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1. Generalities

1.1. Introduction

Non-Abelian gaugetheoriesplay nowadaysa dominantrole in particle physics.The mechanismof
spontaneoussymmetry breakinghas enabledSalam and Weinberg to constructa unified theory of
electroweakinteractions,andgrandunified theoriesareactively studied.On theother hand,asymptotic
freedomis the crucialproperty of the current theory of stronginteractions,quantumchromodynamics
(QCD). This remarkable property, that only non-Abelian gauge theories enjoy, guaranteesthat
fundamentalconstituentsof hadrons— quarksand gluons— havevanishingly small interactionsat short
distances.This allows a perturbativetreatmentin this regime. On the contrary, the long distance
behaviourof that theory remainsmoreelusive.Such problems,asthe assumedpermanentconfinement
of quarksor the computationof hadronspectrum,are typically strong couplingproblemsandcannot
resortto standardfield theoreticalmethods.

A major breakthroughwas accomplishedin 1973 when Wilson [1] (and Polyakov [2]) proposedto
consider lattice gauge theories. The discretization of space,carefully designed to preserve gauge
invariance,offers an ultraviolet regularizationandis not expectedto affect the long distancebehaviour,
sincethe effectivecouplingat smalldistanceis very weak.A latticegaugetheory may be consideredas
amodel of statisticalmechanicsandis thusamenableto all techniquesusedin such models[3,~1— series
expansions,mean field approximations,Monte-Carlosimulations,.. . —. This hasbeen done with an
Euclidean space-timelattice [1,5—7] after a Wick rotation, or with a spatial lattice, keeping time
continuous,in the Hamiltonianformulation [8];

A modelof statisticalmechanicsapproximatesa physicalsystemandis usedto studyits propertiesas
a function of temperature,fields At a non-critical temperature,thesepropertiesdependstrongly
on the choiceof the effectiveHamiltonian. In contrastwith this situation,in latticegaugetheories,one
is mainly interestedin the approachto the critical point. There,the correlationlengthbecomesmuch
larger than the lattice spacing; at that scale,details of the discretization,i.e. of the lattice action or
Hamiltonian,becomeirrelevant,andthe continuoustheory is recovered.

Monte-Carlomethodshavebeenthoroughlyreviewedby Creutz,Jacobsand Rebbi [9]. Thepresent
work reviews two analytical approacheswhich have been particularly developedover the last ten
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years: strong couplingexpansionsand meanfield approximation.This leavesasidemany interestingor
promising other methods, as variational techniques,Migdal—Kadanoff approximaterenormalization
group[10] By lack of time, of spaceandof competence,we havealsorestrictedthis reviewto pure
gaugeandto Higgs-gaugesystems.Theorieswith fermionsor finite temperatureeffectswould deservea
separatetreatment.For the samereason,we discussmainly the Euclideanapproach,but comparesome
of the resultswith thoseobtainedin the Hamiltonianformulation.

Section 2 reviews someparticular rigorous or well-establishedresults,to be used in the following.
Section 3 deals with strong coupling methods;subsection3.1 explainsthe general featuresof the
expansionsand the methodsto derive them. The seriescurrently known are displayedin the tablesof
subsection3.2, andsomepartial resummationtechniquesare presentedin subsection3.3. Subsection3.4
containsa detailedanalysisof thevariousseriesandtheir comparisonwith numericalMonte-Carlodata.
Section4 is devotedto meanfield; subsection4.1 discussesthe generalframework, andsubsection4.2
applies it to pure lattice gauge theories.Finally, section 5 deals with the caseof scalarmatter fields
coupledto gaugefields. Appendix A gatherssomeformulaeof group theory which may be useful,
appendixB elaboratesa technicalpoint on the largeN limit.

We are quite awarethat such a review is highly indigestible.We have tried to makethe different
parts as independentas possible,to allow a selectivereading.The readerwho hasskippeda part will
find cross-referencesif he or she needssomematerialpresentedearlier.

We end this introductionwith the usual apologiesto those who will find their work improperly
quotedor reviewed.We alsorefer to somegeneralreviews on lattice gaugetheories[11—141.

1.2. Generalconventionsand notations

Almost all the way through this paper,we use the Euclideanformulation of latticegaugetheory.A
Wick rotation t—*it has been performed, and all calculations are done in the framework of the
Euclideanmetric. Only at the end of the procedureare the resultsreinterpretedin the usualphysical
space.Hopefully, no information is lost in this process.In particular, the physical energyspectrumis
unmodified; instead of observing a periodical time evolution, the Wick rotation replacesit by an
exponentialdecreaseof field correlations.

A hypercubicalregular lattice is commonly used.Relevantnotationsare

d dimensionof the space.
Greeklettersdenotinga particular dimension(1 to d).

a latticespacing.
vectorsof length a alongthe ‘ath direction.

i, j Latin lettersdenotinga particularsite.
L lattice size. Dependingon the context, free or periodic boundaryconditionsareused.

In somecases,the size L,. dependson the chosendirection~.

X total numberof sites (= L”).
i, ij, i4 different notationsfor a latticebond joining two neighbouringsites i andj = i + ~á.
p, (ilk!), i,ii’ different notations for the “plaquette”, i.e. the elementarysquare of the lattice,

involving the four sites i, j = i + 4, k = i + 4 + 1’ and I = i + i~ this plaquette is
boundedby four latticebonds.

On the lattice, differentkindsof fields are introduced:
generic name for all fields. This notation is used in sections describing general
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techniquesin order to savea lot of writing, especially for the indices.This field i1~

dependson its location x (which may be a link for gaugefields, or a site for matter
fields) andon otherinternal indices a (spinorial, vectorial,..

correspondingmeasure,factorizedon the field locationsas lIIi d~.t(4~).

action governingthe dynamics.
f3 latticecoupling constant.Also called inversetemperature,or inversesquared(Yang—

Mills) couplingconstant.
Z(J) generatingfunctionalfor the Greenfunctions,Z(J) = 5 exp{$S+ J
Z partitionfunction (= Z(J= 0)).
W(J) generatingfunctionalfor connectedGreenfunctions(= In Z(J)).
F free energyper site (= ln Z/X). (Strictly speaking,this nameis incorrect due to the

missing — 11/3 factor.).
~ ) physicalmeanvaluescomputedwith the Boltzmannweight exp(/35).

In the particularcaseof gaugefields,we write
U1 standardgaugefield name,belonging to the fundamentalrepresentationof the gauge

groupG.
U,,. shorthandnotationfor the productof fields U1 alongthe boundarylinks of a plaquette

p (U(IJk,) = U0U1kUk,U,,). This notation is ambiguous(dependingon the orientationand
on the starting point on the plaquetteboundary),but we will use it if this ambiguity is
irrelevant(e.g. in ReTr Un).

U~ as preceding,but along aclosedcurveC.
Somegrouptheorynotationsarealsoneeded.

G gaugegroup.
N dimensionof the fundamentalrepresentationof G. In mostapplications,G is SU(N).
r, s Latin indicesfor the representations.
f r = f is the fundamentalrepresentation.This index is often omitted wheneverno

possibleconfusionexists.
0 r = 0 is the trivial representation.
dr dimensionof the representationr (d, = N, d0 = 1).
Xr character(traceof the representationr). xf(U) = Tr U, Xr(

1) = dr.

DU invariant Haarmeasureon G, normalizedto 1.

1.3. Gaugefields

Gaugetheoriesare basedon the concept of local gaugetransformations,i.e. of transformations
g(x)E G dependingon the spacepoint x. Local matterfields 4.(x) transformunder the transformation
g(x)at the samepoint. In continuumsystems,the requirementof gaugeinvariancefor derivativeterms
requiresthe introductionof a local gaugefield A,,.(x) in the Lie algebrawhich usesboth g(x) and its
first derivativeVg(x) in its transformations.

