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A systematic expansion of the path integral for lattice gauge theory is performed around the mean field solution. In 
this letter we present the results for the pure gauge groups Z(2), SU(2) and SO(3). The agreement with Monte Carlo calcu- 
lations is excellent. For the discrete group the calculation is performed with and without gauge fixing, whereas for the 
continuous groups gauge fixing is mandatory. In the case of SU(2) the absence of a phase transition is correctly signalled 
by mean field theory. 

1. Introduction. The naive mean field approxima- 
tion to lattice gauge theory is known to predict a first- 
order phase transition [1,2]. The reason is that the 
interaction between the link variables, in the Wilson 
action, is of  fourth order. In spin theories where the 
action is quadratic in the site variables, a second-order 
phase transition is predicted. 

The mean field method seems at the first glance to 
contradict  Elitzur 's theorem [3]. Drouffe [4], how- 
ever, has argued that the mean field equations [5,6] 
are equivalent to a saddle-point approximation [7]. 
This permits a systematic calculation of  higher-order 
corrections. Due to the gauge degeneracy of  the sad- 
dle points, gauge non-invariant quantities vanish when 
they are integrated over the degeneracy, thereby satis- 
fying Elitzur's theorem. 

In this letter we investigate the lowest-order solu- 
tions and their higher-order corrections. We exem- 
plify the method in the case of  Z(2),  SU(2), and 
SO(3) pure lattice gauge theories with Wilson action 
in space- t ime  dimension D = 4, with at tention paid 

i Permanent address: DPhT, CEN, Saclay, France. 

to the differences between the discrete and continu- 
ous cases. The discussion of  the more general situa- 
tion, including other groups, dimensions and variant 
forms of  the action, will be presented in a forthcom- 
ing paper. 

2. Z(2)  wi thout  gauge fixing. The link variables 
take in this case the values U~ = -+1 and the part i t ion 
function is 

where the sum in the exponent  is over all distinct 
plaquettes. The basic tool  [8] in obtaining the sad- 
die-point approximation is the conversion of  the 
integral over the compact  invariant group measure 
(here 1 7EU~=~l) of  the gauge group, into an integral 
over unconstrained variables by  means of  Fourier 
transformation.  In the present case 
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da exp [co(a) - aU] f(U) 1 23 I(v)= f duf  55 
U=+_I 

_ ~o - i o ~  ( 2 )  

where w(a) = log 7EU=-+l eaU = log cosh a. At the 
expense of  introducing one extra variable (a) for 
each link we may rewrite (1) in the form 

io~ da~ 

__~  _ ioo 

X exp@ ~ ]  U£U£2 U£3U % 

+ ~ [co(a~)-  a~U~]) . (3) 

This integral can now be evaluated by standard sad- 
dle-point techniques to be justified later. 

In the lowest-order approximation we obtain the 
saddle-point equations 

(Q1~2~3) 

co'(a~) (= tanh a~) = U~, (4) 

where the sum is over all sets of  three links (~1 £2 £3) 
that form a plaquette with ~. These equations are in- 
variant under (1) translations, (2) rotations by 90 °, 
and (3) gauge transformations U~ = U(x,y)  -~ o(x) 
X U(x , y )o (y )w i th  o(x)= +1. Consequently any solu- 
tion is highly degenerate if it is not invariant w.r.t. 
transformations (1 ) - (3 )  above. Let us start by looking 
for a solution which is translationally and rotationally 
invariant, i.e. U~ = U0, aQ = a 0 . Then we get (elimi- 
nating %)  

w'(Z(D - 1)~ U 3) = U 0 . (5) 

For/3 </31 = 0.336 (D = 4) this equation has only the 
trivial, non-degenerate, gauge-invariant solution U 0 
= 0 for which the free energy vanishes (F = 0). For/3 
>/31 this equation has, besides the trivial solution, 
also non-trivial solutions with U 0 > 0. The free energy 
per lattice site is in this approximation (fig. 1 a) 

F = log 2 - ~D(D - 1)/3U04 - ½D log (1 - U2), (6) 

where the first term is due to the gauge degeneracy of  
the solution U 0 :;a 0. This degeneracy gives to the par- 
tition function a factor 2 N where N is the number of  

280 

sites in the lattice. (It is easy to see that for/3 --> oo eq. 
(6) agrees with the ordinary weak-coupling expan- 
sion 

F= ½D(D - 1)13 - (D - 1)log 2 

+ D  e x p [ - 4 ( D -  1)/3] + O (exp[ -S(D - 1)/3]).(7) 

Note that due to the discreteness of  the groups the 
next  terms are exponentially small). 

