e  Car lo  

s imula t ions ,  however ,  not  suffer ing f rom this l imi ta t ion ,  have  recen t ly  been  used to 

m a p  out  the  ent i re  phase  d i ag ram for  Ising gauge  theor ie s  [2, 3]. W e  a re  thus  

p r o v i d e d  with a basis  with which to c o m p a r e  o ther ,  hopefu l ly  m o r e  intui t ive  o r  less 

p o n d e r o u s ,  m e t h o d s  of ca lcula t ion .  O n e  such m e t h o d  was given by K o g u t  [1], who 

found  that  the  q -* co l imit  of the  hami l ton i an  vers ion  of  the  q - s t a t e  mode l  is exac t ly  

so luble ,  with co r rec t ions  to the  free energy  for  finite q occur r ing  as p o w e r  ser ies  in 

1/q.  Since the  coefficients of  each p o w e r  of 1/q  can be c o m p u t e d  exact ly ,  the  large q 

l imit  is the  on ly  a p p r o x i m a t i o n  which need  be m a d e  and the results ,  to any  given 

o r d e r  in 1/q,  a re  val id  t h r o u g h o u t  the  phase  d iagram.  K o g u t  found  in add i t ion  tha t  

his resul ts  even m a d e  qua l i t a t ive  sense  for  va lues  of q as low as q = 2. 
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In this paper we consider the class of models suggested by Kogut but in their 
lagrangian form. We are thus able to make a detailed comparison between our 
calculations for the coupled gauge-matter  systems and Monte Carlo data, a 
comparison not possible for calculations performed in the hamiltonian version of the 
theory. We are also able to compare our results with series expansions of con- 
ventional q-state spin and gauge systems. Moreover,  we have found it extremely 
straightforward in this formulation of the theory to calculate higher-order cor- 
rections, and we thus display results to a comparatively high order in the expansion 
parameter,  here 1/q  TM (d = number of space-time dimensions). In particular, no 
infinite summation of graphs is required as in Kogut's calculation; each order in 
1/q l /d  receives contributions from only a finite and easily enumerated set of graphs. 
That we find an expansion parameter 1/q  lid whereas Kogut finds 1,/q, independent 
of dimension, need not be surprising given that the hamiltonian form of the theory is 
derived from a strongly anisotropic limit of the lagrangian form and hence, at least 
for large q where the transitions are first order,  corresponds to a different theory, 
with qualitatively different properties. We have calculated the free energies and 
latent heats for these models in d = 3 and 4 dimensions and used them to construct 
the phase diagrams for all q. Our results are for the most part in good quantitative 
agreement with known results in those parts of the phase diagrams and for those 
values of q where comparison is possible, thereby providing confidence in the validity 
of the entire phase diagrams for all q. 

Before proceeding to the calculation, let us describe briefly some properties of the 
phase diagrams of the class of models [defined in eqs. (2.3), (2.4)] under considera- 
tion. We refer the reader to Kogut's article [1] for a more complete presentation. 
There are two temperature-like variables, K and fl, controlling respectively the 
fluctuations of the gauge and matter fields. The phase diagram in the (fl, K) plane 
(represented schematically in fig. 1) is known to have the following limiting 
behaviors: 

(i) on the/3 = 0 boundary, the matter fields decouple and the theory reduces to a 
pure gauge theory which undergoes a confining-non-confining transition at some Kc; 

(ii) on the K = co boundary, the gauge degrees of freedom freeze out and the 
theory reduces to a pure spin system which undergoes an order-disorder  transition at 
some fie. 

(iii) along the K = 0 and/3 = co boundaries, the theory is trivial. 
The transitions at the/3 = 0 and K = co boundaries are known to persist at least a 

small distance into the phase diagram [4, 5] and the lines of transitions thus implied 
are determined to curve, very near the boundary, as exaggerated in fig, 1. Finally, 
along the K = 0 and/3 = ~ boundary, there is known to exist, for q finite, a strip where 
the free energy is analytic [5] so there is a path in the phase diagram between the 
confinement and Higgs regions, denoted I and II, respectively, along which no phase 
transition occurs. Fig. 1 is drawn consistent with the above considerations and also 
incorporates the assumption that the free charge region (no confinement along the 
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Fig. 1. Schematic phase diagram for q-state coupled gauge-maner systems in the (B, K) plane. The dotted 
lines represent phases transitions of unspecified order. 

/3 = 0 axis for K > Kc), denoted by III,  is isolated by a phase boundary.  The order of 
the phase transition along the dotted lines depends in general, as will be discussed, on 

q and the dimensionality of the system. The line extending out towards the lower 
right-hand corner is suggested by Ising Monte Carlo results and was first suggested by 
the mean field approximation [8] (see also the recent results of [20]). 

The aim of this paper  is to learn as much as possible about these phase diagrams 
from the standpoint of a large q expansion. In sect. 2, we define the models of interest 
and review the relevant formalism. In sect. 3, we assess the validity of our expansion 
method by applying it to the two-dimensional Pates spin system for which there exist 
exact results with which to compare.  In sect. 4, we treat the coupled gauge-mat te r  in 
three dimensions and in sect. 5, the analogous system in four dimensions. Sect. 6 
summarizes our results and the appendix deals with the identification of the leading 
contributions to the free energy in the lower right corner of the phase diagram. 

2. Basic formalism 

The conventional q-state  Potts [6] model is defined as follows: to each site i of the 
lattice is at tached a spin z~ taking its value in Zq, the group of the qth roots of unity. 
The partition function 

Z = 1--I 1_ Z exp ( - /3Hm) (2.1) 
sites q ziEZq 

defines the spin, or pure matter,  model where 

-/3Hm =/3 ~. 8z,.z,, (2.2) 
(ii) 

and the sum is over  nearest  neighbor sites on the lattice. 
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With the addit ion of link variables  Uii ~ Zq, we may  define, in the usual way [7, 8], a 
model  of gauge fields coupled to ma t t e r  fields with a local Zq gauge invariance:  

Z =  [-I l y l y e x p ( - / 3 n m g - x n ~ ) ,  (2.3) 
sites q Uii q zi 

and links 

where  

- / 3 H , , g = / 3  Y. 3z,u,,~.'.,, 
( i i )  

- -KH,= K E Su,,., , Up= U, iUjkUk,U,. (2.4) 

The models defined by (2.1), (2.2) and (2.3), (2.4), are generalizations of the Ising 
model and are known to have analogous self-duality properties [9-11]. In two 
dimensions, the model (2.1) is self-dual with the duality relation for the free energy 
per site F = - ( l / S )  In Z given by 