The direct discretizationof this gaugefield on the lattice mayseemnatural,but is ratheruninteres-
ting. Indeed, the transcriptionof the derivative Vg(x) in the lattice transformationlaw leadsto the
following alternative.Either V is approximatedby anearestneighbourdifference;this approximation
breaksgaugeinvarianceand restoring this invariancein the continuumlimit is problematical;or V is
exactlyreproducedthrough a non-localcombination(g, on all sitesareused in the transformation),and
non-locality may spoil the resultingtheory.
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In any case,more than one g, must be used in the transformationof the gaugefield. The minimal
choiceis to usetwo local gaugetransformationson neighbouringsites [11.Gaugefields Uq take their
valuesin the gaugegroupG (and not in its Lie algebra)andtransformaccordingto

U,1 —* g,U,1g~
t. (1.1)

Moreover, the constraint

(1.2)

is required.On a hypercubicallattice, thereareXd bondsij on the lattice,andthis choicehasthe same
numberof degreesof freedomas a direct discretizationof the continuumgaugefield A~.This lattice
gaugefield which liveson links may beseenas the analogueof thenon-localpath-orderedphasefactor
of the continuoustheory

U~j=Pexp{ig~A~.dxw}. (1.3)

Beforedescribingthe possibledynamicsfor thesegaugefields, we mustsaya word aboutthechoice
of the physical degreesof freedom,i.e. the possiblechoicesof gauge.Given any tree of links on the
lattice, it is possibleto fix the gaugefields on theselinks to someassignedvaluein G.This is donestep
by step,startingfrom a given point, by using the transformationlaw (1.1) to determinerecursivelythe
g

1’s. Among the possiblechoices, fixing to 1 all the gaugefields locatedon links parallel to a given
direction is known as the axial gauge,whereasfixing them on the comb-likeset of links (fig. 1)

U,.d=l Vx

U,./’1=l forxd=O

U,.d~ = 11 for Xd = Ad_s= 0 (1.4)

is sometimescalled the maximal gauge.
For Abelian gaugegroups,the set {U~}of all plaquettevalues is sufficient to determinethe gauge

fields up to a gaugetransformation,providedthe constraints

NJ
Fig. 1. Comb-like setof links setto tin themaximal gauge.
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fl U~=1 (1.5)
pE Sc

arefulfilled by the productof the six plaquettesboundingeverythree-dimensionalcubec. The Un’s can
be takenas new variables(with, in the measure,a 5-function imposing(1.5)). However, this result is
difficult to extendto non-Abelianlattice theories[15].The two-dimensionalcase,whereno constraint
(1.5) hasto be imposed,is noteworthy: taking plaquettevariablesmakestwo-dimensionallattice gauge
theoriessolvable.This will be recalledin section2.2.

1.4. Pure gaugelattice actions

We want to constructapuregaugeaction (without matter fields) for the descriptionof the dynamics
of the fields U0. If S[U] denotesthis action, functional of the gauge field configurations, we are
interestedin the partition function

z=fDUe~’1 (1.6)

andin expectationvaluesof variousoperators

= Z
5 JDU ~[U] ~ (1.7)

In this expression,/3 is the inverse temperatureof the Boltzmann weight e~.Its relation with
Yang—Mills coupling constantin the continuoustheory will be examinedin subsection2.1. In the
construction of an invariant, one is naturally led to consider the product along a closed curve
C= i

1i2.. .i~i1

LT~= U,,,,U,21,. .

which transformsunderthe transformation(1.1) as

U~3g,,Ucg~
1,

and to suppressthe remaining dependenceon g,
1 by taking the trace. The simplest contour is the

plaquette(since the single back andforth step is ruled out due to the constraint(1.2)). This choiceis
known as the Wilson action

S=~~ReTr(U~). (1.8)

Due to the trace and the real part, the result is independentof the starting point and of the
orientationchosento definethe quantity U~.Note also thatthe real part is automaticallytakenif one
sumsoverall orientedplaquettes,
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S= or~q.~TrW~~L

This action hasbeen generalizedin order to improve somefeaturesof the model in threemain
directions.

i) Changingthe trace to a more general real function on the group. Group theory statesthat all
functionsinvariant underthe transformation(1.1) (function of groupclasses)arelinear combinationsof
the groupcharacters,

S= Yr Re~r(Up)Idr (1.9)

dr is thedimensionof the representationr. The choiceis very large;however,two casesareof particular
interest.

a) The “fundamental—adjoint”mixed action usesonly the fundamentaland the adjoint represen-
tation,

/3S= ~ {~tReXf(UP)+~Xa(UP)}. (1.10)

Its greatinterestis to allow us to study easily the role of the centreZ of the group in non-Abelian
continuoustheories.This centreis thoughtto be importantin confinementproperties.Indeedthe adjoint
representationdoesnot distinguishbetweengroupelementswhich differ by a multiplicationby a central
element(commutingwith all other group elements),while the fundamentalrepresentation(which is
faithful)does.Thetwo-dimensionalphasediagramin thecouplings/3~= /3yrandf3a= L37a is thusof interest.
Note the interestingboundariesof this phasediagram,which are

/3a = 0 Wilson action for G (e.g.SU(2))
f3~= 0 Wilson actionfor G/Z (e.g. SU(2)/Z

2 SO(3))
/3a = ~ Wilson actionfor Z (indeed,the configurationsarereducedto the only U~maximizingXa,

i.e. belongingto Z) (e.g. Z2)
= x Trivial theory (since all U~are ii, only puregaugeconfigurationssurvive).

b) “geometric”actionsusingthe naturalmetric inducedon Lie groups.They arewell-adaptedto the
vicinity of the continuumlimit where the fluctuationsarounda pure gaugeconfigurationsee only the
local geometryof the Lie algebra.They may also be useful for somepeculiarlimits (such as SU(N),
N—~ co) wherethe useof the Wilson action leadsto singularitiesandgeneratesunwantedtransitions[16]
(seebelow section2.5). Manton’saction [17]usesthis metric directly by writing an actionproportional
to the squaredlength separatingU,,, from unity. For instance,usingthe U(1) or SU(2)gaugegroup,the
class functions dependonly on the angle 0 of the rotation U~,and the metric is (dO)

2 therefore,
Manton’s action is

S=~O~. (1.11)

However, the periodicity in the anglevariables for the compactgroupsmakesthis action multi-
valued and singular for conjugatepoints on the group manifold. This defect is cured for U(1) by
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Villain’s action [18]which restoresthe periodicity

e~5= fl ~ exp{— ~$(O~— 2irn~)2}. (1.12)

This actionis generalizedto any gaugegroupusingthe heatkernel.Indeed,in (1.11), the exponentiated
action is Gaussianand can be consideredas the response,after a time t —~- 11/3, to a suddenlocal
heatingof an infinite linear rod. However,thisrod hasthe wrongtopology of the non-compactgroupR;
it must be replacedby the correctmanifold (ring for U(1), S

3 for SU(2), . - .). One hasto solve the heat
equation

Llf(g, t) = of(g, t)/&, g E G, t = N/f3, f= e’~ (1.13)

where~i is the Laplace—Beltramioperator,with the initial conditionsf(g, t = 0) = 5(g= 1); the solution
gives the heat kernelaction[19—25]

= fl ~ d~’~(U,,,)exp{— C~IN/3} (1.14)

where~ is the quadraticCasimirinvariant for the representationr. For U(1), this is nothingbut the
precedingVillain’s action;the SU(2)heatkernelactionreads

exp(J35)= fl ~ (2j + 1) sin(2J+1)O,,,12exp{—j(j+ 1)12/3}, (1.15)
p j=O,1/2,.. P’

while only integervalues of j areusedfor the S0(3)group.
ii) Extendedplaquetteactionsuseloopslargerthan the minimalplaquette.The idea is to reducethe

lattice artefactsby adding longer range interactions. Hopefully, the rotational invarianceeffect is
restoredearlier,andthe asymptoticfreedomregimeextendsto lower /3. This may beincorporatedin a
Monte-Carloapproach[26,27]. Symanzik [28] suggestsconstructingthe lattice action in a systematic
way so that the perturbativecut-off dependenceis reduced;in the continuumlimit behaviour,the first
stepconsistsin suppressingthe ~(a

2)dependencein the effectivecontinuousLagrangian[29].In lattice
gauge theories, theseapproachesadd six link loops, such as the “window”, the “chair” and the
non-planarhexagon(seefig. 2).

iii) Use of other lattices.Their rotation invariancegroup may be a larger subgroupof the S0(d)
continuousrotationgroup,andagain latticeartefactsmaybereduced.Fewattemptshavebeenmadeso

‘‘‘~~
Fig. 2. Loopsused in latticegaugeactions,a) theplaquette.b) six link extendedloops.
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far [30,31]. Anotherproposalis to userandomlattices [32]. In such systems,the randomnessof the
lattice sitesshouldrestorea meanrotation invariance.

1.5. Orderparameter

The variousphasesof lattice systemsareeasilycharacterizedif thereexistsan observable(orderor
disorder parameter)with a different behaviour in each of them. For instance, the spontaneous
magnetization(o~)in the Ising model is such a parameter;it vanishesidentically above the Curie
temperature,but takes a finite value under this temperature.This order parameteris local; other
observables,such as mass gaps (relatedto the asymptoticbehaviourof the correlation function) are
non-local,and may sometimesbe used to distinguishthe phases.

In latticegaugetheories,thereis no local orderparameter.Wegner[33]constructedgaugeinvariant
actionsas an exampleof systemswithout any local orderparameter.In particular,the analogueof the
spontaneousmagnetization,viz. (U,), is not an orderparameter.It may be proven(Elitzur’s theorem
[34], see subsection 2.4) that the average value of any non-gauge invariant quantity vanishes
identically, irrespectiveof the coupling. The Wilson loop [33,1] is a non-local orderparameterwhich
discriminates(in pure gauge systems)betweenthe different phasesand which has a nice physical
interpretationin termsof confinementproperties.

