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1. Generalities
1.1. Introduction

Non-Abelian gauge theories play nowadays a dominant role in particle physics. The mechanism of
spontaneous symmetry breaking has enabled Salam and Weinberg to construct a unified theory of
electroweak interactions, and grand unified theories are actively studied. On the other hand, asymptotic
freedom is the crucial property of the current theory of strong interactions, quantum chromodynamics
(QCD). This remarkable property, that only non-Abelian gauge theories enjoy, guarantees that
fundamental constituents of hadrons — quarks and gluons - have vanishingly small interactions at short
distances. This allows a perturbative treatment in this regime. On the contrary, the long distance
behaviour of that theory remains more elusive. Such problems, as the assumed permanent confinement
of quarks or the computation of hadron spectrum, are typically strong coupling problems and cannot
resort to standard field theoretical methods.

A major breakthrough was accomplished in 1973 when Wilson [1] (and Polyakov [2]) proposed to
consider lattice gauge theories. The discretization of space, carefully designed to preserve gauge
invariance, offers an ultraviolet regularization and is not expected to affect the long distance behaviour,
since the effective coupling at small distance is very weak. A lattice gauge theory may be considered as
a model of statistical mechanics and is thus amenable to all techniques used in such models [3, 4] - series
expansions, mean field approximations, Monte-Carlo simulations, ...-. This has been done with an
Euclidean space-time lattice [1,5-7] after a Wick rotation, or with a spatial lattice, keeping time
continuous, in the Hamiltonian formulation [8].

A model of statistical mechanics approximates a physical system and is used to study its properties as
a function of temperature, fields,.... At a non-critical temperature, these properties depend strongly
on the choice of the effective Hamiltonian. In contrast with this situation, in lattice gauge theories, one
is mainly interested in the approach to the critical point. There, the correlation length becomes much
larger than the lattice spacing; at that scale, details of the discretization, i.e. of the lattice action or
Hamiltonian, become irrelevant, and the continuous theory is recovered.

Monte-Carlo methods have been thoroughly reviewed by Creutz, Jacobs and Rebbi [9]. The present
work reviews two analytical approaches which have been particularly developed over the last ten
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years: strong coupling expansions and mean field approximation. This leaves aside many interesting or
promising other methods, as variational techniques, Migdal-Kadanoff approximate renormalization
group [10], . ... By lack of time, of space and of competence, we have also restricted this review to pure
gauge and to Higgs-gauge systems. Theories with fermions or finite temperature effects would deserve a
separate treatment. For the same reason, we discuss mainly the Euclidean approach, but compare some
of the results with those obtained in the Hamiltonian formulation.

Section 2 reviews some particular rigorous or well-established results, to be used in the following.
Section 3 deals with strong coupling methods; subsection 3.1 explains the general features of the
expansions and the methods to derive them. The series currently known are displayed in the tables of
subsection 3.2, and some partial resummation techniques are presented in subsection 3.3. Subsection 3.4
contains a detailed analysis of the various series and their comparison with numerical Monte-Carlo data.
Section 4 is devoted to mean field; subsection 4.1 discusses the general framework, and subsection 4.2
applies it to pure lattice gauge theories. Finally, section 5 deals with the case of scalar matter fields
coupled to gauge fields. Appendix A gathers some formulae of group theory which may be useful,
appendix B elaborates a technical point on the large N limit.

We are quite aware that such a review is highly indigestible. We have tried to make the different
parts as independent as possible, to allow a selective reading. The reader who has skipped a part will
find cross-references if he or she needs some material presented earlier.

We end this introduction with the usual apologies to those who will find their work improperly
quoted or reviewed. We also refer to some general reviews on lattice gauge theories [11-14].

1.2. General conventions and notations

Almost all the way through this paper, we use the Euclidean formulation of lattice gauge theory. A
Wick rotation t—if has been performed, and all calculations are done in the framework of the
Euclidean metric. Only at the end of the procedure are the results reinterpreted in the usual physical
space. Hopefully, no information is lost in this process. In particular, the physical energy spectrum is
unmodified; instead of observing a periodical time evolution, the Wick rotation replaces it by an
exponential decrease of field correlations.

A hypercubical regular lattice is commonly used. Relevant notations are

d dimension of the space.

H, v Greek letters denoting a particular dimension (1 to d).

a lattice spacing.

@, v vectors of length a along the wth direction.

) Latin letters denoting a particular site.

L lattice size. Depending on the context, free or periodic boundary conditions are used.
In some cases, the size L, depends on the chosen direction u.

N total number of sites (= L?).

Lij, i different notations for a lattice bond joining two neighbouring sites i and j = i + 4.

p, (ijkl), igp  different notations for the “plaquette”, i.e. the elementary square of the lattice,
involving the four sites i, j=i+pg, k=i+4+7 and [=i+9; this plaquette is
bounded by four lattice bonds.

On the lattice, different kinds of fields are introduced:
¢ generic name for all fields. This notation is used in sections describing general
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techniques in order to save a lot of writing, especially for the indices. This field ¢%
depends on its location x (which may be a link for gauge fields, or a site for matter
fields) and on other internal indices a (spinorial, vectorial, . . .).

D¢ corresponding measure, factorized on the field locations as I, du (¢x).

S{eéh action governing the dynamics.

B lattice coupling constant. Also called inverse temperature, or inverse squared (Yang-
Mills) coupling constant.

Z(J) generating functional for the Green functions, Z(J)= [ exp{BS + J - ¢}D¢.

Z partition function (= Z(J = 0)).

wW(J) generating functional for connected Green functions (= In Z(J)).

F free energy per site (= In Z/X). (Strictly speaking, this name is incorrect due to the
missing —1/B factor.). ‘

() physical mean values computed with the Boltzmann weight exp(8S).

In the particular case of gauge fields, we write

U, standard gauge field name, belonging to the fundamental representation of the gauge
group G.

U, shorthand notation for the product of fields U, along the boundary links of a plaquette

P (U g = UUp UUy). This notation is ambiguous (depending on the orientation and
on the starting point on the plaquette boundary), but we will use it if this ambiguity is
irrelevant (e.g. in Re Tr U,).
Uc as preceding, but along a closed curve C.
Some group theory notations are also needed.

G gauge group.

N dimension of the fundamental representation of G. In most applications, G is SU(N).

r,s Latin indices for the representations.

f r=1 is the fundamental representation. This index is often omitted whenever no
possible confusion exists.

0 r =0 is the trivial representation.

d, dimension of the representation r (d; = N, dy = 1).

Xr character (trace of the representation r). xy{(U)=Tr U, x.(1) = d..

DU invariant Haar measure on G, normalized to 1.

1.3. Gauge fields

Gauge theories are based on the concept of local gauge transformations, i.e. of transformations
g(x) € G depending on the space point x. Local matter fields ¢(x) transform under the transformation
g(x) at the same point. In continuum systems, the requirement of gauge invariance for derivative terms
requires the introduction of a local gauge field A, (x) in the Lie algebra which uses both g(x) and its
first derivative Vg(x) in its transformations.

The direct discretization of this gauge field on the lattice may seem natural, but is rather uninteres-
ting. Indeed, the transcription of the derivative Vg(x) in the lattice transformation law leads to the
following alternative. Either V is approximated by a nearest neighbour difference; this approximation
breaks gauge invariance and restoring this invariance in the continuum limit is problematical; or V is
exactly reproduced through a non-local combination (g; on all sites are used in the transformation), and
non-locality may spoil the resulting theory.
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In any case, more than one g; must be used in the transformation of the gauge field. The minimal
choice is to use two local gauge transformations on neighbouring sites [1]. Gauge fields U; take their
values in the gauge group G (and not in its Lie algebra) and transform according to

Uij—’giUijgj_1 . €y
Moreover, the constraint
U, =Uy' (12)

is required. On a hypercubical lattice, there are Ad bonds ij on the lattice, and this choice has the same
number of degrees of freedom as a direct discretization of the continuum gauge field A,. This lattice
gauge field which lives on links may be seen as the analogue of the non-local path-ordered phase factor
of the continuous theory

U;=P exp{ig § A, dx“} : (1.3)

Y

Before describing the possible dynamics for these gauge fields, we must say a word about the choice
of the physical degrees of freedom, i.e. the possible choices of gauge. Given any tree of links on the
lattice, it is possible to fix the gauge fields on these links to some assigned value in G. This is done step
by step, starting from a given point, by using the transformation law (1.1) to determine recursively the
g’s. Among the possible choices, fixing to 1 all the gauge fields located on links parallel to a given
direction is known as the axial gauge, whereas fixing them on the comb-like set of links (fig. 1)

Uy=1 Vx
Ux,d/,\lzﬂ for xd:()
Ux,d/—\z =1 for Xg = Xg-1= 0 (14)

is sometimes called the maximal gauge.
For Abelian gauge groups, the set {U,} of all plaquette values is sufficient to determine the gauge
fields up to a gauge transformation, provided the constraints

Fig. 1. Comb-like set of links set to 1 in the maximal gauge.
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[1Uu,=1 (1.5)

pEdc

are fulfilled by the product of the six plaquettes bounding every three-dimensional cube c. The U,’s can
be taken as new variables (with, in the measure, a §-function imposing (1.5)). However, this result is
difficult to extend to non-Abelian lattice theories [15]. The two-dimensional case, where no constraint
(1.5) has to be imposed, is noteworthy: taking plaquette variables makes two-dimensional lattice gauge
theories solvable. This will be recalled in section 2.2.

1.4. Pure gauge lattice actions

We want to construct a pure gauge action (without matter fields) for the description of the dynamics
of the fields U,. If S[U] denotes this action, functional of the gauge field configurations, we are
interested in the partition function

Z= f DU ePStUl (1.6)
and in expectation values of various operators
©)=2" J DU 6[U] 511, (17

In this expression, B is the inverse temperature of the Boltzmann weight ¢#°. Its relation with
Yang-Mills coupling constant in the continuous theory will be examined in subsection 2.1. In the
construction of an invariant, one is naturally led to consider the product along a closed curve
C=1i,--- iniy

Uc= UixizUiziz' t Uinil
which transforms under the transformation (1.1) as

-1

Uc—> gy Uc g,

and to suppress the remaining dependence on g, by taking the trace. The simplest contour is the
plaquette (since the single back and forth step is ruled out due to the constraint (1.2)). This choice is
known as the Wilson action

§= 3 xReTH(U)). (18)

Due to the trace and the real part, the result is independent of the starting point and of the
orientation chosen to define the quantity U,. Note also that the real part is automatically taken if one
sums over all oriented plaquettes,
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S= 3 STy,

or.plaq.

This action has been generalized in order to improve some features of the model in three main
directions.

i) Changing the trace to a more general real function on the group. Group theory states that all
functions invariant under the transformation (1.1) (function of group classes) are linear combinations of
the group characters,

§= 2.2 v Rex(U)/d, (1.9)

d, is the dimension of the representation r. The choice is very large; however, two cases are of particular
interest.

a) The “fundamental-adjoint” mixed action uses only the fundamental and the adjoint represen-
tation,

LIRS SPTUARE STUALS (110

Its great interest is to allow us to study easily the role of the centre Z of the group in non-Abelian
continuous theories. This centre is thought to be important in confinement properties. Indeed the adjoint
representation does not distinguish between group elements which differ by a multiplication by a central
element (commuting with all other group elements), while the fundamental representation (which is
faithful) does. The two-dimensional phase diagram in the couplings B¢ = Bysand 8, = By.is thus of interest.
Note the interesting boundaries of this phase diagram, which are

B.=0 Wilson action for G (e.g. SU(2))

B:=0 Wilson action for G/Z (e.g. SU(2)/Z, = SO(3))

B.=>=  Wilson action for Z (indeed, the configurations are reduced to the only U, maximizing x.,

i.e. belonging to Z) (e.g. Z,)

Bi=x Trivial theory (since all U, are 1, only pure gauge configurations survive).

b) “geometric” actions using the natural metric induced on Lie groups. They are well-adapted to the
vicinity of the continuum limit where the fluctuations around a pure gauge configuration see only the
local geometry of the Lie algebra. They may also be useful for some peculiar limits (such as SU(N),
N — ») where the use of the Wilson action leads to singularities and generates unwanted transitions [16]
(see below section 2.5). Manton’s action [17] uses this metric directly by writing an action proportional
to the squared length separating U, from unity. For instance, using the U(1) or SU(2) gauge group, the
class functions depend only on the angle 6 of the rotation U,, and the metric is (d8)’; therefore,
Manton’s action is

§=>02. (1.11)

However, the periodicity in the angle variables for the compact groups makes this action multi-
valued and singular for conjugate points on the group manifold. This defect is cured for U(1) by
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Villain’s action [18] which restores the periodicity

¢ = [ S expl- (6, - 2, Y} (1.12)

p np

This action is generalized to any gauge group using the heat kernel. Indeed, in (1.11), the exponentiated
action is Gaussian and can be considered as the response, after a time ¢~ 1/8, to a sudden local
heating of an infinite linear rod. However, this rod has the wrong topology of the non-compact group R;
it must be replaced by the correct manifold (ring for U(1), S; for SU(2), .. .). One has to solve the heat
equation

Af(g, )= of(g, i, g€G, (=N, f=e (1.13)

where 4 is the Laplace-Beltrami operator, with the initial conditions f(g, t=0)= 8(g = 1); the solution
gives the heat kernel action [19-25]

e® =[] 2 d x.(U,) exp{- C?INB} (1.14)

where C® is the quadratic Casimir invariant for the representation r. For U(1), this is nothing but the
preceding Villain’s action; the SU(2) heat kernel action reads

exp(pS)=T1 3 @i+ I expijj+ 1128, (1.15)
p i=0,1/2,..

while only integer values of j are used for the SO(3) group.

ii) Extended plaquette actions use loops larger than the minimal plaquette. The idea is to reduce the
lattice artefacts by adding longer range interactions. Hopefully, the rotational invariance effect is
restored earlier, and the asymptotic freedom regime extends to lower 8. This may be incorporated in a
Monte-Carlo approach [26,27]. Symanzik [28] suggests constructing the lattice action in a systematic
way so that the perturbative cut-off dependence is reduced; in the continuum limit behaviour, the first
step consists in suppressing the 0(a?) dependence in the effective continuous Lagrangian [29]. In lattice
gauge theories, these approaches add six link loops, such as the “window”, the “chair” and the
non-planar hexagon (see fig. 2).

ili) Use of other lattices. Their rotation invariance group may be a larger subgroup of the SO(d)
continuous rotation group, and again lattice artefacts may be reduced. Few attempts have been made so

M I O

a b

Fig. 2. Loops used in lattice gauge actions. a) the plaquette. b) six link extended loops.
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far {30, 31]. Another proposal is to use random lattices [32]. In such systems, the randomness of the
lattice sites should restore a mean rotation invariance.

1.5. Order parameter

The various phases of lattice systems are easily characterized if there exists an observable (order or
disorder parameter) with a different behaviour in each of them. For instance, the spontaneous
magnetization (o) in the Ising model is such a parameter; it vanishes identically above the Curie
temperature, but takes a finite value under this temperature. This order parameter is local; other
observables, such as mass gaps (related to the asymptotic behaviour of the correlation function) are
non-local, and may sometimes be used to distinguish the phases.

In lattice gauge theories, there is no local order parameter. Wegner [33] constructed gauge invariant
actions as an example of systems without any local order parameter. In particular, the analogue of the
spontaneous magnetization, viz. (U,), is not an order parameter. It may be proven (Elitzur’s theorem
[34], see subsection 2.4) that the average value of any non-gauge invariant quantity vanishes
identically, irrespective of the coupling. The Wilson loop [33, 1] is a non-local order parameter which
discriminates (in pure gauge systems) between the different phases and which has a nice physical
interpretation in terms of confinement properties.

Let us consider the asymptotic behaviour of a large loop C

W(C) = (x(Uc) - (1.16)

Its physical interpretation is that it measures the variation of the energy when an external static field is
introduced along C; stated differently, at some point of C, a quark and an antiquark are created; both
propagate along C in opposite directions until they meet and annihilate. Taking for convenience a
rectangular loop R X T, we expect a behaviour

W(C)~e TV® (1.17)

for large T, where V(R) is the potential energy between two static changes at the distance R, including
their self-energy (this formula replaces the periodical quantum behaviour after the Wick rotation
leading to the Euclidean metric).

It will be rigorously proven later [35] that this parameter behaves as the exponential of the minimal

loop area in the strong coupling region,
W(C)~e %4, (1.18)

This leads to a linearly growing potential V(R)~ KR which prevents the test charges from being

separated and implies confinement.

Conversely, we expect, in the low coupling region, a perimeter law. The following argument is,
however, perturbative. A rigorous proof exists only for 4-d. U(1) [36] and discrete Abelian gauge
groups, while it should fail for SU(2) and other non-Abelian groups in d =4 dimensions. Heuristically,

to lowest order in g for QED,

W(C) = <P expig fﬁ A dx> - exp{— 12 ff § A(x - y)dx dy} . (1.19)

C C
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The propagator 4 favours small separations between x and y and leads to a perimeter behaviour
W(C)~e*F (1.20)

for large loops. In this U(1) case, V(R) is constant for large separations R, leading to charge screening
rather than to confinement.
The conclusion is that the string tension, defined as

K= lim {~In W(C)/A} (1.21)

C large

is possibly a good criterion for discriminating between confined (K# 0) and non-confined (K =0)
phases. However, we already note some important limitations in its use:

a) no matter fields (called quarks in this discussion) are allowed. Otherwise, dynamical quark-
antiquark pairs are created when separating the static charges, and screen them: the Wilson parameter
behaves as the exponential of the perimeter;

b) the centre of the gauge group must be non-trivial. Otherwise, it is always possible to screen the
static charges by gluons (gauge fields) in order to form a gauge invariant object. The corresponding
strong coupling diagrams will be displayed in section 3. The Wilson loop has, for instance, a perimeter
fall-off with an SO(3) four-dimensional gauge group for all couplings, although a transition is actually
observed.

In spite of its defects, the Wilson criterion is presently the most popular order parameter. Using
duality arguments, it is possible to construct the dual disorder parameter for Abelian gauge groups. The
corresponding quantity generalizes to all groups with a non-trivial centre and is called the 't Hooft loop
[37]. We defer its description to subsection 2.3.5, after the review on duality properties.

1.6. Summary of some available numerical results

We do not enter into the technique of Monte-Carlo simulations, nor into a complete survey of the
existing data. We refer to another review [9] which is devoted to this aspect, and simply summarize in
this subsection the main results obtained for pure gauge theories. The questions of interest are:

- What is the phase structure of the theory and what are the characteristics of each phase?

—What is the nature of the transitions? Indeed, we want to find a second order critical domain
represented by the continuous Yang-Mills theory.

— What are the quantitative values of physical observables as we approach these critical domains?

In order to summarize the results on the transitions in a schematic way, we consider three typical
gauge groups:

a) Z,, prototype of discrete Abelian groups, and the simplest possible group. Although the naive
continuous limit does not exist for discrete groups, they play an important role in the interpretations in
terms of topological excitations, as they are centres of non-Abelian continuous simple groups (SU(2) for
Z,).

b) U(1), compact Abelian group. It corresponds to quantum electrodynamics.

c) SU(2), prototype of continuous non-Abelian compact simple groups, i.e. the groups for which
lattice theories have been developed.

Table 1 summarizes the transition pattern for these three categories in various dimensions. The
simple case of Z, does not call for any particular comment, but for the order of the transition. U(1) is
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Table 1
Summary of transition patterns for typical groups

d Z; u) SUQ)
2 confinement for all couplings, no transition
3 identical to Ising model
second order transition
near (.76
4 (transition at 0.44) transition of order 2 or higher confinement everywhere, but
separating confined phase from no evidence of a traasition,
Coulomb phase at 0.99 cross-over near 2.2
S
and first order transition separating confined and unconfined phases

more

more interesting. The low temperature phase (Coulomb phase) appears first in four dimensions and
contains a massless photon. There are in particular infinite range correlations in all the weak coupling
domain and not only at the transition [36]. This is consistent with the fact that the system represents
free QED, a coherent field theory without confinement nor asymptotic freedom.

A comment on discrete subgroups of a given gauge group must be added here. It seems that Z,, with
Wilson’s action interpolates from Z, to U(l) as n increases. Indeed, for n >4, one observes the
appearance of a U(l)-like phase for intermediate couplings. This third phase develops between the
strong coupling confined phase and the weak coupling unconfined region; the latter shrinks until it
vanishes completely at infinite n. Similar effects are observed when non-Abelian groups (such as SU(2))
are simulated by their discrete subgroups; above some critical coupling, the discrete character is
smeared by the fluctuations and the system behaves as the continuous one.

Let us turn finally to non-Abelian continuous groups. In four dimensions, due to asymptotic freedom,
it is expected that such systems are confined for all couplings and that the continuous limit is reached at
the zero coupling limit. This does not exclude, however, the possibility of a transition. With the Wilson
SU(2) or SU(3) action, there is some evidence for the absence of such a transition; however, a sharp
change in the properties is observed near 8 = 2.2 for SU(2) and 8 = 5.6 for SU(3). This is seen

~in the string tension (fig. 3 [38]). In the strong coupling region, strong coupling expansions fit the
numerical simulation very well and suddenly break at a cross-over point. In the weak coupling phase,
the predictions of asymptotic freedom (see subsection 2.1) are well reproduced even far from the
continuous limit B8 = . A similar behaviour of the mass gap — glueball mass —is also observed;

—in the specific heat, where a bump shows up (see fig. 4 {39]), but without any evidence of a
discontinuity, nor divergence, hence excluding a transition;

~in the rotational invariance, restored for some observables in the whole weak coupling phase. Fig. 5
[40] displays equipotential lines between static sources and illustrates this phenomenon that will be
discussed in subsection 3.4.3.

Notice that the four-dimensional phase structure depends crucially on the topological properties of
the group and on the chosen action. We display, as an example, the fundamental-adjoint mixed action
phase diagram for SU(2) (see fig. 6 [41]). Lines are first order transitions. We remark here that
centreless groups (such as SO(3) [42]) present a first order transition, in contrast with their universal
covering group (such as SU(2)). The interpretation is done using topological excitations described in
terms of the discrete centre (here Z). Note that the simplicity of the group also plays a role. U(N),
which mixes U(1) and SU(N), presents a first order transition in four dimensions, whereas U(1) does not
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Fig. 3. SU(2) string tension. Monte-Carlo data and their fit by the
asymptotic freedom formula. The curves represent the strong coupling

estimates, discussed in section 3.4.
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Fig. 5. Restoration of the rotational invariance, seen in the equipotential lines. a) 8 = 2 < 8o, b) 8 =2.25> B,.
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Fig. 6. The fundamental-adjoint mixed SU(2) phase diagram.

and SU(N) does only for N =4. In higher dimensions, a first order transition is observed for all the
groups.

2. Review of some exact resulits

2.1. Relation with Yang—Mills perturbative theory

The relation with the continuous theory is obtained by looking at the continuum limit of the action
and by parametrizing the lattice gauge fields according to the picture of (1.3). One writes

L]iu = exp(i 8o aA#(])) U?ﬂ . (21)
Of course, slightly different parametrizations lead to the same result. U° is the field configuration near
which the lattice gauge field is to be expanded. We take it, for the moment, as a pure gauge

configuration (U°=1). It is practical to expand the action in two steps. First, using the Baker—
Campbell-Hausdorff formula, the plaquette term is written as an exponential

U, = exp(i go a* F,. + o(a?)), 22
with

Fu,=08.A, - 0,A, +1g[AL A,].
Then the exponential is expanded and the result is identified with the Yang-Mills action. Additional

terms are irrelevant in four dimensions; their dimension is greater than the canonical one. For
the generalized plaquette action (1.9), the result is

8ol =a*"B > v.CPIN*-1), (2.3)
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where C® is the value of the quadratic Casimir operator in the representation r. For SU(N),
CP=(N*-1)/2N, C® = N, .... In particular, for the four-dimensional SU(N) Wilson action, one gets

B =2Ngg*. Q.4

In the full theory, the continuum limit is reached in a dynamical way in the approach of a critical
point go—> go.. Indeed at such a point, the lengths of physical interest (correlation length & . ..) become
very large as compared to the lattice spacing. Alternatively, one may consider that these physical scales
are fixed, and the lattice spacing has to go to zero as go— gq.. This is nothing but a realization of the
renormalization program: the bare coupling has to be adjusted in the ultraviolet limit a =0 in such a
way that physical quantities remain fixed. This process is governed by the renormalization group
equation

a d¢/da = (a d/da — B(go) 8/980) €=0, (2.5)
where
B(go) = —a dgo/dal, . (2.6)

This is solved as

t=a exp{ j By dx} , 2.7)

which determines how a vanishes as g, approaches g, zero of the S-function with a negative slope. For
non-Abelian four-dimensional gauge theories, there is such an attractive ultraviolet fixed point at the
origin go =0, and it is believed to be the only one. More precisely,

B(x)=—(Box*+ B1x>+06(x7))  (Bo>0). (2.8)

The values B, and B, are independent of the renormalization scheme. For an SU(N) theory with
fermions in the representation r, one gets [43]

Bo=(m)*[5N -],
Bi= ) [N* - BNy - 4CPy), 29)
with
y = ned,CP|(N*~1).
One defines the renormalization group invariant mass scale

Ar=a"" (Bogd) P exp(~1/2B0g?) (2.10)
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which is kept fixed as a >0, g5— 0. From (2.7), the quantity é4; has a finite non-zero limit. The actual
value of A, is arbitrary; it just fixes the mass scale of the continuous theory.
As an example, let us consider the area law of the Wilson loop (1.18)

W(C)~e X4 = ¢ @.11)

where A is the number of plaquettes of the minimal surface, and & = Aa? its area. The physical
quantity ¢ is interpreted in the relativistic string model and is related to the Regge slope a’ by
o = 1/(27a’) (experimentally, @' = 0.90 GeV? and hence Vo = 420 MeV). Therefore the measured lattice
quantity K behaves as

K ~ oA T(Bog?) " exp(~1/Bog?) (2.12)

Supplemented by (2.3), this formula permits a direct fit of a4 * from Monte-Carlo data (see fig. 3).

On the other hand, we want to relate lattice predictions to phenomenological results obtained
through perturbative calculations. As these calculations have already been done using different
renormalization schemes (certainly better adapted to this kind of computation than the lattice
regularization), it is necessary to connect A; to the corresponding A parameters defined in the
continuum theory.

The first calculations were done by evaluating two- and three-point functions at the one-loop level
[44]. This calculation is in principle straightforward, but technically involved. Dashen and Gross [45]
generalized the background field method to lattice theories; by this trick, the calculations simplify
greatly since only the two-point response to the background field at the one-loop level is required. We
outline the method, give the main results and refer to the literature [46-49] for detailed calculations.

The basic idea is to shift the field A, - A, + AY by a classical background field AY,. The logarithm of
the resulting partition function is a regularized effective action for the background field. Using two
different renormalization schemes, the difference between the resulting effective actions is, due to
renormalizability, a local gauge invariant quantity. In the infinite cut-off limit, it should have the form

ASw(AD) =4 [ dr (FLP 13- 8+ ). e.13)

The condition AS.s=0 gives the relation between the coupling constants g, and gpy of the two
different renormalization schemes. Hence

Ayl Ay = exp{c/2Bo} - (2.14)

It is convenient to use the non-linear parametrization (2.1) instead of the preceding linear shift;
however, it can be easily checked that the coefficients of the extra terms vanish if the background field
U° satisfies the classical equations of motion. The perturbative lattice calculation then proceeds through
the usual steps: gauge fixing, corresponding Faddeev—-Popov ghosts, Feynman rules, computation of all
one-loop diagrams with two external background field lines involved in (2.13).

We now display the result for the generalized pure gauge action (1.9), compared to the minimal
subtraction using dimensional regularization
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Table 2
Ratios of Ays/AL parameters for SU(2) and SU(3) Wilson actions with
fermions
ne= 0 1 2 3 4
SU@Q) 7.46 9.27 12.09 16.85 25.01
SU@) 10.85 12.78 1541 19.09 24.49
In(Ans/Ar) = 0.888 + [(2 C£2)27,> / (2 cs?->y,) - N/6] / 88, . 2.15)

For the Wilson action with fermions, the result is
In(Ams/AL)= (In 47 — y)/2+ [1/16N — 0.0849780N + 0.006887y1/Bo , (2.16)

leading to the numerical table 2. These results can be easily converted into other schemes (e.g. MOM
using ref. [50] results).

2.2, Triviality of two-dimensional theories

In the maximal gauge introduced in 1.3, the two-dimensional partition function factorizes as a
product of A4 identical integrals

zZ= f [1pu em(% Bx(Up))
= [ TIDU, (S (W) = (| DU expigrcvy) @)

while the expectation value of the Wilson loop reads (fig. 7) (see section 3 and appendix A for notations
on characters y)

elel | ]

===

N O

Fig. 7. Integration plaquette variables used in the computation of the Wilson loop in a two-dimensional system.
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WU =2 [ DUy - x Uy - )

= Z"1 J I_I DUPX’(UPIUpiUp’{' . Upz' . ')C'BS
p

=dBt=dexp(AlnB,). (2.18)

This also results from the rules of strong coupling expansions, as only the leading term survives in
two dimensions (see section 3). Notice finally that this triviality of two-dimensional theories is not
guaranteed for generalized actions. For example, the Z, “window” action which uses the planar six-link
loop of fig. 2b reduces to the two-dimensional Ising model, hence gives rise to a phase transition [51].

2.3. Duality

The duality transformation was first established for the two-dimensional Ising model. It has been
extended to more complicated systems [33]; in particular, it is applicable to lattice Abelian gauge
theories [6, 20, 52].

Physically, duality is interesting in two respects. First, it connects the original model at high (resp.
low) temperature to a dual model at low (resp. high) temperature. Secondly, the degrees of freedom of
this dual model may be seen as the defects, or disorder variables [53] of the original model. In lattice
gauge theories, duality is therefore useful to expose the role of topological excitations, such as vortices
or monopoles, in confinement or phase transitions [54].