F(/3) = F( f i )+  2 In [(e ~ -  1) /x /q] ,  (2.5a) 

where  the dual coupl ing fi satisfies 

(e B - 1)(e 6 -  1 ) = q .  (2.5b) 

In three  dimensions,  the mode l  (2.3) is self-dual with 

F(/3, K ) = F(f i ,  E ) + 3 In [(e ~ -  1 ) (e ;  - 1 )/q ], 

(e B - ! ) ( e ; -  1) = (e ~ -  1)(e ~ - 1) = q .  (2.6) 

Finally, in four  dimensions ,  the pure  gauge mode l  (/3 -= 0) is self-dual with 

F(K) = F(E)  + 6 In [(e;  - 1 ) /x/q],  

(e ~ - 1)(e; - 1) = q .  (2.7) 

In o rder  to define a sensible large q limit, it is convenient  to pa rame t r i ze  the theory  
in te rms  of new couplings v and w defined by 

e rJ = 1 +qav ,  e" = l + q h w .  (2.8) 

We shall fix a and b by requir ing that  bo th  the high- and l ow- t empe ra tu r e  expans ions  
have smoo th  limits as q ~ m for v and w fixed. Consider ing  first the h igh - t empera tu re  
(region I: small/3,  K) limit, we recall briefly the me thod  of expansion,  following the 
notat ion of [10, 12]. The  Bo l t zmann  weight  in (2.3) is expanded  in te rms  of the 
(q - 1) non-tr ivial  characters  2(, (z) = z ' (1  <~ r <~ q - 1) of the group  Zq: 

q - I  

qG.1 = 1 + Y~ X,(z) ,  (2.9) 
r = l  
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exp ([38~,u,,z;,.1) = (e ~ - 1)3z,u,~ ,'.1 + 1 

] - e ° - i  1+ ~ ,g~(ziU~iz[ 1) +1 (2.10) 
q r~ l  

= 1 + I + A  ~t ' ,(zi)x,(U~j)X*(z i) 
q 

e ~ - 1 qav  vq ~-1 
A e O _ l + q  q + q " v  l + v q  "-~"  (2.11) 

Similarly, for each plaquette 

e g _ 

with 

(2.12) 

b-1  
B wq 

- b - i  • ( 2 . 1 3 )  
1 + w q  

We then use the orthogonality of characters, 

1 y. gr ( z )xs ( z ) "  1 . . . . .  T. X . . . . . . .  (z) = & . . . . . . .  .o (2.14) 
q =~z, q z 

(the sum r + s  + . .  • is understood modulo q), to perform the summation over the 

matter and gauge variables {z~} and {U~/} yielding an expansion of the part i t ion 

function in powers of v and w. The diagrams corresponding to the terms in the series 
are composed of matter bonds and gauge plaffuettes. To each oriented matter bond 

and plaquette, respectively, are attached integers r~/and rp (1 ~< r ~< q -  1) satisfying 
the conservation laws: 

for each site i: y . E  (il ii rii = 0 ,  (mod q) ,  (2.15a) 
i 

(mod q ) ,  (2.15b) for each link: r~ i+  y~ ~ii~ - 0  ~p r p - -  , 
p:(ij) 

where the last sum is over  plaquettes incident upon the link (ij) and e = +1 according 
to relative orientations. To a given diagram there is associated a combinatorial  
weight counting the number  of ways of satisfying (2.15), and also a factor of A for 
each matter  bond and a factor of B for each gauge plaquette. Including the 
contribution from the prefactors in (2.10) and (2.12), we find, for the partition 
function on a d-dimensional  lattice with S sites: 

(1 +qa-lv)dS(1  +qb-lw)d(d-I)S/2[1 + ~. (weight) A L m B P , ]  . (2.16) Z 
L diagrams J 
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Here and in the following, $g(Sm), Lg(Lm), and Pg stand for the number of sites or 
vertices, of links, and of plaquettes in the gauge (matter) part of the diagram. We are 
now in a position to identify the leading q dependence of a given diagram. The weight 
in (2.16) behaves for large q as q" with 

r =  ~ ( L m - S m +  l ) + ( P g - R g ) .  (2.17) 
c o n n e c t e d  

p a r t s  

The first bracket, the matter contribution, counts the number of independent 
choices of integers satisfying (2.15a), i.e., the number of independent circuits in the 
matter part of the diagram. In the second bracket, Rg is the number of independent 
constraints coming from eq. (2.15b)*. Including the large q behavior of A and B we 
find the leading q dependence of a diagram to be q~ with 

s = r + (a - 1 )Lm + (b - 1)Pg. (2.18) 

For a and b too large, we would find the power of q to increase arbitrarily with the 
volume of the diagram, preventing the definition of a sensible large q limit. 
Considering the pure matter (w = oo) and pure gauge (v = 0) models separately, and 
taking in each case the "worst"  configuration (i.e., a diagram of given size with the 
highest possible power of q) of a large connected diagram containing all the matter 
links or all the gauge plaquettes in a given region, we find 

Lm ~ dSm,  

L g ~ d S g ,  P g ~ ½ d ( d -  1)Sg, R g ~ L g - S ~ ,  

and therefore 

o r  

s ~ (ad - 1)Sin, (matter) 

s ~ (d - l)(½bd - 1)Sg, (gauge). (2.19) 

To prevent the volume-dependent  parts from blowing up, we thus need to impose 

1 2 
- .  (2.20) a < ~ ,  b <  d 

We now turn to the low temperature (region II: large/3, K) expansion of the model. 
In this limit, we expand from a ground state with all link variables Uii and all site 
variables zi equal to unity up to a local gauge rotation. Corrections to the partition 

* As pointed out to us by Jean-Michel Drouffe, this counting is only valid for configurations of 
plaquettes which form an orientable surface. Non-orientable surface may contribute, but only when q 
is even, since the plaquettes must carry the representation gq/2 in order to satisfy (2.15b). This implies 
that we should actually consider two distinct large q limits, according to the parity of q. However, the 
first non-orientable diagrams correspond to a power in our expansion parameter much higher than will 
be considered in the following and so this effect will not concern us. 
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function come from perturbations of this state with successively more flipped spins 
and /o r  links. These corrections may be represented diagrammatically, the contribu- 
tion of a diagram being proportional to exp (- /3Lm - xPg), where Pg and Lm count 
the number of plaquettes and bonds whose associated Up and ziUiiz~ ~ are different 
from unity, times a weight factor counting the number of possible orientations of the 
selected flipped spins and bonds. 