Let usconsiderthe asymptoticbehaviourof a largeloop C

W,(C)= (Xr(h’c)) (1.16)

Its physicalinterpretationis that it measuresthe variation of the energywhen an externalstatic field is
introducedalongC; stateddifferently, at somepoint of C, a quark and an antiquarkarecreated;both
propagatealong C in opposite directionsuntil they meet and annihilate. Taking for conveniencea
rectangularloop RX T, we expecta behaviour

W(C)—e
T”~ (1.17)

for large T, where V(R) is the potentialenergybetweentwo staticchangesat the distanceR, including
their self-energy(this formula replaces the periodical quantumbehaviour after the Wick rotation
leadingto the Euclideanmetric).

It will be rigorously proven later [35] that this parameterbehavesas theexponentialof the minimal
loop areain the strong couplingregion,

W(C)—e”4. (1.18)

This leads to a linearly growing potential V(R)—KR which preventsthe test chargesfrom being
separatedand implies confinement.

Conversely,we expect, in the low coupling region, a perimeter law. The following argumentis,
however,perturbative.A rigorous proof exists only for 4-d. U(1) [36] and discreteAbelian gauge
groups,while it should fail for SU(2)and othernon-Abeliangroupsin d � 4 dimensions.Heuristically,
to lowest order in g2 for QED,

W(C)= expig A dx) = exp{_~g2~ ~(x — y)dxdy}. (1.19)
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The propagator~i favourssmall separationsbetweenx andy andleadsto a perimeterbehaviour

W(C)—~ e~” (1.20)

for largeloops. In this U(1) case,V(R) is constantfor largeseparationsR, leadingto chargescreening
ratherthanto confinement.

The conclusionis that the string tension,definedas

K = lim {— ln W(C)/A} (1.21)
C large

is possibly a good criterion for discriminating betweenconfined (K� 0) and non-confined(K 0)
phases.However,we alreadynotesomeimportant limitations in its use:

a) no matter fields (called quarks in this discussion)are allowed. Otherwise,dynamical quark—
antiquarkpairs arecreatedwhenseparatingthe staticcharges,andscreenthem: the Wilson parameter
behavesas the exponentialof the perimeter;

b) the centreof the gaugegroupmust be non-trivial. Otherwise,it is alwayspossibleto screenthe
static chargesby gluons (gaugefields) in order to form a gaugeinvariant object. The corresponding
strongcouplingdiagramswill be displayedin section3. The Wilson loop has, for instance,a perimeter
fall-off with an SO(3)four-dimensionalgaugegroup for all couplings, althougha transition is actually
observed.

In spite of its defects,the Wilson criterion is presently the most popularorder parameter.Using
duality arguments,it is possibleto constructthe dualdisorderparameterfor Abeliangaugegroups.The
correspondingquantity generalizesto all groupswith anon-trivialcentreandis calledthe ‘t Hooft loop
[37].We deferits descriptionto subsection2.3.5, after the reviewon duality properties.

1.6. Summaty ofsomeavailablenumerical results

We do not enterinto the techniqueof Monte-Carlosimulations,nor into a completesurvey of the
existingdata. We refer to anotherreview [9] which is devotedto this aspect,and simply summarizein
this subsectionthe main resultsobtainedfor puregaugetheories.The questionsof interestare:

— Whatis the phasestructureof the theory andwhat arethe characteristicsof eachphase?
—What is the nature of the transitions?Indeed,we want to find a secondorder critical domain

representedby the continuousYang—Mills theory.
— Whatarethe quantitativevalues of physicalobservablesas we approachthesecritical domains?
In order to summarizethe resultson the transitionsin a schematicway, we considerthreetypical

gaugegroups:
a) Z2, prototype of discreteAbelian groups,and the simplestpossiblegroup. Although the naive

continuouslimit doesnot exist for discretegroups,theyplay an importantrole in the interpretationsin
termsof topologicalexcitations,as theyarecentresof non-Abeliancontinuoussimplegroups(SU(2)for
Z2).

b) U(1), compactAbelian group.It correspondsto quantumelectrodynamics.
c) SU(2), prototypeof continuousnon-Abeliancompact simple groups, i.e. the groupsfor which

lattice theorieshavebeendeveloped.
Table 1 summarizesthe transitionpattern for thesethree categoriesin various dimensions.The

simple caseof Z2 doesnot call for anyparticular comment,but for the orderof the transition.U(1) is
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Table 1
Summary of transitionpatternsfor typical groups

d Z
2 U(l) SU(2)

2 confinementfor all couplings,no transition
3 identicalto Ising model

secondordertransition
near0.76

4 (transitionat 0.44) transitionof order2 or higher confinementeverywhere,but
separatingconfinedphasefrom no evidenceof atransition,
Coulombphaseat 0.99 cross-overnear2.2

5
and first ordertransition separatingconfinedand unconfinedphases
more

more interesting.The low temperaturephase(Coulomb phase)appearsfirst in four dimensionsand
containsa masslessphoton.Therearein particularinfinite rangecorrelationsin all the weakcoupling
domain and not only at the transition [36]. This is consistentwith the fact that the system represents
free QED, a coherentfield theory without confinementnor asymptoticfreedom.

A commenton discretesubgroupsof a given gaugegroupmustbe addedhere.It seemsthat Z. with
Wilson’s action interpolatesfrom Z2 to U(1) as n increases.Indeed, for n > 4, one observesthe
appearanceof a U(1)-like phasefor intermediatecouplings.This third phasedevelopsbetweenthe
strong coupling confined phaseand the weak coupling unconfinedregion; the latter shrinksuntil it
vanishescompletelyat infinite n. Similar effectsareobservedwhen non-Abeliangroups(suchas SU(2))
are simulatedby their discrete subgroups;above some critical coupling, the discrete character is
smearedby the fluctuationsandthe systembehavesas the continuousone.

Let us turn finally to non-Abeliancontinuousgroups.In four dimensions,dueto asymptoticfreedom,
it is expectedthat such systemsareconfinedfor all couplingsandthat the continuouslimit is reachedat
the zerocoupling limit. This doesnot exclude,however,the possibilityof a transition.With the Wilson
SU(2) or SU(3) action, there is someevidencefor the absenceof such a transition; however,a sharp
changein the propertiesis observednear/3 = 2.2 for SU(2)and/3 = 5.6for SU(3). This is seen

—in the string tension(fig. 3 [38]).In the strong coupling region,strong coupling expansionsfit the
numericalsimulation very well and suddenlybreakat a cross-overpoint. In the weak coupling phase,
the predictionsof asymptotic freedom (see subsection2.1) are well reproducedeven far from the
continuouslimit /3 = cc• A similar behaviourof the massgap— glueball mass— is alsoobserved;

—in the specific heat, where a bump shows up (see fig. 4 [39]), but without any evidenceof a
discontinuity,nor divergence,henceexcludinga transition;

— in the rotationalinvariance,restoredfor someobservablesin thewholeweakcouplingphase.Fig. 5
[40] displays equipotentiallines betweenstatic sourcesand illustratesthis phenomenonthat will be
discussedin subsection3.4.3.

Notice that the four-dimensionalphasestructuredependscrucially on the topological propertiesof
the groupandon the chosenaction.We display, as an example,the fundamental—adjointmixed action
phasediagram for SU(2) (see fig. 6 [41]). Lines are first order transitions. We remark here that
centrelessgroups(such as SO(3) [42])presenta first order transition, in contrastwith their universal
covering group (suchas SU(2)). The interpretationis done using topological excitationsdescribedin
terms of the discretecentre(hereZ2). Note that the simplicity of the group also plays a role. U(N),
which mixes U(1) andSU(N), presentsa first ordertransitionin four dimensions,whereasU(1) doesnot



J.-M. Drouffeand i-B. Zuber, Strongcoupling and meanfield methodsin lattice gaugetheories 13

10 I I

10~ 2,0 I
16

K : 1.2

01- • a- //

0.8- /
f 01 Ii

I I ~ 04 /
I
3R /

0.01 —....—..——— I I I ..___v__ I I
0 10 2.0 3.0 0 1 2 3 4 5

13
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Fig. 6. Thefundamental—adjointmixed 5U(2) phasediagram.

and SU(N) doesonly for N � 4. In higher dimensions,a first order transition is observedfor all the
groups.

2. Review of someexact results

2.1. Relation with Yang—Millsperturbativetheory

The relation with the continuoustheory is obtainedby looking at the continuumlimit of the action
andby parametrizingthe latticegaugefields accordingto the picture of (1.3). Onewrites

U,,,,,. = exp(igoaAM(j)) U~. (2.1)

Of course,slightly differentparametrizationsleadto the sameresult. U°is the field configurationnear
which the lattice gauge field is to be expanded.We take it, for the moment, as a pure gauge
configuration (U°= 1). It is practical to expand the action in two steps. First, using the Baker—
Campbell—Hausdorffformula, the plaquettetermis written as an exponential

= exp(i go a2 F,,~.+ o(a2)), (2.2)

with

F,~’—8,,~A~—9,,A,,.+igo[A,,L,AV].