2.3.1. Equivalence of three-dimensional Ising and Z,-gauge models

We first illustrate on a simple instance the general formalism of duality transformation, which may
seem rather abstract to the unfamiliar reader.

Starting from the three-dimensional Z, gauge model, we write the partition function as

Z gonge = 2724 D) exp[,B > (r(ra'a']
P

{o1}

=27 % 1] cosh B(1+ gooo tanh B).

{ov} p

The summation over a given o; gives either 0 or 1 according to the parity of the power of o; in each
term of the expanded product. Hence each contributing term of this expansion can be geometrically
associated with closed surfaces (may be intersecting) made with those plaquettes carrying a tanh 8
factor. Hence

Z gauge = (cosh B> D' (tanh B)

closed
surfaces

where n is the number of plaquettes of the surfaces. A closed surface is also characterized by the
different volumes it separates (inner and outer). At the centre of each cube, we introduce a variable u;
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set to 1 if this cube belongs to the outer volume, —1 otherwise. Each configuration of u; (defined,
however, up to a global sign) is in one-to-one correspondence with each closed surface. This fact is used
to rewrite the expression of the partition function. As a plaquette belongs to the surface only if the two
adjacent u’s are opposite, we have

n=2 (1-pu)2
(G3)]

where the summation runs over all pairs of neighbours. Hence

Z gange = 3(cosh B)** (tanh B)**2 > exp[— jIntanh B8 > uiui]
{u}

which is, up to a multiplicative factor, the partition function of an Ising model for the u’s,

F s0uge(B) = Frsing(B*) + 3 In sinh 28 —31n 2 2.19)
with

B*=—-3%Intanh B
or, more symmetrically,

sinh 2B sinh2B8*=1. (2.20)

The inverse derivation could proceed as follows. The high temperature Ising diagrams are closed
curves, which limit some (open) surfaces. Each constitutive plaquette of these surfaces is associated with
the bond joining the centres of the two cubes sharing this plaquette. This bond carries a gauge field set
to —1. We leave the detailed calculations (leading of course to the same result) to the reader and turn
now to the general formulation.

2.3.2. General formulation

We consider fields defined on a d-dimensional a-complex with a k-dimensional interaction. We recall
first that an abstract a-complex is [55] a set of elements called cells. A lattice is an a-complex; its cells
are sites, links, plaquettes, cubes, . ... In general, an a-complex satisfies the following axioms

(i) to each cell is assigned a non-negative integer, called its dimension. The upper bound of the cell

dimensions is the dimension of the complex (here d).

(if) each cell c, of dimension k (k-cell) is in correspondence with another cell —c, of the same
dimension (cell with opposite orientation).

(ii1) to two cells with dimension differing by 1 is associated a signed integer, the incidence number
(ck :Cx—1) (non-zero if “c,_, is a face of c,”’). One has (—c, :Cx1) = (Ck 1 —Ci-1) = —(Cx : Ci—1)-

(iv) Z¢, (Ck+1:Ck)(Ck :Ck—1) = 0 (this condition is the basis of homology and cohomology theorems).

A k-chain over the coefficient domain G (Abelian group) is an odd function of the k-cells on G:
¢ > ¢, with ¢; € G. This induces a group structure on the k-chains. Any k-chain may then be written
as a sum of monomial chains Z,; ¢;c{’. The monomial chain (abusively) denoted ¢;c§’ maps the cell c§”
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on ¢; and all other cells on the identity element of G. In the lattice example, 2-chains over Z, = {1, -1}
are surfaces made of those plaquettes where ¢; = —1.

Finally, the boundary A and coboundary V operators map k-chains into (k — 1)- and (k + 1)-chains
as follows

TS 6= S dlef el

Let us introduce a model in this context. The fields ¢ are defined on (k — 1)-cells and take their
values in the Abelian group G. A field configuration is then, in this language, a (k — 1)-chain over G.
Let the action be of the form

s= S x(I1s)+ S f@). @21

k-cells ¢ dEAC (k—1)-cells

where y and f are any class functions on the group G. For commodity of notations, Ac denotes the set
of cells pertaining to the boundary of the monomial chains associated with c. k = 1 corresponds to spin
models, k = 2 to gauge models, and f to an applied external field. Expanding the exponentiated action
on characters, the partition function reads

z=lol 5 {11 S0 e))| 11 Srox@). e2)

(k—1)-chains Ly cellsc r SEAC (k—1)cells r

The group volume ||G|| comes from the normalization of the group measure |G| £ yccl = 1. 1 is the
total number of k-cells in the a-complex. The products are expanded (following the strong coupling
expansion techniques, described in more detail in section 3). Each term coming from the first product is
obtained by assigning a representation r to each k-cell, and therefore corresponds to a k-chain g over
the coeflicient domain G* (the set of irreducible representations of G). Since G is Abelian, G* is an
Abelian group for the outer product of representations. This crucial group structure unfortunately does
not extend to non-Abelian groups. Similarly, the second product is expanded in terms of (k — 1)-chains
h over G*. For each term, the summation over the configurations, i.e. the (k —1)-chains {¢}, is
performed using orthogonality relations of characters and provides a selection rule: the contribution is
IGII* if h = Ag, 0 otherwise. Hence the partition function reads

Z= > exp{ZlnB(r)+ 2 In v(s)}- (2.23)

k-chains g reg sEAg

Using the definition of the boundary operator, s is the product of representations r of the k-cells
incident to a (k — 1)-cell; thus the last term is rewritten as a summation over all (k —1)-cells ¢ of
In y(Il,ev. 7). The action takes now a form quite similar to the original one, except for the replacement
of the boundary operator A by the coboundary operator V. This difference is removed by going to the
dual a-complex.

The dual a-complex is defined as follows. To any cell c;, associate a (d — k)-cell ¢;j_x. All incidence
numbers remain unchanged; in particular, n, = nj_,. On the hypercubical lattice, for nearest neighbour
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interactions, this transformation has a nice geometrical visualization. Mark a point at the centre of every
hypercube (d-cell); these points will be the nodes of the dual lattice. Two neighbouring d-cells, sharing
one (d — 1)-face, are neighbouring sites on the dual lattice, joined by a link, dual of the common face;
and so on.... For instance, the dual of the hypercubical lattice is again a hypercubical lattice shifted
by the vector (a/2, a/2, ... .). In this transformation, boundary and coboundary operators exchange their
roles. Hence the action becomes ‘

B*Sem=ni |G+ 3 I y(H r)+ S hBw). (2.24)
(d—k+1)-cells ¢ r€Ac (d—k)-cells
This has exactly the same structure as the initial action. The only changes are the dimension of the cells,
the underlying group and the class functions. Note also the interchange of the roles of external field and
coupling, and the interchange between strong and weak coupling regions (since y = 0 (or f = 0) lead to
all B(r) (y(r)) vanishing (but r=20), i.e. infinite dual couplings In B(r) (In y(r))). We summarize the
conclusions in table 3.

Let us examine in more detail the particular case f = 0 of no external field. Note first that AA and VV
map any chain on zero. The inverse is not true; one defines the kth homology (cohomology) group as
the quotient of the image A (V) of (k + 1)-chains ((k — 1)-chains) by the kernel in the set of k-chains of
A (V). From now on, we suppose that all k# 0 homology groups of our a-complex are trivial. This means
that any k-chain with null boundary (closed k-chain) is the boundary of a (k + 1)-chain. For instance,
k = 1: each closed curve can be considered as the boundary of a surface. This is not generally true, as is
shown by the example of a circle on a torus. However, the hypothesis is satisfied for complexes which
are lattices in the Euclidean space, as long as one does not impose cyclic boundary conditions.

In the preceding reasoning on the partition function, we are now restricted to only closed k-chains g
over G*. This constraint is removed by rewriting them in terms of (k + 1)-chains. As the correspondence
between a closed k-chain g and a (k + 1)-chain which has g as boundary is not one-to-one (each
coefficient of the (k + 1)-chain can be multiplied by the corresponding coefficient of a given closed
(k + 1)-chain without changing its boundary), this induces a constant multiplicative factor on the
partition function. After going into the dual a-complex, we get in this particular case

B*Squar= Mo |G- x i+ >, In B( I1 r>, (2.25)
(d—k)-cellsc r€lc
Table 3
Summary of the general duality transformation
support a-complex dual a-complex
group G G* (repres. of G)
with field $EG reG*
external located on (k — 1)-cell located on (d - k)-cell
source
interaction x{@)= exp(E B(r) )(,(¢)> In y(r)
source 1) -ep(Srn@)  maw
without field d€EG : reG*
external located on (k — 1)-cell located on (d — k ~ 1)-cell
source
interaction x(d)= exp(Z B(r) X,(d))) In B(r)
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where X, is the number of closed (k + 1)-chains. These numbers x, are easily estimated; a closed
k-chain is the boundary of a (k + 1)-chain defined up to a closed (k + 1)-chain, and therefore

X = |Gl ™Y Xy,  with xq =G . (2.26)

The dual coupling constants are solutions of the equations

B(n=|GII" %: B*(®) x:(¢) (2.27)

or

B*(6)=IGI™ Z B(r) xs(r)

where the dual characters y,(r) are the elements of the inverse matrix (x,(¢)) " with respect to the
indices r and ¢. This results from orthogonality relations on characters; note that the dual of the dual
group G* is G itself.

As noted above, this nice duality operation fails for non-Abelian groups G, because the set of
irreducible representations G* is not endowed with a group structure.

Some care must be taken with infinite groups. Starting from a compact group (as G = U(1)),
|Gl|=™-' 2 in (2.23) is replaced by a normalized integral on the group. The dual group (as Z) is discrete,
non-compact and infinite, and the normalization of the field measure is meaningless; hence the first
term nj_, in (2.24) must be removed. Similarly, the meaningless term —In x.., in (2.25) must be
replaced by a gauge fixing procedure.

2.3.3. Application

All our applications concern hypercubical lattices in the thermodynamic limit. We do not consider
other cases here.

With external sources, duality gives results for gauge models (k = 2) at d =2 (two-dimensional spin
models with an applied external field are dual to gauge models with Higgs field) and d = 3 (self-duality
relations for three-dimensional gauge models with Higgs field). They are used in section 5.

A trivial application concerns d = k in the absence of an external field. The dual model is just an
external constant field, which contains no dynamics. We recover here the triviality of one-dimensional
Ising and two-dimensional gauge models.

As a third application, we recover easily the formulae displayed in the example of three-dimensional
Z,-gauge and Ising models, with d =3, n,=n,=3, |G||=2 and k = either 1 or 2. In particular, the
transition points of the two models should be related. As the Ising model has a transition at 8; = 0.2217,
the gauge model must also undergo a second order transition at 82 = —5In tanh 8; = 0.7613.

The four-dimensional Z, gauge model (d = 4, k = 2) yields

F(B)= F(—zIntanh 8)+ 3 Insinh 283. (2.28)

Strong and weak couplings are related by (2.28). Moreover, as the last term on the r.h.s. is regular, any
singularity for F at B, will lead to the existence of another singularity located at —3In tanh ..
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Therefore, if there is only one transition, it must lie at the self-dual point
B.=—}Intanh B.=iIn(1+V2). (2.29)

Indeed, a first order transition is observed at this point.

Any Abelian compact gauge group is constructed from Z, and U(1). The Z, group is self-dual;
indeed the irreducible representations of Z, = {exp(Riwk/n); k =1, ..., n} are exp(2imkr/n), labelled by
r=1,...,n and their set is obviously isomorphic to Z, Hence, there is duality between three-
dimensional Z, gauge and spin models, and self-duality relations for four-dimensional Z, gauge
systems. The most general action in this case is conveniently rewritten as

exp(8S) =[] 21 B(r) exp(zim(ﬂ ¢) / n> (2.30)

and depends only on [n/2] real parameters (where [m] denotes the largest integer contained in m), due
to the reality conditions 8(r) = B(n —r) and to the fact that the B’s are defined up to an overall factor
corresponding to an ineffective additive term in the action. Dual couplings are thus

B*(r) = (1/n)' S B(l) cos2irin). (2.31)

For instance, application to the four-dimensional Z; gauge model (depending on one coupling) yields
(€#2—1) (e *"2-1)=3 (2.32)

and the transition must therefore occur at B.=3In(1+V3). For larger n, duality induces only a
symmetry in the multidimensional phase diagram, and we refer to the literature [20, 56-58] for detailed
results.

The U(1) gauge group is not self-dual. Its irreducible representations are labelled by a signed integer
n: x.(€) = e and then U(1)* = Z, the additive non-compact group of integers. In four dimensions,
the Wilson action

BS=B cos 6, 2.33)

is dual to an action for integer gauge fields n,

B*Sdual = Z 1n Inp(ﬂ) ]
P
with
Rigs=RigtNigs—Nip— Rivpg .

A gauge fixing term is implicit in this model. If the Villain action is used instead of (2.33), the resulting
dual model is simply the Gaussian integer gauge model
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B*Sawa=— 2, B~ 'n3+ Const .
p

There is an alternative form of this dual action which proves more useful in the discussion of the physics
of the phase transition [59-62]. By the Poisson formula, the summation over the integer variables n; is
traded for a summation over integer variables J ;; satisfying the conservation equations 4,J ; = 0 at each
site,

,B*Sdual =- 2 ﬂ_ln,z, +i 2 27Tnm]i,;_
p ip

==32 QmyBJ iy AL )T s (2.34)

ijav

where the inverse of the lattice Laplacian 4~' depends on the choice of gauge for the n’s, but the
combination JA~'J does not, thanks to 4,J; = 0. The variables J; are the topological excitations of
the system. Introducing an external electric source in the system reveals that they behave as monopole
lines, forming closed loops because of their conservation law. Energy-entropy arguments then show
that, at small coupling, there are only a few small monopole loops, whereas, at strong coupling, large
loops exist, form a “monopole condensate”, and create a linear confining potential between static
charges. That the vacuum of the confined phase might be regarded as a magnetic superconductor, with
electric flux confined in tubes, was originally proposed by Mandelstam [63] and 't Hooft [64]. The
mechanism of monopole condensation in the U(l) model is reminiscent of the physics of the
two-dimensional xy-model, and has been confirmed by Monte-Carlo simulations [65]. In four-dimen-
sional Z,, gauge theories with Villain action, there is an exact self-duality, and for n = 4, the occurrence
of two phase transitions. One of them is the analog of the U(1) transition between the Coulomb and
confined phases, but there is a third phase at weak coupling, dual of the confined phase, which may be
seen as a condensate of electric charges. The second phase transition takes place between the Coulomb
phase and this “Higgs phase”.

In contrast, in three dimensions, the dual of the U(1) gauge theory is a Gaussian integer spin model,
or alternatively, a model of monopoles living on the sites of the lattice. One may show that they
disorder the system for all couplings [39, 60, 66], and that the system is always in its confined phase [67].

2.3.4. Dual observables

Up to now, the duality transformation has been applied only to the partition function. It is not very
difficult to construct the dual quantity of a given observable. We consider here the plaquette (x,(U,)).
Diagrams contributing to this observable have the topology of surfaces with a plaquette boundary p (see
section 3 for details). Change in the diagram the representation s carried by the plaquette p to s ®r
(which 1is irreducible since G is Abelian); it is clear that the modified diagram contributes to the
partition function Z. Thus the observable (y,(U,)) appears as the ratio of a modified partition function
in which the coupling constants relative to the plaquette p have been changed from B(s) to B(s ®r), by
the original partition function. One applies the duality transformation on this modified partition
function. Some straightforward algebra leads to the dual quantity

XAUp)) = (B(r® Up) = BU D ava - (2.35)
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With this method, it is easy to make a dictionary between dual observables. For instance, in the
three-dimensional Z, theory, the Wilson loop is dual to the ratio of Ising partition functions

(W(C) = Zisng B* > —B* 0n $*) Zing(B*) = <exp(—2 > Boa,)) 2.36)

where, in the numerator, all Ising couplings crossed by some arbitrary surface S* of boundary C have
been reversed. For a large loop, at strong gauge coupling, the left hand side has an area decay law,
whereas the right hand side is the exponential of the differences of free energies of two Ising systems,
i.e. the interfacial free energy created by the change of couplings

In the limit of a large loop extending to infinity, AF may also be regarded as the excess free energy
when opposite infinitesimal magnetic fields applied on the boundary above and below the surface tend
to order the system in two different phases. This interpretation will be useful in the discussion of section
343.

In the four-dimensional model, the Wilson loop (order parameter) is similarly dual to a “disorder
parameter”, the 't Hooft loop (H(C*)), which measures the response of the system to a change of some
of its couplings.

2.3.5. 't Hooft loop

The ’t Hooft loop operator may actually be defined for any gauge group G with a non-trivial centre
Z. We discuss here only the four-dimensional lattice realizations of this idea. Given a closed loop C* on
the dual lattice, one considers an arbitrary surface * of boundary C* and the set 3 of plaquettes dual
to the plaquettes of 3*. The effect of the loop operator is to multiply in the gauge action all plaquettes
of 3 by a non-trivial element z of the centre of G

(H.C) =21 [ DU exp{B Re| 3 x(Up)+ 2 10|} 237)
peES pPEZX

For G = SU(N), the centre is Zy, and the 't Hooft loop may be seen to create a Zy monopole loop

along C*. In the Zy theory, it is dual to the electric loop operator, i.e. the Wilson loop; in the three

phases described above, one has the three following behaviours

confined phase (small 8) (Wy~e™* (H)y~e?
Coulomb phase (intermediate 8) (W)~e™? (Hy~e®?
Higgs phase (large 8) (Wy~e™®  (Hy~e™.

The area fall-off of the 't Hooft loop at small coupling (large B) indicates the suppression of large
monopole loops, or alternatively, the existence of a linear confining potential between monopoles. For a
further discussion of this disorder operator, its commutation relations with Wilson loops and a
detailed study of its asymptotic behaviour, we refer the reader to the literature [37, 58, 68-70]. When the
loop extends to the boundary of an entire two-plane through a finite lattice, and periodic boundary
conditions are then introduced, the computation of (H) amounts to introducing “twisted boundary
conditions” [71, 58, 72].
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2.4. Elitzur’s theorem

This important theorem [34] states that any non-invariant quantity has a vanishing mean value in
lattice gauge theories, irrespective of the coupling.

The proof of this assertion is simple; some care, however, is required because of the non-uniformity
of the double limit to be taken. Let us consider, in general, a group of transformations acting on fields
¢ —#¢, with an invariant action S(¢)= S(®¢). The quantity f(¢) is non-invariant, or, more precisely,
has no component transforming according to the trivial representation; in other words

| resypg=0. (.39)

For instance, gauge fields, or matter fields, are such quantities. The mean value is computed in a finite
system of size & and with external sources J

(s = (11Z,0) [ explS(@)+ T - 8} f(8) D 239)

the thermodynamic limit &' — % and the zero external source J - 0 must then be taken in this order

(f(¢) = lim lim (f($)).r.s (2.40)

In the integral on the right hand side of eq. (2.39), we perform the change ¢ — #¢, taking into account
the invariance of the measure and of the action. As the result is independent on g, we also integrate
over g (f Dg =1), and hence

F(@ss = (11Z,5) [ [ expls(8)+ 7 50} f66) Do Dg. @.41)

The set of fields {¢} is now split into a subset {¢"} unchanged by the transformation (¢" = #¢") and the

complementary subset {¢}.
The crucial point is that, for sufficiently small sources ||J|| < &,

lexplJ’- ¢’} = 1| = n(e) (2.42)

with 7(e) vanishing as & goes to zero, and being independent of both ¢’ and ¥. The uniformity in ¢’ is
trivially satisfied since we deal with compact groups. The uniformity of A is satisfied if only a finite,
#-independent number of degrees of freedom ¢’ are concerned by the transformation. This is not the case
in spin systems, since the global transformation rotates all fields, and thus J - ¢ is an extensive quantity
proportional to #'; indeed the theorem is false in this case and spins can take a non-zero mean value, as is
well known. Conversely, gauge systems satisfy this condition, because non-invariance of f means that there
exists a local gauge transformation g acting on a finite number of degrees of freedom involved in f such that

(2.38) holds.
The integral is split into two parts, writing exp{J'-%¢'} = 1 + [exp{J - ¢} — 1]. The first part vanishes
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in the integration over g, according to (2.38). The second one is bounded in absolute value, using (2.42)
and the maximum ||f]| over ¢ of |f(¢)|. Hence

[f@Mus| = (e)IAl.

Now no problem is encountered when taking the limits in the right order, thanks to the uniformity
conditions on 7(¢)

(fe)=0. (2.43)
This result applies for pure gauge systems (e.g., (U;) =0) as well as gauge + matter systems.
2.5. Large N limit

The large N limit of U(N) or SU(N) gauge theories has received much attention since it has been
realized that it leads to a reasonable phenomenological description of hadronic physics [73]. 't Hooft has
shown that in continuous field theory, only planar Feynman diagrams survive in the limit. It is legitimate
to look at the same limit for lattice gauge theories. In order for the theory to make sense, the coupling
has to be rescaled. In the lattice action (B/2N)tr(U + U"), one sets /2N = NB, B finite. This agrees
with the known rescaling of the continuous theory, §5= Ng3 (cf. eq. (2.4)), and, in the strong coupling
phase, will be shown to lead to a sensible limit. The free energy per site is expected to be proportional
to N?, the number of degrees of freedom of a N X N unitary matrix.

In a series of works initiated by Gross and Witten [16] and Wadia [74], the structure of U(x)
two-dimensional lattice gauge theories has been unravelled. We recall from section 2.2 that, in two
dimensions, plaquette variables are independent and the partition function and other observables may
be computed by a single integration

- [ f DU exp(B X(U))]N = v (2.44)

The integral B, may be explicitly computed at large N by the saddle point method; although one is
dealing with a one-plaquette model, there are still a large number (N?) of degrees of freedom, and In B,
may be non-analytic. The non-analyticity —i.e., the phase structure of this two-dimensional model -
depends on the explicit form of the action. For Wilson’s action, a third order (non- deconﬁning) phase
transition is found at 8 = 3. The internal energy {tr U,)= 3 In Bo/3B and the string tension —In B have
their second derivatives dlscontmuous at 8=2.1In partlcular there are local order parameters in this
model: all {tr U"), n =2 vanish identically for B <3. This phase structure, however, depends on the
form of the action; taking the heat kernel or Manton s action leads to regular functions [75, 24].

It is not very clear to which extent these features foreshadow what happens in higher dimensions.
Notice, however, that this study of two-dimensional models, in particular the form of the function By(8),
is useful in approximations starting from independent degrees of freedom (strong coupling, mean field).

In higher dimensions, not many exact results are known. It has been recently shown by Eguchi and
Kawai [76] that a remarkable equivalence with a theory defined on a single site lattice takes place in the
N -« limit. The proof relies on the fact that both models satisfy the same Schwinger-Dyson equations
[77], and have the same strong coupling limit. The equivalence, however, breaks down if the [U(1)]V
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subgroup of symmetry of the reduced model is spontaneously broken. This is what seems to happen at a
finite value of the coupling [78]. As a consequence, the equivalence holds only at strong coupling and
fails below this critical coupling. This failure may be repaired by a quenching procedure of the reduced
model. We will not dwell on this reduction in the present review, since it is under current investigation
[79-85]. We will only remember from this discussion that, in its strong coupling phase, the U(x) model
is equivalent to a gauge model defined on a hypercube.

3. Strong coupling expansions
3.1. General features

3.1.1. Introduction
As noticed above, the bare coupling constant g§ plays the role of the temperature 87" in statistical
models. At large couplings, it is natural to expand the Boltzmann weight in powers of 8

expl6S}= [T expl x(Up) = [ [ 1+ BxW)+ & W)+ -+ 6.

and to integrate term by term over the configuration variables; one may thus compute a series
expansion of the partition function, or of various correlation functions. To each term of the expansion is
attached a diagram made of those plaquettes retained in the product (3.1). Notice that, in this way, a
given plaquette may appear an arbitrary number of times, corresponding to the power of y(U,) in the
right hand side of (3.1). In practice, it is more convenient to resum part of this expansion in such a way
that a given plaquette appears at most once. This is achieved by the character expansion, and this
reduces the number of contributions to a given order in the expansion, making the geometric object
simpler, and decoupling the geometric counting of configurations from the group theoretic factor. On
the other hand, it is useful to derive rules for computing directly the expansions of physical (intensive)
quantities: free energy per site, string tension, correlation lengths,.... This relies on cumulant
expansions to be explained in subsection 3.1.6.

Most of these techniques are well known in the context of high temperature expansions of spin
models [4]. We recall them briefly, and dwell mainly on features specific to lattice gauge models. We
first review some rigorous results on the general properties of these expansions, before turning to the
detailed technique.

3.1.2. Convergence of the strong coupling expansion

A well-known, but important property of high temperature (strong coupling) expansions is their finite
radius of convergence. In view of the importance of this result, we recall briefly how it is derived and
what it implies [35].

The idea is to derive an (overestimated) upper bound on the nth order of the expansion of some
arbitrary local observable (X). “Local” here means that X involves only a finite set of links £ A
particular example is the internal energy E = (S(U,)). This bound is achieved by estimating in-
dependently the contribution of a typical diagram with k plaquettes and the number of such diagrams,
and still holds in the thermodynamic (infinite volume) limit.

The action per plaquette y(U,) is bounded, since it is a continuous function on a compact set.
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Without loss of generality, we may shift it by a constant so that its lower bound is zero. Then, for
small enough and any U,, we have

0=(U,)=explBS(U,}-1=CiB. 32)

The constant C; only depends on the group and on the form of the action. Now consider a finite lattice
A. The cluster expansion is obtained by expanding the product over plaquettes in

x)=z3 [TIDU, ] 1+ U)X, (33)
with
z,= [TIDU [T 1+ 2, (34)

With each term of the expansion is associated a set of plaquettes D, made of two parts: D, is the union
of connected components of D sharing some bonds with £, and D, its complement in D: D, = D\D;; then

X)=2z3''S) { [ du [T n(U,,)X}{ 1 pu T1 n(U,)}. (3.5)

DCA ichhug PEDy 1cDs. pED,

Now, for a given D, all D’s are obtained by adding to D, any diagram unconnected to Dy, that is, any
diagram contributing to the partition function Z , 5,07 for the reduced lattice where all plaquettes
sharing a link with D, U # have been removed.

o=2{[ I pu I1 0U) X} ZusweZs 6:6)

Dy 1IcDiu¥ PED:

where the sum runs over all Dy, each connected component of which has at least one bond in common
with &,

i) Since there are less plaquettes in A\D; U % than in A, and since 1+ {2 =1, the last ratio in (3.6) is
less than one and positive.

i) Owing to the relation (3.2), the first factor is bounded by

S| 11 pu, 1 aw) x| )™, 6.7)

ICDu¥ PED)

where |D,| is the number of plaquettes in D;.
iii) The number of diagrams D; with a given |D,| = k satisfies

n(k)=2* [16(d - 1)]*. (3.8)
Putting all factors together, we find

(X = G, 2% X [16(d - 1) C, B]*. 3.9)
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As nothing in this expression depends on the finite size of the lattice, we conclude that the strong
coupling expansion has a finite radius of convergence, even in the infinite volume limit.

This convergence property has two important consequences, both in the strong coupling regime:

a) exponential clustering of correlation functions

b) area law of the Wilson loop.

a) Let X® denote the translate of a local observable X by a lattice vector ¢ = na; there exists a
constant m >0 such that, for any ¢,

KX1X D) conal = KX X ) — (XX X)| < Const. e ™™ (3.10)
and
am = —41In B + const.

Indeed, only clusters connecting the supports of X; and X ¢ contribute to the left hand side of (3.10);
the dominant ones are tube-like diagrams with 4(n — const.) plaquettes, and the contribution of higher
orders may be bounded by the same method as above. The actual computation of the mass gap will be
reconsidered in the following.

b) The area law of the Wilson loop follows from analogous considerations. Under suitable assump-
tions about the representation content of the action and of the test charge - the loop - (see [35] and
discussion in subsection 3.1.5 below), the only contributing clusters have at least A plaquettes (A being the
minimal area of the loop).

3.1.3. Character expansion
We use notations adapted to continuous Lie groups (see section 1.2) but the case of discrete groups is
trivial to reinstate. The Haar measure on G satisfies

DU=DU'=D(UV) VYVEG, (3.11)

and we have normalized it to unity (f/ DU = 1). The pure gauge action introduced in (1.9) uses class
functions, i.e. functions satisfying

fU)Y=f(VUVY) VVEG. (3.12)
Irreducible characters (traces of irreducible representations) form a complete basis for these class

functions. For the irreducible representation r, the d, X d, matrix elements are written D}g(U), and the
corresponding character is y,(U) = £, D,.(U). From the orthogonality and completeness relations

f DU D’s(U) D35(U) = 8,8y584/d, (3.13)

>, d,Dig(U)DL(V)=8(U, V), (3.14)

roB
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it results that the irreducible characters form an orthonormal basis

[ DX xsw) = 8.
S dx(UV")= 8(U, V).

In particular, we have the useful formula

[ PUX WXV = 8.7 W)
Any class function f may be decomposed in its Fourier components as
fU)= VOV =3 x(U)f,,
with ’
.= [ DUxU) V).
In particular, the Boltzmann weight reads

exp(Bx)= X, B, x:(U).

Take as an example the group SU(2). A matrix U is parametrized as
U=cos(8/2)+io-Asin(02) (0=6<4nm)
in terms of Pauli matrices; the normalized Haar measure is

de d’i

=q 2 —_—
DU =sin (0/2)277 g

and the characters read

x;(U)=sin(j +3)8/sin(6/2), j=0,31,....

31

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Now the expansions of the exponentiated actions exp{38 x12(U)} and exp$38 x:(U)} (SO(3) action, or
part of the SU(2) fundamental-adjoint mixed action) read respectively in terms of modified Bessel

functions
explip xin(U)) = expl cos(@2) = 3 20+ 1) 2B v

and

(3.23)
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explaBxi(U)} = explaB(1+2cos )= 3 (L,GB)— 1,:16B)) exp(3B) xi(U) . (3.24)

integer j

Table 4 summarizes basic results on characters and expansion coefficients for some groups of particular
importance and for Wilson's action. For more details on notations and derivations, the reader is

referred to appendix A.
The character coefficients for the heat kernel action are trivial to identify from the definition of eq.