The partition function can therefore be written 

S 

q exp(dflS+~d(d-1)KS)[l+ Y. (weight)e - 'P,-~L-] (2.21) Z = ${1 + d ~  
q diagrams 

Again with the intent of requiring that only a finite number of diagrams contribute to 
a given order  in q, we examine for the pure spin (pure gauge) model the "worst case" 
behavior of a diagram containing all the spins (links) flipped in a given volume. The 
O(q sin) (O(q L - s , )  non gauge-equivalent) configurations contribute a factor 

qS'(1 +qav)"L'~qSm-aLm, (matter),  (2.22) 

qL~-s~(1 +qt'w)-e'~q-bP~+L~-s~, (gauge). (2.23) 

Suppression of large volume effects now leads to the requirements 

1 2 
a~>~,  b TM 7 - -  d '  (2.24) 

so comparison with (2.20) fixes 

1 2 
a = -  d'  b=-~, 

e~=l+ql/av, e~=l+q2/dw. (2.25) 

With the volume-dependent  behavior cancelled by the prescription (2.25), it is easy 
to see that the surface-dependent effects will always act to suppress the contributions 
of large diagrams by factors of 1/q i/d. Although the gauge-matter systems have been 
treated independently in the above, it is easy to convince oneself that (2.25) ensures 
that only a finite number of diagrams will contribute to any given order q-i/a also in 
the interacting gauge-matter system. Moreover,  a third possible expansion, at low 
temperature in the gauge sector and high temperature in the matter sector (region 
III: large K, small fl) also has a smooth q ~ co limit. We will make extensive use of 
these three expansions in the following sections. 

In summary, the rescaling (2.25) allows a reordering of the usual high and low 
temperature expansions into expansions in the parameter  

Z = q - I / d  (2.26) 

To any given order in z, the expansions are exact to all orders in v and w and so can be 
reliably used to probe interior regions of the v, w phase diagram. These expansions 
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also respect  the duality p roper t ies  (2.5)-(2.7)  of  the model  o rder  by o rder  in z (with 
the duality relat ions for the couplings part icular ly natural ly  expressed  in te rms of v 
and w) and m o r e o v e r  lead to critical couplings vc, wc of o rder  unity. 

3. The two-dimensional pure spin model 

The  two-d imens iona l  pure  spin model ,  for  which there  exists a var iety of exact  

results [9, 13], serves as a good  labora to ry  to assess the validity of  ex t rapola t ing  a 
large q expans ion  to low values of  q. We  recall that  this model  is self-dual,  and hence 
that  its transit ion, if unique,  is located at v = 1 [see eq. (2.25)]. Moreover ,  Baxter  [13] 
has given an exact  express ion for the latent  heat  at this point.  Defining the latent  heat  
by 

~-1 (~vvb~ ~vv~ ) ' (3.1) L = ~  v=l  v = l ,  

then for q <~ 4, L vanishes and the transit ion is second order ,  while for q > 4 

L = tanh ½0 l~I tanh 2 t o O ,  (3.2) 
rrl= 1 

where  O is re lated to q by 

2 cosh 0 = ~/q. (3.3) 

F rom eq. (3.2) it may  be shown that  as q (now considered  as a cont inuous  
pa ramete r )  approaches  4 f rom above,  L vanishes with an essential  singularity: 

L - ~/q - 4 exp - ~ (3.4) 
4q  - 4 "  

H o w  are these fea tures  r ep roduced  by a large q expans ion?  The  express ion (3.2) for 
the latent  heat  is easily expanded  to any desired order  in the p a r a m e t e r  z = q -  1/2. For  
example ,  to o rder  11, we find 

L = 1 - 2 z  - 2 z  2 + 4 z  ~ - 6 z  4 + 12z ~ - 16z 6 + 32z 7 - 38z 8 + 76z 9 -  76z 10 + 152z ~ 

= (1 - 2z)(1 - 2z 2 _ 6z 4 _ 16z6 _ 38z s _ 76z lo). (3.5) 

This cor responds  exactly to what  is ob ta ined  using (3.1) and the high t e m p e r a t u r e  
expansion of the free energy,  supp lemen ted  by the duality relat ion be tween  F ( v  > 1) 

and F ( v  < 1). The  d iagrams contr ibut ing up to four th  order  in z are depicted in fig. 2. 
Let  us try now to r ep roduce  the critical value qc = 4 and the numerical  value of L 

for low q, say q = 5 to 10, using only the t runca ted  series (3.5). We can ei ther  use this 
series as it stands,  or  ex t rapola te  it in some way, by Pad~ approx iman t s  for example .  
It turns out  that  in this par t icular  case, both  approaches  give comparab l e  results, due 
to certain proper t ies  of the series (3.5). T runca ted  to any o d d  order ,  the series has an 
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Fig. 2. Diagrams contributing to the high temperature expansion of the free energy of the two- q-1/2 dimensional pure spin system up to fourth order in z = ; diagrams (a), (b), (c, d) give respective 
contributions of order z 2, z 3, z a. 

overall  factor of ( 1 - 2 z )  and therefore  yields the correct value q c = l / z ~  = 4 .  

Secondly,  the radius of convergence  of the series (3.5) is Iz[ = ½, and  hence it is safe to 

compute  its value for q as low as 5. We shall see that these proper t ies  do not  persist in 

higher d imens ions  and we shall therefore  rely more  general ly  on Pad6 extrapola-  

tions. In the presen t  case, we have also computed  the sequence  of diagonal  and 

upper -d iagona l  Pad6 approximants ,  looked for the first zero ei ther  on or slightly off 

the posit ive real axis, (expected to approach z¢ = ½), and computed  their  values for 

low q. The  results are displayed in table 1. We see that the Pad6 ext rapola t ions  

approx imate  the s t rong zero of (3.4) at z = ½ by one  (or more)  earl ier  zero(s) at z < ½. 

On  the o ther  hand,  their  values at q = 5, 6 . . . .  converge  slowly, but  nicely, to the 

exact value. 

We conclude that  the 1/x/q expans ion  has indeed been  able to reproduce  

qual i ta t ively and even quant i ta t ive ly  all the impor t an t  low q features  of the two- 

d imens iona l  model .  We thus feel justified in ext rapola t ing  a large q expans ion  to 

small  q in 3D and 4D cases where  there exist no ana logous  exact results with which to 

compare .  