Then the exponentialis expandedand the result is identified with the Yang—Mills action. Additional
terms are irrelevant in four dimensions; their dimension is greater than the canonical one. For
the generalizedplaquetteaction (1.9), the resultis

g~2= a~$~ yrC~I(N2— 1), (2.3)



f.-M. Drouffeand J.-B. Zuber, Strongcoupling and meanfield methodsin lattice gaugetheories 15

where C~is the value of the quadratic Casimir operator in the representationr. For SU(N),
C~= (N2 — 1)12N, C~= N In particular,for the four-dimensionalSU(N) Wilson action, onegets

/3 = 2Ng~2. (2.4)

In the full theory, the continuumlimit is reachedin a dynamicalway in the approachof a critical
point g

0 —~g0~.Indeedat sucha point, the lengthsof physicalinterest(correlationlength ~,. - .) become
very largeas comparedto the latticespacing.Alternatively,onemay considerthat thesephysicalscales
arefixed, andthe lattice spacinghasto go to zero as ~ This is nothingbut a realizationof the
renormalizationprogram: the barecouplinghasto be adjustedin the ultraviolet limit a —~0 in such a
way that physical quantitiesremain fixed. This processis governedby the renormalizationgroup
equation

a d~Ida= (a 8/aa— /3(g0)a/ag0)~ = 0, (2.5)

where

/3(go)= —a ôgoI8aI~- (2.6)

This is solved as

= a exp{ J /3(x)~dx}, (2.7)

which determineshowa vanishesas go approachesg0,, zeroof the/3-functionwith a negativeslope.For
non-Abelianfour-dimensionalgaugetheories,thereis such an attractiveultraviolet fixed point at the
origin g0 = 0, andit is believedto be the only one. More precisely,

/3(x)= —(fl0x
3+ f3

1x
5 + ~(x7)) (/3~> 0). (2.8)

The values /3~and f3~are independentof the renormalizationscheme.For an SU(N) theory with n~
fermionsin the representationr, onegets[43]

/3~ (4~)2[~N—~y],

f3~= (4i~)~4[~N2— ~Ny — 4C~y], (2.9)

with

Y = fltdr~r~I(N2— 1) -

One defines the renormalization group invariant mass scale

AL a~~

0g~)8hi~2~ exp(—1/2/3og~) (2.10)
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which is kept fixed as a—*0, g~—~0.From(2.7), the quantity ~AL hasa finite non-zerolimit. The actual
value of AL is arbitrary;it just fixes the massscaleof the continuoustheory.

As an example,let usconsiderthe arealaw of the Wilson loop (1.18)

W(C)—e_~~A= e”~ (2.11)

where A is the number of plaquettesof the minimal surface,and ,s&’ = Aa2 its area. The physical
quantity o- is interpretedin the relativistic string model and is related to the Regge slope a’ by
a. = 1/(2ira’) (experimentally,a’ = 0.900eV2andhenceV

0- = 420MeV). Thereforethemeasuredlattice
quantity K behavesas

K— a.AL2(/3og~)_l31~exp(_1//3og~). (2.12)

Supplementedby (2.3), this formulapermitsa direct fit of crfl j
2 from Monte-Carlodata (seefig. 3).

On the other hand, we want to relate lattice predictionsto phenomenologicalresults obtained
through perturbative calculations. As these calculations have already been done using different
renormalization schemes(certainly better adaptedto this kind of computation than the lattice
regularization),it is necessaryto connect AL to the correspondingA parametersdefined in the
continuumtheory.

Thefirst calculationsweredone by evaluatingtwo- and three-pointfunctionsat the one-looplevel
[44]. This calculation is in principle straightforward,but technically involved. Dashenand Gross[45]
generalizedthe backgroundfield method to lattice theories; by this trick, the calculationssimplify
greatly sinceonly the two-point responseto the backgroundfield at the one-loop level is required.We
outline the method,give the main resultsand refer to the literature [46—49]for detailedcalculations.

The basicidea is to shift the field A,. —* A,. + A°,,.by aclassicalbackgroundfield A~.The logarithmof
the resulting partition function is a regularizedeffective action for the backgroundfield. Using two
different renormalizationschemes,the difference betweenthe resulting effective actions is, due to
renormalizability,a local gaugeinvariant quantity. In the infinite cut-off limit, it should havethe form

AS / O\_1. ,.~ 0 \21 —2 —2 1

~ eff~,As~)— 4 j uA (F,.r~
1~g(l) — g(2) + C] (2.13)

The condition L1S~~= 0 gives the relation between the coupling constantsg(l) and g(2) of the two
different renormalizationschemes.Hence

A(t)/A(2)= exp{c/2f30}. (2.14)

It is convenientto use the non-linearparametrization(2.1) instead of the precedinglinear shift;
however,it can be easilycheckedthat the coefficientsof the extraterms vanishif the backgroundfield
U°satisfiesthe classicalequationsof motion.The perturbativelatticecalculationthenproceedsthrough
the usualsteps:gaugefixing, correspondingFaddeev—Popovghosts,Feynmanrules,computationof all
one-loopdiagramswith two externalbackgroundfield lines involved in (2.13).

We now display the result for the generalizedpure gaugeaction (1.9), comparedto the minimal
subtractionusing dimensionalregularization
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Table 2
Ratios of AM5/AL parameters for SU(2) and SU(3) Wilson actions with

fermions

n
1= 0 1 2 3 4

SU(2) 7.46 9.27 12.09 16.85 25.01
SU(3) 10.85 12.78 15.41 19.09 24.49

ln(AMs/AL) = 0.888+ [(~C~7r)/ (~C~yr)— N/6]/8/30. (2.15)

For the Wilson actionwith fermions,the result is

ln(AMS/AL)= (in 41T — ‘y)/2 + [1/16N— 0.0849780N+ O.O06887y]//3o, (2.16)

leadingto the numericaltable2. Theseresultscan be easilyconvertedinto otherschemes(e.g.MOM
usingref. [50] results).

2.2. Triviality of two-dimensionaltheories

In the maximal gauge introduced in 1.3, the two-dimensionalpartition function factorizesas a
productof X identicalintegrals

Z= JflDUiexp(~/3~(Up))

= J fl DU,, exp(~13x(U~))= (JDU exp(J3~(U))) (2.17)

while the expectationvalueof the Wilson loop reads(fig. 7) (seesection3 andappendixA for notations
on charactersx)

~-

i(~i (~2

Fig. 7. Integration plaquettevariablesusedin thecomputationof theWilson loop in a two-dimensionalsystem.
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(XrWC)) = Z1 J DU,, - Xr(Ui, -- -) e~

ZtJflDUpxr(Up,Up~Up
1...U~)e~

= drf3~= d. exp(A ln 13r). (2.18)

This also resultsfrom the rules of strongcoupling expansions,as only the leading term survivesin
two dimensions(see section 3). Notice finally that this triviality of two-dimensionaltheoriesis not
guaranteedfor generalizedactions.For example,the Z2 “window” actionwhich usesthe planarsix-link
loop of fig. 2b reducesto the two-dimensionalIsing model, hencegives rise to a phasetransition [51].

2.3. Duality

The duality transformationwas first establishedfor the two-dimensionalIsing model. It hasbeen
extendedto more complicatedsystems[33]; in particular, it is applicable to lattice Abelian gauge
theories[6,20, 52].

Physically,duality is interestingin two respects.First, it connectsthe original model at high (resp.
low) temperatureto a dualmodel at low (resp.high) temperature.Secondly,the degreesof freedomof
this dualmodel may be seenas the defects,or disordervariables[53] of the original model. In lattice
gaugetheories,duality is thereforeuseful to exposethe role of topological excitations,such as vortices
or monopoles,in confinementor phasetransitions[54].