Zero-order mean field theory does not furnish a 
good description of  the strong-coupling phase. It 
leads to F = 0 which is a poor approximation to 
the actual behaviour of  the free energy in this phase 
as reflected in the internal energy (see fig. 2a). It is 
consequently necessary to take corrections into ac- 
count. When organized according to increasing pow- 
ers of/3 the loop expansion around the saddle point 
(U 0, a0) = (0, 0) reproduces the strong-coupling ex- 
pansion [9]. The first non-trivial contribution F 
= ¼D(D - 1)/32 arises at the three-loop level. Com- 
paring this with the free energy of the non-trivial 
solution shows that the transition takes place at/3 c 
= 0.440 in excellent agreement with the exact result 
/3 c = ½1og(1 + ~ ) - -  0.4407. Including more terms 
in the strong-coupling expansion does not change 
this appreciably (~1%). 

In the weak-coupling phase the corrections al- 
ready arise at the one-loop level where the change in 
the free energy is 

A F  = - ( 1 / 2 N )  tr log(1 -/3W"V]). (8) 

Here I7~1~2 = U 2 if (~1, ~2)belong to the same pla- 
quette and zero otherwise. The double derivative W" 
= 1 - U 2 "~ exp [--4/3(D - 1)] is already very small 
(~½%) at the transition point. Thus A F  = O (exp [-8/3 
X ( D  - 1)]). It may be shown that higher-order dia- 
grams are not further suppressed. We need indeed an 
infinite number of  terms/3nexp[-8(D - 1)/3] to re- 
construct the next term exp [ -8 (D - 1)/3] (e 4t3 - 1) 
in eq. (7). 

The experience with Z(2) shows that the mean 
field expansion describes both phases of  the model 
with a high degree of  accuracy. In the strong-cou- 
pling phase it is necessary to go at least to the three- 
loop level whereas in the weak-coupling phase it is 
sufficient to stay at tree-level approximation. 

3. Z(2)with gaugef&ing. The mean field expan- 
sion may also be applied to the partition function in 
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a fixed gauge. We no longer  have degenerate  saddle 

points  and consequent ly  do no t  obta in  a log 2 t e rm 

due to their  en t ropy .  It is most  convenient  to choose 

the axial gauge where  all links in the D-di rec t ion  have 

been fixed to uni ty .  The saddle-point  equat ions  (5) 

now b e c o m e  

c o ' ~ [ 2 ( D  - 2 ) U 0  3 + 2 U 0 ]  ) = U 0 (9 )  

and the corresponding free energy is 

F so (3), o = 4. 
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, 2 /  
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Fig. 1. Free energy for Z 2 (a), SO(3) (b), and SU(2) (c). 
Graphs labelled I are the zeroth-order mean field results for 
the strong- and weak-coupling phases. Graphs labelled II are 
results of the mean field approximation plus oneAoop correc- 
tions from the isospin one-channel for the weak-coupling 
phase. Graphs labelled III are results of corrections to the 
mean field approximation in the strong-coupling phase, for 
Z2 the first term in the f3-expansion, for SO(3) and SU(2) the 
first three terms in the character expansion. 

Faxia 1 = - f l (D  - 1)[~(D - 2)U04 + U 21 

- ½ ( D  - 1 ) l o g ( 1  - U 2 ) .  ( 1 0 )  

Although the free energy is formal ly  independent  o f  

the gauge there is a priori  no guarantee that  the re- 

suits o f  the previous and the present  section should 

agree in the lowest  order.  It is easy to see that  F 

- Faxia 1 gauge = exp [ ~ ( D  - 1)t3] + . . . .  This discrep- 
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Fig. 2. Plaquette energy for Z 2 (a), SO(3) (b), and SU(2) (c), 
as predicted by the mean field approximation with correc- 
tions, and as obtained by Monte Carlo (MC) calculation in 
refs. [ I 1,12,14]. Labels I, II, and III are explained in the cap- 
tion o f  fig. 1. 

ancy is removed by taking into account new configu- 
rations with lower action. Such configurations are ex- 
ponentially suppressed (see fig. 3). We believe that 
taking these corrections into account will lead to 

Uo 

Uo 1 Uo I Uo l U o 

"////,~ uoll Uo t -Ud~ 

I 
Uo -Uo -Uo Uo 

Fig. 3. Configuration contributing to the free energy of  Z 2 in 
axial gauge. Only 2(d - 1) plaquettes (shaded) are frustrated. 
A dilute gas of  such defects gives a contribution AF  

= e x p [ - 4 ( d  - 1)flU~o]. 

agreement of  the two methods to any order and ex- 
pect the mean field formalism to be gauge invar- 
iant * 1 

4. C o n t i n u o u s  group~ We only emphasize the main 
differences between the treatment o f  discrete and con- 
tinuous groups: 

(i) Gauge fixing is now mandatory. Otherwise the 
zero modes corresponding to gauge transformations 
of  a non-invariant solution to the saddle-point equa- 
tions will give rise to infinite fluctuations. Again we 
use the axial gauge. 