TABI.E 1 

Zero nearest t he origin, zc, in the q-1/2 plane and value for low q of the latent heat of the two-dimensional 
pure spin model, either truncated, or extrapolated by Pad6 approximants 

z,. L(q = 5) L(q = 6) L(q = 7) L(q = 10) 

Exact 0.5 0.01828 0.07153 0.12819 0.26441 

Truncation order 7 0.5 0.02449 0.07816 0.13306 0.26610 

Truncation order 9 0.5 0.01807 ( I .07278 0.12920 (I.26471 

Truncation order 11 0.5 (I.(11551 0.07(198 0.12810 0.26443 

[4,3] 0.4407 + 0.0436i 0.105 (I.0917 0.135 (I.2654 

[4, 4] 0.4541 + 0.0366i 0.046 0.0783 0.131 0.2647 

[5, 4] 0.46534 and 0.6 0.0151 0.0706 0.12785 0.26437 

[5, 5] 0.46984 ± 0.02221 i 0.0215 0.0721 0.12837 0.26442 

[6, 5] 0.47348 + 0.01716i 0.0193 0 . 0 7 1 6 1  ( I .12820  0.26441 
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4. The three-dimensional phase diagram 

In three dimensions our  expansion pa ramete r  is z = 1 /q  1/3. In this case we define v 

and w by 

v = (e ° - 1)z ,  (4.1) 

w = (e" - 1)z 2 . (4.2) 

It will be necessary to carry out  the calculation in two regimes only, since the high 

tempera ture  (small v and w) regime is dual to the low tempera tu re  regime. Using the 

variables v and w, the duality relation (2.6) takes the form 

F(v,  w)=  F ( 1 ,  11 _ 3 In  vw ,  (4.3) 
\ W  UI 

and the self-dual line is given by 

vw = 1.  (4.4) 

It is convenient  to define additional variables x and y, which take their values 
between 0 and 1, related to v and w by 

u 
x = (4.5) 

l + v '  

w 
y - . (4.6) 

l + w  

In terms of x and y the duality relation (4.4) takes the form 

x + y  = 1 . (4.7) 

The  diagrams contr ibuting up to order  z 8 to the parti t ion function in the small v, w 

region deno ted  by I, are depicted in fig. 3. The  free energy is given by 

- ~ F I  = In (1 + vz 2) +In  (1 + wz)+~z3(1 -- Z3)W6(1  + WZ) -6 

+zS(1 -Z3)(1 -2Za)WI1(1 + WZ) 11 

+ z6(1 -z '~)v4w(1 + vz2)-4(1 + wz) -1 - ~z6(1 - z~)2w12(l + wz) -12 

+ zT(1  --  Z3)W 1°(1 + wz) -I° 

+ 5 Z 7 ( 1  -- Z3) (1  --  2Z 3)Zw 16(1 + WZ ) -16  _ 4z8(1 _ z3 )2 (1  _ 2 z 3 ) w  17(1 + w z ) - 1 7  

+ 2z8(1 - z3)(1 - 2Z3)W6(1 + W Z ) - 6 V 4 ( 1  + VZz) -4  

+ zS(1 - z 3 ) ( 1  - 2 z 3 ) ( 1  - 3z3)Zw2°(1 + w z ) - Z °  + o ( z g )  . (4.8) 

Region II, defined by large v and w, is the region dual to I, and the free energy in this 
region is obta ined f rom (4.8) by using eq. (4.3). 
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AA 
i/v 

(e) (f) (g) (h) 

(i) 

1 / 3  Fig. 3. Diagrams contributing up to order 8 in z = q- to the region I expansion of the free energy of the 
3D gauge-matter model. Solid lines represent edges of gauge plaquettes, dotted lines matter links, and in 

diagrams (b), (f), (g), (i) the inner plaquettes have been selected, while not in (e). 

F inal ly ,  we ca lcu la ted  the  f ree  ene rgy  in region  III  where  v < 1, w > 1, i.e., high 

m a t t e r  t e m p e r a t u r e ,  low gauge  t e m p e r a t u r e .  The  lowest  o r d e r  d i ag rams  con t r ibu t ing  

to the  pa r t i t ion  funct ion are  d e p i c t e d  in fig. 4. The  free ene rgy  is given by 

- ~FIH = In w + In (1 + w - l z  2) + In (1 + uz 2) 

+ z s ( 1 - z 3 ) l : 4 ( l + v z 2 ) - 4 + z s ( 1 - z 3 ) w - 4 ( l + w - l z 2 ) - 4 + o ( z T ) .  (4.9) 

O u r  next  task is to find the  phase  boundar i e s .  Since the  g round  s ta te  of the  sys tem is 

the  s ta te  of min ima l  f ree  energy ,  the  phase  b o u n d a r i e s  a re  the  lines a long  which the  

free energ ies  ca lcu la ted  in ne ighbour ing  regions  are  equal .  

! . . . . . .  J 

(a) (b) 

Fig. 4. Contributions to the high-w, small-u expansion of the 3D and 4D models. Diagram (a) is a box of 
high temperature matter bonds, diagram (b) represents a flipped gauge link. 
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TAaLE 2 

Value of wc for v = 0 in three dimensions for various values of q and various Pad6 approximants:  for 
comparison, results obtained from high temperature  expansion of spin systems are also displayed 

q 
Pad6 2 3 4 5 6 10 20 

1"3, 2] 1.84 1.73 1.66 1.61 1.58 1.49 1.38 

[4, 2] 2.12 1.9(I 1.78 1.7(I 1.65 1.52 1.39 

[3, 3] 2.22 1.94 1.80 1.71 1.65 1.52 1.30 

High temp. expansions 2.26 2.03 1.75 
[14] [15] [16] 

The line separating regions I and III  is readily found to be 

. 1 3 . 2  4 / t  w = l + z ÷ ~ z  ÷~z - t l + V 4 ) z S + ( ~  -v4)~r6+O(z7) .  (4.10) 

The line separating regions II and III is given by applying to (4.10) the duality 

transformation 

(v, w)-~(1/w, l / o ) .  (4.11) 

Before considering the full line (4.10), let us first concentrate on its end point at v = 0. 
This point is the transition point of the pure gauge system, dual to the critical point 
of the pure matter  system. We have constructed a set of Pad6 approximants  to locate 
the position of this point. The results of these approximants  evaluated for various 
values of q ( =  | / Z 3 ) ,  a r e  given in table 2. For q = 2, 3, 4 we also list for comparison 

results obtained in refs. [14-16] using high and low temperature  series for the dual 
pure spin system. The agreement  is impressive considering the low order of our 
calculation. 