2.3.1. Equivalenceof three-dimensionalIsing and Z2-gaugemodels
We first illustrate on a simple instancethe generalformalism of duality transformation,which may

seemratherabstractto the unfamiliar reader.
Startingfrom the three-dimensionalZ2 gaugemodel, we write the partition function as

Zgauge= 23X ~ exp[/3 ~
{~r,} p

= ~ fl cosh /3(1 + ~-a.~-a-tanh/3).
{crl} p

The summationover a given a-, gives either 0 or 1 accordingto the parity of the power of a-, in each
term of the expandedproduct. Hence eachcontributing term of this expansioncan be geometrically
associatedwith closed surfaces(may be intersecting)madewith those plaquettescarrying a tanh/3
factor. Hence

Zgauge= (cosh/3)3X ~ (tanhf3)n
closed

surfaces

where n is the numberof plaquettesof the surfaces.A closed surfaceis also characterizedby the
different volumesit separates(inner andouter). At the centreof eachcube,we introducea variablep~
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set to 1 if this cubebelongsto the outer volume, —1 otherwise.Eachconfiguration of p~,(defined,
however,up to a globalsign) is in one-to-onecorrespondencewith eachclosedsurface.This fact is used
to rewrite the expressionof the partition function. As a piaquettebelongsto the surfaceonly if the two
adjacentjs’s areopposite,we have

n=
(i,j)

wherethe summationrunsover all pairsof neighbours.Hence

Zgauge = ~(cosh/3)SX(tanh
13)3x/2~ exp[— ~in tanh/3 ~

{i,.}

which is, up to a multiplicative factor, the partition function of an Ising model for the j.~‘s,

Fgauge(13)= Frsing(/3*) + ~in sinh2/3 — ~ln 2 (2.19)

with

/3* = —~lntanhf3

or, moresymmetrically,

sinh2/3 sinh2/3* = 1. (2.20)

The inverse derivation could proceedas follows. The high temperatureIsing diagramsare closed
curves,whichlimit some(open)surfaces.Eachconstitutiveplaquetteof thesesurfacesis associatedwith
the bond joining the centresof the two cubessharingthis plaquette.This bondcarriesa gaugefield set
to —1. We leavethe detailedcalculations(leadingof courseto the sameresult) to the readerandturn
now to the generalformulation.

2.3.2. Generalformulation
We considerfields definedon a d-dimensionala-complexwith a k-dimensionalinteraction.We recall

first that an abstracta-complexis [55] a setof elementscalledcells.A lattice is an a-complex;its cells
aresites, links, plaquettes,cubes In general,an a-complexsatisfiesthe following axioms

(i) to eachcell is assigneda non-negativeinteger,called its dimension.The upperboundof the cell
dimensionsis the dimensionof the complex(hered).

(ii) each cell ck of dimensionk (k-cell) is in correspondencewith anothercell —ck of the same
dimension(cell with oppositeorientation).

(iii) to two cells with dimensiondiffering by 1 is associateda signedinteger, the incidencenumber
(C,. : ck_1) (non-zeroif “Ck_1 is a face of Ck”). One has (—C,. :ck..i)— (C,. —Ckl) = —(C,, : ck_1).

(iv) ~, (Ck+1 : Ck)(Ck : ck_1)= 0 (this condition is the basisof homologyandcohomologytheorems).
A k-chain over the coefficient domain 0 (Abelian group) is an odd function of the k-cells on G:

c~—*~ with 4, C 0. This inducesa groupstructureon the k-chains.Any k-chainmaythenbe written
asa sum of monomialchains~, 4,c~.The monomialchain (abusively)denoted~c~>mapsthe cell c~
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on ~, andall othercells on the identity elementof G. In the latticeexample,2-chainsover Z2 = {1, —1}
are surfacesmadeof thoseplaquetteswhere4, = —1.

Finally, the boundary~ and coboundaryV operatorsmap k-chains into (k — 1)- and (k + 1)-chains
as follows

~ 4~c~= ~, ~

Let us introducea model in this context. The fields 4 are definedon (k — 1)-cells and take their
values in the Abelian group 0. A field configurationis then, in this language,a (k — 1)-chainover0.
Let the action be of the form

f3Sr~~ x(fl ~)+ ~ f(4), (2.21)
k-cells c 4,E~c (k—1).cells

wherex andf are any class functionson the group0. For commodityof notations,~c denotesthe set
of cells pertainingto the boundaryof the monomialchainsassociatedwith c. k = 1 correspondsto spin
models,k = 2 to gaugemodels,andf to an appliedexternalfield. Expandingthe exponentiatedaction
on characters,the partition function reads

Z= IIG~I~~ { fl ~$(r)x~( 11 ~)}{ii ~ y(r)~~(~)}. (2.22)
(k—1)-chains k-cellsc r 4~�i~c (k—1)-celts r

The groupvolume I~GIIcomesfrom the normalizationof the groupmeasureIIGIL
1 ~EG1 = 1. n,. is the

total number of k-cells in the a-complex.The productsare expanded(following the strong coupling
expansiontechniques,describedin moredetail in section3). Eachterm coming from the first productis
obtainedby assigninga representationr to eachk-cell, andthereforecorrespondsto a k-chain g over
the coefficient domain 0* (the set of irreducible representationsof G). Since0 is Abelian, 0* is an
Abeliangroupfor the outerproductof representations.This crucialgroupstructureunfortunatelydoes
not extendto non-Abeliangroups.Similarly, the secondproduct is expandedin termsof (k — 1)-chains
h over 0*. For each term, the summation over the configurations, i.e. the (k — 1)-chains {~}, is
performedusingorthogonalityrelationsof charactersand providesa selectionrule: the contributionis

IGlI~if h = ~g, 0 otherwise.Hencethe partition function reads

Z = ~ exp~~ ln /3(r) + ~ ln y(s)}. (2.23)
k-chainsg rEg sE~g

Using the definition of the boundaryoperator,s is the product of representationsr of the k-cells
incident to a (Ic — 1)-cell; thus the last term is rewritten as a summationover all (k — 1)-cells c of
in Y(11rEVc r). The action takesnow aform quite similar to the original one,exceptfor the replacement
of the boundaryoperator~ by the coboundaryoperatorV. Thisdifferenceis removedby going to the
duala-complex.

The dual a-complexis defined as follows. To any cell Ck, associatea (d — k)-cell cr.,,. All incidence
numbersremainunchanged;in particular,nk = n~_,..On the hypercubicallattice, for nearestneighbour
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interactions,this transformationhasanice geometricalvisualization.Mark a pointat the centreof every
hypercube(d-cell); thesepointswill be the nodesof the dual lattice. Two neighbouringd-cells,sharing
one (d — 1)-face,are neighbouringsites on the dual lattice, joined by a link, dualof the commonface;
andso on. . . . For instance,the dualof the hypercubicallattice is againa hypercubicallatticeshifted
by thevector(a/2,a/2 ). In this transformation,boundaryandcoboundaryoperatorsexchangetheir
roles.Hencethe actionbecomes

/3*Sdual= nt,, lnhIG*~I+ ~ ln ~(fl r) + ~ ln /3(r). (2.24)
(d—k+1)-celtsc rE~c (d—k)-cells

Thishasexactlythesamestructureas the initial action.Theonly changesare the dimensionof the cells,
theunderlyinggroupandthe classfunctions.Note alsothe interchangeof the rolesof externalfield and
coupling,andthe interchangebetweenstrong andweakcouplingregions(sincex= 0 (or f = 0) lead to
all /3(r) (y(r)) vanishing (but r = 0), i.e. infinite dual couplingsln /3(r) (ln y(r))). We summarizethe
conclusionsin table3.

Let usexaminein moredetail theparticular casef = 0 of no externalfield. Note first that &~sandVV
mapany chain on zero.The inverseis not true; onedefinesthe kth homology (cohomology)groupas
the quotientof the image~ (V) of (k + 1)-chains((k — 1)-chains)by the kernel in the set of k-chainsof
~ (V). Fromnow oi~,we supposethat all k~ 0 homologygroupsof oura-complexaretrivial. Thismeans
that any k-chain with null boundary(closed k-chain) is the boundaryof a (k + 1)-chain.For instance,
k = 1: eachclosedcurvecanbe consideredas the boundaryof a surface.This is not generallytrue, as is
shown by the exampleof a circle on a torus.However, the hypothesisis satisfiedfor complexeswhich
arelatticesin theEuclideanspace,as long as onedoesnot imposecyclic boundaryconditions.

In the precedingreasoningon the partitionfunction, we arenowrestrictedto only closedk-chainsg
over 0*. This constraintis removedby rewriting them in termsof (k + 1)-chains.As the correspondence
between a closed k-chain g and a (k + 1)-chain which has g as boundary is not one-to-one(each
coefficient of the (k + 1)-chain can be multiplied by the correspondingcoefficient of a given closed
(k + 1)-chain without changing its boundary), this induces a constantmultiplicative factor on the
partitionfunction. After going into the duala-complex,we get in this particularcase

f3*5 nk~1lnhIGII—lnxk+1+ ~ lnf3( fl r), (2.25)
(d—k)-cellsc rE~C

Table 3
Summaryof the generalduality transformation

support a-complex dual a-complex________ group G G~(repres.of G)
with field ~EG rEG*
external locatedon (k — 1)-cell locatedon (d — k)-cell
source

interaction xW)= exp(~/3(r)xr(~)) In y(r)

source f(4,) = exp(~y(r)x~(~~)) In /3(r)

without field ~ E G r EG*
external locatedon (k — 1)-cell locatedon (d — k — 1)-cell
source

interaction xW)= exp(~$(r)x~(~)) In/3(r)
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whereXk+1 is the numberof closed (k + 1)-chains.These numbersx,, are easily estimated;a closed
k-chainis the boundaryof a (k + 1)-chaindefinedup to a closed (k + 1)-chain, andtherefore

Xk = IIGIIm~+h/x,.±i, with Xd = uGh . (2.26)

The dualcouplingconstantsaresolutionsof the equations

/3(r) = 1101L1 ~ /3*(~)Xr(4’), (2.27)
4,

or

= I1G1I~’~ /3(r) X4,-’(r)

wherethe dual characters~
4,(r)are the elementsof the inversematrix (~r(~))~

1with respectto the
indices r and /. This resultsfrom orthogonality relationson characters;note that the dualof the dual
group0* is 0 itself.