(1.14)
B, = exp{- CP/NB} (3.25)

in terms of the quadratic Casimir operator in the representation r, C®. For SUQ2), CP=j(j + 1),
j=0,31,...; for Ud), CP=10 and for the representation (A, u) of SUQB), Cu..=
A+ g+ A%+ Ap + p?)/3. Casimir invariants for low-lying representations of SU(N) may be found in [86).
Let us list some relevant properties of the coefficients 8, in (3.19):
i) for a real function as the exponentiated action, conjugate representations r and 7, which both
appear in the sum if they are inequivalent, contribute equally

B4 (.20)
i) Since
b= [ s W) explBx (U 627)
Table 4

Character expansion coefficients for Wilson action

Bo (r) and x(U) d, B. = BB
Z(2) cosh 8 U 1 sinh 8
u() I(B) n(z0or <0),  exp(ing) 1 1B) '
SU(Z) 211(,8)/,8 [ half—integer, . M il 22)0 2] +1 Izj(ﬂ)— 12j+2(ﬂ) = 2(2', i 1) 12]'+1(ﬁ)
SO(3) e#3(1(2813) - L(2B/3)) j integer, M 22)0 2j+1 P L2BI3) - Ln(2B/3)
UWN) det I;_;(B/N) hz-zIy (20 or <0) [l —-ILL det I'-;1i(B/N)
I=ij=<N U = diag(exp(ia;)) l]

_ det(expi(} + N — f)a;)

det(exp i(N - j)a;)

SU(N) > det1_j.n(BIN) same as U(N), but iy =0 same Z det 1y j1ien(BIN)
U() exp(BI2NY = exp(N?8%)  low-lying representations M" %ﬁll (NBy)" exp(N2B?)
or (for Be=<1/2) are labelled by two Young (n<N)
SU(=) tableaux

{rt= l,z-uzl,z(]

{sl=ki=--- =k =

2t k=n<N
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is an integral over a compact domain, it is an entire function of B, and the ratios
B.=d;" BBo (3.28)

to be used in the following, are meromorphic functions of B, with no poles on the real axis on which Bo
cannot vanish. This remark will be important in the analysis of the series, where complex poles may
cause trouble.

Also notice that these analyticity properties hold for any given group, but that taking the limit N » =
of e.g. SU(N) or U(N) may generate singularities [16].

iii) An important property of this character expansion, relevant for strong coupling expansions, is
that only a finite number of terms in (3.19) contribute to a finite order in 8. In general,

b= [ DUXW) explp XU} =% 871+ 0)), (¢-29)

Table 5
Expressions of 8 and B, in terms of Bi=1¢

u) &=ﬂa+mﬂ)

1o L 5 34
Bo=3 i+ttt > oy L t8+8640'+
1,16 13, ﬂg
B3_6t3+8t+120t+4321t+
367
= _6 o _10
B r‘+201+ ts+6048t

B, Lo, S 19, 143, 1760, 10353 , 2614699 ., 124086301

2 27 127 48 360 4320 241920 5806080 261273600

SUR)  B= @Tll)' @71+ 0(2)

“2pi2p, 16 6 8 g, 1B
ﬁ“3’+9’+135 10 TEs0st T

1 29,9
B3/2—3I3+ £+ t+2835t+

Ay

B, 25,2332, 0080 2064, T08 1, 103216 15, 55168,
2= s T s Y tisrst t ogs !

SU@)  Bow= L e T(““)(l + O(t)) (see appendix A)

dipg }(A + #)'
.3 297 ;405 6237 7021
Beoy=Bs t“+ 20 t"’ 40 B+

81 567 21 7 10
3(3,0)=ﬂm=§6 £- 0 =+ Eté—%t7+—————3736e7 B+

—g=2p 93,8, 8, 1863 _21877 43011
B(l.n—ﬂs—g g +32 16’5 —t"’ #r

- =2 3__ 81 5__ 81 g 89181 8
Bey=Bis 4+ 0 t6 00 "t

B_. 3 +g 5 ﬁ 243 5 6237 o 3159 ;61479 o BOGT o 2076307 iy 636417 ,, 220994163 p, TISSSBTL 1y
8 80 16 128 80 ' "m0 | T 18 ' e T8
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where v, is the smallest integer so that o, = [ DU x5(U) x*(U) # 0. In the previous cases of SU(2), with
the action in the fundamental (resp. adjoint) representation, we have »; = 2j (resp. j), meaning that we
need 2j (resp. j) times the spin 1/2 (resp. 1) representation to build up spin j. The successive terms of the
expansion (3.29) may be worked out using the explicit expressions of B, in terms of modified Bessel
functions, etc. .. .. It is often useful to recast these expansions as series in B;=t, the fundamental
character coefficient. This is done on table 5 for the groups U(1), SU(2), SU(3).

iv) The coefficients B, defined in (3.28) are positive and vary between 0 and 1, as 8 grows from 0 to
infinity. Indeed they vanish at 8 = 0 according to (3.29), and as B - «, if the dominant saddle-point of
the integral is at U = 1,

G, = const. d, XRIBX(} ;m“ (1+ 6(8~Y) (3.30)

where X is the dimension of the Lie algebra (number of infinitesimal generators) of the gauge group.
Once the expansion (3.19) has been done for each plaquette, we can write the Boltzmann weight for
a given configuration of links as

exp(S) = [1a| 1+ Z d.x(Uy)] 631

r#0

in terms of B, and B,. Changing the convention for the orientation of plaquettes changes U, into U?, but
does not affect the expansion, thanks to (3.26). The product in the right hand side may then be expanded. To
each term is associated a diagram made of the plaquettes with a non-trivial representation. In this way,
every plaquette appears at most once in each diagram, but decorated with a representation label. Clearly
the integration over link variables of (3.28), (possibly in the presence of source terms for the computation of
some correlation functions) leads to selection rules on the possible diagrams. We shall discuss them in the
case of the partition function and of the Wilson loop. Let us first classify the geometric objects we are
dealing with.

3.1.4. Some remarks on combinatorial topology

We examine now the topological properties of the relevant sets of plaquettes. Let &£ be such a set of
plaquettes, connected or not, each plaquette appearing at most once. Let n, be the number of
plaquettes, n, the number of distinct links bordering these plaquettes, and n, the number of endpoints
of these links. A connected subset £’ is homeomorphic to a simple surface (with possible boundaries) if
each link of ¥ belongs to at most two plaquettes. Links belonging to a single plaquette form the
boundary. Any set of plaquettes is therefore homeomorphic to a set of simple connected surfaces with
boundaries (regular components). The boundaries are a set of simple arcs, each of which

—either borders a surface (true boundary),

—or is a singular line bordering n (=3) surfaces (n-fold branch line).

All connected surfaces with boundaries may be classified according to

i) their orientability. Two neighbouring plaquettes are coherently oriented if they induce opposite
orientations on their common link. A surface is orientable if there exists an orientation of all the
plaquettes such that all neighbouring plaquettes are coherently oriented.

ii) the number b of holes, i.e. of simple closed contours making the boundary.
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iii) the genus of the surface
g=2-(ny—ni+netbh).

This number is related to Euler’s characteristics and is a topological invariant.

Any orientable surface of genus g with b holes is homeomorphic to a sphere with b + g holes, g of
them being joined in pairs with first kind (orientability-conserving) handles. The sphere corresponds to
b=g=0,thetorusto b=0, g=2, and the disk to b =1, g = 0.

Any non-orientable surface of genus g with b holes is homeomorphic to a sphere with b+ g holes,
the g last ones being closed using a Moebius band. The Moebius band corresponds to b =1, g = 1, the
projective plane to b =0, g = 1 and the Klein bottle to b =0, g = 2.

3.1.5. Classification of diagrams. Group theoretic factors

The partition function Z is obtained by integrating over the link variables U, the expression (3.28).
The following classification applies to Z, to its logarithm and its derivatives (internal energy, specific
heat, . ..).

From the orthogonality relation (3.15) with r# 0, s = 0 giving zero, it is clear that no true boundary
occurs. All diagrams are closed, although they may of course have singular lines. Consider first the
integration over an inner link of a regular component. A typical integration has the form

fDU,x,(U,[Il] U,f]) xs(U,‘l[Il] Uz]) = 5,sd:1x,([llj U,,] [III U,]) : (3.32)

Hence orthogonality forces all adjacent plaquettes with a coherent orientation to carry the same
representation. The previous integral has to be used repeatedly, together with

J DU (UU,UUy) = d3* x(Uy) xo(Us),
[ pUx ULy = a7 8, iU, (3.33)

The latter appears only for a non-orientable surface: we see that such a surface contributes only for
self-conjugate representations r~ r.* If there are ni inner links with no inner end-points (i.e. not
belonging to the boundary), there are n;— ng= n, — n, integrals to carry out, and nq trivial ones. This
yields a contribution

3:2 d:lz—n1+n0 H Xr(Uboundary) (3.34)

boundaries

where the product is to be replaced by one if there is no boundary. The power of d, is 2— g — b for a
regular component. For example, diagrams with the topology of the sphere (resp. a torus) give
contributions =,., B7?d? (resp. = B7?). For more complicated diagrams, one is left with group in-

*For self-conjugate unitary representations, D' = VD"* V' with V a unitary symmetric matrix (may be not unity!).
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tegrations along the singular lines. For example, a diagram made of p disks of m,, ..., m, plaquettes,
soldered along a single closed contour (p-fold singular line) contributes

@m; ..... mp = Z ;Tl"'dn"'Nn ..... rp (335)
L rp#0
where
Nowoon= [ DUXU) 1 U) (3:36)

is the number of times the trivial representation is contained in 7, ) - - - &) 7.

In section 3.2, we list all such group theoretical factors associated with the various topologies
involved in diagrams with sixteen or less plaquettes.

Let us turn to the computation of a Wilson loop. For a large loop of minimal area A (minimal
number of plaquettes needed to fill the loop) and under some conditions outlined hereafter, the leading
contribution to W,(C) is proportional to 8. This area fall-off is one of the main virtues of the lattice
formulation of gauge theories. We already mentioned that this means a (linear) confinement in the
strong coupling regime (see remarks on the convergence and the reliability of strong coupling results in
section 3.1.2). This result actually relies on two assumptions, namely

i) B, does not vanish, or, more generally, there exist representations s;,S,,... such that
rCs®s,®..., with 8, By, ... #0.

ii) there exists no set of representations such that r appears in the decomposition of the tensorial
product ®;[s; ® 5], B, # 0.

If i) is not fulfilled, the Wilson loop in representation r is obviously a bad order parameter. A trivial
example is provided by SU(2) with an action invariant under a transformation of the centre U, - —U,,
and r=3. If condition ii) is not fulfilled, e.g., if s exists such that r Cs®3, it is possible to form
tube-like diagrams around the loop C (see fig. 8), thus giving a perimeter fall-off to the Wilson loop.
Physically it means that we have screening rather than confinement. The test charge r is screened by
dynamical pairs s and § to form a group singlet. An example of such a case for SU(2) is given by r= 1,
screened either by 1/2®1/2 or by 1® 1. Comparison of the two types of contribution B** versus
B°%~D shows that a cross-over from area law to perimeter law occurs at L = 15, If the gauge group has
a non-trivial centre, a sufficient condition is that y, transforms non-trivially under transformations
belonging to the centre. In particular, this is always the case for the fundamental representation of
SU(N).

To go beyond the leading term 87, we retain plaquettes not belonging to the minimal surface, or
carrying a representation other than r in the expansion of exp{BS}. Relevant diagrams now have C as a

Fig. 8. Diagram contributing to the perimeter fall-off of the Wilson loop.
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boundary and may be ordered according to the number of extra plaquettes, in addition to the minimal
number A. As in the case of the partition function above, different group integrals correspond to
different topologies. These coefficients for diagrams with twelve plaquettes or less are listed in section
3.2.1

It must be clear now that these considerations may be extended to various observables: small closed
loops, plaquette—plaquette correlation functions, 't Hooft loop. The plaquette—plaquette correlation
function, for example, which is of particular physical interest since it yields the glueball mass, is built up
from tube-like diagrams joining the two source plaquettes.

3.1.6. Cumulants, connected diagrams and extensivity

As noticed above, the direct evaluation of the expansion in powers of B is not very useful in the
actual computation of the series. We review, however, this method which leads to some important
results. The technique is related to the general theory of diagrammatic expansions. The statements will
be illustrated in the three particular cases of the high temperature Ising model (I), perturbative field
theory (F) and, of course, lattice pure gauge theory (G).

The action is split into a free part S, ((F): quadratic part; (I) and (G): 0) and an interaction part Si,..
The generating functional is rewritten as

20)= [ expiS(9)+J - 9} Do

= exp{Sine(/0J)} f exp{So(¢)+J - ¢} D

= exp{Sin(9/8J)} exp Wo(J)
= [1+ Sin(3/00) +382,(3/3])+ - - - exp{ WPT + WT*2+ - - -} (3.37)

where Wy(J) is the connected generating functional of the free theory ((F): propagator [ [ J(x)A(x —
y)J(y)dx dy; (D) (resp. (G)): 2, u(J,), sum over the sites (resp. links) of the Fourier transform of the
field measure). Each monomial of the bracket contains derivatives with respect to the sources J, from
which arises a sum of terms when applied to the exponential exp W,. Each resulting term is interpreted
as a diagram made of “vertices” joined to “‘sites”.

~ Sinc is @ sum of monomials (1/k')V$) &y, ..., where iy, ... j; denote all indices (location as well
as internal indices). A “k-vertex” (drawn as a black dot from which k lines originate) is associated with
every such monomial and contributes a factor V&), ((F): usual vertices of Feynman diagrams; (I) Sin.
being quadratic, only 2-vertices exist and are usually represented by a line joining 2 neighbouring sites
instead of a black dot; (G): Si, is quartic and the vertex is usually represented by a plaquette, although
we occasionally draw it as a black dot).

—a “p-site” (drawn as an open dot from which p lines originate) is associated with a pth derivative of
Wo: its contribution is the cumulant W§. ((F): W, being quadratic, there are only 2-sites which are
represented as a Feynman propagator line; (I) (resp. (G)): sites are located at the nodes (resp. bonds) of
the lattice and contribute a factor u®(J,) for the location x.)

The rule for computing the generating functional Z(J) is the following: draw all possible diagrams
with sites and vertices joined together by internal lines (external lines pertaining to a site are also
allowed and contribute each a factor J); divide each contribution by the order of the symmetry group of
the diagram. Z(J) is the sum of all the contributions.
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Due to the simplifications occurring in field theory (only 2-sites) and in statistical spin models (only
2-vertices), this expansion is used in practice. In lattice gauge theory, the method has to be refined
because the number of diagrams increases drastically with the order, making things quite untractable.
For instance, the reader may list all the diagrams of 4th order in B in the Z, gauge partition function of
a one plaquette world (i.e., derive by this method the expansion of B, in terms of B); the result contains
16 topologically different diagrams and one finds among them spheres, torii, projective planes, Klein
bottles, . .. ! Improvement of the method may consist in resumming sub-classes of diagrams. We will
later present some of them (1/d expansion). The character expansion can be regarded as such a
reordering of the B series, grouping all vertices or sites pertaining to the same location.

The first refinement of the method is the restriction to connected diagrams. In this discussion of the
cumulant expansion, connectivity refers to the abstract graph made of “sites” and “vertices”, not to the
geometrical object made (e.g. in lattice gauge theory) of links and plaquettes; in particular, two different
“sites” can share the same lattice location, while belonging to different connected parts. It is clear from
the diagrammatic rules that a disconnected diagram contributes exactly as the product of the con-
tributions of its connected parts. Hence the connected generating functional W(J)=1In Z(J) is the sum
of contributions of all connected diagrams computed according to the preceding rule. In particular, in a
lattice with periodic boundary conditions, translation invariance implies that the same diagram occurs &
times, as long as its spatial extension does not allow it to close using the boundary conditions. The first
occurrence of such an exception is the diagram consisting of all L* plaquettes in a given 2-plane, which
generates only L¢* different copies of itself instead of 4 by translation. Hence

Z=e""+0(L428Y). (3.38)

In contrast, in the character expansion, there is no simple definition of connectivity such that In Z is
the sum of connected diagrams. This is due to the fact that 2 plaquettes cannot share the same lattice
location and therefore spurious contributions to Z generated in the exponentiation of the sum of
connected diagrams have to be subtracted out. However, the property of eq. (3.38) proved using the
cumulant formalism (namely that to any finite order in 3, the expansion of Z exponentiates) is still true
in the character expansion.

Miinster [87] has used a cluster version of the character expansion and a moment-cumulant
transformation to prove this result directly. His proof extends to large rectangular Wilson loops. It
shows that, to any order smaller than the side of the loop

In W(C)=-KA+uP+C (3.39)

where P is the perimeter of the loop. The perimeter and constant terms reflect edge and corner effects
around the loop, and can be disposed of by extending the loop to the boundary of a finite lattice and by
taking periodic boundary conditions. In the latter case, we have simply

In W(C)=-KA.

We use these results in the next subsection to derive rules for the free energy and the string tension in

the character expansion formalism.
The cumulant expansion may also be applied to the large N limit of U(N) theories. This is relegated

to appendix B.
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3.1.7. Geometric factors. Configuration number

It follows from the previous section that, to any finite order and for periodic boundary conditions,
the series expansion for Z (resp. W(C)) exponentiates in the form e** (resp. e **). From this follows a
simple rule to derive the expansion of F (resp. K). In the diagrammatic expansion of Z (resp. of W(C)),
it will be identified with the coefficient of the term linear in ¥ (resp. in A, for # = 0). The number of
inequivalent positions of a given diagram on the lattice is called its configuration number (c.n.), its linear
part in A (resp. in A) is the reduced configuration number (r.c.n.). Configuration numbers of connected
diagrams (for which c.n.= A r.c.n.) are easily computed; the only delicate point is a possible
non-obvious symmetry which reduces the c.n. by a factor. For example, the torus diagram (16.2 of table
6) has a r.c.n. 3X 3d(d — 1) X 3(d — 2)(d — 3), where the factors 3 reflect the three symmetries between its
axes (1< 2), 3<4)and (1,2)< (3, 4).

We recall that, in the character expansion, disconnected diagrams (i.e. made of pieces having no
plaquette in common) contribute to F and/or K. Their r.c.n. are determined in a recursive way. Let D; and
D, be two diagrams, [D;], [D,] their c.n. One may write the identity

[Dil[Da]= > npl[D] (3.40)

D=Di1uUD;

where the sum runs over all inequivalent diagrams D (connected or not) which may be split into
D; UD, in np, different ways. If the r.c.n. of the connected diagrams in the right hand side of (3.40) have
already been computed, keeping the term linear in N (resp. in A) gives an equation for the r.c.n. of the
disconnected contributions (the left hand side has no linear contribution to ¥ or A). For example,

8]0 68 f)

o '

[ ydd- 16)(d - z)]z= ) [ . ydd- 1)(d2— 2)Qd-5), ,dd- 16)(d -2)

Therefore the r.c.n. x of the contribution of two disconnected cubes to F is
x=—d(d-1)(d-2)(12d - 29)/12.

Another example, quoted from the computation of the string tension, is displayed in fig. 9. In higher
orders, it may happen that a given r.c.n. appears in several such equations, thus providing a useful
cross-check of the counting procedure.

3.1.8. Computation of the glueball masses

The computation of the glueball masses (inverse correlation lengths) is more delicate. In section
3.1.2, it has been shown that, at strong coupling, connected correlation functions are bounded by a
decreasing exponential. At large distance, one actually expects a behaviour

G(r) = <01(0) OZ(r)>conn

~ A(r)e ™+ Ay(rye P 4. (3.41)

r—



40 J-M. Drouffe and J.-B. Zuber, Strong coupling and mean field methods in lattice gauge theories

2d-DAX %’—'2—(_‘1‘—2) ¥

=2d-2)A{(A-52(d-2)+4+4Q2d - 6)+ 4(2d - 5)+ (2d - 5)+ 1 + 2d - 5)}
=]
Fig. 9. Determination of the c.n. of a disconnected contribution to the string tension. Diagrams have been represented by their cross-section.

with several mass gaps m(F) <m,()<---, depending on the direction of observation 7 In a lattice
gauge theory, the simplest choice for @) and 0, is to take two distant plaquettes in the fundamental
representation, in various relative orientations

G(r) = {tr U, (0)tr U,(r)) — (tr U,Xtr U,,) . (3.42)

Only the smallest mass contributes to the leading asymptotic behaviour, but it may be that these masses
are degenerate in the strong coupling limit; then the identification of the different masses m,, m,, ... on
the strong coupling expansion may be problematical.

This is a well-known problem in the context of spin models. For example, the first two orders of the
connected correlation function of the two-dimensional Ising model at high temperature do not sum up
as a single exponential (see fig. 10a):

(G007 =na)onn = "[1+ n(n + 1)+ O(t*)] # e ™" .

z(.__IJ_LJ, . svm-)

O<i<j&n i

CY (e T )

0<igjsn

()

Fig. 10. Leading contributions to the spin-spin correlation function of the two-dimensional Ising model. a) {00ay), b) =, e *(ay0,).
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In such a case, where one looks at the asymptotic behaviour along an axis of the lattice, one may use the
transfer matrix formalism [88, 89, 35]: e™™, e"™ in (3.41) correspond to various eigenvalues of the transfer
matrix, and, to disentangle them, it is suggested to project the correlation functions on eigenstates of the
transfer matrix. As the latter commutes with “spatial” discrete translations and rotations (in the
(d — 1)-space orthogonal to the “time” axis u = (1,0,...)), one may consider linear combinations of
definite spatial momentum p, and which transform under an irreducible representation of the (d — 1)-cubic
group [90]. Moreover, for gauge groups like SU(3) in which the orientation of plaquettes matters, there is a
discrete symmetry (C-invariance) U; » U}, tr U, - (tr U, )* = tr U}, and states may be classified according
to a C-parity +1 or —1. For example, the rotation invariant, C-even combination, which should give the
lowest mass gap of four-dimensional lattice gauge theories, reads

> > exp(—ipx)Re tr(U,,(0, 0)) Re tr(Up(x, 7)))conn = G(p, 7) .

x 6 spatial
directions
of p1 and p2

It implies a sum over the six plaquettes forming the cube centred at 0 (resp. at x), over x, and over
internal orientations of the plaquettes p; and p,, with a fixed time separation. At large 7, one has

G(p, 7) ~ exp{—Eo(p)7} (3.43)
and the mass gap mo = Ey(0) [91] and the dispersion relation Ey(p) [92] may be computed by strong

coupling expansions. It is known that such a method solves the above-mentioned problem for the
d-dimensional Ising model. For example, if d = 2 (see fig. 10b),

G(p7 T) = 2 exp(_ipx) <UO,OUx,f>conn

=[1+2(n+ 1)t cos p+2{(n + 1> cos® p — (n + 1) sin® p}> + O(+3))¢"
= 1" exp{2(n + 1) (t cos p — £ sin’ p + O(P))} (3.44)

whence
amo=—Int-2t+ 0(r), (3.45)
a Eo(p)=—Int-2(t cos p - £ sin® p)+ O(%),
in agreement with the exact results [93-95]
amy =~ Int(1+ 6)/(1 - 1)] (3.46)
a Eq(p) = Arg cosh(cosh mo+1—cos p).
Moreover, with appropriate skew-periodic boundary conditions [94], the term (n + 1) in the exponent

of (3.44) is changed into n, and a simple prescription to identify Ey(p) is to take the term linear in n in
the expansion.
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The rotation invariant plaquette—plaquette correlation function has also a strong coupling series that
exponentiates, because the next contributions are of a much higher order. Typically,

G, 7= an)=t" (1+ 0(1))+ £ (1+ O@t))+ - - (3.47)

where the term *" comes from higher representations on the tube joining p, to p,. Similarly, other
linear combinations of plaquette—plaquette correlation functions (tr U, tr U,,)conn OF of more com-
plicated loops may be constructed, transforming under other representations of the cubic group and odd
or even under C-parity, and give the mass gaps in other channels [96, 97].

One may also look at the exponential decay of correlations in directions which differ from the lattice
axes. Then the previous method is more delicate to set up, and an alternative way to extract the
corresponding mass gaps from strong coupling series has been proposed [98-100, 96]. One constructs
the 3d(d — 1) x 3d(d — 1) matrix of correlations between all possible plaquette directions

G (1) = AT Upr 0) 1 Upo (r))econn (3.48)

where Re or Im is understood in front of tr U, depending on whether C'=+1 or —1. The Fourier
transform of G(r) is denoted G(k), with k now a d-vector

G rvpo(k) = Y, exp(=ikr) G ppu(r) . (3.49)

The large r behaviour of G(r) is dominated by singularities of G(k) at k, i.e. det G"'(x)=0. The
corresponding eigenvector of G behaves as exp(ik - r) = exp(—mr), with m = —ik * .

This method is well adapted to strong coupling calculations. To leading order, G~M_,,cr may be seen as
describing the random motion of a plaquette (fig. 11), and

Gky= (1-* M(k))™* (3.50)
where the matrix M describes a unit step of the random walk:
Moo = Mpgp = CM 4y e C= %1
M =2 >, cosk,
pHuy

M _ {4 cos(k,/2)cos(k,/2) if C=+1
wewe = |4 sin(k,/2)sin(k,/2)  if C=—1.

0 b
W “lp

Muy,uv Myv up

Fig. 11. Random walk of a plaquette.
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To that order, the relevant poles have
e—m - eini — A(f) t42i,. ,

hence
m = —4(2 f”) In7—1n A(F) (3.51)

where the constant A measures the entropy of the shortest path. In four dimensions for example, along
an axis, A =1 and

m=-4lnt+.--,
whereas along the diagonal (r = (1/2,...,1/2)), A= 6
m=-8lnt-2In6+---.

Higher order corrections may be incorporated into this scheme. They correspond to “self-energy”
insertions II in the propagator G, i.e. to inclusions of walls inside the tube or to decorations or
deformations of the tube; G takes the form

Gky=(1-tM-I)". (3.52)

In that way, the calculation up to order 8* has been carried out for the on-axis and diagonal glueball
masses; on-axis results agree with those obtained through the method presented earlier in this section.

3.1.9. Computation steps and cross-checks

In practice, a strong coupling computation will consist of several successive steps: listing all
topologically distinct diagrams, connected or not, computing their group theoretical factors (as a
function of the B,’s) and their reduced configuration number, and re-expressing the result as series in
the desired variable (8, or t =, .. .).

The first step, enumeration of diagrams, is the most tedious and delicate. It can be done by hand”,
with obvious limitations (there are 26 distinct diagrams with 16 plaquettes or less for the free energy
(see table 6), about 300 with 14 plaquettes or less for the string tension). This enumeration “by hand”
suffers also from a difficulty of notations: how to draw diagrams in four (or more) dimensions in a clear
and unambiguous way. As an alternative to the standard drawings, used for example in table 6, one may
use a description by contour lines, valid for an arbitrary regular component. For definiteness, take a
regular closed surface; each link is common to two and only two plaquettes. Starting from the centre x©
of some plaquette u, v, follow the path x, = x? on the surface. It goes across plaquettes of directions
v,p, ..., until it closes back at x©. This is represented by a closed oriented curve labelled by y, crossed
by closed curves indexed by v, p, .. .. The orientation convention is that crossing the v-curve oriented
from right to left corresponds to a shift in the direction +». This procedure is iterated for each centre of
each plaquette, until every plaquette has been traversed twice. The resulting network of curves is a
faithful description of the regular surface (see for example fig. 12); the original surface can be
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(a) (b)

Fig. 12. Representation of diagrams by the system of contour lines. The number of intersections counts the number of plaquettes. Going from a) to
b) corresponds to pulling plaquette p into the o-direction, which is represented by an additional closed curve, labelled by o and encircling p.

reconstructed (up to a displacement on the lattice) from this picture. Therefore this representation may
be used for our book-keeping. Similarly, all diagrams with the topology of a disk contributing to the
string tension may be represented in that way. Notice that this representation might also be used to
generate distinct diagrams, if we were able to write all the constraints and selection rules on these
patterns.

It may be thought that it is relatively easy to generate all diagrams by computer, using for instance
successive accretions of three-dimensional cubes. However, in the simplest algorithms, the same
diagram is often generated a large number of times; to avoid double counting requires an elaborate
pattern recognition program and reduces the efficiency in a dramatic way. More elaborate algorithms
can be designed [101], but are difficult to set up because the number of special cases grows rapidly. Using
such a program K. Wilson [102] has been able to generate rather long series (22nd order) for the free energy
of some four-dimensional pure gauge theories.

The computation of the group theoretical factors and of the geometrical weights (reduced configura-
tion number) has been explained in the two previous subsections. Finally, the manipulations on the
resulting series (substitution of one variable for another one,...) are the ideal field of application of
symbolic computer programs. In this review, we shall mainly present expansions in the original inverse
coupling B, best suited for a direct comparison with Monte-Carlo data, or in the first character
parameter B;= t, more appropriate for comparing series pertaining to different groups.

At the end of such a laborious computation, what are the possible cross-checks? If the calculation has
been carried out in a general way, valid for all groups and dimensions, it must pass a few tests:

—the three-dimensional Z, gauge theory is, by duality, equivalent to the three-dimensional Ising
model. Hence, strong coupling expansions of observables in the former must coincide with low
temperature series of dual observables in the latter. For example, free energies are related by eq. (2.19).
The gauge string tension is identical to the Ising surface tension, while plaquette—plaquette and
spin-spin correlation lengths can be identified. Rather long low temperature series exist in the literature
for the Ising model.