Returning now to the full line (4.10) and using again Pad6 approximants to 
evaluate its position, we find that the line is nearly straight and the value of w at the 
point at which it intersects the self-dual line (4.4) deviates from the value at the 
boundary only by about 1%. The shape of the phase boundaries for q = 2 and q = 10 
are given in fig. 5. In these figures we display also the end point of the self-dual line, a 
subject to be discussed shortly. 

We proceed to evaluate the discontinuity of the derivative of the free energy across 
the phase boundaries, a quantity which will be referred to as the "latent  heat".  
Consider first the latent heat across the I to III  phase boundary. This is given by 

.~L = ~1 d ~  (F l  - F i l l )  = W -1 -- Z + Z 2 ( W  -- W -2)  -- Z 3 ( W 2 + 2 W S ) + Z 4 ( W 3 + W - 3 + 1 4 W 6 )  

+ z s( _ 4w-5 _ w 4 _ 5 6 w  7 _ 11 w lo) + z 6( _ w-a + 3w 5 + 168w a + 146w 11 _ v4) 

+ . . . .  (4.12) 
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Fig. 5. Phase diagrams of the 3D model for q = 2 and 10. The vertical and horizontal transition lines result 
from the [4, 2] or [3, 3] Pad6 approximants, while the endpoints along the diagonal line comes from the 
zero of the [4, 2] (dotted line) or [4, 4] approximants. Monte Carlo experiments [3] suggest that the 

endpoint occurs within the shaded region. 

Substituting for w the expression (4.10) and working out the Pad6 approximants  
for the resulting expression, we find for the end point u = 0 that L vanishes at q = 4.5 
for the [3, 3] Pad6. Considering instead the quantity wL, the same Pad6 approximant  
gives q = 4.1. Although these values seem a little high for 3-dimensional Potts spin 
systems where the critical value of q is below four and is believed even to be below 
three, this is presumably due to the slow convergence of the Pad6 extrapolation in 
this case. For  similar reasons, we were unable to determine whether  the phase 
transition, which for large q is first order  along the entire length of the I - I I I  phase 
boundary,  has for low q a change in its order somewhere  along this boundary.  

Let us turn now to the phase boundary lying along the self-dual line (4.4). At one 
end, this line terminates at the triple point at which the three phases meet.  At the 
other end, it terminates,  for q finite, due to the vanishing of the latent heat across it. 
For q = oo the line does not terminate and separates the confined phase I f rom the 
Higgs phase II. 

Before calculating the latent heat let us introduce the coordinates s e and r /defined 
by 

~: = ~(x - y ) ,  (4.13a) 

71 =½(x + y -  1). (4.13b) 

Using these variables the duality relation (4.3) takes the form 

F(~ ¢, n) =F(~ ,  - r / ) - 3  In (½_ r/)2_sc2. (4.14) 
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the latent  heat  is given by 
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3,-~_¢,  (4.15) 

j [  ,  _, FIll 
~L. = l Ow.I I ~,=w-':, 

~.2 I- ~y~-- (4.16) 

Using the expression (4.8) for  F I  w e  find 

1 -1 ~ L ~ - ¼ _ ~ 2 [ 1 - y  Z -- (3, -- 3 , -2)Z2 -- (3 , -3  + 23, 6)Z3 + (3,2 + 3,-4 + 1 4 3 , - 7 ) Z 4  

- ( 3 , - 5 + 5 6 3 , - 8 +  113,-11)z5 - ( 6 3 , 3 - 3 3 ,  - 6 -  1683, - 9 -  1463, 12)2'6 

+ (63, 2 - 153, - 7 -  4303, " ' -  10403 , -13-  803,- 16)Z7 

+ (2534 _ 73, - 203,-2 + 573,-8 + 10673,-11 + 52783,-14 + 14283,-17 

-203,-2°)za +O(zg)]. (4.17) 

Before  evaluat ing this express ion let us note  that  its leading te rms  for  large 3, and 

small z are 

~(,~ - ~¢2)L, = 1 - 3,z 2 + (3,z 2) 2 - 6(3,z 2) 3 + 25(3,z2) a + higher order  t e r m s .  

(4.18) 

These  are the only te rms  which survive when 3, -~ oo and z --, 0 such that  3,z 2 is finite. 
T h e  d iagrams appear ing  in the free energy  which survive this limit are just those 

d iagrams for which each gauge p laquet te  has a ma t t e r  p laque t te  on top of it: see fig. 6. 
(The cor responding  d iagrams in the dual low t e m p e r a t u r e  expansion are just those 
with only link var iables  flipped). This  is e l abora ted  in the appendix .  The  contr ibut ion 

of these d iagrams to the free energy  is 

2.-p~[ v ~L - F i - 3 1 n ( l + z 2 v )  + E aLpz ~ ]  w e (4.19) 
diagrams 

{all lel 

Fig. 6. Examples of diagrams of the high temperature expansion contributing in the limit q--,cc, 
t;q -(d-l)/d fixed, wq T M  fixed. Here solid lines represent matter  bonds, and selected plaquettes have 

been shaded. 
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where L is the number  of links, P is the number  of plaquettes and alp are numerical 
coefficients associated with each diagram. Using eq. (4.16), one finds 

~(1-~Z)L '7=l+-yzZ 3diag . . . .  are( l+yz2) t "  + . (4.20) 

From (4.20) it is evident that for large q (small z) the end point of the line separating 
phases I and II will have 

yc - const • q 2/3, (4.21) 

implying 

vc - const • 61 2 / 3  , (4.22a) 

w e -  const • q 2 / 3 .  (4.22b) 

Note that (4.22b) implies that Kc is finite as q becomes large. One of us [18] has shown 
that even for finite q a suitable low fugacity-high tempera ture  expansion for an 

equivalent lattice gas theory can be constructed in this corner of the phase diagram (/3 
large, x small). A van-der-Waals  type approximation yields a result consistent with 

(4.22), namely that Kc remains finite as q becomes large, together with an evaluation 
of the constant in (4.21) or (4.22). 

We have calculated various Pad6 approximants  for the expression inside the 
square brackets of eq. (4.17). We show in fig. 5 the location of the end point of the 
self-dual line. As q becomes large, (4.21) is found to be fulfilled with the constant 

1.16 using a [4, 2] and ~ 0 . 8  using a [4, 4] Pad4 approximant.  
Finally we compare  the shape of the phase boundaries obtained above and 

displayed in fig. 5 with the results of Jongeward, Stack and Jayaprakash [3] obtained 
by Monte Carlo simulations of the Z2 gauge-mat te r  system. The shape of the free 
charge region coincides exactly with our results. The phase boundary along the 
self-dual line terminates in the interior of the phase diagram at a point whose exact 
location is hard to evaluate exactly from the Monte Carlo results but which 
corresponds roughly to -0 .11  ~<~¢<~-0.05. Our  results for the endpoint are s ¢ -  
0.084 using a [4, 2] Pad6 approximant  and s ¢ - 0.016 using a [4, 4] Pad6, so we see at 
least a tendency to converge towards the Monte Carlo result. 