As noted above, this nice duality operationfails for non-Abeliangroups0, becausethe set of
irreduciblerepresentationsG* is not endowedwith a groupstructure.

Some care must be taken with infinite groups. Starting from a compact group (as 0 = U(1)),

IlGII~’~ in (2.23)is replacedby anormalizedintegralon the group.The dualgroup(asZ) is discrete,
non-compactand infinite, and the normalization of the field measureis meaningless;hencethe first
term nd_k in (2.24) must be removed. Similarly, the meaninglessterm — ln Xk÷1 in (2.25) must be
replacedby a gaugefixing procedure.

2.3.3. Application
All our applicationsconcernhypercubicallattices in the thermodynamiclimit. We do not consider

othercaseshere.
With externalsources,duality gives resultsfor gaugemodels(k = 2) at d = 2 (two-dimensionalspin

modelswith an appliedexternalfield aredual to gaugemodelswith Higgsfield) and d = 3 (self-duality
relationsfor three-dimensionalgaugemodelswith Higgs field). They areused in section5.

A trivial applicationconcernsd = k in the absenceof an externalfield. The dual model is just an
externalconstantfield, which containsno dynamics.We recoverherethe triviality of one-dimensional
Ising and two-dimensionalgaugemodels.

As a third application,we recovereasilythe formulaedisplayedin the exampleof three-dimensional
Z

2-gaugeand Ising models, with d = 3, n1 = n2 = 3, 11011 = 2 and k= either 1 or 2. In particular,the
transitionpointsof the two modelsshouldbe related.As the Ising modelhasa transitionat /3~= 0.2217,

the gaugemodel mustalso undergoa secondorder transitionat /3~’= — ~ln tanh/3t 0.7613.

The four-dimensionalZ2 gaugemodel (d = 4, k = 2) yields

F(f3) = F(— ~In tanh/3) + 3 ln sinh2/3. (2.28)

Strongandweakcouplingsare relatedby (2.28). Moreover,as the last term on the r.h.s. is regular,any
singularity for F at Pc will lead to the existenceof another singularity located at — ~ln tanh/3~.



J.-M. Drouffeand f-B. Zither, Strongcoupling and meanfield methodsin lattice gaugetheories 23

Therefore,if thereis only onetransition,it must lie at the self-dualpoint

/3~= — ~In tanh/3~= ~ ln(1+ V2). (2.29)

Indeed,a first order transitionis observedat this point.
Any Abelian compact gaugegroup is constructedfrom Zn and U(1). The Z~group is self-dual;

indeedthe irreduciblerepresentationsof Z~= {exp(2ilTk/n); k = 1,.. . , n} areexp(2iirkr/n), labelledby
r = 1,. . . , n and their set is obviously isomorphic to Z~.Hence, there is duality between three-
dimensionalZn gauge and spin models, and self-duality relations for four-dimensionalZ,, gauge
systems.The mostgeneralactionin this caseis convenientlyrewrittenas

exp(J3S)= fl ~ /3(r) exp(2iirr(fl ~)/n) (2.30)

anddependsonly on [n/2] real parameters(where[m] denotesthelargestintegercontainedin m), due
to the reality conditions/3(r) = f3(n — r) and to the fact that the /3’s aredefinedup to an overall factor
correspondingto an ineffectiveadditive term in the action. Dual couplingsarethus

/3*(r) = (1/n) ~ /3(1) cos(2~rlr/n). (2.31)

For instance,applicationto the four-dimensionalZ3 gaugemodel (dependingon onecoupling) yields

(e
3°’2—1)(e3~2—1)= ~ (2.32)

and the transition must therefore occur at /3~= ~ln(1 + V3). For larger n, duality inducesonly a
symmetryin the multidimensionalphasediagram,andwerefer to the literature[20,56—58] for detailed
results.

The U(1) gaugegroupis not self-dual.Its irreduciblerepresentationsarelabelledby a signedinteger
n: ~~(e’°)= e”°,and then U(1)* Z, the additivenon-compactgroupof integers.In four dimensions,
the Wilson action

/3S = /3 ~ cosOp (2.33)

is dual to an action for integergaugefields n,

/3*Sdual= ~lnI~~(J3),

with

n,,~= n,~+ n,±
4,~—n,~—n1±~.

A gaugefixing termis implicit in this model.If the Villain actionis used insteadof (2.33), the resulting
dualmodel is simply the Gaussianintegergaugemodel
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/3*Sdual= —~/3’n~,+Const.

Thereis an alternativeform of this dualaction which provesmoreusefulin thediscussionof the physics
of thephasetransition [59—62].By the Poissonformula, the summationoverthe integervariablesn14 is

tradedfor asummationoverintegervariablesJ~satisfyingthe conservationequationszl,.J,,,,.= 0 at each
site,

/3*Sdual= — ~ /3~n~+ i ~ 2i~n14J14

—~ ~ (2i~)
2/3J,,~~,(i,j)J

1~ (2.34)
ii’,.,,

wherethe inverseof the lattice Laplacian~ dependson the choice of gaugefor the n’s, but the
combinationLi’J doesnot, thanksto ~&,,.J4= 0. The variablesJ~4are the topological excitationsof
the system.Introducing an externalelectricsourcein the systemrevealsthat theybehaveas monopole
lines, forming closed loops becauseof their conservationlaw. Energy-entropyargumentsthen show
that, at small coupling, thereareonly a few small monopoleloops, whereas,at strong coupling, large
loops exist, form a “monopole condensate”,and createa linear confining potential betweenstatic
charges.That the vacuumof the confinedphasemight be regardedas a magneticsuperconductor,with
electric flux confined in tubes,was originally proposedby Mandelstam[63] and ‘t Hooft [64]. The
mechanismof monopole condensationin the U(1) model is reminiscent of the physics of the
two-dimensionalxy-model, and has beenconfirmed by Monte-Carlo simulations[65]. In four-dimen-
sional Zn gaugetheorieswith Villain action,thereis an exactself-duality,andfor n � 4, the occurrence
of two phasetransitions.One of them is the analogof the U(1) transitionbetweenthe Coulomband
confinedphases,but thereis a third phaseat weakcoupling,dualof the confinedphase,which may be
seenas a condensateof electriccharges.The secondphasetransitiontakesplacebetweenthe Coulomb
phaseandthis “Higgs phase”.

In contrast,in threedimensions,the dualof the U(1) gaugetheory is a Gaussianintegerspin model,
or alternatively,a model of monopolesliving on the sites of the lattice. One may show that they
disorderthe systemfor all couplings[59,60,66], andthat the systemis alwaysin its confined phase[67].

2.3.4. Dual observables
Up to now, the duality transformationhasbeenappliedonly to the partition function. It is not very

difficult to constructthe dual quantity of a given observable.We considerherethe plaquette~Xr(Up)~.

Diagramscontributingto thisobservablehavethetopology of surfaceswith a plaquetteboundaryp (see
section3 for details). Changein the diagramthe representations carried by the plaquettep to s r
(which is irreducible since0 is Abelian); it is clear that the modified diagram contributesto the
partitionfunction Z. Thus the observable(Xr(Up)) appearsas the ratio of a modified partition function
in which the couplingconstantsrelativeto the plaquettep havebeenchangedfrom /3(s) to /3(s® r), by
the original partition function. One applies the duality transformation on this modified partition
function. Somestraightforwardalgebraleadsto the dualquantity

= (f3(r® U~) P(U~)~dual. (2.35)
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With this method, it is easy to make a dictionary betweendual observables.For instance, in the
three-dimensionalZ2 theory,the Wilson loop is dual to the ratio of Ising partition functions

(W(C)) = Zising(/3* _/3* Ofl S*)/Zising(13*)= (exp(_2~ /3*a-~o~)) (2.36)

where, in the numerator,all Ising couplingscrossedby somearbitrary surfaceS* of boundaryC have
beenreversed.For a large loop, at strong gaugecoupling, the left hand side hasan areadecay law,
whereasthe right hand side is the exponentialof the differencesof free energiesof two Ising systems,
i.e. the interfacial free energycreatedby the changeof couplings

= e~-

In the limit of a large loop extendingto infinity, ~F may also be regardedas the excessfree energy
when oppositeinfinitesimal magneticfields applied on the boundaryaboveandbelow the surfacetend
to order the systemin two differentphases.This interpretationwill be usefulin thediscussionof section
3.4.3.