In four dimensions, the Z, and Z; (and, in the generalized sense explained in section 2.3.3, the Z,,)
models are self-dual. This means that strong coupling expansions may also be regarded as low
temperature expansions of the dual quantities. For example, the low temperature expansion of the Z,
model starts from a ground state where all links are +1, up to a gauge transformation, and flips
successively one, two, ... links. To any configuration of overturned spins corresponds by duality a
permissible strong coupling diagram of the free energy, the plaquettes of which are dual to the
frustrated plaquettes of the former. However, in the weak coupling expansion, some care has to be
exercised, since gauge equivalent configurations have to appear only once. For example, a configuration
of 4 flipped links emanating from the same site is equivalent to the complementary configuration of
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(a) (b)

Fig. 13. Examples of low-temperature configurations of overturned links in four dimensions that may be drawn in two equivalent ways. a) is dual to
16.2 of table 6, b) to 14.3.

links incident on that site (fig. 13). This equivalence corresponds to the symmetry factor 1/2 attached to
such a diagram. In short, duality is useful to visualize diagrams in an alternative way and to check the
configuration numbers of four-dimensional theories.

—for large dimension d and dB* of order one, lattice gauge theories become exactly solvable (see
section 3.3). It is moreover possible to compute a few correction terms which are suppressed by powers
of B~ d~"* Tt is then possible to expand these exact expressions in powers of B8, and to check in this
way the terms of largest power of d for a given order in .

—for large N and B = B/2N? fixed, the U(N) or SU(N) gauge theory goes to the limit mentioned
above. In this limit, the free energy per site is proportional to N2, while mass scales as the string tension
or the mass gap reach finite limits. However, in the character expansion used here, the existence of this
limit results from cancellations [103, 104]; individual diagrams contributing to F may go as N* or
higher powers of N. This provides an additional cross-check on the weights of diagrams.

3.2. Series

3.2.1. Free energy

The free energy has been derived to sixteenth order (diagrams up to 16 plaquettes) for general gauge
groups and arbitrary dimension d, in terms of the character coefficients B,. For a specific form of the
action B S(Up,), the latter may be computed as functions of B, and the expansion re-expressed in powers
of B. For an action of the simple form B x,(U,), it is more convenient to choose B, as the expansion
variable. The resulting expansions are somewhat more universal. Indeed the lowest order diagrams are
only made of plaquettes in the representation r, and the first coefficients are thus group independent.
Notice that B, has a simple interpretation; it is the internal energy (plaquette energy) of the
one-plaquette model with the same action.

Let us first present the general expression of the free energy per site F to 16th order. Fig. 14 displays
a hopefully suggestive, though not faithful representation of the coefficients by means of a cross-section
of a typical diagram. We define

a) S,= >, Brd?  (sphere) (3.53)
r#0
b) T,=S B  (torus) (3.54)
r#0
€) Ony,.. .= > PBre--dy- N, ., (3.55)
[ R rp#0
with
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Table 6
Table of diagrams with up to 16 plaquettes contributing to the free energy. In ambiguous cases, plaquettes are shaded to indicate
that they have been selected, and broken lines are drawn for the eye’s help

Number of Diagram r.n.c. Group
plaquettes theoretic
and diagram factor
number

61 éd(d C1)d-2) S
10.1 %d(d ~1)d-2)@d-5) Sto
1.1 #.’ Y@ -1yd-2)2d-5) )

u\\ 5d(d - 1) 551
i [/
12.1 u’ H’ - %d(d ~1)d - 2)(12d - 29) s3
NN
122 g" g d(d-1)d-2Xd - 3) Si2
L
123 hﬂ % d(d-1)d-2)d-3) Sz
14.1 % d(d- 1)(d - 2)2d - 5P Su
142 2d(d - 1(d - 2)4d? - 22d + 31) Sie
143 d(d - 1)(d-2)(d-3) Sis
144 {&\\\Q\\ sd(d - 1)d - 2)d - 3) sz
AN ?

15.1 % d(d-1)d-2)(d-3)2d~5) Bsss
152 %d(d S 1)d-2Xd-3) -
15.3 gd(d— 1d - 2)(d - 3) ol
15.4 d(d - 1)(d - 2)(2d - 57 Bs1
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Table 6 (continued)

Number of Diagram r.nc. Group
plaquettes theoretic
and diagram factor
number
£/
15.5 uﬂ! 4d(d — 1)Y(d - 2)(4d*— 22d + 51) 695,
[ i f i ' ! 2
16.1 nn’ fd(d — 1}(d - 2)(4d*—24d + 3T) Sie
\ 7
162 !{.{;’/ % dd-1)d-2d-3) Tis
Q=
16.3 Qﬁﬁ 8d(d - 1(d - 2)(d - 3) Sis
N\
16.4 $; 16d(d - 1)(d - 2(d - 37 Sis
165 %ﬁ 164(d - 1)(d - 2)(d - 3 St
(R &7 .

16.6 Hgg’ 3d(d-1)d-2)(d - 3)2d - 5) Osss1
16.7 —d{d - 1){d - 2)(22d*- 113d + 147) SeS10
16.8 2d(d - 1)d-2)(d-3) Oosa
169 Ld(d-1Yd-2)d - 5 e
16.10 2d(d - 1)(d - 2)(4d*— 22d + 31) Lsiast

QN

16.1 Efﬁ? ad(d - 1Xd - 2)(d-3) O1042

N
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i
M f'l}
N3
{r3} g"1“2“3"4 s
Ng {" 5)
N24 N34
N34 124 "23
ﬁ m’Hz M3 Mg
n23
Fig. 14. Group theoretical factors representation for diagrams of the Fig. 15. The lowest order non-orientable diagram occurring to order
free energy. 24: topology of a projective plane, represented by its three-dimen-
sional projection. To avoid a four-fold singular line, two plaquettes
have been shifted in a new direction, as indicated by the dotted lines.
d) gn1n2n3n4n5 = 2 :"11 e d"lder“di‘SN r172r3N rir4rs (3.56)

(diagrams with two 3-fold singular lines each bounding two disks with n,, n, (resp. n4, ns) plaquettes,
and joined with an annulus of n; plaquettes),

&) emm= S 11 @p3) [ [IDU [T xuUU; (.57
i<j i i<j
(diagrams with four 3-fold singular lines joining two points A and B, and with six disks bounded by

pairs of these lines).

In these expressions, the n’s denote the number of plaquettes in each regular component, and the
summation runs over non-trivial representations. For the sake of completeness, all diagrams with 16
plaquettes or less have been displayed in table 6. No non-orientable diagram contributes to this order
(the first one occurs to order 24 and has the topology of a projective plane: fig. 15).
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In terms of these coefficients, the free energy per site in d dimensions reads

F=1d(d-1){In fo+ (d - D[LSs+ 2d — 5)S10+ 2(d — 3)Siz + (204 - 106d + 143)S,,
+(84d% - 504d + 757)S16+ X(d — 3)Tos — (2d — 29/6)S2 — (4442 — 226d + 294)SsS10
+2d - 5)0ss1+3(d — 3)(2d — 5)(Osss+ Osss1) + 3(d — 3)(B3Osi2+ 30102+ 20533+ 3064 + P14
+(20d? - 108d + 149)(200s, + Lsras) + - -1} . (3.58)

For the specific form of the Wilson’s action, one derives the expansions of F to order ¢'° or 8'°.
In table 7, we have only given results for some groups of interest. We think that expansions in ¢ are well
behaved and useful in the search of singularities, especially for “even’ groups. Expansions in 3, on the
other hand, may be directly confronted to Monte-Carlo data. As all of them have already appeared in
the literature, we only give references and correct a mistake to order 8¢ for the case of Z; and SU(3).
(In the published series of Z; and SU(3), diagram 16.8 of table 6 had been omitted. We just give its
additional contribution, using the same conventions as the original reference.)

Z, [7] (cf. erratum)

Zs [7] (erratum, add AF = 4d(d — 1)(d — 2)(d — 3)(B/2)'®)
u@) [7] (cf. erratum)

SU(2) [7] (cf. erratum)

SU3) [7] (erratum, add AF = 108d(d — 1)(d — 2)(d - 3)(B/3)'°)
SU@4) [105)

SU(S) [106]

SU(6) [105]

SUNYZx  [107)

SO(@3) [108]

For special values of d, longer expansions may be available. This is of course the case of the Z,

Table 7
Strong coupling coefficients f, for the free energy in terms of the first character coefficient ¢ for Wilson’s action F = Jd(d-1){In Bo+(d-2)S fur"}

hn

G 6 8 10 12 14 16 Remarks
1 2 3 124 3421 1889 longer series exist
1 0 - 2(5, 31 2_ 124 , 3421 1889
Z : 2d-5 3 (2d . ) 2042 - 106d + 143 3 -5 atd=3.4
2 1 ( 543> ( 317, 13649 2153 |, 784355 lon, i i
ua Z _ I/7,, 343 317 2 ger series exist
3 0 2wd-5  Hu-P 2(20a2- a+ B2 ) w1244 B longer s
4 _ 4 146 ( , 314 33971) _16 , 503147 , 12787481 longer series exist
U@ 3 0 4Q2d-5) 3(2d+ 81) T - d e
2 2
U() §N2 0 2Qd-5)N? 3 (10d — 23)N? 2(2042 - 1064 + 143)N? 2(84d* - 432d + S69)N? only the leading
or term in N2 has been

SU(») written
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Table 8
The coefficients f, for the four-dimensional free energy, computed by Wilson

n

G 6 8 10 12 14 16 18 20 22
1 1 221 s -345

7 3 0 3 6 39 1 9 2 11017
2 —-287 3793 —131869 1788585347

u@) 3 0 6 % m = 39968 -2974.75173 24390.66152
4 -3176 39980 —6569971 95936872 —79327880

SU@) 3 0 12 243 o 520 33305 56 65379.87679

theory in d = 3 dimensions, where duality with the Ising model enables one to write
F 2, gaue(8) = 3In cosh B + >, O+

in terms of the “zero field coefficients” given by Domb [4].

In four dimensions, Wilson [102] has been able to compute three additional terms in the expansion of
the Z,, U(1) and SU(2) internal energy. The corresponding results for the free energy appear in table 8.
For other forms of the action, few explicit series are available. For the SU(2) mixed action, however, a
double expansion in By; and By, to 16th order has been derived [108].

Finally, the expansion of a simplicial lattice in d dimensions has been recently derived [31]. We recall
that this lattice, which generalizes the triangular lattice in two dimensions and the face-centred cubic
lattice in three dimensions, may be considered as the cross-section of a (d + 1)-hypercubic lattice by the
plane x; + - - - + x4,1 = 0. The merit of this lattice is to have large coordination numbers (a site has d(d + 1)

neighbours).

3.2.2. Wilson loops and string tension
The quantity of interest is W,(C) defined in (1.16). The curve C here is rectangular. In section 3.1.5, it
has been explained under which conditions an area law was expected for W,(C). Then, to leading order,

WAC)=d B2+ (3.59)
hence the corresponding string tension K, behaves as
K.=-InB,+0(). (3.60)

We now turn to the computation of higher order corrections. Earlier works on the subject can be
found in [109-111]; we discuss here the most recent results 87,112, 113]. The corrections may be
classified according to the number of extra plaquettes added to the minimal surface. The topologies of
these diagrams correspond to those of diagrams for the free energy drilled along the contour C. In the
following, we restrict ourselves to Wilson loops in the fundamental representation r =f. Up to 12th
order, all the topologies are obtained in that way from the closed diagrams symbolized on fig. 14. This
results in the following list (see fig. 16)
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Fig. 16. Representation of group theoretic factors for the Wilson loop.

a) a disk with A + n plaquettes A, = B¢.
b) a disk with a handle, A + n plaquettes: A, = Brd;>
¢) a hole in the topology @ of fig. 14,

B, .= di' 2 (d.BR) (doBT). .
d) a hole in the topology ¢ of fig. 14,

Coinznm = di' 2 N 5N i drdBTiB 2B BT .
e) a hole in the topology ¢

D/t = di' S, dddd. 4 \67 BLB% [ DR DS DT DU, (RT-)

X X(TS™) X SR™Y) xe(RU™") xu(SU ™) xo(TU ™).
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Using these notations and those of the preceding section, the string tension for arbitrary gauge
groups and dimensions reads

Ki=—Int-2(d-2) > K., (3.61)

with K,,, the contributions of diagrams with A + n plaquettes, given by

K,=1*

K5= Bs;t!
Ks=25— A,
K,=0

Ky = (9d — 22)* + 2Bgt >+ 4£B,,

Ko = (10d ~ 29)By; ™" + (d = 5/2)Bsst™ + 2D11tt72 + (8d — 29)*Bs,

Kio= (484 — 132)1" — (11d ~ 59/2) A 10+ (d — 5/2)Bss;t™* + (10d — 29)(Cras:t ™' — 1*Ag)

~ —dBiu?+121'By

K1 = (24d — 88)°Bs, — (11d — 59/2)Ass; — (10d — 29)Bs,Aet ™' + 20(d — 3)B1y,t ™1 + 12tB3
+6B,,3t 7+ 10£°By;

Ko = (364/3d> — 1666/3d + 1831/3)t2 + (72 - 24d)° As + (11d — 29)A%~ 20(d — 3)A 1, + 12D 14173
+12D%13t + 6B% + Braat™ + (16d — 40)Bes + (48d — 160)12Bg, + (60d — 168)1°Bay
+8(d — 3)Bgs + 4(2d — 5)Bsol >+ 4(9d — 26)B5t 72 . (3.62)

The corresponding diagrams have been displayed in ref. [87] (actually, Miinster has given diagrams
relevant for his cluster expansion which differs from the expansion described above only by a reshuffling
of the disconnected contributions). The interested reader may also find the explicit expression of K¢ as a
function of the first character coefficients for Z,, U(1) and SU(XN) gauge groups in [87, 112]. The series
has been extended to 14th order for the groups Z,, U(1) and SU(2) [113], but the formulae below
actually apply to all SU(N), N# 3. For these groups, diagrams with 13 plaquettes have one and only
one plaquette carrying a higher representation and contribute

Kis= (144d>— 864d + 1261)Bs, 1" + (80d> — 538d + 893)Bo, 1> + (140d> - 822d + 1211)B,3 ™'
+(8d — 20)Cays1t > +(16d — 44)Cyy51 22 + 8(d — 3)t ' Cy84+ O(1'%) .

Diagrams with fourteen plaquettes are more numerous and contribute

K= [(1080d> — 5968d + 8288) + 27(d — 3) + (%¢d* — 34 + 283)a
+ (~450d% + 2531d — 3568)y]r™ + O(1"°).

In that expression, the four contributions come respectively from the topologies A, A’, B and from
disconnected terms. The weights are r=a=y=1for Z,, =4, a =8, y=4 for SUQ), 7=1, a =3,
y=2for U(l), 7=0, @ = 6N? y =2N? for SU(N) (N — ).

The final results for the coefficients K, of

K=-Inr-> K"

are listed in table 9. The reader may find more data in [112, 113]. We also quote the longer series
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Table 9
Coefficients K, for the strong coupling expansion of the string tension in four dimensions. K = ~Int—Z K"

n

G a4 s 6 71 8 9 10 1 12 B3 14
Z 4 0 4 0 6 0 144 0 @ 0 4%
70 2125 862619 5754751
ua 4 o 2 o W0 pava) 862619
a 3 0 2% 0 720 0 Se
176 10936 1532044 3596102
suQ 4 0 0 176 10936 1532044
@ 0 3 0 205 0 —o 0 S
U@ 4 ;- o X I3 208y suewy ossssism
2 10 —530- —2048— —Ghe—
SUE) 4 08 0 6 0 344 0 1‘5318 0 11688

computed for the three-dimensional Z, model by Weeks [114] from the dual Ising model
K=—1nt-20"— 2151015 — 161'° — 282112 - 1501 — 7341" = 45— . . .. (3.63)

It is also of interest to compute the string tension for generalized actions. The SU(2) string tension
with a mixed action has been computed to the 11th order in B¢ and B, [115].

To study the U(N) gauge theory, Green and Samuel [104] have introduced the Wilson loop in the
determinant representation (det Uc). This order parameter actually probes the U(1) part of U(N)~
U(1)® (SU(N)/Zx). They show that, at d = 4, (det Uc) has an area (resp. perimeter) fall-off for large
loops at strong (resp. weak) coupling, very much as in the four-dimensional U(1) theory. On the
contrary, in three dimensions, it is only in the N —o limit that (det Uc) has two regimes. The
computation of the string tension of this loop operator has been carried out to twelfth order.

3.2.3. Glueball mass

As explained in section 3.1.8, the computation of strong coupling expansions of mass gaps is quite
delicate, and only a few terms have been computed so far.

Inverse correlation lengths along an axis have been computed to order B° for the three combinations
of plaquettes that transform irreducibly under discrete cubic rotations and under C-parity (see section
3.1.8). They form a singlet 0, a doublet 0, and a triplet 05

@1 =Re tr(U12+ U23+ U31) (C = +1) (3.64)
0,={Retr(Uiz— Un); Re(=2tr Up+tr Us+tr Uxp)t  (C=+1) (3.65)
Os={Imtr Up; Imtr Up; Imtr Us)}  (C=-1). (3.66)

The latter does not exist for groups with a real fundamental character (Z,, SU(2), . . .). In the continuum
limit, these states may be expanded onto states with definite angular momentum, parity and C-parity.
Assuming that the smallest angular momentum gives the dominant contribution to each of the
multiplets, we expect them to become respectively states of J°© =0, 2*" and 17",
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The coefficients of

myre=—4lInt+ >, mt* (3.67)

k

are presented in table 10 [97, 96] for some gauge groups in four dimensions. Also available from [87] are
the series for Z;, and for U(1) with the heat kernel action. The energy-momentum dispersion relation
for the singlet state has also been computed in three and four dimensions for Z, and SU(2) [92]: this is a
useful quantity if one wants to see how Lorentz invariance is restored in the approach of the continuum
limit.

For the same purpose, it is useful to compute off-axis correlation lengths. Though different at smali
values of B, they should approach the on-axis quantities in the scaling region. Their computation is
technically involved (see section 3.1.8) and fewer orders are known. In that case, states must be

Table 10
Table of on-axis glueball masses

k
G 1 2 3 4 5 6 7 8
Z, 0o 1 0 '7‘37 0 % 0 %g@
sU@ -3 9 ‘727 7 —_2291 815082%‘207 m — 183140613
SUE) 0 0 0 -3 0 -164 0 _546
0** states
k
G 1 2 3 4 5 6 7 8
A o 1 0 £ 7 0 =39
sU® 0 2 0 %9 0 %2_6 0 %z;
sUB) -3 9 —727 17 ;125_3 iggjgz 2957_74678798_9 -90611973
2%* states
k
G 1 23 4 5 6 7 8

1"~ states
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classified according to irreducible representations of other discrete subgroups of O(4) [116]; for
example, correlation functions along a diagonal direction must be projected onto representations of the
tetrahedral group Ty, and form three multiplets: a singlet, expected to become a 0", and two triplets
(2** and 1*7). Their masses have been computed to order 8* for Z,, Zs, SU(2) and SU(3) (the 17~ only
exists for Z; and SU(3)) [96, 99].

We finally recall that again in the three-dimensional Z, model, a longer series has been computed in
the dual Ising model [117].

3.3. Resummation of diagrams

3.3.1. Large dimension

The large dimension limit is not uniform and different techniques must be used depending on the
region under study. Here, we are interested by a rearrangement of the strong coupling series, which
can be performed only when it is convergent, that is, in the strong coupling phase, including possible
metastable regions. This method is different from others, studied later; comparison and final conclusions
about the large dimension limit are therefore postponed to the end of section 4.2.3 devoted to the 1/d
expansion.

A simple inspection of the strong coupling expansion for the free energy (table 7) reveals that the
highest power of d increases by one every fourth term. It is therefore tempting to reorder the series as
an expansion in d~'* at fixed B*d. This rearrangement can be performed explicitly [118].

We have first to understand this property on the maximum degree of d in the terms of the series and
to identify all the contributing diagrams. Note that the degree in d for a given diagram is its
“dimensionality”, i.e. the maximum number of different dimensions it uses. Let us consider now the
following reduction process on a connected diagram. Suppress a slab of the lattice limited by two
consecutive hyperplanes k <x; <k +1 and containing at least one plaquette of the diagram. As the
diagram is closed, at least four plaquettes disappear (in the construction described in section 3.1.9, the
reduction process consists in suppressing a closed oriented curve); other plaquettes (within the
hyperplanes x; = k or x; = k + 1) may be duplicated and must be replaced by either a single plaquette or
no plaquette at all. In any case, this operation decreases the number of plaquettes by at least 4, while
the dimensionality decreases at most one, whence the quoted property (see details on the subdominant
role of disconnected diagrams in [118]). It is also clear that the maximum dimensionality terms are
obtained whenever exactly four plaquettes disappear at each reduction step, until the simplest cube
diagram is obtained. So the contributing diagrams are all connected trees made with three-dimensional
cubes, with all plaquettes in the same representation.

The next problem is to sum their contributions. Since each cube has six faces, it has up to six
neighbours in the tree diagram. In a step-by-step construction, the addition of a new cube on a given
plaquette of a cube leads to 2d — 5 (=2d) possibilities. Some of these may be forbidden by excluded
volume effects, but their number is negligible with respect to 2d, when d is large. The expectation value
of a single plaquette in the representation r, p, = (x,(U,))/d, satisfies the self-consistency equation

p-= B, +2dp;. (3.68)
Introducing p, = B.f,, x, = 2dB7, one parametrizes (3.68) as

f=0-w)"', x=u(l-u)
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Fig. 17. The free energy in the strong coupling phase for large dimensions.
and the free energy is easy to integrate to
F=F-1d(d-1)In g,
PEL s 1
= =D, d;x,”g(x)(1+ 0@ .
o5 2 407 8(0) (1+ 0@ (3.69)

r#0

with
g(x)=u.(1-3u)/(1—u).

With the Wilson action, only the fundamental representation and its conjugate give a dominant
contribution to (3.69). Up to an overall factor N (or 2N? depending whether f and f are equivalent or
not), the limiting free energy F(x;) is universal.

A graphical representation of the resulting free energy is displayed in fig. 17. It presents a cusp at the
point A for x, = 2dB¢{ = 4*/5° (for u = 1/5). As the rearrangement of the series is only possible within the
disk of convergence, and as A is obviously a singular point, only the arc OA is physically acceptable.
We shall see in section 4.2.3 that a part of this arc ending at A represents a metastable phase. At point
A, the second derivative of the free energy has a singular behaviour 9*F/dB7 ~ (B:. — B¢) *?; this looks
like a second order phase transition, since the corresponding correlation length becomes infinite, with a
critical index 1/4 (zero mass ‘“‘boxciton”).

The Wilson loop may also be computed in the same approximation. It amounts to replacing each
plaquette of the minimal surface by the expectation value p,. Hence

(x(Uc) ~ p7* = exp(—K,A)
K. =—1Inp, = - 1In(u/2d) (3.70)

from which the leading terms (d¢*)" in the expansion of K may be recovered.

Corrections to the formula (3.69)—(3.70) can also be computed; the first ones are presented in ref.
[118] for the partition function, in ref. [113] for the Z, string tension. For groups like Z,, U(1), SU(2) or
SU(e) where only even powers of ¢ are involved, the corrections in (3.69) is O(d~"?). The first terms of
the expansion are given in table 11.
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Table 11
Coefficients of the free energy F/d? in the large d limit

dt() dtS d2t10 d2'12 d3t14 d3f16 d4t18 d4'20
1 2 62 380 7298
Z 6 0 ! 3 10 3 305
1 1 760 2762
uQ) 3 0 2 3 20 20 3 =
2 4 8 1520 3952
sl 3 04 3 o3 F T
1 10 760 9072
SU() 3 0 2 3 20 84 3 =

3.3.2. Partial resummation. Bethe—Cayley lattice

The educated reader has recognized a Cayley tree in the relevant diagrams of the preceding section.
This suggests a consideration of the same pattern in finite dimensions. We recall that, in the Ising
model, one may perform a low temperature expansion in terms of irreducible clusters; truncating to first
order yields the mean field approximation, and to second order amounts to solving the problem on a
Cayley tree (Bethe approximation) [4]. In the gauge theory, we have unfortunately no gauge invariant
equivalent of the magnetic field and magnetization, and the Bethe approximation cannot be justified in
such a way. Let us just consider it as a partial resummation of strong coupling diagrams, by solving the
model on a Bethe-Cayley tree of cubes [119].

This Bethe—Cayley lattice is defined recursively by building successive generations of cubes. Given a
cube of generation /, we add (2d - 5) cubes of generation (/+ 1) on each of its five free faces. On the
resulting lattice, 2(d — 2) cubes are incident on each face, and there is no cluster nor cycle of cubes.
Accordingly, the solution on this lattice resums strong coupling diagrams of the original model which
may be considered as trees of cubes, but misses, for example, diagrams 12.2, 16.1, 16.2 of table 6, or
overcounts the diagram of fig. 19. On the other hand, every link is shared by an infinite number of
plaquettes, and there is no weak coupling expansion in models with a discrete gauge group. Let us solve
the model in its strong coupling phase, in the simplest case of a Z, gauge group. Consider a cube C of
generation /, and the plaquette p separating it from its ancestor. Let x; be the sum of closed diagrams

generation |

generation -1

O generation (+2 %

Fig. 18. Construction of a Cayley tree of cubes. Each face as ABDE Fig. 19. A diagram overcounted in the Bethe approximation.
has 2(d - 2) adjacent cubes (only two are represented here). None of

the cubes built on the faces of C; and C;, nor their descendants will

ever meet.
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made of C and its descendants not containing p, ty, the sum of such diagrams containing p. One may
write in dimension d the following recursion relations

X = (a1 + tyie) 24P
Y= [+ ) 2P (3.71)

The quotation marks mean that, in the binomial expansion, one sets #** =1, #**' =t Assuming the
P = yi/x; goes to a limit p as /-, we derive the self-consistent equation

p=[(t+p)= (4 pt) P (3.72)

At d = 3, this is easily seen to be equivalent to the well-known Bethe approximation of the dual Ising
model. At d = 4, the following parametrization of the free energy may be written

F =61ncosh B +20In(1+3pt+3p*+ p*t)— 14 In(1 + 4pt + 6p* + 4p* + p*) (3.73)
with
p=p°, p=t+(1-pp’BG+p*)(1+3p").

To have a sensible limit as d goes to infinity, one has to rescale ¢ so as to make dt*~ dp* finite. This is
nothing but the regime studied in the previous subsection.

At d =3 or 4, the Bethe approximation has a second order phase transition at a physical value of £*
(=044 at d =3, =0.19 at d = 4). However, in dimension four, this singular point takes place in a
metastable phase because of an earlier first order transition (at #* = 0.178) to a weak coupling phase of
free energy F.,, = 68 —31In2. All these figures and phase patterns agree well with the properties of the
original model. This makes the Bethe approximation attractive. It would be desirable to have a
systematic and efficient way of computing corrections to this approximation.

3.4. Analysis and extrapolation

3.4.1. Generalities
Given a series expansion of some function f(z)

f(z) = % fuzm 4 (3.74)

truncated to some order N, one may be interested in two related problems:

i) finding the singularities z; of f close to the origin, and studying the behaviour of f in their vicinity;
in particular, determining whether the singular behaviour is algebraic, and, in the latter case, what is the
critical exponent «

f)~ Az - z)". (3.75)

il) extrapolating the function to a region lying outside the radius of convergence, for instance
computing its limit f(z = ).
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It may happen that additional information on the function (such as analyticity properties, behaviour
near some singularities or at infinity, ...) is available. This is of course of utmost importance in the
study of these two problems, and may suggest the most appropriate method. In the most common and
unfortunate case where no such information is available, one proceeds more blindly and tests various
possible techniques.

We are not going to make a detailed study of those methods and refer the reader to the abundant
literature [120]. We only review rapidly some of them, to be used in the following applications, in order
to fix the notations.

i) The simplest method to set up is the ratio method. Suppose that f, are real, that the closest
singularity z, is unique, hence real, and that f has an algebraic singularity (3.75). Then, for large n

fulfusi~ zo[1+ (1 + @)/ n+ O(1/n?)]. (3.76)

Therefore, forming the ratios and looking at the way they approach their limit should yield both z, and
«. The use of Neville tables may accelerate the convergence. However, it may happen that short series
are not yet dominated by their closest singularity. Moreover, this method is restricted to real
singularities and can handle only one singularity at a time.

ii) Padé approximants are rational fractions [L/M](z)= P.(z)/Qm(z) (P, Q of degrees L and M,
with L+ M + 1= N) such that the Taylor expansion at z = 0 reproduces (3.74) up to 0(z")

f(2) = P(2)/ Qm(z) = O(z"). (3.77)

Padé approximants have the nice property of approximating a meromorphic function within a large
domain restricted by non-pole singularities. In particular, they enable an extrapolation outside the circle
of convergence of the series. They can also accommodate power behaviour at infinity; for example, if
f(z) behaves at infinity as z77, p a positive or negative integer, then the [L/(L + p)] approximants are
appropriate for studying the large |z| region.

Some problems of Padé approximants lie in a sometimes erratic convergence and the possible
occurrence of spurious singularities in some approximants. It is observed that they reconstruct a
branch-point by an accumulation of interlaced poles and zeroes simulating the cut. Hence they are not
of direct use for a singularity of the form (3.75). However, if there is no confluent subdominant
singularity, i.e. if A(z)=(z - z.)"® f(z) is regular at z., the logarithmic derivative

{/f)dfldz=al(z—z)+ A'lA (3.78)

has an isolated pole and the corresponding Padé approximant (“D-log Padé”) is well-suited; its pole and
residue yield z. and a. Practical cases (non-factorizable singularity (z — z.)* A(z)+ B(z), confluent
singularity (z — z.)* A(z)+(z — z.)? B(z), or even worse) can make the method less effective. In
general, the location of the singularity is reliable, whereas the estimate of the exponent is more
unstable.

iii) Integral approximants [121-122] generalize Padé approximants. One writes a linear difterential
equation with polynomial coefficients satisfied by f. We limit ourselves to a first order equation

Ox(2) f(2)+ Pu(2) f(2)+ RL(z) = O(zV). (3.79)

The coefficients of the polynomials are determined uniquely (up to a common factor) provided
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K+ M+ L+2= N. The [L/M] Padé approximant corresponds to the case Q =0, while R =0 yields the
[M/K] D-log Padé. In the vicinity of a simple zero z, of Q, f behaves as

f(2)~ A(z = 20" + B, (3.80)
with
a=-P(2)/Q'(z0, B=-R(z0)/P(20).