5. The four-dimensional phase diagram 

In four dimensions the expansion paramete r  is z - -  1/q 1/4. The couplings v and w 
are still defined by 

v = z ( e  ~ -  1), (5.1) 

w = z2(e ~ - 1). (5.2) 

In this case we must calculate the expansion for the free energy in all three regions 
since regions I and III  are no longer dual as in the three dimensional model. 
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(a) (b) 

Fig. 7. Contributions up to order z t2 = q-~ to the high temperature expansion of the 4D model. Same 
conventions as in fig. 3. 

The  d iagrams contr ibut ing to the par t i t ion funct ion in region I(v, w small) to 
O(z  a2) are depic ted  in fig. 7. The  free energy  to this o rder  is given by 

- F I  = 6 In (1 + wz  2) + 4  In (1 + vz 3) + 4zS(1 -Z4)W6(1 + WZ2) -6 

+6z1°(1  - za)v4(1 + v z 3 ) - 4 w ( l  + wz2)- 1+ O(z13)  . (5.3) 

T h e  d iagrams contr ibut ing to the part i t ion funct ion in the low t e m p e r a t u r e  region 
- region II  (v, w large) - are depic ted  in fig. 8. The  express ion for  the free energy  in 
this region is given by 

- F n  = 4 In v + 6 In w + 4 In (1 + v - l z ) +  6 In (1 + w q z  2) + z4(1 - z4)v-s (1  + v - l z )  -8 

+4Z7(1 -- Z4)(1 -- 2Z4)V-15(1 + V l Z ) - I S - - ~ Z S ( 1  -- Z4)2V-16(1 + 1.)-lz) -16 

+4Z9(1 - Z4)V-I(1 + V - l Z )  -1 w-6(1 + W-lZ2)  -6 

+4Z 1(1(1 - z4)v-14(1 + V - I z )  - 14 

+ 28z 1o(1 - z4)(1 - 2z4)2v -22( 1 -b U -'Iz )-22 

- 64z l 1(1 -- Z 4)2(1 -- 2Z~)V-23(1 + V-lZ)-23 

+6Z  t2(1 -- Z4)(1 -- 2Z4)(1 -- 3Z4)2V-2S(1 + V-lZ) -2s 

+ 8Z 12(1 - -  Z4)(1 -- 2Z4)t)-8(l + V- ' lZ) -SW-6(1  + W lZ2)- 6 

+ !~z12 (1  - z 4 ) 3 v  -24(1 + v Iz ) -24  + O ( z 1 3 ) .  (5.4) 

Finally, in region I I I  - high t e m p e r a t u r e  ma t t e r  and low t e m p e r a t u r e  gauge (v small,  
w large) - the re levant  d iagrams up to O(z  12) are the same as those depic ted  in fig. 4. 
The  f ree  energy  in this region is given by 

- F n l = 6 1 n  w + 6  In (1 + w - ~ z 2 ) + 4  In ( l + v z 3 ) + 6 z S ( 1 - z 4 ) v 4 ( 1  +vz3)  -4 

+4zS(1 - z4)w-6(1 + W'-Iz2)-6+O(z13). (5 .5)  

We now proceed  to locate the phase  boundar ies  by equat ing  the express ions  for 
the f ree  energy  in the var ious  regions. The  equa t ion  for  the bounda ry  be tween  phases  
I and I I I  is 

w = 1 - v4z  s -  u4zlO-~-41) 5Z 11 q ' -O(z  13) • (5.6) 

This line is a lmost  s t raight  but  does  exhibit  the p rope r  curva ture  indicated in sect. 1. 
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Fig. 8. Diagrammaticexpansion uptoorder 12 - ,  z = q of the low temperature 4D free energy. Smallopen 
dots represent flipped spins. The bonds incident upon these spins are usually different from unity (broken 
line) except when the neighboring spin is also flipped into the same state [e.g., diagram (e)]. Solid lines 

represent flipped gauge links. 

S u b s t i t u t i n g  v = 0, we o b t a i n  w = 1 which  is the  se l f -dua l  p o i n t  of  the  p u r e  gauge  

m o d e l .  

T h e  e q u a t i o n  for  the  b o u n d a r y  b e t w e e n  phases  II a n d  I I I  is 

- 1  , 2 . 1 4 . 1 5 + . 3 Z 6  + - 6  4 3 x  8 ,  / v = l + z t z  - t - ~ z  - t - ~ z  ( - w  - ~ 2 j z  - t - - ( , - w - 6 + 2 7 ) z 9  

/ -  - 7  5 9 x  l O j r  ( _  W - 6  11 + ( -  w - 6 + t ~ w  - 3 ~ ) z  + 6 w - 7 - 9 ) z  

+(--~W-6+6w-V--21W-S--SI~)Z12+O(z13). (5.7) 

F o r  w = co( y = 1), we r e c o v e r  the  p h as e  t r a n s i t i o n  of the  p u r e  spin  mode l .  T h e  va lue  

of  v~ 1 for  va r i ous  va lues  of q a n d  for  a n u m b e r  of Pad~ a p p r o x i m a n t s  is g iven  in t ab l e  
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TABLE 3 

Value of v~ 1 for the four-dimensional pure spin model (w = 0), for various values of q and various Pad6 
approximants, to be compared with results obtained from high temperature expansions 

q 
2 3 4 5 6 10 

[5, 5] 3.266 2.723 2.464 2.305 2.195 1.955 
[6, 5] 3.164 2.689 2.477 2.295 2.189 1.953 
[6, 6] 3.277 2.727 2.466 2.306 2.196 1.955 
High temperature 3.402 2.460 

[14] [16] 

3. We also compare  with the results of Fisher and Gaunt  [14] for q = 2 and of 
KadanotT and Ditzian [16] for q = 4 obtained from high tempera ture  series. 