In the four-dimensionalmodel, the Wilson loop (order parameter)is similarly dual to a “disorder
parameter”,the ‘t Hooft loop (H(C*)), whichmeasuresthe responseof the systemto a changeof some
of its couplings.

2.3.5. ‘t Hooft loop
The ‘t Hooft loop operatormay actuallybe definedfor any gaugegroupG with a non-trivialcentre

Z. We discusshereonly the four-dimensionallatticerealizationsof thisidea.Given aclosed loop C* on
the dual lattice, oneconsidersan arbitrarysurface.~ of boundaryC* andthe set .~of plaquettesdual
to the plaquettesof £*. The effect of the loop operatoris to multiply in the gaugeactionall plaquettes
of ~ by a non-trivial elementz of the centreof G

(H~(C*))= z
1 [If DU, exp{/3 Re[ ~ x(U~)+ ~ x(zU~)]}. (2.37)

pE!

For G = SU(N), the centreis ZN, andthe ‘t Hooft loop maybe seen to createa ZN monopoleloop
along C*. In the ZN theory, it is dual to the electric loop operator,i.e. the Wilson loop; in the three
phasesdescribedabove,onehasthe threefollowing behaviours

confinedphase(small /3) (W) e_A (H) — e”
Coulombphase(intermediate/3) (W) -= e” (H)—e”
Higgs phase(large /3) (W)-= e” (H) e_A.

The area fall-off of the ‘t Hooft loop at small coupling(large /3) indicatesthe suppressionof large
monopoleloops,or alternatively,the existenceof a linear confining potentialbetweenmonopoles.For a
further discussionof this disorder operator, its commutation relations with Wilson loops and a
detailedstudyof its asymptoticbehaviour,wereferthe readerto theliterature[37,58,68—70]. When the
loop extendsto the boundaryof an entire two-planethrough a finite lattice, and periodic boundary
conditionsare then introduced,the computationof (H) amountsto introducing “twisted boundary
conditions” [71,58,72].
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2.4. Elitzur’s theorem

This important theorem [34] statesthat any non-invariantquantity has a vanishing mean value in
latticegaugetheories,irrespectiveof the coupling.

The proof of this assertionis simple;somecare, however,is requiredbecauseof the non-uniformity
of the doublelimit to be taken.Let us consider,in general,a groupof transformationsactingon fields

—* g~
5 with an invariant action S(çb)= S(~i).The quantity f(t/) is non-invariant,or, moreprecisely,

hasno componenttransformingaccordingto the trivial representation;in otherwords

J f(~)Dg=0. (2.38)

For instance,gaugefields, or matterfields, aresuch quantities.The meanvalueis computedin a finite
systemof size ~N’andwith externalsourcesJ

= (1/Z~4J exp{S(~)+ J. Ø}f(~) D~ (2.39)

the thermodynamiclimit X —~ andthe zeroexternalsourceJ—*0 must then be takenin this order

= lim lim ~ - (2.40)
J-.0 X-s

In the integralon the right handsideof eq. (2.39),we performthe change~ —* g~ taking into account
the invarianceof the measureand of the action. As the result is independenton g, we also integrate
over g (f Dg = 1), andhence

~f(cb))x,j= (1/Z~,~)JJexp{S(~)+ J - ~q~}f(eç~)DqS Dg. (2.41)

The setof fields {çb} is nowsplit into a subset{4.”} unchangedby the transformation(4” = ~“) andthe
complementarysubset{q5’}.

The crucialpoint is that, for sufficiently small sourcesIIJII < ~

lexp{J’. qY}— 1~~ ~(r) (2.42)

with ~(r) vanishingas e goes to zero, andbeingindependentof both q~’andX. The uniformity in /~~‘is
trivially satisfied sincewe dealwith compactgroups.The uniformity of X is satisfiedif only a finite,
A’~-independentnumberof degreesof freedom4’ areconcernedby thetransformation.This is not thecase
in spin systems,sincethe globaltransformationrotatesall fields, andthusJ j, is an extensivequantity
proportionalto X; indeedthe theoremis falsein this caseandspinscan takeanon-zeromeanvalue,as is
wellknown.Conversely,gaugesystemssatisfythiscondition,becausenon-invarianceof f meansthatthere
existsalocal gaugetransformationg actingon afinite numberof degreesof freedominvolvedin f suchthat
(2.38)holds.

Theintegral is split into two parts,writing exp{J’ . ~~‘}= 1 + [exp{J . ~~‘} — 1]. The first part vanishes
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in the integrationover g, accordingto (2.38).The secondoneis boundedin absolutevalue,using(2.42)
andthe maximum ftfhI over ~ of If(~)I.Hence

~i(e)ILf1I.

Now no problemis encounteredwhen taking the limits in the right order, thanksto the uniformity
conditionson

(2.43)

This resultapplies for puregaugesystems(e.g., (U,) 0) as well as gauge+ mattersystems.

2.5. Large N lim it

The largeN limit of U(N) or SU(N) gaugetheorieshasreceivedmuch attentionsinceit hasbeen
realizedthat it leadsto areasonablephenomenologicaldescriptionof hadronicphysics[73].‘t Hooft has
shownthat in continuousfield theory,only planarFeynmandiagramssurvive in the limit. It is legitimate
to look at the samelimit for latticegaugetheories.In order for the theory to makesense,the coupling
hasto be rescaled.In the lattice action (/3/2N) tr(U + Ut), one sets/3/2N = N/3, /3 finite. This agrees
with the known rescalingof the continuoustheory,~ = Ng~(cf. eq. (2.4)), and,in the strong coupling
phase,will be shownto leadto a sensiblelimit. The free energyper site is expectedto be proportional
to N2, the numberof degreesof freedomof a N x N unitary matrix.

In a series of works initiated by Gross and Witten [16] and Wadia [74], the structure of U(co)
two-dimensionallattice gauge theorieshasbeen unravelled.We recall from section 2.2 that, in two
dimensions,plaquettevariablesareindependentand the partition function andotherobservablesmay
be computedby a single integration

z = [fDU exp(J3~(U))]= ~. (2.44)

The integral /~may be explicitly computedat largeN by the saddlepoint method; althoughone is
dealingwith a one-plaquettemodel,therearestill a largenumber(N2) of degreesof freedom,and ln /3°
may be non-analytic.The non-analyticity— i.e., the phasestructureof this two-dimensionalmodel—
dependson the explicit form of the action. For Wilson’s action, a third order (non-deconfining)phase
transitionis found at /3 = ~. The internalenergy(tr U~)= 8 In /3~I8/3and the string tension—In /3 have
their secondderivativesdiscontinuousat /3 = ~. In particular,there arelocal order parametersin this
model: all (tr Un), n � 2 vanish identically for /3 ~ ~. This phasestructure,however,dependson the
form of the action; taking the heatkernelor Manton’sactionleadsto regularfunctions[75,24].

It is not very clear to which extentthesefeaturesforeshadowwhat happensin higher dimensions.
Notice,however,that this studyof two-dimensionalmodels,in particularthe form of thefunction /3,,,(J3),
is useful in approximationsstartingfrom independentdegreesof freedom(strong coupling,meanfield).

In higher dimensions,not manyexactresultsare known. It hasbeenrecentlyshownby Eguchi and
Kawai [76]thata remarkableequivalencewith atheory definedon a single site latticetakesplacein the
N —* ~ limit. The proofrelies on the fact that both modelssatisfythe sameSchwinger—Dysonequations
[77], and havethe samestrongcoupling limit. The equivalence,however,breaksdown if the [U(1)]”
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subgroupof symmetryof the reducedmodel is spontaneouslybroken.This is what seemsto happenat a
finite value of the coupling [78]. As a consequence,the equivalenceholds only at strong coupling and
fails below this critical coupling.This failure maybe repairedby a quenchingprocedureof the reduced
model.We will not dwell on this reductionin the presentreview, sinceit is undercurrentinvestigation
[79—85].We will only rememberfrom this discussionthat, in its strong couplingphase,the U(~c)model
is equivalentto a gaugemodeldefinedon a hypercube.