Such approximations may sometimes give accurate estimates of «. On the other hand, as there is a large
variety of approximants, the spread of the results may be important and puzzling. Then one tries to find
a priori reasons to select subclasses of stable approximants.

iv) These integral approximants may also be generalized to handle double series [122, 123]F

F(z, W)= fumz"w™. (3.81)

One is particularly interested in singular points (zo, wo) where F exhibits the scaling behaviour

F(z, w)~ (Az)* (&w (Az)#)+ B (3.82)
with Aw =w—w,, Az =z — z,, and Aw and Az two linear combinations of Az and Aw:

Aw=Aw—e; Az, Az=Az—Awle,. (3.83)

From the available data, namely a finite number of coefficients f,.., one determines four polynomials P,
Q, R, S in both variables w and z so that

Q0F/oz+ R dFlow+PF+S=0. (3.84)

The vanishing right hand side means that the matching is actually done to a certain order, i.e. for a
given pattern {(n, m)} of terms z"w™, and the pattern of terms for the polynomials are chosen so as to

make the resulting linear system solvable.
The singular behaviour (3.82) is encountered at every common zero (zo, wo) of Q(z, w)and R(z, w), with

B= _S/P‘ZO.W()v
(e1, e>) roots of

(0Q/dw)e* + (Q/ oz — dR/dw) e — IR/ 02| 1o = 0
and

B = (3R/dw — e, 9Q|aw)/(9Q/dz — e3" IRz )| pmo »

a =—P/(0Q/0z — e3" IR/32)| 20 w0 -

+The generalization of Padé approximants to the multidimensional case is not unique and other techniques can be applied [124].
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These approximants have been used with success in the study of bicritical spin systems [123]. We
report below on a less successful trial; in lattice gauge theories, they have been found to be unstable and
therefore unreliable. The origin of these instabilities may lie in a more complicated singular behaviour,
or in a more complicated pattern of singularities.

3.4.2. Analysis of the free energy and related quantities

It is important to know where the singularities of the free energy F (or of its derivatives, the internal
energy E, the specific heat C,...) lie. Real physical singularities may signal the occurrence of a phase
transition; complex ones are relevant insofar as they limit the convergence of series expansions or affect
the physics at real g.

Strong coupling expansions seem well suited for this research of singularities. However, we recall
that generically, above their lower critical dimension, lattice gauge theories undergo a first order phase
transition. At some value B. of the inverse coupling, the free energy changes from its strong coupling
determination F,(8) to a thermodynamically more favourable one F,..(B8). F..(8) may be analytic up to
B>> B. while the true free energy F = max(F,, Fy.) is singular at 8.. An example will be provided
below by the four-dimensional Z, theory. F,. and F,. may correspond to the same analytic function in
different Riemann sheets and continue to describe metastable phases beyond the transition point. Explicit
examples of such behaviour are constructed in section 4. It may even happen that two models have the
same strong coupling behaviour, but undergo first (or higher) order transitions at different points. The
“naive” Eguchi-Kawai model offers an example of this puzzling behaviour. Both the full U(s=) model
and its one-site partner have the same strong coupling expansion. However, they are known [78, 79] to
have transitions at different points, towards different weak coupling phases.

It is clear from this discussion that strong coupling series are a priori unable to see some features of
the phase structure. When a first order transition is present, the strong coupling expansion ignores it
and describes the metastable phase beyond the transition. If this phase terminates, however, at some B,
this coupling is seen as a singularity and gives therefore an upper bound on B.. If sufficient analyticity is
granted, it might be theoretically possible to continue analytically F,. to F,., hence to determine 8., but,
in practice, the series are much too short for such an extrapolation.

Such a simple scenario seems to happen in the four-dimensional Z, theory. Self-duality tells us that
the transition, if unique, must happen at f.=tanh B.=V2-1=0414, and indeed Monte-Carlo
simulations [125] show clearly that the internal energy is discontinuous at this point. This is cor-
roborated by the fact [126] that the series for E (either truncated or Padé-extrapolated) gives a stable
value at £ (0.48-0.49) which is far from the value predicted by self-duality if the transition keeps E
continuous (V2/2=0.71). On the other hand, D-log Padé approximants for E (resp. C) indicate a stable
singularity at 0.44 (resp. 0.42-0.43), in the vicinity, but significantly different from f.. This analysis has
been refined [127]; to deal with a single-valued function between 1. and &, it is proposed to invert the
function E(f) and to compute the series expansion of #(E). The resulting series does not show any stable
singularity for 0 < E <1, but d#/dE vanishes at ¢~ 0.424. This seems to indicate that the change of
variable has unfolded the singularity at f,; such a property is known to be shared by the infinite d limit
of the strong coupling phase where E has a square root singularity at ¢, (see section 4.2.3). To
summarize, the picture that emerges from this analysis looks like fig. 20, and agrees remarkably well
with Monte-Carlo data [125].

In the case of the four-dimensional U(1) theory, a continuous phase transition is expected between a
confined and a Coulomb phase, and indeed observed in Monte-Carlo simulations [128]. The expansion
of U(t?)= E()/t in powers of >, on the other hand, displays alternating signs (as in the cases of Z, or
SU(2)) which indicates a real negative nearest singularity. This unphysical singularity ¢2, to which we
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Fig. 20. The internal energy E in terms of ¢ = tanh 8 for Z, gauge theory.

shall return below, may be mapped away by a conformal change of variables z = #2/(£>— £2) [127)
(diagonal and sub-diagonal Padé approximants are invariant in this mapping, but D-log approximants
are not). Depending on the method, one finds, assuming a form (¢2— r?)"* for the singularity of the
specific heat, 1.~ 0.42-0.45 (i.e. B.~0.98-1.01), with an exponent a ranging between 0.35 and 0.65.
This must be compared with the Monte-Carlo data 8. ~ 1.005, @ ~ % [129]. In spite of the spread of the
estimates, coming from the shortness of the series, one sees that strong coupling expansions are quite
consistent with the observed behaviour.

The case of the four-dimensional SU(2) theory seems more elusive. On the one hand, one does not
expect any deconfining transition. However, a sharp structure in the specific heat has been observed,
and modifications of the action may create first order transitions (e.g. mixed fundamental-adjoint
actions). We may expect strong coupling series to have a hard time reproducing such a complicated
pattern. Indeed the Padé analysis finds a singularity in the region ¢ ~ 0.45-0.5 (8 ~ 2.1-2.4); sometimes,
this singularity splits into two complex conjugate singularities in the highest available approximants. It
is, however, not clear whether this is a genuine effect or an artefact. The authors of [130] have applied
the same method as in Z,, inverting the expansion of E(f) into an expansion of #(E), and used the
additional information on the first term of the weak coupling limit

E~1-3"+

to constrain further the approximants. They find the nearby singularities of E in the complex plane at
t~0.47%10.05 (i.e. B~2.2%i0.32), in such a way that [131] they also reproduce well the bump in the
specific heat. Direct evidence of the presence of these complex singularities has also been derived from
a Monte-Carlo investigation of the complex zeroes of the partition function [132]. If one uses only the
strong coupling expansion, the distinction between nearby conjugate singularities and a single real one
might require as many as 30 terms (11 only are available).

One may try to use these techniques for the mixed SU(2) action of eq. (1.10), in order to reproduce
and understand better the phase structure. Several methods have been attempted on the double series
in (B, Ba) [133]. One may look at singularities of one-variable Padé approximants along lines of
constant slope in the (B, B.) plane. The results are consistent with the pattern of fig. 6, but not stable
enough to locate accurately the (critical?) end-point of the first order line; incorporating information on
the weak coupling behaviour does not help. We have also tried [134] to use the two variable Padé
approximants previously defined; they have given very unstable results. It may be that the form of the
singularity at the end-point is more complicated than the one assumed in (3.82).
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These methods also apply to other groups. For SU(3), results are similar to SU(2), with a singularity
of F(B) at B~ 6.2, a little beyond the cross-over region seen at 8 ~ 5.6. For most other groups, where a
first order transition occurs, the results look like those of Z,. One finds a singularity beyond the
expected transition. This is the case of SU(N)/Zy [107], and of SU(N), N =4, 5, 6, « [105, 106]. For
SU(4) and SU(6), the occurrence of complex poles in the Padé approximants makes the analysis less
reliable. It is worth mentioning that the series E(¢) are generally better behaved than E(B). They are
less often plagued with complex singularities, and more universal in the sense that they approach faster
their limit at infinite d (section 4.2.3) or, for SU(N), at infinite N. The SU(x) series itself shows some
evidence of a singularity at # = (8/2N)*~ 0.13-0.14, a little beyond the first order transition at > ~ 0.12.
The latter number is extrapolated from the SU(4)-SU(6) transition points. Notice that there is a substantial
discrepancy with the corresponding figure extrapolated from the U(N) groups 3., ~ 0.14, the origin of
which remains obscure.

We have mentioned above that the nearest singularity in ¢ is often complex. In the three cases of Z,,
SU(2) and U(1), the signs of the expansion of E/t in powers of #* alternate, pointing to a singularity at
negative 1. The pattern of singularities is summarized in fig. 21. The three-dimensional counterpart of
this phenomenon is well-known in the dual language of spin models [135]. The low temperature
expansions of the Ising model display nearby complex singularities, which may depend on the nature of
the lattice. Moreover, it has been shown in that case, by direct numerical investigation of the model,
that these unphysical singularities are not an artefact of the expansion, but a genuine feature of the
model, and that they show a good evidence of a non-trivial universal critical behaviour [136, 119]. In the
other extreme situation, as d « =, we have seen in section 3.3 that the model is solvable and exhibits a
singularity at 2dt* = 4*/5°; hence, in that limit, there are four singularities, degenerate in magnitude, in
the t-plane, and only one is real positive and physical (end of the metastable phase). At intermediate
dimensions, as d =4, the Bethe approximation described in section 3.3 lifts that degeneracy and
reproduces well the singularity pattern of fig. 21. For example, for Z,, it predicts a first order transition
at > =0.178, and two singularities at #* = 0.190 and > = —0.151. On the other hand, analysis of the free
energy series at the unphysical singularities (Z,, U(1) and SU(2)) shows some evidence of a universal
critical behaviour, with the specific heat diverging with an exponent ' ranging from 0.45 to 0.6 (Bethe
approximation predicts a classical value of 3) [119]. The interpretation and role of the complex
singularities and the nature of the corresponding continuous theory remain open problems.

So far, we have discussed the analysis of the singularity pattern from series expansions. The other
application of these expansions, namely the accurate computation of F(8), E(8) or C(8) in the strong
coupling region should not be underestimated. It is quite valuable in the discussion of Monte-Carlo
computations. In practice, because of possible nearby complex singularities, Padé approximants are
used in this extrapolation; this yields accurate determinations of E(B) up to the vicinity of the first real
singularity (transition point for U(1), “cross-over” for SU(2), end of the metastable phase for models
with a first order transition). The case of Z, has been illustrated here, and similar results are available in
the literature for other groups.
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Fig. 21. Singularities in the complex #* plane of four-dimensional gauge theories: a) Z,, b) U(1), ¢) SU(2).
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To summarize, strong coupling expansions enable one to reproduce well the strong coupling phase.
They also allow an investigation of the singularity pattern. Although the series are still too short to
achieve a precision comparable to the case of three-dimensional spin models, they give a consistent
picture of the possible singularities. Improving qualitatively this picture would presumably require much
longer series.

3.4.3. The string tension and the roughening transition

In four-dimensional non-Abelian theories, where the only deconfining phase transition takes place at
B « g5* =, one would like to make contact with the scaling limit of the string tension and of other
physical mass scales, for example to compute the constant ¢ in (2.12). It seems that, if strong coupling
expansions may be extrapolated in a suitable way from 8 =0 to 8 large, so as to reproduce this scaling
limit, one should be able to determine o and to compute ratios of mass scales.

It turns out that this program encounters two kinds of difficulties. First, as discussed in the previous
section, most non-Abelian models undergo a discontinuous non-deconfining phase transition at finite S.
The string tension and mass gaps do not vanish there, but are reasonably expected to be discontinuous.
This makes the extrapolation from small 8 to the asymptotic freedom regime quite hazardous.

Even in the cases of SU(2) or SU(3), where no such first order transition occurs, another difficulty
arises. The string tension, which, loosely speaking, is an observable related to a two-dimensional
surface, is sensitive to the “roughening transition” of that surface. We shall review briefly some aspects
of that transition, referring the reader to the literature [137, 138] for more details.

i) Roughening in the three-dimensional Ising model.

Consider a three-dimensional Ising lattice at low temperature with appropriate boundary conditions
creating an interface between two phases of opposite orientations (fig. 22). The interfacial free energy
AF is the difference between this new free energy and the usual one; it is proportional to the
cross-section A of the lattice

AF=-KA (3.85)

and K is the surface tension. At zero temperature, the interface is planar. As T grows, it becomes more
and more chaotic, until a value Ty, the roughening temperature, lower than T. (the ordinary “bulk”
critical temperature), where its properties change qualitatively. Beyond this point, fluctuations are so
large that one can no longer talk of a localized surface. If h; denotes the altitude of the surface above its
position at point r, of the minimal surface, one may define the probability distribution of h; — h; for
distant points

plz,ri—r)=(8(hi—h;— z)). (3.86)
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Fig. 22. An interface in the Ising model. Fig. 23. A step of length L costs an extra free energy fL.
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The second moment of that distribution behaves for large separations as
> 22 plz, 1) = {(hi — )~ (ARY (as r; > ). (3.87)

Ah measures the width of the interfacial region. At Tk, Ah diverges for an infinite system. The
roughening transition is caused by long-wave fluctuations of the surface; the step free energy f (the free
energy per unit length required to create a single step in the interface, see fig. 23) vanishes for T = Tk,
and therefore the large scale deformations of the surface are costless. The surface tension K of eq.
(3.85) does not vanish at Tg, but is singular.

There is a converging evidence for this singular behaviour coming from the study of exact models,
series analysis, Monte-Carlo simulations and, recently, real experiments in crystal growth. Theoretically,
a convenient approach is the solid-on-solid (SOS) model, where considering a simple class of surface
deformations leads to an equivalence with the discrete Gaussian model B¥ = B = (hi— h;)?, or
with the (dual) two-dimensional xy-model. To the transition of the latter corresponds the roughening
temperature of the SOS model. The surface tension K, which is the free energy of the xy-model, is
expected to have an essential singularity of the form

K = A(B)+ B(B) exp(-C/NV Tx— T) (3.88)
while the step free energy identifies with the inverse xy correlation length

f~ & ~exp(-CINTr—T). (3.89)
The length scale relevant in the discussion of surface fluctuations is actually &,, for T < Tg, i.e. in the
high-temperature phase of the xy-model. For T > Ty, &,, vanishes, and the relevant scale is the size L
of the lattice. Let A = In({yy/a) (resp. In(L/a)) for T < Tg (resp. T > Tg). The function p(z, r) reads for
large separations r~ L

p(z, L)~ (1/VamA) exp(-2z%/4A) . (3.90)
In particular, the width Ah of eq. (3.87) is

Ah=V22r
while the probability that the surface is, at some point, at the same height as on its boundary is

p0)=1/VaxmA .
From the behaviour of ¢,,, one derives that

pO)~@hy" ~(Tx-T)" for T < Tx
~1/VinL for T> Tx. (3.91)

This singular behaviour derived in the SOS model is presumably universal, and should also take place in
the original Ising model. According to the standard lore, the roughening singularity does not affect
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“bulk” quantities like the free energy or its derivatives, or like the spin-spin correlation functions. The
non-analyticities show up only in surface (non-local) observables.

To conclude, we recall from section 2.3.5 that by duality, the surface tension K of the three-
dimensional Ising model is nothing but the string tension of a Wilson loop lying at the boundary of the
interface. The previous discussion suggests that the same phenomenon may occur in higher-dimensional
lattice gauge theories.

ii) Evidence of roughening in higher dimensions.

The two-dimensional surface spanned by the Wilson loop may no longer be viewed as an interface
between two regions. However, long wave length fluctuations are still expected to make surface observables
non-analytic at some coupling. At strong coupling 8 < Bg, the surface is smooth, it is rough for 8 = Bx.
Remember that this roughening transition is not a deconfining transition. The string tension is non-analytic,
but does not vanish.

To get a clear evidence of the roughening transition, we need a good indicator. The string tension
itself [139] is only expected to present a weak singularity at Bg, as in 3 dimensions. However other
quantities may diverge at Br and give a clearer signal of roughening. For example, consider [140]

= [2 E(x)xi]/[z E(x):, (3.92)
where
E@x)= (W) x(U,»—(W(E) x (U NKW(EC). (3.93)

E(x) measures the chromo-electric energy density at the location x; the test plaquette p of centre x is
parallel to the minimal plane of the Wilson loop. This 7° is a generalization of Ak® in eq. (3.87). The
dimensionless product on? should diverge at the roughening transition for an infinite loop. Another
possibility [141] is to characterize the roughening transition as the point where the system has lost its
memory of the boundary condition, viz. the Wilson loop. For any observable O, e.g. x(U,) for a
plaquette of the minimal surface, we expect the difference

(OW(C)eonn = (OW(C)) = (OXW(C)) (3.94)

to vanish at Bg. Both n? and (OW) ... may be computed in strong coupling expansions and are expected to
have a power law divergence at Bg; this is what happens in the three-dimensional SOS model for the similar
quantities Ah* and p(0)~'. It is thus quite satisfactory to see that both quantities give quite consistent
determinations of Br for a variety of gauge groups and dimensions [112, 142, 113]. One observes a
remarkable group-independence of the roughening point measured in the variable ¢; this reflects in fact the
nature of the roughening transition, caused by large scale fluctuations, whereas group dependent effects are
short scale details,

d=3 tr = 0.46
d=4 tr =0.40
d=5 R =0.37.

The estimated error is of order £0.01. We should mention that the series of SU(3), which contains odd
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powers of ¢, leads to less stable results. One also notices that tx may be below or above f., the
deconﬁnis/&transition, depending on the group and the dimension. For Z, for example, tr <t (d = 3),
tr=1.=V2-1(d=4) and tg > 1, (d = 5). In the latter case, the roughening transition takes place in
the metastable region. It has been argued by Gliozzi [143] that it is natural for the phase transition to be
first order as soon as I < fg. Indeed, if the deconfining transition is second order, the interquark
potential has the form [144]

V(R) = Const. + C/R (t = t. second order) (3.95)

whereas it is natural to expect an exponential fall-off of the corrections to the leading behaviour up to
the roughening point

V(R)= kR +const. +e™™%  (1<Itg). (3.96)

Consistency of these last two equations at ¢ = 1, requires that the transition f. be first order. Notice,
however, that this argument seems to connect roughening and the order of the bulk transition, in
contrast with the standard lore.

It must also be emphasized that the location of the roughening transition is by no means universal.
Changing the form of the action, or using the Hamiltonian formalism [145] may modify the location of
tr substantially. Even more dramatically, if we take a twisted Wilson loop as in fig. 24 instead of a
planar one, it is easy to see that there is a large number of minimal surfaces. This results in a
delocalization of the surface, and roughening takes place in the strong coupling limit 8 = 0. Therefore
such an off-axis string tension should have better analyticity properties than the conventional planar
one. This phenomenon has been exposed particularly clearly in the Hamiltonian formalism [146, 147]. It
also manifests itself on special lattices as the simplicial lattice [31] where, for some directions, the
minimal surface is highly degenerate (even for planar loops), or as the random lattice [32] where the
mere concept of minimal surface does not make sense.

iii) Implications of roughening.

What is the critical theory at the roughening point? In three dimensions, the roughening transition
has been shown to be in the universality class of the two-dimensional xy-model. Similar arguments [141]
suggest that in d dimensions, the effective theory is given by (d—2) decoupled two-dimensional
xy-models. This should give a critical exponent — 3 to quantities like 7 or (OW)™' and make the step
free energy vanish with an essential singularity. Series analyses are in rough agreement with these
expectations. Typically, the exponent of the zero of (OW) is found to lie between 0.3 and 0.15
depending on the group and dimension [138]. The step free energy has also been computed for the Z,
theory at strong coupling to eighth order in r [148]; it is found to vanish at tg, more likely with an

-

Fig. 24. A twisted loop, the boundary of a large number of minimal surfaces.
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essential singularity exp[—C(tg — 1)"*] than with a power law. Estimates of the exponent x are ;< x <3
at d =3,3<x =3 at d = 4. A similar calculation has been performed in Hamiltonian formalism [146];
there, one looks at the lowest excitation of the string binding two static charges (this is nothing but the
cross-section of fig. 23). The mass of this “kink™ excitation is also found to vanish at f; with a similar
behaviour. Clearly, longer series would be required to confirm fully the equivalence with the xy-model,
but it is gratifying that series analyses support this equivalence reasonably well.

The vanishing of the step free energy or “kink” mass at and above By is physically important. It
means that the surface is free to move in directions orthogonal to its minimal plane; in other words, it
acts like a continuous surface, and part of the translation and rotation invariances of the continuum
theory is restored for surface observables. For example, the potential between static charges, hence the
string tension, should become rotational invariant in the rough phase. This has been nicely illustrated by
strong coupling calculations of the off-axis potential within the Hamiltonian formalism [146] and by
Monte-Carlo simulations (see fig. 5); in both cases, one sees that, in a two-dimensional space-like plane,
equipotential lines are essentially circular at and above the roughening point. As the latter occurs for
both four-dimensional SU(2) and SU(3) just before or inside the cross-over region where scaling is
observed, one sees that roughening has the agreeable property of restoring rotational invariance of the
string tension in the region of interest.

In the rough confined phase, a description of the surface in terms of a continuous (d — 2)-vector field
h; is possible, with an effective action proportional to X (h; — h;)?, plus irrelevant terms. As in the SOS
model of paragraph i), h; describes the position of the surface above the point i of the minimal surface,
but now h is a continuous variable. From this effective theory, one deduces immediately that the
squared width of the surface (Ah?) diverges like [ d*k/k*~ In L as the size L of the loop grows. This is
of course in agreement with (3.91), and expresses the impossibility of spontaneously breaking a
continuous invariance (here translation) in a two-dimensional theory [149]. Another consequence of the
existence of massless translation modes is the creation of a 1/r term with a universal coefficient in the
static potential [150]

V(r) = or+ Const. — (d - 2) w/24r + O(1/r%). (3.97)

This appears as a Casimir effect: introducing the boundary condition that A4 vanishes along the loop
modifies the energy of the system.

Returning to the strong coupling methods, we see that roughening jeopardizes the extrapolation of
the string tension to large 8. It is actually difficult to predict the quantitative effect of the non-analyticity
at Bg. In the three-dimensional Z, model, neglecting roughening and extrapolating the string tension
gives the fallacious impression that it vanishes for ¢ <t. In the four-dimensional SU(2) and SU(3)
theories, roughening takes place at the edge or within the cross-over region, and, in a first attempt, one
may assume that it is still meaningful to use strong coupling expansions in that region. If one faces
serious inconsistencies, the blame will be on roughening. We only recall or mention for completeness
various proposals to avoid the problem of roughening:

—work with non-planar, off-axis Wilson loops, but at the expense of a much more difficult strong
coupling computation (see, however, the Hamiltonian calculations [146]).

—as a variant of that strategy, work on a simplicial lattice [31].

—use small loops [151], large enough to obey an area law decay, small enough to be insensitive to
roughening.

- use variant actions, for which roughening takes place deeper in the weak coupling regime.
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iv) The string tension in four-dimensional theories.

The first theories on which we may probe our truncated series of table 9 are the Z, and U(1) theories.
In both cases, there is a critical point where the bulk correlation length diverges and where the string
tension should also vanish continuously. In the U(1) theory, it is the deconfining transition at 8~ 1.
(t.~ 0.45); in Z,, it is the end-point of the metastable region at .~ 0.43, a fair evidence of which has
been found in the analysis of section 3.4.2. Also, in both cases, roughening occurs at a stronger coupling
t ~ 0.41. It is not a priori very clear whether the series of K have to be used as they stand, i.e. truncated
to a certain order, or extrapolated. Padé approximants are not obviously the best way to extrapolate
them beyond the essential roughening singularity. When truncated, the series give a zero at t ~ (.48-
0.5, depending on the order. This is well beyond the expected zero at ¢, and shows that, if the previous
picture is correct, neglecting the lack of convergence of the series tends to overestimate the string
tension. We recall that the opposite effect is observed on the three-dimensional Z, theory, where the
naive series seem to indicate a vanishing of the tension before #.. These puzzling observations show that
the forthcoming results in the non-Abelian case have to be taken with a grain of salt. . .

In the case of SU(2) with the conventional Wilson action, the Monte-Carlo results and the
approximations resulting from truncating the series to various orders have been plotted in fig. 3. The curves
represent estimates from various truncations of the series; from top to bottom: — In 7, orders *, %, '°, ',
t**. The expected position of the roughening transition is also indicated. The fact that orders 12 and 14 (the
lowest curves) give very close estimates should not deceive the reader. We recall that orders ¢** give the
major contribution to K. The convergence of the method should therefore be determined from the
comparison of 8th or 10th order to the 12th or 14th one. The apparently remarkable agreement of the latter
with Monte-Carlo data might be spoiled at a higher order. Even the sign of the error in the blind use of the
strong coupling series in the cross-over region cannot be asserted, as we have just discussed. On the other
hand, it might be that Monte-Carlo simulations have not yet had their last word, i.e. that much larger lattices
would be required to take full account of finite size effects and of roughening, with a resulting tension
reduced by a small amount.

The next step is to try to extract the physical, renormalization group invariant ratio o/A3 (with A,
defined in (2.10)) from the strong coupling computations. One observes that strong coupling results have
the right slope predicted by asymptotic freedom in a narrow range of values of

K = 00%| oraer n = K, exp{—67%(8 - B™)/11}  for B~ ™. (3.98)
Dividing by the renormalization group expression

Aa® = (6m°B/11)2'12 exp{—6728/11},
one gets an estimate of o/A>

1A% order n = Ko, (62 BM/11)7 121192 expl672B™)11] . (3.99)
Clearly, such an estimate is highly sensitive to the value of 8. One finds A/V ¢ = (0.9, 0.93, 1.36,
1.39)x 107 at resp. orders 8, 10, 12, 14. These values have to be compared with Creutz’s fit
(1.320.2)x 1072, Although the twelfth and fourteenth order estimates look quite satisfactory, it seems

difficult to estimate the error made in this procedure. We think that here longer series would not help
much and that the roughening singularity is the stumbling block of strong coupling methods.
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The case of SU(3) presents some differences. First the truncated strong coupling estimates seem to
converge in a more erratic way. This is due to the irregular signs in the expansion (table 9) and to a
rather big coefficient at order 11 (see fig. 25). By the same procedure as for SU(2), one finds
A/\/0~(26 3.1, 3.7, 35)x 107> from the 8th, 9th, 10th and 12th approximants respectively, to
compare with the Monte-Carlo estimate [152] (6+ 1) X 10~>. On the other hand, roughening takes place
in the present case at B =5.8-5.9, which is already in the weak coupling region, according to
Monte-Carlo data (the same phenomenon was observed, even more pronounced, in the Hamiltonian
computations [153]). Therefore, it might seem that, in SU(3), a strong coupling determination of AV o
is more reliable than for SU(2), and that longer series improve the situation. In the SU(3) Hamiltonian
calculation [153], however, it was found that the ratio of the spatial cut-off A5 to Vo takes the values
(4.4, 5.4, 62)x 1073 to orders 8, 10 and 12 in g,? respectively. This was extrapolated to a number
ranging between 12 and 18.5x 1073, which is in clear disagreement with the previous estimates of AN
and the computed ratio As/A = 0.91. This apparent lack of convergence remains a puzzle. To make this
discussion even more confused, we mention that recent Monte-Carlo computations [154] on a larger
lattice have given a value of A/V o twice larger.

Checking the universality of the ratio 4/V ¢ for variant actions should be an important consistency
test of our current understanding and numerical accuracy. Monte-Carlo simulations have been run for
SU(2) Manton and heat-kernel actions [156] and for the mixed fundamental-adjoint action [155], with
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Fig. 25. SU(3) string tension. Strong coupling estimates are superimposed on Creutz-Moriarty data [152]. The solid lines are from top to bottom
zeroth, 11th, 12th and 10th order. Also indicated is the roughening coupling.
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rather puzzling results. The mixed action has also been analyzed theoretically in [115]; the strong
coupling expansion in B¢ and B, is derived to eleventh order, for a fixed ratio 8./8¢. The string tension
estimated in that way is found to have, for increasing B./B;, a more and more pronounced shoulder
between its strong and weak coupling regimes. Moreover, by comparing the curves of constant string
tension computed by strong coupling methods with the weak coupling, asymptotic freedom prediction,
these authors argue that the Monte-Carlo determination of A/V o has been done in a region of
couplings which are still strong, and where scaling has not yet set in. The strong and weak coupling
estimates seem to match only in a small region around B,/8; =0, B;=?2.2-2.3. However, this pessimistic
conclusion might be affected by an improved treatment of the weak coupling behaviour in the lower
half-plane, where the expression (2.3) may be too naive. Such an improvement, abstracted from the
large N limit, has been proposed in [159-162]. Other mechanisms have also been proposed to explain
the apparent violation of universality [156-158]. Clearly the situation still needs clarification. On the
numerical side, a more accurate determination of A/V ¢, possibly through action improvement, is highly
desirable; on the theoretical side, strong coupling computations will remain useful only if the roughen-
ing effects are somehow mastered.

We finally discuss shortly the Green-Samuel order parameter [104] in U(N) theories, namely
(det W(C)). We recall from section 3.2.3 that this probes the U(1) part of U(N) and that it is expected
to have an area law decay at strong coupling, and a perimeter law at weak coupling (d = 4). Therefore
the point where this U(1)-like string tension vanishes should be a critical point of the system. From the
12th order series, Green and Samuel find a zero at tgs = 8 = 0.4 in the N — « limit. This is again beyond
the first order phase transition at ¢~ 0.33-0.35, as well as the end of the metastable region estimated
at 0.37. As in the case of the string tension of the U(l) theory discussed at the beginning of this
section, this may signal that the roughening singularity spoils the series extrapolation.