The third line, separating regions I and II, was calculated to O(z~2). Since the 
expression is very long, we give here only the first few terms: 

where 

w = v -2 /3a ,  (5.8) 

a = l - ] v - l z  +(v-2/3  + ~ v - 2 - v 2 / a ) z 2  +(-~v4 -5/3_~v4 -3+~v)z3 

+(  ~ +  - 4 / 3  14 -8/3_110 -4 - -  V "~" 9 - V  "t- ~ V  - - l v - 8 ) Z 4 " ~  O ( z 5 )  . (5.9) 

The position of this line was also evaluated using Pad6 approximants up to the [6, 6] 
Pad6. The phase diagrams for q = 2 and q = 10 are displayed in fig. 9. The remark-  
able feature is that the three phase boundaries meet  at a single point. (This is evident 
for q = 10. For q = 2 , ' t h e  results of the Pad6 extrapolation for the I - I I  phase 
boundary cannot be trusted very close to the triple point but this line certainly 
appears  to lead to the crossing point of the two other phase boundaries.) The phase 
diagram for q = 2 compares  very well with the Monte Carlo results [2]: the three 
phase boundaries coincide exactly; in particular the endpoint of the I - I I  boundary 
found by Creutz lies in the shaded region of fig. 9a. 

We now discuss the latent heats in this model, defined as before as the dis- 
continuities in the derivatives of the free energy across the phase boundaries. 
Consider first the far end of the boundary line between regions I and II. The expected 
endpoint should be detected by the "latent heats" Lo = v ( d / d v ) ( F i - F i i )  and 
Lw = w ( d / d w )  (F~-  FH) becoming negative. Notice that in contrast with the three- 
dimensional case of sect. 4, there is no natural choice of latent heat "across '  the phase 
boundary. As already discussed in sect. 4, as q grows this endpoint must approach the 
right lower corner of the phase diagram. But again according to the appendix for 
large q, the only diagrams which need be considered there are easily characterized in 
both the high and low temperature  expansions. Repeating the steps of sect. 4, we find 
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Fig. 9. Phase diagram of the 4D model for q = 2 and q = 10, obtained using [6, 6] Pad6. For q = 2, along 
the boundary between regions I and II, we also give vertical bars indicating est imates of the error. Since 
this error becomes very large near the triple point, this segment  of curve has not been drawn. For q = 10, 
this est imated error, which is about  ten t imes smaller has not been plotted. Monte Carlo exper iments  [2] 

suggest that the endpoint  occurs within the shaded region. 

that the two Pad6 extrapolations of the latent heats L~ and Lw change sign at values 
of v and w obeying asymptotically 

t~c~q 3/4 , Wc~q -I/2 (5.10) 

Eq. (5.10) implies again, as for d = 3, that Kc is independent of q, as q becomes large. 

It follows that the endpoint here is further away from the triple point than in the 

three-dimensional case, and enters the region where the errors in our extrapolations 

are large. Moreover, to the order we have calculated the free energy, only one 

diagram survives in the regime (5.10) in both the high and low temperature 

expansions: clearly retaining only this term is a very crude approximation. Finally, 

we notice that the subdominant terms in the regime (5.10) are only down by inverse 

powers of q i/4 as a consequence the value of the (extrapolated) latent heats Lv and 

Lw for low values of q, q = 2 - 10, is very different from the dominant term in regime 

(5. I0). All these reasons explain why we could not find any clear signal of an endpoint 

for these low values of q. We see rather our extrapolated latent heat becoming small, 

with large error  estimates. 
We now return to the phase transition of the pure spin model and discuss its nature 

as we did in the three-dimensional  case. We thus compute the latent heat 

1 d 
LII-III = ~ ~ (FII - Fro) = v - z +" • ", (5.1 I) 

up to order x t2. As discussed in sect. 4, we can substitute for v -I the expression (5.7) 

either in LII-III or in v-ILII_III , and look for the first zero of the Pad6 approximants as 
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q-t/+ grows from 0 to 1. The results are again rather sensitive to the method,  showing 
that the convergence is slow. The critical value qc where the transition goes from first 
to second order ranges between 4.2 and 4.9 depending on the approximant,  when 
considering LIHn  and between 3.5 and 3.6 when we take v-lLn_m. Notice that 
relative errors in zc are multiplied by four when we calculate qc. We conclude that our 
large q expansion is not a very efficient method for determining qc but is still in rough 

agreement  with the consensus that qc ~< 3. 
The four-dimensional pure gauge model (v = 0) is of interest in and of itself. 

Self-duality implies a transition, if unique, at wc = 1, but does not specify the nature 
of this transition. However,  Monte Carlo experiments [19] as well as the analysis of 

the high temperature  expansion [12] indicate that it is first order, even for the Z2 
model, and yield estimates of the latent heat. How does the 1/,/q expansion 
reproduce these features? The expansion (5.3) restricted to v = 0 but pushed up to 
order 8 in the parameter  ~" = z 2= q-~/2 gives (see fig. 10) 

- ~F,  = w (  - ½w2~:  + ~ w 2 (  3 + ( a ( ~ w 6  - ~,w') 
+~5.1 5 4 " ~ W  --4W 7 ) + ~ ' 6 ( 1 4 w ~ - ~ w  6) 

+(7(~wT-l-t32wg +6w~)+(8(-~3wS+90wt°-Z~Tw~2), (5.12) 

and therefore for the latent heat at the critical temperature  we have 

L=-~ ~w (F~-Fit)lw:t = l + 2 (~F,) 

= 1 - 2 ( +  2~ "z-  2~ "3 - 6~ "4 + 54~ rs - 214~ r6 + 482~ "7 + 162( 8 . (5.13) 

analysis of the Pad6 extrapolations of these series reveals that L differs The 
substantially from its two-dimensional analog (see table 4). 

(i) The zero nearest the origin along (or close to) the positive real axis is located in 
the range ~ ' -  0.83, corresponding to q ~ 1.4-1.5. In view of our past experience in 
lower dimensions (sects. 3, 4), this may mean that the critical value of q is as low as 
qc= 1. 

Fig. 10. Diagrams contributing to the free energy of the four-dimensional pure gauge model, up to 
order q-'*. 
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TABLE 4 

Zero nearest the origin, zc, along the positive real axis in the q-t~2 plane, and the value for low q of the 
latent heat for the four-dimensional pure gauge model extrapolated by the [3, 3] to [4,4] Pad6 

approximants 

z¢ L(q = 2) L(q = 3) L(q = 4) L(q = 10) 

0.8226 [3, 3] 0.097 0.217 (q = 1.48) 

0.8388 [4, 3] 0.104 0.221 
(q = 1.42) 

0.8191 [4, 4] 0.095 0.216 
(q = 1.49) 

Monte Carlo 0.124 0.229 
or [12, 19] [12, 19] 

high temperature 

0.298 0.5069 

0.296 0.5066 

0.295 0.5063 

(ii) The  analytic s t ructure of L in the complex ~'= 1/~/q plane seems more  
complicated.  This manifests  itself in the appearance  of  pairs of  poles and zeros, 

located almost  on top of  each o ther  at ( ~ - 0 . 2  (1 ± i), very stable against successive 

extrapolat ions.  This, in turn, limits the radius of  convergence  of the series (5.13) to a 

low value 1~1-0.3 cor responding  to [ q l - 1 2 .  In any case, our  approximants  give 
unambiguous ly  first o rder  transit ions for all the models  q I> 2, and yield in the two 

cases q = 2 and 3 numerical  values for L in quali tative agreement  with the "da t a "  
[12, 19] (see table 4). 