(ii) The previous formalism is extended such that 
UQ, a~ are matrices in the matrix algebra in which the 
group is embedded [2 × 2 complex matrices for SU(2) 
or 3 × 3 real matrices for SO(3)]. We look for mean 
field solutions of  the form U~ = U 0" 1, a£ = a 0.1 
where U 0 and a 0 are real numbers. Then the mean 
field equations take exactly the same form as eq. (9) 
with 

co(a) = log[I0(a) - 12(o0], for SU(2), 

= log[ea/3(I 0 - Ii)(-~a)], for SO(3). (11) 

(iii) The free energy is in the tree approximation 

F = f l I I ( D  - 1 ) ( D - 2 ) U  4 + ( D -  1)U 2] 

+ (O - 1) [ca(a0) - a0 U0] • (12) 

It (and its derivative, the internal energy E) agrees for 
fl ~ ~ with the first two terms of  the weak-coupling 

,1 The problem of  gauge invarianee of  mean field theory has 
also been discussed by Brout et al. [ 10]. 
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expansion (-~E -- 1 - 3/4/3) for SU(2). Note that if we 
had not  fixed the gauge we would have obtained the 
incorrect result g E -  1 - 1/t3 for 

(iv) In calculating the corrections it is convenient 
to project the matrices As  = ~ -- s 0 and AU = U -  U 0 
on irreducible representations [j = 0, 1 for SU(2) and 
j = 0, 1,2 for SO(3)]. The double derivative W" in (8) 
then depends on the channel. In the adjoint channel 
j = 1, W" ~ 1//3 whereas in other channels W" ~ 1//3 2. 
As a result the contr ibution to (8) from the lat ter  is 
very small ( A F  ~-- 10-  2,/x E ~ 10-  3 at/3c)- The ] = 1 
channel gives an important  contr ibution A F  = const 
+ O(1//3). Simple power counting shows that  in higher 
orders only a finite number of  diagrams contribute to 
a definite order in 1//3. 

5. Results. Let us first present the results of  zero- 
order mean field theory for SO(3) and SU(2). Here 
the non-trivial free energy passes through zero at/3 c 
= 2.48 for SO(3) and at/3c = 1.68 for SU(2). We recall 
that SO(3) is known [11] ,2 to have a first-order 
transition at/3 = 2.49 while SU(2) has no phase transi- 
tion [12] but  a sharp peak in the specific heat at/3 

2.2. The mean field internal energy reproduces 
very well the Monte Carlo data in the ordered phase 
(figs. 2b,c). 

The main effect of  the one-loop corrections is to 
shift F b y  a constant in the ordered phase (~1.8 for 
both  groups at/3 ~/3c). For  SO(3) we compare this 
corrected free energy with the first three terms of  the 
character expansion and find that/3c is shifted to/3c 
= 2.62 + 0.10 where the quoted error bars are esti- 
mated from neglected higher-order terms and in the 
description of  the weak-coupling phase. Notice that it 
makes sense to use a truncated strong-coupling series 
for t3 ~/3c, since this series is expected to diverge only 
for larger values of/3 (t3 ~ 2.9 to 3) [13]. The excel- 
lent agreement between the internal energy (fig. 2b) 
and Monte Carlo data is seen to deteriorate a bit  close 
to the critical point.  Presumably two-loop contribu- 
tions become sizable here. 

The case of  SU(2) is different. The corrected mean 
field free energy in the ordered phase seems to be al- 
most degenerate, with or slightly below the strong- 

,2 Halliday and Schwimmer [ 11 ] give the value ¢Jc ~' 2.6, but 
their figures show ~c = 2.5. 

coupling estimate (see fig. lc)  in a large region (2.0 
</3 < 2.4). Since the strong-coupling series has as 
radius of  convergence 1/31 ~ 2.2, its use becomes ques- 
tionable. Also since the two configurations U 0 = 0 
and U 0 @ 0 are almost degenerate in free energy in a 
rather large region we may expect complicated phe- 
nomena like tunneling between the two states to take 
place. This is not taken into account in our approach, 
but  is being investigated now. At any rate we find it 
gratifying that our simple mean field approach refuses 
to yield a first-order phase transition for SU(2). 
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