3.4.4. The glueball masses
The glueball mass spectrum seems to be the ideal field of application of strong coupling series. It
should not suffer from spurious effects like roughening, and, provided the series are long enough and
converge reasonably, one might be able to match strong coupling and asymptotic freedom predictions.
One should first recall the pioneering work in Hamiltonian formalism [90]. The masses of the
lowest-lying scalar, axial-vector and tensor states were computed to fourth order in go* and the diagonal
Padé approximants enabled one to extrapolate the mass ratios to infinity, with the result

mT/mS = 1003, mA/mS = 1575 . (3100)

In Euclidean formalism, the same three masses have been computed to eighth order in 8 ~ go° for
the SU(2) and SU(3) gauge theories, as reviewed in sections 3.1.8 and 3.2.3.

In SU(2), the results for the scalar 0** state are encouraging. One uses a truncated series to 6th or
8th order, or a diagonal Padé approximant to the non-trivial part F(¢) of the series

ma=—4Int+ F(1). (3.101)
The results display, as the string tension, a “shoulder” between the strong and weak coupling regimes.

Using again the empirical rule that the part of this curve with the asymptotic freedom behaviour is
reliable, one gets the following estimates [91]
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mslA =193, 127,92 (3.102)

for the 6th, 8th orders and Padé approximant respectively. This gives ms/Vo =1.8+0.8 which
compares well with the Monte-Carlo determination 2.0 +0.4 [163] and similar results of other groups
[164-167].

The same analysis performed in SU(3) gives ms/A4 =490, 310 to 6th and 8th order [91]. The results
obtained by Padé approximants are not very stable. This suggests the use of more elaborate extrapola-
tion techniques. Following the suggestion of {130] discussed in section 3.4.2, Smit [168] has re-expressed
the expansion of m in the variable E, the internal plaquette energy, and constructed an approximate
E(B) valid for both small and large B. The resulting estimates of m () display a behaviour consistent
with scaling in a much larger region than the original series, and give

ms/A =340 = 40
or
ms/Vao=21%06. (3.103)

This is in good agreement with the Monte-Carlo analysis ms/A = 280 = 40 [169] (see also [170]). Let us
mention that, if one uses the value Vo = 400 MeV (derived from the Regge slope in the real world with
quarks), this glueball has a mass of about 800 MeV.

The case of higher states is more embarrassing. In numerical studies, a rich spectrum has been found
by some groups [170, 164], whereas others [169] could not find any scaling for the possible candidates.
This may either mean that these states do not exist in the continuum limit, or that the scaling “window"’
is still too narrow to observe them. It is quite conceivable that, in the approach to the critical point at
8o =0, some of the states decouple and keep a fixed product ma. Clearly, the strong coupling methods
are biased and implicitly assume the existence of a state (in the continuum limit) by trying to fit its mass
with the renormalization group formula. The masses of the A=1"" and T=2"" states in SU(3) have
been extrapolated by the same method [168] as the 0** with a resulting mass ratio m/ms= 1.1%0.1,
whereas only weak indications were observed for the axial-vector glueball, with possibly ma/mg~ 2.
Miinster [171] uses a different technique of extrapolation, implementing automatically the scaling limit.
He introduces the expression

s = [expGamsa)—1]7" (3.104)
as a new expansion variable. Indeed

s=B+0B*) forB~0

s~ (mga) o> for B—x

and scaling means that s, and st should also behave as s for large s. In the expansion of

satT=[expGamar)— 1" = s[l + > ,u.ksk] .
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the bracket is thus extrapolated by a diagonal Padé approximant. This gives for SU(3)
my/mg=1, ma/ms=18+03.

In spite of the words of caution at the beginning of this paragraph, the agreement between these
numbers and the Hamiltonian estimates looks very encouraging.

In the case of the string tension, roughening is expected to restore part of the rotation and translation
symmetries far from the critical point. There is no such phenomenon for plaquette-plaquette cor-
relations, and it is important to see to which extent these symmetries are approximated in the cross-over
region. Strong coupling methods have been used in two different ways.

i) The energy-momentum dispersion of glueballs has been computed [92] at strong coupling. The
function E(p) may be expanded for small p as

aE(p)=F(B)+ a® Fi(B) 2, pi + a* Fx(B) [Z p?]z +a* Fy(B) X pipi+-+- (3.105)

In the approach of a critical point, we expect to recover a Lorentz invariant spectrum E(p) =V m?>+ p?;
hence

F(B)—am; 2FF, - 1; -8F3F,->1; F*F;->0;.... (3.106)

These combinations may be computed in strong coupling expansions, extrapolated, and the relations
(3.106) tested. This program works reasonably well in three-dimensional gauge models, but suffers from
the lack of convergence of the (short) series in four dimensions.

ii) The off-axis (diagonal) glueball masses were computed to fourth order in 8, and their extrapola-
tion compared to the on-axis masses. In view of the low convergence of the latter to 8th order, it is not
surprising that the shorter series of the former do not give any very conclusive signal of rotation
restoration. Nevertheless the results are encouraging; for example, the ratio of the diagonal scalar mass
(to 4th order) to the on-axis one (8th order) is about 1.2 [96].

To conclude, we mention that, in the four-dimensional Z, gauge theory, the extrapolation of the
mass gap series gives a rather small mass, consistent with zero, at the self-dual point. A vanishing mass
would be an unconventional, though not impossible, situation at a first order transition. This has been
the object of some speculations [172]. It is also conceivable that the mass is non-zero there and vanishes
at the nearby end-point of the metastable region, as in the three-dimensional 3-state Potts model [173].

3.4.5. Conclusions

In the three preceding subsections, we have seen that strong coupling methods have achieved
remarkable results in spite of various pitfalls. To improve their accuracy, it is of course tempting to
suggest the computation of a few additional terms in the various series. The situation, however, is more
subtle.

We have shown, in the discussion of the free energy, that strong coupling methods are blind to first
order transitions, a very ordinary circumstance in lattice gauge theories. In cases free of such
discontinuities, it seems that much longer series are necessary to see and analyse the intricate
details - nearby complex singularities, end-points of first order lines - of the phase structure. Clever
matchings with other expansions or approximations might be more rewarding.
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Similarly, in the case of the string tension, the exploitation of the series expansions is hampered by
the occurrence of the roughening singularity. It seems that neglecting the lack of convergence of the
series in that region leads to systematic errors. Therefore, a better way of extrapolating the string
tension in that region is needed more than longer series.

On the contrary, it seems that the glueball states are awaiting courageous people willing to extend
their series. Suitably extrapolated, these longer series might offer a real alternative to Monte-Carlo
simulations.

4. Mean field approximation

4.1. Generalities

This subsection presents generalities about the mean field approximation and related questions
[1,5,7,174-193]; the application to lattice gauge theories will be treated in the next subsection. We use
the general notations defined in subsection 1.2 for arbitrary fields (excluding, however, fermions)
parametrized by a set of (real) variables {¢%}. We are interested in the evaluation of the generating
functional of connected Green functions W(J). The generating functional for the irreducible correlation
functions I'(®), obtained by the Legendre transform of W

r@)y+ wJ)y=J-o,
with

b =56W/éJ, 4.1)
is useful in the critical region to identify the relevant continuum field theory.

4.1.1. Variational analysis

There are many standard equivalent ways of deriving the mean field approximation. One of them is a
particular case of a variational estimate, and we describe here the general method used in Lagrangian
formulation of lattice models. Although this is not well adapted to a systematic computation of
corrections, it is interesting both for the simplicity of the derivation and for the rigour of the resulting
inequalities.

The idea is to compare the system under study to a set of reference models, depending on external
parameters h (“‘collective coordinates’); these models are assumed to be exactly solvable, or, at least,
much information about their properties is available. Denoting by the subscript /4 all quantities relative
to these reference models, the partition function of the original system can be viewed as a mean
value

Z = [ exp(S(8)~ 5.(9)+ Su(6) D = Zu (expiS(#)= Su(Dn. (42)

The convexity property of the exponential function ((exp X) = exp(X)) yields the inequality

F=WJ=0)=F, +(S(¢)~ Su(@)n, (4.3)
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and the following variational estimate for F
Fyoe = Max [Fj, +(S(¢) — Su(dn] (4.4)
h

bounding from below the exact free energy. Eq. (4.4) shows that the “effective coupling” h is
self-consistently determined.

The variational solution F,,, presents, of course, the singularities of the reference models F;,. This is

what happens when the reference system is known to have phase transitions of its own. However,
~another source of singularities exists in (4.4) and is in fact the great interest of the method for the
determination of the phase structures. Indeed the value h* maximizing the right-hand side of (4.3} is a
function of the coupling constants of the original model and may present singularities. These sin-
gularities have been mathematically classified (this is the object of “catastrophe theory” [194])
according to the number of coupling constants and the number of degrees of freedom left for h. We
only give a sketch for one coupling constant g (typically the temperature) and one parameter h. Fig. 26
illustrates the two possible patterns.

In the first one, A* jumps from one value to another; F,,, is continuous, but not its first derivative,
nor the physical observables. However, the contribution of the subdominant extremum may be followed
in (4.3) by continuity, corresponding physically to a metastable phase (dotted solution in fig. 26a). This
behaviour is typical of a first order transition and, as will be seen, is often encountered in lattice gauge
theories.

The second scheme (fig. 26b) leaves h*, F.,,, and its first derivatives continuous and characterizes a
second order transition. The second derivative and the correlation lengths ¢ are singular. As the
continuum limit of lattice theories is obtained whenever &a becomes infinite, this kind of transition is of
particular interest.

It should be noticed at this point that such a behaviour for F,,, is only suggestive of the real
behaviour of F. It is indeed easy to construct examples where F.,,, has a transition (first or second order)
whereas F is regular, and conversely. If both present a transition, the orders may difter; and finally, in
the case of a second order transition in both cases, the critical indices characterizing the critical
behaviour may be different (due to the generic behaviour (g — g.)"* of h*, F,, always has “trivial”
critical exponents in the variational approach). In any case, the phase structure and singular behaviour
of F,.. must be confirmed by a careful study of corrections.

The choice of the reference models has not yet been made explicit. The first criterion is that the

Fig. 26. Sketch of the function to be maximized (right hand side of eq. (4.3)) as a function of & for different couplings; a) first order transition, b)
second order transition.
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variational solution (4.4) may be easily estimated. There must also exist some physical arguments
explaining why the reference models are reasonable representatives of the system under study, so that
the variational approximation is expected to simulate the exact solution fairly well. Sufficient flexibility
for the parameters 2 must be introduced to allow the computation of corrections. If the set of
parameters is large enough to provide a complete basis for all possible field configurations, it is indeed
clear that corrections involving fluctuations around the value A* can be computed. From now on, we
restrict ourselves to a particular choice leading to the so-called mean field approximation.

Remark: Re-expressed in the Hamiltonian formalism by taking the limit of the transfer matrix as the
lattice spacing in one direction vanishes, this variational method amounts to finding the ground state
energy by minimizing (®,|#|®,)/(D,|P,) for trial states | P, ).

4.1.2. Mean field approximation (variational)
A very simple, exactly solvable model is provided by non-coupled independent fields in an external
field H

Su(p)=H-¢=2 2 Hios. 4.5)

This model, with a suitable “‘mean field” H, may give a reasonable representation of a given system. H
represents the global effect of other fields interacting with a given field ¢,. Of course, this ap-
proximation is accurate only if the fluctuations around the self-consistently determined mean field are
small and can be neglected. This is expected when a given field interacts with degrees of freedom which
are either very numerous (large d, i.e. large number of interacting neighbours) or almost frozen in an
ordered state (large 8). We shall see that the corrections can be reordered for lattice gauge theories as a
1/d expansion and that they are small at large B.

According to this discussion, the replacement of fields interacting with ¢, by H, leads to the action
(4.5) only if the original action S is linear in the set of variables ¢, relative to a fixed location x. We
assume now that this is the case. Note that this is true for the Wilson action in the fundamental
representation when the corresponding matrix elements are chosen for the field parametrization; see
remark 3 below about this constraint.

Using the particular form (4.5) with H = h + J in the variational principle, it is now easy to complete
the above calculations for the mean field approximation. Introducing the test free energy per field
location

u(h)=In J e du(d)., 4.6)

which gives

Fo=2 u(h,+J), 4.7

X

we find

W(J)= Wur(J) = Max {2 u(hy + J)+ S(@) ~ h-qb} : (4.8)

X
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with

D =(¢), = du(h+J)/oh, 4.9
while the stationarity conditions on h read

h = dS(P)/3d . (4.10)

The Legendre transform (4.1) can also be performed and yields for the irreducible functional

I've(®)=H-®-u(H)- S(P),
with H solution of

& = du(H)/H . 4.11)

The mean field is often searched for as a constant field H independent of x, to be consistent with
translation invariance; however, this restriction is not necessary and may even be questionable for
lattice gauge models where gauge transformations do not preserve translation invariance of these
solutions.

Remark 1: The linear form (4.5) chosen for the test action implies that the result depends on the
parametrization {¢%} of the fields in terms of real parameters. Again, physical intuition is the guide in
this choice. It must be kept in mind that average values (¢) have to be estimated using this
parametrization. For instance, the U(1) parametrization €' in terms of only one real parameter 6 misses
the high temperature phase where all 6 are equally probable and the average field (") vanishes.
Furthermore, the action is not linear (as assumed) in the parameter 6. This parametrization is
nevertheless valid at low temperature; but representation as a complex number in terms of two real
parameters is more adapted for a global study at any temperature, although it requires a §-function for
the modulus in the measure.

Remark 2: The support of the measure du (¢) may be finite and a prescription is necessary to extend
the definition of the action S(¢#) from the original domain of variations of the fields to all values of the
real parameters ¢ 5. The variational principle allows any extension, but this affects the results. However,
we shall see that, as soon as one wants to compute systematic corrections, or even to treat correctly the
effects of degenerate solutions, the extension S(@®) must be as analytical as possible. The linear form
assumed for S(P) obeys this criterion at best.

Remark 3: Some actions (as composite gauge actions involving both the fundamental and adjoint
representations of the group) do not seem to satisfy the linear assumption for the action. A first strategy
consists in modifying slightly (4.8)-(4.10) to get correct equations. In the simple case where S also uses
squared fields S = S(¢, ¢2), both (¢}, and (¢?), are required and the modified equations follow

‘wnzW@¢U=Mg{zumﬁdg+aa¢myw-¢} 48)
with

& =($), = du(h+J)Ioh, 4.9%)
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and

FPuth+J), outh+J)outh+J
¢(2)E<¢z¢e>h: aZSz ahﬁ)+ u(aha ) u(ahﬁ ) (49’b)

which differ from the preceding result by the second derivative of u in (4.9’b). The difference between
(¢)* and (¢?) due to the fluctuations of ¢ is now taken into account. Note that, in the saddle point
method presented below, one obtains at lowest order egs. (4.8-9) and not (4.8'-9'); the second derivative
appearing in (4.9'b) will appear in corrections. A second strategy is to linearize the action by considering
the quadratic terms ¢$@# as additional and independent real parameters, imposing the constraint by a
suitable §-function in the measure du(¢). This leads to independent mean fields associated both with
fields and their squares, and therefore the function u in (4.6) is more complicated; on the other hand,
the system (4.8-9) remains valid.

Remark 4: The method is not applicable to the fermionic degrees of freedom since inequalities do
not make sense in Grassmann algebras. Similarly, the saddle point approach cannot be directly applied.

4.1.3. Saddle point method and corrections

The variational approach presented in the preceding subsections is not well adapted to a systematic
computation of corrections around the mean field result. A more powerful and systematic approach is
based on an integral formula estimated through the saddle point method {195, 174, 181]. The system is
equivalent to a problem of independent degrees of freedom in a random external field; the mean field
approximation has neglected the fluctuations of this random field and thus appears as a classical
solution. We now construct the “quantum’ corrections to this approximation.

The usual exponential representation of the &-function

33~ )= (12im) [ explhs(ps - D)} dht “12)

1

is inserted in the definition of the generating functional,
z0)= [ [expts(@)+1- 6111 5@~ 4)dd du(9)
- f f f explS(®)+ (T + h)- & — h - &) [ (1/2im) d® dh dp(d). (@.13)
Integration over the decoupled fields ¢ is performed according to (4.6) and we obtain
Z()= f f exp{5(¢)+ S w4 h)—h- <z>} T (1/2im) d dh. (4.14)

The measure is now flat in @ and h, and the integrand is regular. This allows a computation using the
saddle point method in both variables @ and A

W)= u(ht+J)+ S(®@*)— h*d* (4.15)
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with the saddle point determined by the stationarity conditions
t= du(hi+ Lok, (4.16)
h% = 3S5(P3)/ D% . 4.17)

These relations coincide with the mean field variational solution (4.8)—(4.10) derived previously. The
Legendre transform can be recast as

Fo(®)= 2 v(P:) - S(D), (4.18)

where y(®) is the Legendre transform of the one-site integral (4.6)
y(@)+uh)=h-®,  with @ =3du(h)/oh. 4.19)

The integral representation (4.14) now allows the computation beyond the saddle point contribution.
One writes

he=h%+1in,
b, =P+ ¢,

and expands the effective action of (4.14) in the fluctuations 7, ¢. Keeping only the quadratic terms in 3
and ¢ builds up the first correction

Z=Z [ T dn2m)exp -+ 3w + Iyn=in - 6 =4 S (95100, 36,) 6.8, |

= Z, det™ V{5, — u"(J + h*) 38/, 3¢, } (4.20)
W)= W, (J)— s Tr In[8,, — u"(J + h*) 328/, 9, @4.21)
(@) = I(®)+3 Trn[5,, — (825/0D, 30,) {#2y(P,)/0D% ] . (4.22)

Notice that the factors (2i7)™' have disappeared in the Gaussian integration. Eq. (4.22) is the one-loop
approximation to the field theory of action (4.18), where y(®) represents the free part and S the
interaction. A diagrammatic interpretation of higher order corrections is of course possible, with
Feynman rules derived from the expansion of (4.18).

One may wonder about the justification of this saddle point approximation. What is the large
parameter which suppresses successive corrections? It turns out that a large dimension d may play such
a role; corrections build up a 1/d expansion (see below). On the other hand, we shall see that the saddle
point expansion appears as a rearrangement of a large 8, i.e. small coupling expansion: only a finite number
of terms of the loop-wise expansion contribute to a given order 87". We finally recall for completeness that
mean field is also justified in some cases where the number of internal degrees of freedom grows large: large
N-vector models [7], large g-Potts models [196].
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4.1.4. Diagrammatic interpretation of corrections

In this section, we show that the mean field approximation and its corrections may be regarded as a
resummation of the strong coupling diagrams discussed in section 3. This is, of course, expected in the
strong coupling phase of the mean field approximation where corrections are nothing but a reshuffling
of the strong coupling diagrams. It may also be understood to be the case in general in the large d
interpretation of mean field. As is well known ([7] and subsection 4.2.3 below), the natural scale for 8 is
1/d, i.e., one seems to be in the strong coupling regime. However, powers of d come into the
configuration numbers of diagrams and make the argument more involved. One has to use functional
techniques that we describe now to work out the correct large d limit. The notations and formalism of
subsection 3.1.6 are used (notice that the character expansion method cannot be used here).

A connected diagram is reducible with respect to a given k-vertex, if deleting this vertex cuts the
diagram into exactly k parts. Any connected diagram takes the tree structure displayed in fig. 27a,

W(J)Qéxi 2

o, = b
X X

S(d) = % C
3 d
b, ~

X
’ di) |
1(J) = @ = o +

Fig. 27. Diagrammatic construction of the free energy from irreducible diagrams.
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where only the n, k-vertices (k =2,3,...) with respect to which the diagram is reducible (reducibility
vertices) have been drawn, all other parts being gathered in hatched irreducible blobs.

Let I(J) be the sum of contributions of all irreducible diagrams, computed according to the rules of
subsection 3.1.6. In particular, I(J) contains the trivial contribution given by the single-site diagram with
no vertex, namely u(J). Our problem is to reconstruct W(J) (the sum of contributions of all connected
diagrams) from I(J). We denote by @ the sum of all diagrams with a marked site (@ = dW(J)/dJ, see
fig. 27b). We may construct reducible diagrams in three different ways:

i) since “vertices” are defined by the expansion of the functional S(.), the quantity S(®) generates
any reducible diagram with a multiplicity 2, n, (see fig. 27c¢);

ii) from the diagrammatic interpretation of 35/6® (fig. 27d), it follows that @ dS(®P)/dP counts all
reducible diagrams with the multiplicity X kn, ;

iii) reducible diagrams can also be generated from irreducible blob by “dressing” the sites. The
particular dressing of one of these sites is diagrammatically shown in fig. 27e. For this particular site, the
initial contribution «®(J,) must be replaced by

WO+ uO* (L) 38]00, + 2w () (ISIOB+ -+ =Py + 9]0

Therefore the replacement J —» J + 38/8® in I(J) performs the simultaneous dressing of all the sites of
the irreducible blobs. All connected diagrams are constructed in this way, with a multiplicity n,, the
number of irreducible blobs in each diagram.

Taking into account these different estimates together with the topological relation

n= 2 (k=Dme =1,

which expresses that W(J) is a tree made of blobs and reducibility vertices (see fig. 27a), each diagram
is counted just once in the combination

W(J)=I(J + 35/9®) + S(D) - P 3S/o® . 4.23)
The similar construction of @ (fig. 27b) yields the relation
¢ = 81/8]|]+as/3¢ N (424)

which means that the right hand side of (4.23) is an extremum in .

I(J) appears as a sum of diagrams with 0,1,... loops (see fig. 27f). It is easy to check that the
restriction to no loop (i.e. I(J)= u(J)) reproduces the mean field result, and that the first correction
derived for I'(®) from the steepest descent method is obtained by the loop expansion of I(J) up to
1-loop terms. Note that the saddle point expansion brings a supplementary information to this
diagrammatic derivation; among the extrema of the right hand side of (4.23), the maximum must be
selected. In the case of several maxima, the considerations of the following subsections will apply to
4.23).

This diagrammatic interpretation of corrections to the mean field approximation is useful for the
computation of these corrections and for reorganizations of the series (as the 1/d expansion discussed
later).
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4.1.5. Multiple solutions of the stationarity equations

Stationarity conditions may have, and generally do have, more than one solution. This occurs in
models obeying a symmetry (as gauge models) as soon as the solutions are not invariant under the
corresponding transformations. Let us first discuss the case of well separated solutions.

As the saddle point method is based on the expansion of the integrand around one point, followed by
a term-by-term integration, it may be thought that the full result is obtained as the sum of the series of
corrections around just one arbitrarily chosen saddle point. This is not correct, however, because these
series are asymptotic and Stokes discontinuities are encountered when this term-by-term integration is
performed instead of the right procedure of integrating the summed series for the integrand.

We use the following prescription in the computation of corrections to the mean field approximation.
The contribution from the different saddle points to Z(J) (and not to W(J)!) must be summed up. It
must be recognized from the beginning that there is no guarantee that contributions from expansions
around these saddle points are exactly additive, for the expansion performed around one point might
extend to the vicinity of a second one, resulting in spurious duplication if the expansion of the same
function around the second saddle point is added. A hint on the correctness of this prescription comes
from the mathematical study of the one-variable steepest descent method [197]. Indeed, the additivity is
justified by appealing to Cauchy’s theorem, according to which the value of an integral is unaffected by
deformation of the path in the complex plane, provided no singularity is crossed in the process and no
divergences are introduced. Let us explain this mechanism on a simple example. The integral
[ exp{f(x)} dx, where f(x) is an analytical function as shown in fig. 28a, is computed using the new
variable y = f(x). This leads to the integral $ce” f'(x)~' dy along the path displayed on fig. 28b. This
contour is deformed up to —x as shown by the broken arrow and breaks into two independent paths
turning around the singularities y, and y,, each of which yields the corresponding saddle point
expansion, as may be easily verified. Hence the summation prescription follows, as long as “sufficient™
analyticity properties allow the necessary path deformations.

In the cases where complete reduction to single saddle points proves impossible (for instance, if
between two such points the function cannot be diverted out to infinity because of some branch point),
there is no general way to determine to which extent contributions from one saddle point are included
in higher terms of the expansion around the other.

For the present case of several variables, very little is known about the correctness of the

f(x)

b4

Y2
Y3

a b

Fig. 28. a) A function with several maxima, the exponential of which must be integrated. b) Corresponding contour of integration in the complex
plane y = f(x) and its deformation.
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prescription. We have assumed that S(®) is analytic in @ and even linear in the set of variables @, for
fixed x. Under these conditions, we have done our best and we can reasonably hope that the
prescription is correct. Note that some results depending on this prescription have been checked to be
correct in lattice gauge systems; for instance, the weak coupling expansion of the Z, mean field gauge
theory is correct only if the prescription is applied.

In the thermodynamic limit, the extensivity of the free energy leads to a new simplification. Only the
highest contributions (including, however, all corrections) of the saddle points have to be summed, the
other ones vanishing exponentially in this limit.

Because of the plausible occurrence of a Stokes discontinuity when two saddle points coalesce,
separate investigation is needed for each range of parameters over which the number of saddle points in
the complex plane is constant. Continuity of asymptotic forms should not be presumed when this
number changes. This remark is essential in the case of a second order transition; the approach of the
critical point must be studied independently in the different phases.

Remark: Similar saddle points expansions around more general variational estimates can be per-
formed, using §-function integral representations involving more general test actions. However, for the
reasons explained in this subsection, the mathematical meaning of the resulting series may be
questionable.

4.1.6. Continuously degenerate saddle points

The above considerations remain valid when the saddle points are continuously degenerate. The
technique to be used is, however, slightly different. One has to perform a change of variables in the
integral so that the integration variables split into two subsets. The first one must parametrize the
manifold of the degenerate maxima; it corresponds to zero mass excitations, and the integration must
be carried out separately. The integration over the second subset is treated using the usual steepest
descent method since no degeneracy is left.

In general, all such saddle points are generated from one of them by applying a Lie group of (gauge)
transformations. In this case, gauge fixing terms are introduced and compensated by Faddeev-Popov
ghosts. We do not recall this well-known method here.

4.2. Applications to pure lattice gauge theory

We now apply the general formalism described in the previous section to the particular case of pure
gauge theories.

4.2.1. General features of the mean field solution
Restricting ourselves to the Wilson action, the mean field approximation introduces a one-parameter

constant external field 4 linearly coupled to the gauge fields which represents the mean interaction with
other fields

Sy (U)= (hIN)S Re Tr Ui (4.25)

This trial action is not adequate for the calculation of corrections and is inconsistent with gauge
invariance. We shall see, however, that a more elaborate treatment reduces to this simple case in the
saddle point approximation. A detailed study of the corresponding solution is thus useful.
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The functions u(h) introduced in eq. (4.6) coincide with In B, of eq. (3.28) for 8 = h. They have been

listed for various groups of interest in table 4, and their general properties are recalled in section 3.1.3.
In the absence of external sources, the variational solution (4.8) leads to a free energy per link

(In Z)/Nd = Fld = Fold =Max {u(h)— hu'(h)+ B* u'*(h)/4} (4.26)

with a rescaled coupling constant

B*=2Bd-1). 4.27)
The extremality conditions determine the mean field 4 as the solution of

h=pB*u"h). (4.28)
In this approximation, every link field is an independent random variable, with an average

(Upy=u'(h). 4.29)
As it stands, this formula violates Elitzur’s theorem. This disease will be examined and cured later on.

The free energy expressed in eq. (4.26) has the characteristic shape displayed in fig. 29, irrespective of
the gauge group. Its qualitative features are the following.

0.2

F/d

-0

-0.2 L

Fig. 29. Mean field solution for the free energy. The dashed part is metastable, the dotted arc is unphysical. The curve corresponds to the Z, case,
but all gauge groups display a similar shape.
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h =0 is always a local maximum and dominates in the strong coupling region. Indeed the energy
term B*u' is quartic in h (we recall that u(h) is regular near h =0 and behaves there as h?) and is
subdominant with respect to the entropy term u — hu'. As this entropy part is concave with only one
maximum at h =0 (the exponential in the definition (4.6) of u(h) is indeed a convex function of its
argument Tr U;, maximal at U, = 1), the aforementioned property is true.

As B* increases, a shoulder appears in the right hand side of eq. (4.26) as a function of h and splits
into an unphysical minimum and another local maximum. This is the behaviour illustrated in fig. 26a,
whereas the case of fig. 26b does not occur. Therefore, the mean field approximation always provides a
first order transition, separating the strong coupling region, where the maximum at A = 0 dominates,
from the weak coupling region (h# 0). This transition occurs at point T of fig. 29, when the two maxima
are equal. The dotted part BA corresponds to the minimum rather than to a maximum in the right hand
side of eq. (4.26), and is unphysical. Note that the end-point A of the strong coupling metastable region
lies at infinity.

The Wilson loop parameter shows that this transition is deconfining. The mean field picture
approximates

W(C) = <Tr 11 U,>
as
W) =Tr <H Uz> = Tr [[(U.) + connected corrections,

and there are arguments - though no proof to our knowledge -to the effect that the corrections fade
away as the exponential of the area. The first term N(u'(h))” vanishes for h = 0, leaving only an area
law; it gives a perimeter law for the weak coupling solution h# 0.

In spite of its simplicity, this approximation is qualitatively good,; it is expected to be accurate in high
dimensions, where a first order transition is always observed. Even in rather low dimensions, the
location of the point T is reproduced up to 10-20%; we cannot expect more precision without the 1/d
correction. Some numerical results are

Z, Bi=2755, d=3: B.=0.689 (0.7613 from dual Ising)
d=4: B.=0459  (0.4407 exact)

Zs  BE=4383, d=3: B.=1.096  (1.085 from dual Potts)
d=4

B.=0.730  (0.6700 exact).