6. Summary 

To reiterate,  we have used a large q expansion to construct  the phase diagrams for 
a class of  q-s ta te  coupled ga uge -m a t t e r  systems in d = 3  and 4 dimensions.  

Extrapola t ing our  results to q = 2, we find the predicted location of  the transit ion 

lines in good  quanti tat ive ag reement  with Ising Monte  Carlo data  for both  d = 3 and 

4. On  the border  of the phase d iagram where  the theory  reduces to a Potts  spin 
system, we have found the predicted critical coupling also to agree very well, 

quanti tat ively,  with the results of convent ional  series expansions for q = 2, 3, 4 in 

d = 3 dimensions  and q = 2, 4 in d = 4 dimensions.  Our  results for the latent heat  of  

the pure gauge theory  for d = 4 and q = 2, 3 agree reasonably  well with the available 
Monte  Carlo and high t empera tu re  series data and the ag reement  would be expected 
to improve  for larger q. On  the o ther  hand, a l though detailed compar isons  are not  yet  
possible, we suspect that  we are unable  to predict  the critical values of q for which 
transit ions change f rom first to second order  at critical points and lines nearly as 
reliably as their locations. 

The  d = 3, 4 phase diagrams have a pocket  of  free charge isolated by a phase 
boundary  which persists for all q. In d = 3 dimensions this phase boundary  is 
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expected, on the basis of Ising Monte Carlo and series expansion data, to shift f rom 
its first order nature at q = oo to a line of second order transitions for some q¢ between 
2 and 4. In d = 4 dimensions, however, the Monte Carlo simulations indicate that the 
I I - I I I  phase boundary becomes second order above q = 2 but the I - I I I  boundary 
remains first order as low as q = 2. On the basis of our results for the pure gauge 
theory, we speculate that the I - I I I  boundary for d = 4 remains first order down to a 
qc ~ 1, but are unable as yet to similarly estimate the critical q of the I I - I I I  boundary 
for d = 4. 

At q = oo there is also a line of first order transitions extending from the boundary 
of the free charge region to the lower right corner of the phase diagram and 

separating the Higgs from the confinement phase. The results of ref. [5], applying in 
general to the case of matter  fields in the fundamental  representation of the gauge 
group and applying in this case for q finite, imply a strip of analyticity along the far 
border of the phase diagram. We have indeed found, for d = 3, that the finite q 
corrections act to terminate this line before it reaches the corner and our phase 
diagram results are thus nicely in accord with the picture of ref. [5]. (It would be 
interesting to find an order parameter  associated with this first order transition line 
since it should provide, in the q ~ oo limit, a symmetry criterion distinguishing 
between the Higgs and confinement phases of the theory.) For d = 4, however, it 
unfortunately seems that a higher order calculation is necessary to unambiguously 
locate the low q endpoint of this first order transition line. The specific nature of the 
endpoint itself is also of a certain interest and can be treated independently of a large 
q expansion as a l iquid-vapor critical point in dilute gas approximation [18]. 

Finally, having established a certain measure of confidence in the utility of a large q 
expansion for understanding the properties of coupled gauge-mat te r  systems, we 
may proceed to investigate other quantities of interest perhaps accessible by the 
methods of this paper  including the detailed behavior of the Wilson loop correlation 
function and the spectrum of the theory. 

We wish to thank M. Peskin for instigating our interest in this problem. We are 
most grateful to J.M. Drouffe for discussions and for kindly assisting us in use of his 
Algebraic Manipulations Program, greatly simplifying analysis of our power series 
expansions. We have also enjoyed conversations with E. Br6zin and J. Zinn-Justin. 

Appendix 

This appendix is devoted to a study of the leading contribution to the free energy in 
the approach to the right lower corner of the phase diagram. 

More precisely, in d dimensions, we assume that v grows and w goes to zero 
according to 

v _ q C d - l ~ / a  = Z  - ( d - l ~  , W - - Z  2 . (A.1) 
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Let us show that in this regime, the high and low temperature expansions have well 
defined limits. In the high temperature limit, first, a typical contribution is 

z d - l l )  Lm z d - 2 w  - Pj 

with the same notations as in sect. 2. Consider the class of diagrams all of whose 
gauge plaquettes are bordered by matter links; we have 

r = P , ,  (A.3) 

since the choice of P,  independent integers rp determines completely the link 
integers rii by (2.15b), and since (2.15a) is then automatically satisfied. Now in the 

regime (A.1) 

d - I  d - 2  -1 z v - - O ( 1 ) ,  z w - - q  , (A.4) 

and hence a diagram of this class contributes a power qO. It is then clear that any other 
diagram is obtained by adding further plaquettes to a diagram of this class, in such.a 
way that (2.15b) remains satisfied. But in this addition of APg plaquettes, r differs 
from (A.3) by an amount 

Ar = A p , -  AR, ,  

where d R , > 0  is the number of constraints along the new links. Therefore,  the 
diagram has a net power q-,~R and is negligible as q--*oo. To summarize, the 
surviving diagrams in the regime (A.1) have as many gauge links as matter links. 
Examples are depicted on fig. 6. 

We next turn to the low temperature expansion. A typical diagram will contribute 

q*' e -t3Lm-'*e. , (A.5) 

where 

a < ~ S , , + L ,  

and Lm, P,, Sm, L ,  are defined as in the discussion of the low temperature expansion 
in Sect. 2. To avoid overeounting gauge-equivalent configurations, we impose some 
gauge-fixing condition. In the regime (A.1) 

e • = 1 + q l / d v  ~ q ,  

e ~ = 1 + q 2 / d w  = O(1) ,  (A.6) 

and hence the power of q associated with the diagram reads 

Sm + L , -  L ~  , 

which may be seen to be non-positive. The leading contribution comes from 
diagrams where only gauge links have been flipped, and hence Sm = 0, Lm = L,.  
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