Here, d = 3 is the lower critical dimension, where a transition first appears (this critical dimension limits
the validity of the approximation).

Continuous groups are expected to have their critical dimension at d = 4; even if the phenomena at
this dimension are peculiar, something happens (cross-over phenomenon) which might be considered as
the shadow of first order transition occurring at higher dimensions. The comparison gives

u@) Bi=17293, d=4 pB.=1216 (1.01 Monte-Carlo)
SUR) Bt=1060, d=4: B.=2.826  (2.2Monte-Carlo)
d=5 p.=2.120 (1.64 Monte-Carlo) .
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Calculations can also be performed in the axial gauge. Temporal links are set to 1 and are no longer
dynamical variables. Only spatial links are involved in the trial action (4.25), and the free energy per site
reads

F 2 Fotas = (d 1) Mx {u(h)— hw(h)+ ﬁ(*é‘f ‘1)2) ““}’”‘M £ ”'25(”)} (4.30)

and this formula coincides with (4.26) in the large d limit. Results obtained with this estimate are quite
similar to the preceding ones. The point A in fig. 29 is now at finite distance, because the energy term
has a quadratic part and can compete with the entropy term near A = 0; this maximum disappears at
point A

Bi=(d—-D/u"0). 4.31)
As d decreases, the points A and T come close to each other and merge at a critical dimension
d.=2-su®™(0)/u"©) (4.32)

where the transition becomes a second order one.

In this gauge fixing formulation, the problem of violation of Elitzur’s theorem is avoided, but
replaced by the problem of long-range correlation of spatial links in the temporal direction. For
instance, a temporal Wilson loop R x T has an exponential fall-off only in R (~ N(u'(h))*®), rather than
the expected perimeter behaviour in (R + T). For a loop of large T and finite R, this seems to violate a
rigorous bound [198]. The approximation has also a wrong weak coupling behaviour. However, both
diseases can be cured as will now be illustrated in the Z, case.

The weak coupling expansion of the actual model starts from a configuration with all gauge fields
U,=1. The first correction comes from flipping one link; 2(d ~ 1) plaquettes are frustrated in this
process and the relative weight factor is exp{—4(d—1)B}, yielding a total correction (1+
Nd exp{—4(d — 1)B}+ - - -) to the partition function. The same calculation, carried out in the axial gauge,
only yields 1+ #(d — 1) exp{—4(d — 1)B}. It is clear that this comes from the now forbidden overturn of
a temporal link, which amounts to flipping an infinite number of spatial links (see fig. 30). Adding these
extra configurations restores the right low temperature limit. The same problem occurs in the mean field
approximation, where F of eq. (4.26) reproduces the correct large 8 behaviour, whereas F ., of €q.
(4.30) does not. This suggests that we should consider the configurations of fig. 30, where now all spatial
links read +u'(h). Such a “defect” configuration is not generated by any finite order correction to the
original mean field, and does not make the action stationary. In principle, it is possible to “broaden” the

Fig. 30. Flipping one temporal link is equivalent to flipping an infinite number of spatial links.
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defect so as make it a saddle point (see [199] for details). For our present purpose, however, the simple
picture is good enough. The contribution of the defects is exponentially smaller than the original mean
field configuration, but, in a dilute gas approximation [182], they contribute to the free energy and cure
the large B limit, at least to leading order. It may also be seen that they reinstate the correct perimeter
law of the Wilson loop [199]. The fact that contributions of two different saddle points have to be added
in the axial gauge formulation for discrete groups makes the computation of corrections more
hazardous (see the discussion of section 4.1.5).

4.2.2. Generalized mean field: restoration of gauge invariance, corrections

As noticed in section 4.1.3, the one parameter action (4.25) is not adapted to a systematic
computation of corrections. It is necessary to couple a “mean field” to each gauge degree of freedom.
For instance, we use the trial action

Su(U) = 2 (1IN) Re Tr(h,Uj) (4.33)

where the generalized mean field A; is now an arbitrary complex N X N matrix associated with each
link, and we recall that i and j label the sites. For convenience, we conventionally write h; = h}. It is
hopeless to try to solve the general saddle point equations for the mean field configuration {h};
however, a rather natural ansatz for the solution is

h,‘j - hg,g;l h € R, g,- € G (4.34)

depending on a real constant & and on a local gauge transformation {g;}. In the saddle point egs.
(4.16)-(4.17), the g’s disappear and the mean field solution of the preceding subsection is recovered.
Nevertheless this formulation offers some advantages.

1) The possibility of computing corrections according to the general formalism of sections 4.1.3-4.
Illustrations of this technique are presented in the following sections.

ii) Restoration of gauge invariance and recovery of Elitzur’s theorem. Solution (4.34) is degenerate
with respect to {g;}; the procedure of section 4.1.5 must therefore be applied, and the mean field solution
for the partition function Z is summed over the g;’s. In particular,

U= | [ wih) 887" Dg Dg =0 @39)

and Elitzur’s theorem is satisfied. The reader may object that such an argument, when applied to a
model with a global symmetry, a spin model, say, seems to imply the vanishing of any order
parameter —e.g. the magnetization —and rules out the possibility of a spontaneous breakdown of the
symmetry. To understand fully the differences between models with global and local symmetries, one
has to break that symmetry by an external source J, and look at the behaviour of the (infinite) system
when the breaking term is removed. The discussion follows very closely the lines of section 2.4. In a
gauge theory, if a given mean field is the true saddle point in the presence of an infinitesimal source J,
there is also a large set of gauge transforms of that mean field which are almost saddle points with a
very close contribution. This set conspires to give a vanishing expectation value to any non-gauge
invariant observable, in the limit J—0. A similar argument is not possible for a global symmetry,
because of the lack of commutativity of the limits /"= < and J - 0 (cf. section 2.4).



88 J-M. Drouffe and J.-B. Zuber, Strong coupling and mean field methods in lattice gauge theories

iii) The entropy of the gauge degenerate mean field must be taken into account. When the gauge
group is discrete, the saddle points are separated and their equal contributions must be summed; there
are |G|l such configurations when k is non-zero. Hence a term d~' In||G|| must be added to the right
hand side of eq. (4.26) for the free energy per link. In a model with a global symmetry, such a term
N ~'In|G| in the free energy per site would play no role in the thermodynamic limit & - «. The case of
continuous groups, where gauge fixing is necessary, is discussed below.

iv) We finally mention here that this saddle point approach is also useful in identifying the
continuous theory at the critical point. This remark is of no use in this section, but will be relevant in
section 5 for the critical point of the Higgs model.

The parametrization (4.33) and ansatz (4.34) may sometimes be too restrictive. This is the case of the
mixed SU(2) fundamental-adjoint system that we review briefly here {177,178, 180, 191, 193]. In the
large B. region, the action has two local maxima for U, = *1; corresponding link-configurations
fluctuate around U, = =1 (up to a gauge). The role of these “fluxon™ configurations in the SU(2) theory
has been the object of much interest [200, 69]. Within the mean field approach, they cannot be handled
by (4.33) which allows fluctuations around one value only. Therefore, the Z, degrees of freedom of the
fields must be explicitly extracted for a separate treatment if one wants to describe correctly the large 8,
region. A practical way is to write

U=eV, ea=zx1, V,ESUQ). (4.36)

The Z,-degrees of freedom ¢ may be treated as defects in a dilute gas approximation [193] and the
SU(2) variables in a mean field picture. Alternatively, one may introduce mean fields for both {¢;} and
{V,}. We shall discuss here this second approach [177]. The parametrization (4.36) is not one-to-one and
introduces a new ‘‘gauge’”’-symmetry (¢;,— —¢, V,— —V)). A gauge fixing procedure might be introduced
to suppress these spurious degrees of freedom, such as, e.g., a constraint tr V;=0. It is nevertheless
more convenient to keep this discrete symmetry unbroken in the mean field procedure, bearing in mind
that non-zero mean field solutions are 2% times degenerate. The resulting phase diagram displays three
phases:

a) strong coupling: B,, B¢ small (V) =0, (¢;) = 0).

b) SO(3) weak coupling phase, B, large, B; small (V) # 0, (&;) = 0). The gauge field U, fluctuates
around two separated values =1 which play the same role, because S; is too small to break the Z,
symmetry between these states.

¢) SUQ2) weak coupling phase, B., B¢ large ((V)) #0, (g)#0). The phase diagram of fig. 6 is
reproduced, but the first order line does not end and separates completely the regions a and c.

The configurations (4.34) set all plaquette terms h, = hyhhyhy; proportional to the unit matrix (up to
a gauge). In general, this maximizes the action and such solutions are expected to dominate in the weak
coupling regions. However, the energy is no longer maximal [201] at U, = 1 when S, is negative; the
ansatz (4.34) is therefore certainly incorrect in this region and other solutions of the stationary equations
must be looked for. We do not report here on these solutions which generate rather complicated phase
diagrams, with second order lines which may be related with the continuum limit in dimensions strictly
greater than 4 {180, 191].

4.2.3. 1/d expansion for discrete models
We have repeatedly stated that the mean field technique and its extensions are expected to provide
an accurate description of high dimensional statistical systems. The saddle point approximation yields a
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critical inverse coupling B8 of order d~'. The diagrammatic method of section 4.1.4 is well suited to show
that, for large d and Bd fixed, the loopwise expansion yields a 1/d series.

The variational formula (4.22) is used together with the knowledge of the irreducible functional I(J)
as an expansion in 1/d at fixed Bd. Let us first show that the loop expansion of fig. 27f can be used for
this reordering. For a pure lattice theory, the “vertex (black dot) is geometrically the centre of a
plaquette and is joined to four “sites” (open dots), here the middles of the bordering links. The line joining a
vertex to a site is therefore geometrically a segment of length a/2 parallel to an axis. In order
to construct a closed loop, it must be possible to associate these segments in parallel pairs of opposite
directions; therefore a single loop with n vertices (2n segments) has at most n different orientations,
and the choice of these orientations leads to a behaviour d” for its configuration number. With each
vertex bringing a factor 8 ~ d™', the final contribution of a single loop at fixed Bd is of order 1+ 0(1/d).
Every additional loop yields at least an extra factor 1/d because at least one link must be shared with
the old loop and its orientation in the new loop cannot be freely chosen. On the other hand, the lowest
order term in the loop expansion, i.e. a single “site” (link) is of order d (there are ¥4 links on the lattice).

Therefore, we have characterized the diagrams which contribute to the 1/d expansion of I(J). Note
that, in contradistinction with spin systems [202], an infinite number of diagrams contribute to each term
of this expansion. The first correction involves only one-loop diagrams. Plaquettes must be arranged as
shown in fig. 31 in order to allow the maximal number of orientations. With n plaquettes, such diagrams
yield a contribution

d! QBuu")/[(d — n)! 2n]

and their asymptotic contributions in the limit d — at fixed 8d can be easily summed up over n =3. In
addition, the irreducible diagrams with two plaquettes at the same location and linked in various ways
must also be added. Details and second order corrections can be found in [174].

This method works correctly with discrete gauge groups, for which the variational solution is isolated.
Similar calculations for continuous groups have not yet been attempted. We recall that, in addition to
the variational estimate (4.22), a supplementary term  In||G|| must be added to the weak coupling
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Fig. 31. Diagrams contributing to the first 1/d correction to the mean field result. Here n = 5 plaquettes are drawn.
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branch, to take into account the degeneracy |G|* of the saddle point. This term is of order d° and thus
contributes to the first order correction of the 1/d expansion.

Fig. 32 displays the results for the Z, gauge group. The first two corrections have been included in
I(J), before using the variational principle (4.22). As the dimension decreases, the weak coupling
metastable phase shrinks; it disappears, in this approximation, at d =2.9, very near the true critical
dimension 3 where the first order transition is replaced by a second order one.

The end-point A of the strong coupling metastable region remains, in this expansion, at infinity. At
such cusp points, one sees a unique maximum exploding into a large number of degenerate maxima.
What happens there is badly reproduced in the crudest steepest descent method; moreover, the sudden
occurrence of the additional entropy terms taking into account the multiplicity of the saddle points
yields an incorrect discontinuity. The complementary description made in section 3.3.1 for the strong
coupling phase must be used instead. In particular, the position of the end point was found to be
dB = $10""4d**, which is at infinity for d = =, but which cannot be obtained as a 1/d expansion. This is
reflected by a decreasing radius of convergence of this 1/d expansion in the strong coupling phase as Sd
increases.

Similarly, the d~'* expansion of section 3.3.1 cannot handle the weak coupling phase correctly. In
the variables of fig. 17, the weak coupling region (8d ~ 0(1)) corresponds at d = = to the vertical axis.
A detailed study of the d~""* expansion shows that corrections develop more and more singularities at
u =1 to construct the end-point of the weak coupling metastable phase. The two methods appear as
complementary in the description of the large d limit.

We finally quote the 1/d expansion of the first order transition. Numerically, in the Z, case,

2(d — 1)B. = 2.755205 - 0.912561d " + 0.601169d > + O(d ) 4.37)

(the saddle point entropy In 2 is responsible for the sign of the 1/d correction).

Fig. 32. Behaviour of the Z; free energy as the dimension decreases (from 1/d expansion cut to 3 terms). Solid lines are the physical parts. The
metastable and unphysical branches have been represented as dashed, or indicated by an arrow. The dotted lines show the trajectories of the

transition points as d varies.
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4.2.4. Corrections to mean field for continuous groups

In the case of a continuous gauge group, gauge fixing is mandatory for the computation of
corrections. Otherwise, zero modes corresponding to infinitesimal gauge transformations (eq. (4.34)) of
the solution to the saddle point equations would give rise to infinite fluctuations. The most convenient
choice is again the axial gauge (see, however, the end of this subsection for a brief discussion of other
choices). The axial gauge also has the merit of already yielding the right low temperature limit of the
free energy at the mean field “tree” approximation, as we shall see now. We consider for definiteness
the SU(N) or U(N) Wilson action in d dimensions [182, 193, 184, 203]. Following the same lines as in
sections 4.1.3 and 4.2.2, one considers the partition function in the axial gauge

z=[ 1 DU,exp{(ﬁ/N)Re[ S wU+ S trU,UI.]} 4.38)
e ke e
i plaquettes plaquettes

and one inserts in Z the following representation of 1

1= ] jdzsz, 52N (V, - Uy)
spatial
links {

! j dV, dH, 2inN)N exp{(1/N)Re H(U - V)} (439)

where Vis a N X N complex matrix, and dV is the flat measure I1, s d Re V,z d Im V,g, and likewise
for dH. As in section 4.1.3, the 2imN factor disappears ultimately in the Gaussian integration, and we
omit it in the following. One gets

z= [ 11 dVidH, expiSerl Vi, H) (4.40)
Sex = (BIN)Re > tr V, + > (u(H,)— (1/N)Re H,V)) (4.41)

where we recall that
w(H)=1n j DU exp(1/N) Re tr(UH). (4.42)

The saddle point of the functional is assumed to be uniform: H,, V; independent of [ real and
proportional to the unit matrix:

=H1, -Vi,=V1. (4.43)
Of course, we have no a priori guarantee that such c-number solutions are the dominant saddle points,

but we shall verify that they exist for small enough coupling and that they describe well the physics in
that region. Then H, V must be a saddle point of the real function
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[1/X¥(d = 1)} Seal V1, H1] = B[3(d - 2)V*+ V2| + w(H)- HV (4.44)
hence
V*=u'(H*)
{H* = BV*2+2(d-2)V*?). (4.45)

These equations have only the trivial solution H* = V* =0 for 8 < Bg, and a non-trivial solution
appears at 8 = Bg. For investigating the large B limit of this solution and of the related free energy, we
have to expand the function u(H) at large argument H. It turns out that such an expansion is also
sufficient in the whole weak coupling phase, and that we do not need the exact expression of u(H)
[204]: this is because the critical coupling B. is large enough so that V is of order one and H large for
B > B.. One may write

u(Hy~H+C—-AoIn H+ A/H+ A,2H*+ - -+ (4.46)
A, counts the number of infinitesimal generators of the Lie algebra, and the constants A; and A, have
been computed in [176]. The constant C is worked out using the explicit form of the integration
measure given in appendix A (see table 12).

The mean field free energy is the saddle point value of S.s. The internal (plaquette) energy is

therefore

E={2/d(d-1)}oFdp =[(d-2)V**+2V*?*]/d. (4.47)
For B>, H*~2B(d~-1), V*~1- A,/{48(d — 1)}, hence

E=1-Ay/dB—"-- (4.48)

which is the correct large B8 behaviour, counting the number of degrees of freedom. Had we not fixed
the gauge, we would have the wrong result

E= V=1~ AfB@d- 1}~

which would have to be amended by the corrections.

Table 12
Asymptotic behaviour of u(H) = In [ DU exp{(H/N)Re Tr U}
SUN) u(H)~H+{ (znl)(Nk1v)/2+N22_zlnN] _sz—llnH_AZI;l_(zNZ;Z)}sz_1)_,“
Uy w(H)~ H+[ o )N,z‘ NlnN] 1n}ar+8ﬁHz-+13;’1;,2
SUNY/Zx u(H)~H+[ (ZHN)(N”Z)'& P N N] Nty W WDV
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Computation of the one-loop corrections to the non-trivial saddle point proceeds in a standard way. It
requires the functions

Pu(H) 9Hpa 3H, | 1r-511 = Pu(H)0H 5udH b\ p1ris = A PQpe + BP G (4.49)
and

*u(H)/ 0Hp0H L)\ g=pis = A’ P$} .+ B' P&, (4.50)
where P® and P™ are the projectors on the trivial and adjoint representations

g)lg ¥é (1/N)8a687§
PaB vET afavﬂ (1/N)8aﬂ57§ (451)

As a consequence of the invariance of u(H) under a unitary transformation on H and H", it is easy to see
that, for all H,

A'-A=B'-B=u'(H)2NH (4.52)
(the first equality does not hold for SU(N)). Moreover, for large H,

B~-B'~—1/4ANH
and
A~-A'~—-1/4ANH  for U(N)
A~A'~0@1/H? for SU(N). 4.53)

It is thus natural to project the fluctuations of H and V about their mean field values H* and V*, on
the trivial and adjoint representations. Moreover, their Hermitian and anti-Hermitian parts are not
coupled to each other in the Gaussian approximation: the anti-Hermitian parts, coupled to A— A’ or
B - B, give the dominant contribution to the large 8 (large H) limit.

The case of SU(2) deserves a special mention. If one uses the representation of SU(2) matrices in
terms of Pauli matrices

U=u+iu-o u3+u’=1, u real

and write

H=h,-ih 0o, V=y+tiv-o

with complex h, v, one sees that

u(H)=1n f DU exp Re(houo+ b - o)
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does not depend on the imaginary part of A. In the loop expansion, integration over Im h gives a
delta-function for Im V and these degrees of freedom decouple to all orders.

Finally, the second derivatives of Wilson’s action with respect to the link variables introduces two
bond-shifting operators, the Fourier transforms of which read

4,.(k)= [2 cosky+2V? D cos k,,] 8 +4V3(1 - 8,,) expli(k, — k,)/2] sin(k,./2) sin(k,/2)
p#Eud
(or=1,....d-1) 4.54)
and

A, (k)= [2 cos ks +2V? D cos k‘,} 8w +4V3(1-8,,) expli(k, — k,)/2] cos(k,./2) cos(k./2)

p#Eud

(wv=1,....,d=-1). (455

A and 4 are relevant for the anti-Hermitian and Hermitian parts of the fluctuations, respectively.
Straightforward algebra then leads to the one-loop result

Z = exp{Sea(H*, V*)} x {det” (1 - 2BN(A’ ~ A)4) X det™*"V2(1 - 28N(B' - B)4)
X det™"2(1 — 28N (A’ + A)A) x det"™*=D2(1 — 28N(B' + B)A )} . (4.56)

Because of eq. (4.53), only the first two determinants contribute to order B° in the free energy. Using
eqs. (4.52), (4.45), one may write

2BN(A'- A)=2BN(B'- B)= BV/H = 1/[2+2(d - 2) V7 4.57)
(for SU(N), the first equation is absent), so that the one-loop free energy reads

N?/2

F:F““_{(NZ—l)/z

} tr In(1 - (BV/H)A)+ 0(1/8) (4.58)

where N?/2 refers to U(N) and (N? - 1)/2 to SU(N).

Several comments are now in order.

1) It is of course possible to pursue the loop-wise expansion to higher orders. The important point is
that only a finite number of terms in the expansion contribute a given order in 1/8. This results from the
behaviour of successive derivatives of u(H) (see e.g. (4.53)) and from a simple power-counting
argument. For example, only one-loop and two-loop diagrams contribute to order 1/8 in F, and so
on ... This has to be contrasted with the case of discrete gauge groups, say Z, for definiteness, where
one may show that an infinite number of terms are expected to contribute to the second correction
exp{—-8(d — 1)B}. Therefore, one may say that, for continuous groups, the mean field approximation
(including the corrections) resums the weak coupling expansion, and moreover does this resummation in
a very efficient way. Fig. 33 displays the plaquette energy of the four-dimensional SO(3) theory (the
present discussion may be easily extended to SO(3) or any other group).

ii) The spectrum of excitations in the mean field approximation may be read off the expressions
(4.54)—(4.56), since the argument of the determinants is their propagator. For instance, 1 — (BV/H)A has
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Fig. 33. The SO(3) plaquette energy. Monte-Carlo data [42] (full circles) compared to the strong and weak coupling expansions and to the mean field
solution.

two eigenvalues, A, = (4BV/H)sin*(ka/2), and A, = (4BV/H) (sin®(ky2)+ V? Z{ " sin’*(k,/2)), the latter
(d—2) times degenerate; A, vanishes at k, =0, which corresponds to “time”-independent gauge
transformations allowed in the axial gauge, whereas A, vanishes only at k = 0, and represents the other
global transformations. Both are massless excitations. On the contrary, the other (Hermitian) channels
have no massless excitations. That the most relevant channels in the large B limit correspond to the
anti-Hermitian parts of the fluctuations, and give a zero mass to these excitations should be of no
wonder to us, and fits with the continuum theory.

iii) Had we not fixed the gauge, we would have found (1 -{1/2(d — 1)V?}4’) as the argument of the
determinants in eqs. (4.54-56), with 4}, a d X d matrix obtained from A by replacing cos k; by
V2 cos k,. This matrix has a zero mode sin(k,/2) exp(ik,/2), corresponding of course to local gauge
transformations.

We now come to the determination of the transition point between strong and weak coupling phases.
This is achieved by comparing the various free energy solutions provided by mean field plus corrections.
In the strong coupling phase, where the mean field is trivial, we have seen (section 4.1.4) that loop
corrections reconstruct the strong coupling expansion discussed at length in section 3. At weak coupling,
one may take the one-loop expression of (4.56); the “Hermitian” channels play a minor role, and the
determinant is a slowly varying function of B. For most gauge groups SU(N), N =4, U(N), all N,
SO(3), . .., this method gives a value to the (first order) phase transition in very good agreement with
the Monte-Carlo simulations. The results are presented in table 13. The character expansions of section
3 have been used and suitably extrapolated. The small, but systematic discrepancy between the
mean-field estimate and Monte-Carlo data should be corrected if a small positive two-loop contribution
is added to F in the weak coupling phase. For illustration, the two free energy determinations are
plotted in fig. 34 for U(x). Of course, for U(1), the phase transition is incorrectly predicted to be first
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Table 13
Comparison of mean-field and Monte-Carlo results for the position of the transition

Mean field Monte-Carlo
d=4 u@) 1.03 1.01 [205]
U(2) 345 3.30=0.05 [205]
u@3) 7.30 6.88+0.5 {205}
U@) 12.5 12.14x0.7 [205]
ues) 19.5 188 1.1 {205]
U(6) 28.0 270 *2.6 [205)
U=} B2N?* =038 0.375-0.38 (extrap.)
SU4) 11.6 10.2 [206, 207)
SU(S) 18 164 +0.2 [206, 208}
SU(6) 26.5 240 =10 [209}
SO@3) 2.6 248 {42]
d=35 SU@2) .77 1.64 [210]
A
1.5k
1.0
%
N
[V
0.5+
0

Fig. 34. Four-dimensional free energy for U(=) gauge group.

order, but we cannot expect mean field to reproduce the physics of monopole loop condensation. The
most striking effect takes place in SU(2) or SU(3) where the strong and weak coupling determinations
do not cross and are almost degenerate in a range of B (fig. 35); the corrections to mean field have
removed the first order transition predicted to lowest order. Of course, it is an exaggeration to say that
mean field predicts the absence of a phase transition, because the bad convergence of the strong coupling
expansion and possible higher order contributions in the weak coupling phase limit the accuracy.
However, it is quite gratifying to see the consistency of the method with the “experimental” situation.

The computation of corrections has also been applied to the SU(2) model with a mixed action. The
mean field incorporates the fluxon configurations discussed at the end of section 4.2.2. The resulting
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Fig. 35. Mean field plus corrections for four-dimensional SU(2) case.

phase diagram reproduces very well all the features of fig. 6, with all the transition lines shifted a little
to the right, as in the previous case [193].

The computation described so far has been carried out in the axial gauge. Gauge invariant
quantities should of course not be affected by the choice of gauge, but gauge invariance does not hold
order by order in the loop expansion. For aesthetical reasons (covariance) or for their suitability in the
computation of higher order corrections, other choices of gauge have been proposed [188,211]. The
stationarity equations are solved in the absence of gauge fixing and the gauge condition is imposed on the
fluctuations; for example, the Landau gauge is a constraint on the anti-Hermitian part of the V fluctuations

2 [(vnﬂ - Un—,z,,z)_ hC] =0.

Such a constraint must generally be accompanied by the appropriate Faddeev-Popov determinant,
which also contributes to the corrections. So far, actual computations have only been carried out for
U(1). It has been verified that the correct large 8 behaviour of E(B) is recovered, although the original
mean field approximation seems worse than in the axial gauge.

Finally, the mean field approach has been recently applied to the puzzling Higgs—Coulomb transition
of Z,, gauge models. We recall from section 2.3.3 that these models possess three phases. For n large,
Z, looks like U(1), and the confinement-Coulomb phase is well reproduced in a standard mean field
picture. However, the second transition requires a more elaborate discussion. It has been shown [186]
that those fluctuations around mean field which are U(1) gauge transformations play an important role.
When n—-o, Z,; is supposed to approach U(1l), and these excitations should become a zero mode.
Actually, at B finite, their eigenvalue (mass) is exponentially small in n, whereas at B ~ €(n?), it is large.
This suggests to separate these U(1) degrees of freedom from the Gaussian fluctuations, and treat them as
collective coordinates. Using this method, Alessandrini has been able to reproduce qualitatively the
behaviour for n large of the transition point 8 ~ 0.02n* observed in Monte-Carlo simulations [128].
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4.2.5. Conclusions

The mean field approximation in lattice gauge theories has been considered with much suspicion for
many years, because of its seemingly irremediable conflict with Elitzur’s theorem. We hope to have
convinced the reader that this was not founded, and that this approximation gives an accurate way of
analyzing the local properties of gauge systems. The phase diagram and local observables [189] are well
reproduced and it seems that grinding out a few higher order corrections would still improve the
agreement. On the other hand, it is clear that long distance physics, the approach to the continuum limit
and its scaling properties are not expected to be within the reach of the approximation. However, it
might be that mean field with its corrections reproduces this limit to some extent, as strong coupling
approximations do. Also, the fact that scaling already seems to take place at rather small distances
leaves open this possibility.

5. Higgs fields
5.1. Generalities

The preceding sections have been devoted to the pure gauge models. However, a realistic theory
necessarily includes matter fields. As bosons appear to be simpler and perhaps better understood than
fermions, we restrict ourselves to this case.

It is known in field theory that the inclusion of matter fields can exert a dramatic effect on the
behaviour of gauge theories. The Higgs mechanism, where scalar fields interact with gauge bosons,
makes them massive and cuts the forces to a short range. In the lattice regularization, the occurrence of
such a phenomenon is expected to be seen in the phase diagram of the combined matter-gauge model.
This section is devoted to some discussion of this system.

The lattice Higgs model is defined as follows. We introduce on each lattice site a scalar field ¢; with
d, components. It transforms under a gauge transformation according to some d,-dimensional irreduci-
ble representation of G

¢~ D"(g:) ¢i. (.1)

In view of this gauge transformation, it is natural to split these fields into a subset of gauge
parameters for the orbit, and a subset of complementary parameters (“radial excitations™). A little
thought shows that only the first subset interacts with the gauge fields, and that only the second subset
can be involved in the local (= depending on only one site) gauge invariant potential terms of the
action. Even in the absence of gauge interactions, i.e. with global transformations (5.1) g independent
of i, the interaction between the two subsets leads to a very rich structure (related in particular with o-
and CP(n)-models in the continuum limit). When gauge fields are added, we expect an even more
complex structure which has remained unexplored so far. Therefore, we restrict here the variations of
the Higgs fields to a single orbit, without radial excitations. For instance, with the Z, gauge group, ¢;
can take only the discrete values *1 instead of any real value; with the U(1) group, ¢; is constrained to
be a unimodular complex number (or, equivalently, a two-dimensional unit vector); more generally,
with the metric preserving groups SO(N) (resp. SU(N)), ¢; is a unit real (resp. complex) N-component
vector. Also, we do not treat here the case of several Higgs fields in the system.

A new term ySy involving Higgs fields must be added in the action to the pure gauge action BS,,
extensively studied in the previous sections (we add now a subscript g for gauge). The restriction to a
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single gauge orbit suppresses the terms in Sy depending on only one site; keeping only nearest
neighbour terms, we are led to the following gauge invariant form

YSu=17y 2 &: D"(Uy) ¢, (.2)
@i.j)

and we now consider the generating functional
20,))= [ TID$, [ TIDUsexp{gS, + S+ S el + S ). 63)
! i

The invariant measure D¢, on Higgs fields is naturally induced by the Haar measure on G, for ¢; can
be parametrized by an element g; of the gauge group

é: = D’(8:) ¢o -4

using a fixed, arbitrarily chosen vector ¢o; in this parametrization, the measure is clearly Dg,.

The g’s of the parametrization (5.4) define a transformation, which fixes the gauge in a given
configuration of Higgs fields. This is called the unitary gauge. Performing this transformation on the
Uy’s, the partition function reduces to

z= [ TIDU exp{gs,+ 7 S 0 D(U) 0] . 65)

The integrand depends no longer on ¢;’s and the corresponding integration has thus been carried out.
Hence, the model is equivalent to a (non-gauge-invariant!) pure gauge system in an external constant
field.

Before discussing the (8, y) phase diagram, it is instructive to study various limiting cases.

a) y =0 is, of course, the well known pure gauge model.

b) B =0is a trivial model of non-interacting gauge fields (as seen in the unitary gauge formula (5.5))
and has no transition when y varies.

¢) B = = is the pure statistical spin system with an action y £ ¢, - ¢,. Indeed, this limit selects only the
gauge field configurations maximizing S,, i.e. with all U, set to unity; in an appropriate gauge, all U, are
set to unity, hence the result. We recall quickly some properties of these models, extensively studied in
statistical mechanics. Among them are the Ising model (¢ = =1), the xy-model (2-dimensional real ¢),
the Heisenberg and generalized models (3- and more dimensional real ¢). They generally present a
second order transition for sufficiently high dimension: 2 and above for Ising, 3 and above for the
others. The 2-dimensional xy-model is rather peculiar and exhibits a continuous order transition line for
¥ > ¥. [212]. The phases are characterized by the mean value of the Higgs field, vanishing identically
only in the low coupling (high temperature y~') phase. The large distance behaviour of the correlation
function is

(God,) ~ Cst exp(-1/£) Y<v. (¢)=0) (5.6)
($)* + Cst exp(—r/€) Y > v., discrete groups (.7)

(¢)*+ Cstexp(Cst'/ré™?) vy >y,, continuous groups . | (5.8)
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The last behaviour (5.8) is a consequence of the existence of Goldstone’s modes (spin waves) in the
spontaneously broken model. Finally, note that the phase structure may be richer, for instance, Z,
models (n > 4) exhibit three phases, separated by two second order transitions and characterized by the
successively encountered behaviours (5.6), (5.8) and (5.7) when y increases.

d) y = = selects, in the unitary gauge formula (5.5), the values of U, maximizing the matter part of
the action. They form a subgroup HC G and thus the limit is the pure gauge model for H. When the
representation r is the fundamental one, H contains only the unity; the system is trivial and, in
particular, does not undergo phase transitions. Other representations, hereafter referred to as multiply
charged Higgs systems, lead to non-trivial cases. Examples are provided by the U(1) system with charge 2
Higgs field

B> cos(By + O + B+ )+ y D, cos 2 + 6, — &) (5.9)
or by the SU(2) system with isospin 1 matter

B 2t Uy +y 2 ¢D'(Uy)ey (5.10)

(¢ are 3-dimensional unit vectors onto which acts the SO(3) rotation D'). The unitary gauge selects, at
large vy, the gauge configurations 6; = 0 or m, or U, = *1; the system thus reduces to the pure Z, gauge
model for both cases, with its first order transition.

5.2. The phase diagram

Fig. 36 displays the expected phase diagrams in Higgs systems for various cases. These qualitative
sketches are suggested by the limiting cases studied in the previous subsection and will be confirmed by
the results obtained later. The three expected phases are

a) B and vy both large: the Higgs field takes a non-zero mean value and the gauge field fluctuates
around 1 (in the unitary gauge). This is a Higgs mechanism, with massive gauge bosons. The force is
short ranged and the Wilson loop exhibits a perimeter fall-off.

b) B large, y small: finite energy states representing free charges are observed. For continuous
groups, the gauge bosons have massless excitations and cause a Coulomb force between static charges.

¢) B, y both small: this is the confinement phase. One might expect an area law for the Wilson loop;
however, the introduction of matter fields has modified drastically the situation. Indeed, the separation
of static charges with a linearly growing potential is balanced by the energetically favoured creation of a
particle-antiparticle pair from the vacuum. This is always possible if the Higgs fields are in the
fundamental representation; a gauge-invariant singlet can be constructed from the static source and
Higgs particles, and this results in a perimeter law for the Wilson loop. Conversely, with multiply
charged Higgs fields, fundamental sources cannot be screened and the fundamental Wilson loop keeps
an area fall-off. In this case, the confinement phase is characterized by Wilson’s criterion, and is
certainly non-connected with other phases (fig. 36, c—d).

The problem of finding order parameters that discriminate between these phases has been recently
reconsidered. Mack and Meyer [213] propose to look at the vortex free energy, while Bricmont and
Frohlich [214] have pointed out that only in phase (b), the gauge invariant correlation function has a
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Fig. 36. The expected phase diagrams of the Higgs system. a) Zs, b) U(1), charge 1 Higgs, c) U(1), charge 2 Higgs, d) U(1), charge p > 4 Higgs. The
analyticity domain resulting from eqs. (5.14-5.15) is shaded.

power law correction on top of its exponential fall-off

(#TTU:) = frlam2 e,

|x|->00

With singly charged matter fields, the failure of Wilson’s criterion leads one to wonder about the
differences between phases a and c. In fact, the two phases are continuously connected by an analyticity
domain, which proves their identity. The proof [215, 216] uses an extension of the convergence theorem
presented in section 3.1.2. The introduction of Higgs fields is performed in the unitary gauge by just
modifying the measure

DU, Dyl = ¢™5® DU,/f e DU;, 5.11)

and the convergence proof is done for the strong coupling expansion around g8 =0 for fixed y. The
inequality (3.7) has to be improved to get a sensible result, and the bound (3.2) is too crude. For the free
energy, Holder inequality allows one to write

= cz{ [ J DuU |9(U)|P]Up}m (5.12)

|| TIpat: TT2w,)

where p is a given positive integer. This improved inequality shows immediately that the analyticity
domain includes the region
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p
16(d - 1) U DuU |Q(U);P] <1 (5.13)

in which the series are absolutely bounded from above by a convergent geometric series. In the Z, case,
this yields

8(d — 1){|e"* — 17 cosh 2y cosh™ y}» < 1 (5.14)

hence the shaded analyticity domain displayed in fig. 36a. Note in particular the finite width on both
extremities of this domain, observed for any discrete gauge group. This completes the proof of
connectivityt between the Higgs and confinement phases for the Z, gauge group and, similarly, for all
discrete gauge groups.

The estimation of (5.13) is more complex for continuous groups as y increases, and it is no longer
sure that the analyticity domain extends up to (y = =, 8 = ). However, this result still holds for U(1)
(see also for this group [217]), where the simple upper bound 2(U) < Const. B8S,(U) leads to the result
displayed in fig. 36b

2m 2n
B J dge”=°cos § — 1‘2”/ f dfe”*? < Const . (5.15)
0

0

Note that this region of analyticity has no longer a finite width near (8 = o, y = x).

Another important exact result concerns the transitions observed in the limiting models: they are not
isolated, but connected to transition lines inside the phase diagram. This stability theorem is again based
on convergence properties of expansions. Let us first consider the small y region. In a fixed
configuration of gauge fields, the Higgs system appears as a spin model with varying couplings. The first
diagram appearing in the small y expansion is the closed curve bounding a plaquette; at order y*, the
resulting effective action for the gauge fields is therefore

Sen = (B +tanh* y) > Tr U, + 0(y°). (5.16)

We specialize to the Z, case, although the result is quite general. Hence the system at small fixed y
reduces to the pure gauge model with a shifted effective coupling B.q = B + y*. Therefore, the transition
enters the phase diagram, with the curvature shown in fig. 36.

Next corrections do not modify this result, since the high temperature expansion in y is convergent.
However, even with these convergence properties, induced interactions might destabilize the system
near a second order transition. But, first, the effective action has the same symmetries as the pure gauge
model; hence the situation differs from the case where an external field removes the transition.
Secondly, the long range couplings contained in the effective action are exponentially damped and are
not expected to affect the transition.

1n fact, it seems that the proof is not complete. A first order transition line might end at the point 8 = (), y = =<, and the analyticity domain just
derived might apply to the metastable phase. A complete proof would show, for instance, the identity (after re-ordering) of the expansions around

B =0 at fixed y and around y = = at fixed B.
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We do not reproduce the similar reasoning for the transition near 8 = «. In the three-dimensional Z,
model, this is particularly obvious, because the phase diagram is symmetric under the duality trans-

formation (B, y)— (B*, y*):
sinh 28 sinh 2y* = sinh 28* sinh 2y = 1, (5.17)

as discussed in subsection 2.3.

It seems that strong coupling expansions should be an eftective tool for investigating the quantitative
features of the phase diagrams, viz. predicting the location of the transition lines, and studying the
critical behaviour at the end-point of the confinement-Higgs line. For this purpose, two variable
expansions have been derived to 16th order in 8 and y for the Z, Higgs model [218]. Unfortunately, the
analysis of these series by either of the methods described in section 3.4.1 turned out to be quite
delicate and did not yield any stable result. Even in high dimensions, where, according to the mean field
picture, the critical behaviour should become algebraic, we could not pin point accurately the location
of the end-point, nor extract reliable exponents. It seems that our expansions were not long enough to
allow a detailed analysis of the complicated pattern depicted on fig. 36. It may be worth mentioning at
this point that strong and weak coupling methods have been successfully applied in a class of Higgs
models, with a Z, symmetry, and Potts-like interaction [196]. Expanding about the limit g = © made it
possible to resum in a non-trivial way strong and weak coupling expansions. The resulting phase
diagrams were found to be in good agreement with Monte-Carlo data, even for values of g as low as 2.

5.3. Mean field analysis

The mean field techniques can easily be applied to the Higgs system. In the early days of lattice
gauge theory, they were used to predict the qualitative features of the phase diagram [5]. In the
parametrization of the degrees of freedom, it might seem interesting to use the unitary gauge, where
only one dynamical field remains. However, this parametrization, which gives, as one will see, good
results in the large y region, fails for small y. Indeed, in this region, the Higgs field fluctuates wildly and
so does the unitary gauge transformation. It is therefore natural to treat separately these degrees of
freedom and to introduce mean fields for both the U, and ¢; fields. On the other hand, this other
technique uses redundant degrees of freedom, which may create spurious transitions; this is the case, as
we shall see, for the Z, Higgs model: the transition line between the confined and Higgs phases does not
end and separates completely these two regions.

For simplicity, we only describe the explicit calculations for the Z, Higgs model. Using first two mean
fields h; and H, for the two fields ¢; and U, we look for a constant, translation invariant solution k; = h,
H, = H. The variational free energy (4.8) per site reads

Fou: = Max {d(u(H)— Hu'(H))+ v(h)— ho'(h)+ B 4@22—12 WA (H) + yd w'(H) u’2(h)} AT

The test free energies u and v are the same in this Z, case
u(Hy=1Incosh H, v(h)=Incoshh, (5.19)

and the extremality conditions read



104 J-M. Drouffe and J.-B. Zuber, Strong coupling and mean field methods in lattice gauge theories
{H= 28(d - 1y u(H)+ y v*(h) (5.20)
h=2ydu(H)v'(h). '

The three previously described phases are easily identified in this system. The general solution H# 0,
h+# 0 yields non-zero average values for both gauge and Higgs fields, and therefore corresponds to the
Higgs phase. There are also two other particular solutions £ =0, H# 0 and h =0, H =0 corresponding
to the free charge and confined phases. It is also clear that the solution h =0, H=0 is always an
isolated maximum and therefore the confinement region is, in this approximation, separated from the
other phases by a first order transition line; this is not the case of the two other phases, separated by a
second order transition line obtained by requiring that the second derivative with respect to h of the right
hand side of (5.18) vanishes. The numerical result of this study is displayed in fig. 37, curve MF1. As stated
previously, the first order transition line does not terminate. The results are particularly good in the low y
region; we also display the numerical results [219] obtained using Monte-Carlo techniques for the triple
point and the end-point.

Let us turn now to the mean field approximation in the unitary gauge. The variational free energy is now

Fp> = d Max {u(H) ~Hu'(H)+ B 5‘1—;—1) WiH)+y u'(H)} (5.21)

with the extremality condition
H=28(d-1)u”*H)+vy. (5.22)

This equation has one or three solutions (note that H = 0 is no longer a solution as y# 0); one finds a
first order transition line (curve MF2 of fig. 37) which ends on a second order point. As expected, this
method is not accurate in the small y region, but gives a correct description of the system when 7y is
large. The end-point corresponds to a triple solution of eq. (5.22) and the critical values are

0.5
Higgs

confinement

Fig. 37. The two mean field techniques applied to the Z, Higgs model. The numerically estimated locations of the triple point and of the end-point are also
indicated with their error bars [219].
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H.=In(1+V2)

d-1B.=3

Ye=-V2/3+In(1+V2). (5.23)
The continuous field theory describing the critical behaviour at long distance near this point has been

identified [181]. One uses for this purpose the Legendre transform (4.18) which allows the calculation of
the various irreducible Green functions

F(U)=§l‘,(li—y)U,—u(H,)—/32U,,, (5:24)

with H; solution of
U=uH). (5.25)
The second derivative of this functional at the critical point gives the propagator
I, = 8°I18U,8U, = 28,,— {1/3(d - 1)}P,, . (5.26)

P, is one if I, and I, belong to the same plaquette, zero otherwise. In momentum space, this
inverse propagator reads

2

- 4d 1 a
2) — igr (2 _— _ = 2 _ 2 10,2 2 4.4
Fuy(q) - Z e' Frﬁ..n" 3(d — 1) (&w d) + 3(d - 1) [6,“,((] 2(]“)+ 2(qn + CIV)] + O(q a ) . (5-27)

(d - 1) of the eigenvalues of this matrix are degenerate and do not vanish at g>a® = 0; they correspond to
massive degrees of freedom which decouple in the continuum limit. The last eigenvalue does vanish at
a’q® = 0; using the projection operator P on the corresponding eigenvector (1/Vd) (1, 1, .. ., 1), we obtain
the usual, rotation invariant massless inverse propagator

PI'®(q) P = 2a*/3d*q*+ 0(q*a*). (5.28)

The critical domain can therefore be described at long distance as a single component scalar field
theory. Similar estimates of the 3- and 4-point functions show that only the latter does not vanish at the
critical point; the continuum limit is therefore described by a ¢* scalar field theory.

This simple example shows explicitly how the approach of a second order transition is related to a
continuous field theory. In this case, the resulting limit is not particularly interesting; however, the
method might be promising.

Appendix A. Group theory complements on U(N) and SU(N)
A.1. Representations of U(N) and SU(N)

Consider first the case of U(N). We use the following notations: U is a N X N unitary matrix with
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eigenvalues ¢; = exp(ia;), j = 1,..., N. The irreducible representations of U(N) are labelled by a set of
N positive or negative integers

A={z=a= =2, (Av=0o0r <0) (A1)
or alternatively if [, = A, + N —
L>hL> >y, (A2)
The corresponding character reads [220]
Xo(U) = det(e?)/det(e N7y = A, (g)/Ao(€) (A3)
and its dimension is

doy =TG- 1IG =)= xw(). (A4)

i<j
If all the A’s are translated by the same integer s, we have of course
Xu+s(U) = (det Uy xu(U). (A5)

If all the A’s are non-negative (polynomial representations), it is natural to consider the associated
Young tableau and the representation of the symmetry group 3, of n = |A| =2 A; objects. This leads to
the Frobenius representation of y,, in terms of traces of powers of U. Let [p] be a class of elements of
3., denoted as usual [221]

[p] = [1&12a2 v nan] , (A6)
with 2 pa, = n, if it consists of a, 1-cycles, a, 2-cycles, . ... There are
n[p] = n!/(l‘” al! 2a2 (12! . ) (A.7)

elements in this class. We now introduce the notation
t(U) = (tr Uy (tr UR2 .. (tr U™)™ (A.8)

and denote by ¥.,([p]) the character of ¥, pertaining to the Young tableau {A}. Frobenius relation
reads

xuU)=(1/nl) [2] ni XinlLP)) 1101(U) (A.9)
p
A=A, =- = An =0, A=A+ + AN

or conversely, using the completeness relation of the y,
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)= 2 xwle) xmU). (A.10)

{Ahlat=n

In particular, for [p] = 1%, Yu(1) = oy,

tr*U = 2 o xu(U). (A.11)

{ALlal=n

Therefore, the dimension oy, of the representation {A} in 3, identifies with the number of times the
representation {A} of U(N) appears in the nth tensor product of the fundamental representation U®'",
One shows [220, 222] that

N-1
aofdy = nl! TT iV An-i+ i) . (A.12)

i=0

When some of the A are negative, one may make use of (A.5) to write

xo(U) = (det U™ xa-an(U)

and then use (A.9) for y ;- However, this expression is not convenient in strong coupling expansions.
In that context, one is rather interested in “low-lying” representations, so that y may be expressed in
terms of a small number of traces of powers of U and U". If we denote

{)\}=mlz'"ZmpZOZ"-ZOZ—mZ---—nq

which may be visualized by a double Young tableau (fig. 38), an expression of yy,; in terms of #,)(U)
and 1(,,(U"), involving no more than = m; U’s and = n, U"s can be given [223]. A list of low-lying
representations with |A| =<3 is given in table 14.

In the case of SU(N), the eigenvalues ¢; = exp(ia;) have a product one. The representations are as in
eqs. (A.1)}-(A.3), but constrained by Ay = 0. One can therefore use the expression (A.9) of y, but, as
noticed above, it is not always suited for strong coupling expansions.

A case of physical interest—may be the only one, ultimately!!-is the group SU(3). Its represen-
tations are commonly labelled by two integers A, u such that the notation of (A.1) reads

Fig. 38. Double Young tableau for U(N) representations.
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Table 14
The presentations of U(N) with |A| = 3. For the polynomial representations, we have also displayed o) defined
in (A.11)
Representation Dimension Character
1 ) N r U
-1 conjugate N r U'
2 (1] N(N+1)2 (R U +tr U3
-2 conjugate NN +1)2 (2 U+ U™n
1,1} B N(N-12 2 U—-tr UY2
{-1,-1} conjugate N(N-12 U - U?p
{1.-1} [T adjoint Ni-1 trUtr Ut-1
{3 (1] NN+ )N +2)/6 P U+2u U+ 3tr U tr UY6
{-3} conjugate NN +1)N+2)/6 P U 20 UR+3u UM U6
2,1 N(N?-1)/3 trU-u U3
{-2,-1} conjugate N(N*-1/3 tPU -uw U3
1,1 @ N(N - 1)(N - 2)/6 (P U+2tr UP=3tr U tr U6
{-1,-1-1 conjugate N(N-1)N-2)/6 (U +20 U -3u U U6
2.-1 1 NN -1)N +2)12 U U+t UBR2-tr U
{1,-2} conjugate N(N-1)N+2)2 U@ U+t UD2-10 UT
{1,1,-1} N(N-2)N+1)2 t U U-uw UH2-u U
{L~1,~-1} conjugate N(N-2)(N+1)2 U@ U -t U2 -t U
{Ab={A+u, w0 =, p0). (A.13)

The dimension of that representation is

daw=2A + D+ QA +p+2), (A.14)
its triality is 2u + A (mod. 3). One notices that

Mm@ 1L0)=(A+1Lu)@A-1Lu+ DAA 1)

)OO, D=Ap+HOA-L)OA+1Lu-1) (A.15)

where the second term appears only when A# 0, and the third when w# 0. It is then easy to compute
recursion formulae for the coefficients

Tu= [ DU G+ x5 X (A.16)

which count the number of times the representation (A, u) occurs in the tensor product ®” (f+ f):

(n)y _—

TRw= 2 Taw (A.17)
neighbours
(A'.p")



J.-M. Drouffe and J.-B. Zuber, Strong coupling and mean field methods in lattice gauge theories 109

where the sum runs over the neighbours of (A, ) that appear in (A.15). The contribution of those
(A, ") for which A’ or u' is negative is dropped.

A.2. Group integrals

If U = (2 diag(e™®) 27, the measure of integration takes the form [224]

DU = const. [ | % 1 lexp(ia;)— exp(ia ) D2 (A.18)

i<k

for U(N), and

DU = const. [] de 5,,(2 a,~> TT lexp(ia;) — exp(ias )2 D2 (A.19)

i<k

for SU(N), where D{2 is of no concern to us, since we only consider class functions. In (A.19), e is the
periodic delta function. The constants are adjusted by normalizing [ DU = 1. It is useful to notice that,
with the notations of (A.3),

T (expiay) - expliac,)) = Aofe) (A.20)

i<k

Many integrals encountered in strong coupling expansions are easily computed using
character orthogonality (3.32), (3.33), (3.35). However, more complicated integrals, e.g.
I DU x.(UV) x;(UW) x,(U) call for a different treatment. They may be expressed in terms of general-
ized Clebsh—-Gordan coefficients, or using explicit expressions of the y, in terms of the fundamental
representation (see section A.1l), computed in terms of the generic integrals

JDUU - Ujy, Uliey UI,,k,, (A.21)

on which we now focus our attention.
In the case of U(N), invariance under the U(1l) subgroup ensures that only n = p integrals are
non-vanishing. The generating function

F,(A, B)= J' DU tr" AU tr"BU", (A22)

with A and B two unitary matrices, is computed, using the expression (A.11) and the orthogonality of
characters:

FAB)=[DU S 0w ouxaUA) xu(U'B)= 3 (@h/duu(AB)
{a}

O3y
Al=1a1=n [Al=n
= % i) tip)(AB) % n!“(a%”/dm),ﬁ”([p])=n![En[,,] Cio1 tio)(AB) . (A.23)
A rl
classes IAl=n

of 3,
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The polynomial nature of #,)(AB) now permits a continuation to arbitrary N x N complex matrices A
and B, and differentiation of the expression gives

IDUUM"' Tk = 2 C[p]5illm,"'5j1kal"' (A.24)

P.OEZ,

where the coefficient Cj,; depends only on the class of the permutation p

Cio1= n!72 2% (0fn/diy) X)) - (A.25)

In this expression, as in (A.23), the summation Z,, runs over all polynomial representations of U(N)
with n boxes. If n <N, this may also be considered as a sum over all the representations of the
symmetric group. The coefficients Cy,; are easy to compute from the ¥ given by Hamermesh [221]. We
only list the first ones (see also [225])

n=1 C[l] =1
n=72 C[12]= 1/(N2"1)
C[z] = _1/N(N2- 1)
n=3  Cu=(N>-2)/N(N>= 1)(N*-4)
Chz=—1(N*=1)(N*-4)
Cpy = 2IN(N? - 1)(N? - 4). (A.26)

They exhibit poles at N>=0,1,..., (n—1)*. These poles, known as de Wit-—"t Hooft anomalies, come
from the zeroes of d|,), the dimensions of representations {A}, and are, of course, not present in the
actual result at n > N, obtained by keeping only representations with no more than N rows in (A.23),
(A.25). Furthermore, for n > N, the tensors appearing in the right hand side of (A.24) are no longer
independent, or, stated differently, tr U?, p > N, may be re-expressed in terms of tr U% g = N. For
example, in the case of U(2), with n = 3, #3(AB) may be re-expressed in terms of ff3 and £y 5 using the
identity x.1.3(AB)=0. This gives

F (A, B)=3Yns Ci8 1,5(AB) + np, , COD 1, (AB)), (A.27)
with
cip=t Cig=h
In the case of SU(N), the generic integral (A.21) vanishes unless n —p is a multiple of N, as a
consequence of Zy-invariance. If n = p <N, as any polynomial representation of U(N) with n <N

boxes is also a representation of SU(N), the formulae (A.23)-(A.25) still apply. In the general case,
however, one writes, with A, B two U(N) matrices,

F,,,p(A, B)= f DUtI'"AUtI'pBU* = | DU 2 T Ay T (a1 X{)‘}(AU)X{A')(BUT)

{ALIA|=n
Abal=n

ZIDU > o opydet™A det* B y n an(AU) x aap(BU)
Wy

= 2 T {p+aN} T {n+r4} det*” A det*~ BX(#}(AB)/d{u} . (A28)
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Now the sum runs over all representations of SU(N) (since un = 0) and over the non-negative integers
An and Aj, such that [u|+Ax-N=n, |u|+ AN N =p. In the case p=0 (to which one might always
restrict oneself thanks to the condition det U = 1), one finds [226]

N-1 1)
Fr_an(A)= f DU tr'M AU = (gN) T] —
i=0

LG+ det’A. (A29)

As before, these results extend to arbitrary N X N complex matrices A, and differentiating them yields
the desired integral (A.21).

A.3. Character expansion coefficients

Using the previous machinery, calculations of character expansion coefficients are easy. For U(N),
and Wilson’s action, using (A.3), (A.11),

BH9° = [ DU expl(B2N) (U + U xtU)
= const. f H (de27) Ao(e'*) A%(e') exp{(B/N ) cosa }

= const. N! D &, f H (da;27) exp{(B/N) cos ;} explia(A,; — aj + j)}
= det{l,_,(BIN)} (A.30)

where the normalization constant has been determined by setting 8 =0, {A} =0, Bo= 1.
In the case of SU(N), we have an extra §-function in the measure

o

w3 5(2 - 2k7r) - exp{i ns ai} . (A31)

n=-—ow

The summation over n goes through the previous U(N) calculation and we are led to

B = S detll,—jrien(BINY). (A3)

n=—o

In the N - limit, these expressions have a remarkably simple form, when 8 = B/2N? is kept fixed.
As shown by Gross and Witten,

Bo=e” =exp(B2NY, forB<1, (A.33)
hence
NB:= N dw/dB = B/2N = NB. (A.34)

More generally, using the notations of section A.1, one may show that for the general representation

{Ay={m;n}
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dpyBuiry = (T e Im| o /I YNBe)™ . (A.35)

Moreover, as N — =, the corrections to these expressions are exponentially small [227]. For example,
for SU(N),

In Bo=(BI2N)*+ 2/IN)BRNY +---.
However, after rescaling 8/2N = N, this becomes

In Bo= N2B2+ 2(NV/N)BN, (A.36)

and the coefficient in front of the “exponentially small” correction grows like e™ 27N)~"2,

Appendix B. Diagrammatic analysis of the large N limit

In order to prove that the free energy per site of the U(N) theory behaves as N? at strong coupling
(see section 2.5), one may use the Dyson-Schwinger equations [77]. This infinite set of equations relating
averages of loops of all sizes and shapes is sufficient to generate order by order the strong coupling
expansion of all closed loops. For example, given the lowest order of the single plaquette

(N trUpy=1+-+

it shows that all expectation values (N ' tr U) are also (at most) of order N° to any finite order in ¢ In
the Wilson action for example, where the coupling is rescaled according to 8 = 2N?B, this entails that
Fx N?

(N'r U,) = (2/d(d - 1))dF/8B = (1/d(d — 1))a(N2F)/a8.. (B.1)

However, it may be interesting to have a purely diagrammatic derivation and to characterize the
relevant diagrams. For this purpose, one may use the cumulant expansion of section 3.1.6. The partition
function reads

Z=[1+8(3/dJ)+38%3/a])+ ) exp >, W(J, ]) (B.2)
!
with

5 & & 6
8JP 8J8 8T 12 873

SU)=BN 2

oriented
plaq.

(B.3)
and

WU = f DU exp tr(JU + JU"). (B.4)
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The latter integral has been thoroughly studied by Brézin and Gross [228] in the large N limit. It is
sufficient to say here that at strong coupling (JJ small)

WUD=WN=3 = 3 CN) e NI [n(TFIN]= (B.5)

where the cumulants C,(N) are such that N**72 C,(N) has a limit as N - . The first C, have been
computed explicitly by Bars [229], Brower and Nauenberg [230] and Samuel [225]. According to the
previous rules, the free energy is computed in terms of connected diagrams made of P “‘4-vertices”
tr((8/8J)(8/6J)(8/6T)(8/8T)) and of v, “a-sites” (tr JT)* - - - [tr(JT)"]>". Contractions of matrix indices are
conveniently visualized by using double lines following ref. [73] (fig. 39). For a gauge invariant quantity
like F, all indices must be contracted, and a factor N is associated with each of the f closed loops of
indices. For F; the total power of N is therefore

#=P-> v, g((2k+1)ak—2)+f-

One then uses the relation between v, and the number / of lines joining sites to vertices
[1=2 v, D kay

and introduces the genus g of the c-connected surface built by the index loops
2c—g=f—l+(P+2va gak>=f+P—Zva S @k-1).

This enables one to write

#=2c—g+220‘,(1—2ak>s2—g52. (B.6)

k

The last inquality expresses the fact that the splitting of a “site” into I @, traces may increase the

, J J

6 5

8 bJ -
J ZL>J
- J

5 5 oy

(a) (b)

Fig. 39. Double-line representation of 4-vertices (a) and a-sites (b: a1 =2, a;=1).
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@f@ =N (% ff) . (% aif> [2(1\1“}— 1) <tr12v£j” tr(J{/j )2)]

N? [N* N? N3
uv—zrr)[rv*z* ¥ "2 N

Fig. 40. Dominant diagrams in the large N limit. Computing the diagram depicted on the left amounts, after integration over the links common only
to two plaquettes, to computing the expression displayed. In turn, this may be represented by graphs. The second one has 2fc + 2 0, (1-Z &)} =0,
the two others have it equal to 2.

number of connected parts (fig. 40). From (B.6), we conclude that, as in the continuous theory, only
planar graphs (g = 0) contribute to the leading (~N?) behaviour of F. We emphasize that these graphs
are abstract graphs expressing index contractions, and not diagrams made of plaquettes of the lattice.
We also learn from (B.6) that corrections are suppressed by inverse powers of N2,

This also implies the factorization property of the large N limit. Given two observables 0, and 0,
one has

(0,07 = (01) (0 (1+ O(1/N?)). B.7)

Indeed, one may rescale 0, and 0, to make them of order N? and add them with sources in the action,
without modifying the previous property

Z= f DU exp{BS + 101 + j,05} = exp{N? F(ju, j2)} -

Then
(0:05) = Z71 (3] 910 0j2)Z jy=jo=0 = N* (9F 8j1) (F] 9j2) + N*(9*F/9j1 d)>)

hence the factorization property.
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