3. Strongcoupling expansions

3.1. Generalfeatures

3.1.1. Introduction
As noticed above,the barecouplingconstantg~plays the role of the temperature/3~ in statistical

models.At largecouplings,it is naturalto expandthe Boltzmannweight in powersof /3

exp{/3S} = [I exp{/3~(U~)}= fl [i + /3x(U~)+cX2(U~)+...], (3.1)

and to integrate term by term over the configuration variables; one may thus compute a series
expansionof the partitionfunction, or of variouscorrelationfunctions.To eachtermof the expansionis
attacheda diagrammadeof thoseplaquettesretainedin the product (3.1). Notice that, in this way, a
given plaquettemay appearan arbitrary numberof times, correspondingto the power of x(U~)in the
right handside of (3.1). In practice,it is moreconvenientto resumpart of thisexpansionin sucha way
that a given plaquetteappearsat most once.This is achievedby the characterexpansion,and this
reducesthe numberof contributionsto a given order in the expansion,making the geometricobject
simpler, and decouplingthe geometriccounting of configurationsfrom the group theoreticfactor. On
the otherhand,it is usefulto deriverules for computingdirectly the expansionsof physical (intensive)
quantities: free energy per site, string tension, correlation lengths This relies on cumulant
expansionsto be explainedin subsection3.1.6.

Most of thesetechniquesare well known in the context of high temperatureexpansionsof spin
models [4]. We recall them briefly, and dwell mainly on featuresspecific to lattice gaugemodels.We
first reviewsomerigorous resultson the generalpropertiesof theseexpansions,before turning to the
detailedtechnique.

3.1.2. Convergenceof the strong couplingexpansion
A well-known, but importantpropertyof hightemperature(strongcoupling)expansionsis theirfinite

radiusof convergence.In view of the importanceof this result,we recall briefly how it is derivedand
what it implies [35].

The idea is to derive an (overestimated)upper boundon the nth order of the expansionof some
arbitrary local observable(X). “Local” here meansthat X involves only a finite set of links ~. A
particular example is the internal energy E = (S(U~)).This bound is achieved by estimating in-
dependentlythe contributionof a typical diagramwith k plaquettesand the numberof such diagrams,
andstill holds in the thermodynamic(infinite volume)limit.

The action per plaquettex(U,,,) is bounded,since it is a continuousfunction on a compact set.
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Without loss of generality,we may shift it by a constantso that its lower boundis zero. Then, for /3
smallenoughandany U~,we have

0~Q(U~)~exp{/3S(U~)}—1~C~/3. (3.2)

The constantC1 only dependson the groupandon the form of the action.Now considera finite lattice

A. The cluster expansionis obtainedby expandingthe productover plaquettesin

(X)Z~1JflDUtFI[1+f2(Up)]X, (3.3)

with

z~=JHDU,fl[1+Q(Up)]. (3.4)

With eachtermof the expansionis associateda set of plaquettesD, madeof two parts:D5 is the union
of connectedcomponentsof D sharingsomebondswith ..~,andD2 its complementin D: D2 = D\D1 then

(X)=Z~’ ~ [I DU, [I Q(U~)X}fJ[I DU, [I Q(U1)}. (3.5)
DCA lCD,U.~ p~Dj !CD2 pED2

Now, for a given D1, all D’s areobtainedby addingto D1 any diagramunconnectedto D1, that is, any
diagram contributingto the partition function Zn\~jij~-forthe reducedlattice whereall plaquettes
sharinga link with D1 U IL? havebeenremoved.

(X) = ~ {f [I DU1 [I Q(Up)X} Zn\~Z~
1 (3.6)

Dj ICDiU.~t’ pED~

wherethe sumrunsover all D
1, eachconnectedcomponentof which hasat leastonebond in common

with IL?. ____
i) Sincetherearelessplaquettesin A\D1 U IL~than in A, andsince 1 + (2 � 1, the last ratio in (3,6) is

lessthan one andpositive.
ii) Owing to the relation (3.2), the first factor is boundedby

[I DU, [I fl(U~)X~(C2(C1/3)~), (3.7)
Di ICDiU.~ pwDi

where 1D11 is the numberof plaquettesin D1.
iii) The numberof diagramsD1 with a given 1D11 = k satisfies

n(k)~2~[16(d—1)]”. (3.8)

Puttingall factorstogether,we find

l(X)l C2 2’~~ [16(d— 1) C1 /3]k (3.9)
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As nothing in this expressiondependson the finite size of the lattice, we concludethat the strong
couplingexpansionhasa finite radiusof convergence,evenin the infinite volume limit.

This convergencepropertyhastwo importantconsequences,both in the strongcouplingregime:
a) exponentialclusteringof correlationfunctions
b) arealaw of the Wilson loop.

a) Let X~°denotethe translateof a local observableX by a lattice vector t = na; thereexists a
constantm > 0 such that, for any t,

= (X1X~)— (X1)(X2)l <Const.e
mt (3.10)

and

am � —4 ln /3 + const.

Indeed,only clustersconnectingthe supportsof X
1 and ~ contributeto the left handsideof (3.10);

the dominantonesare tube-like diagramswith 4(n — const.)plaquettes,and the contributionof higher
ordersmay be boundedby the samemethodas above.The actualcomputationof the massgapwill be
reconsideredin the following.

b) The arealaw of the Wilson loop follows from analogousconsiderations.Undersuitableassump-
tions about the representationcontentof the action and of the test charge—theloop—(see[35] and
discussionin subsection3.1.5below),theonly contributingclustershaveat leastA plaquettes(A beingthe
minimal areaof the loop).

3.1.3. Characterexpansion
We usenotationsadaptedto continuousLie groups(seesection1.2)but the caseof discretegroupsis

trivial to reinstate.The Haarmeasureon G satisfies

DU=DU’=D(UV) VVEG, (3.11)

andwe havenormalizedit to unity (fDU= 1). The pure gaugeaction introducedin (1.9) usesclass

functions,i.e. functionssatisfying
f(U)=f(VUV’) VVEG. (3.12)

Irreducible characters(tracesof irreducible representations)form a completebasis for theseclass
functions.For the irreduciblerepresentationr, the d. xd, matrix elementsarewritten D~(U),andthe
correspondingcharacteris Xr(U) = ~,. D~a(U).Fromthe orthogonalityand completenessrelations

J DUD~(U)D~(U)6rs&5y6$?,Idr (3.13)

~, drD~(U)D~(V) 6(U, V), (3.14)
r,ajl
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it resultsthat the irreduciblecharactersform an orthonormalbasis

J DUXr(U)X~(U) 6rs, (3.15)

~ dr~r(UV
1)= 6(U, V). (3.16)

In particular,we havethe usefulformula

J DUXr(U)Xs(U1~rsd~1Xr(~. (3.17)

Any classfunction f may be decomposedin its Fouriercomponentsas

f(U)f(VUV~ ~iXrW)fr,

with

fr~JDUX~(U)f(U). (3.18)

In particular,the Boltzmannweight reads

exp(/3~)= ~ f3~x~(U). (3.19)

Takeas an examplethe groupSU(2).A matrix U is parametrizedas

U = cos(O/2)+io~ñ sin(O/2) (0~0 <47T) (3.20)

in termsof Pauli matrices;the normalizedHaarmeasureis

~ (3.21)

andthe charactersread

x(U) = sin(j + ~)O/sin(O/2), j = 0, ~, 1 (3.22)

Now the expansionsof the exponentiatedactionsexp{~/3x
112(U)}and exp{~/3X1(U)}(S0(3) action, or

part of the SU(2) fundamental—adjointmixed action) readrespectivelyin terms of modified Bessel
functions

exp{~/3~i,2(U)}= exp{/3 cos(O/2)} = ~ 2(2j +1) I2i±1~P)x.(U) (3.23)

and
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exp{~/3x1(U)}= exp{~/3(1+ 2 cosO)} = ~ (1,U/3)—I~,~(~~/3))exp(~/3)~1(U). (3.24)
integer

Table 4 summarizesbasicresultson charactersandexpansioncoefficients for somegroupsof particular
importanceand for Wilson’s action. For more details on notationsand derivations, the reader is
referredto appendixA.

The charactercoefficientsfor the heat kernelaction aretrivial to identify from the definition of eq.
(1.14)

= exp{—C~!N/3} (3.25)

in terms of the quadraticCasimir operatorin the representationr, ~ For SU(2), C~
2~= j(j + 1),

j = 0, ~, 1,... ; for U(1), C~2~= /2, and for the representation (A, ~s) of SU(3), C(A,E)=
A + j.t + (A2 + A~+ ~2)/3. Casimirinvariantsfor low-lying representationsof SU(N)maybefoundin [86].

Let us list somerelevantpropertiesof the coefficients/3. in (3.19):
i) for a real function as the exponentiatedaction, conjugaterepresentationsr and F, which both

appearin the sum if they are inequivalent,contributeequally

/3rf3y’ (3.26)

ii) Since

= Jx~(U)exp{/3x(U)} (3.27)

Table4

Characterexpansioncoefficients for Wilson action

/3o (r) and ~(U) d, I =

Z(2) cosh/3 U 1 sinh /3
U(1) I~~j3) n(�0 or <0), exp(in~) 1 I~~j9)

SU(2) 2I
1lJ3)//3 j half-integer, sin~J+~ 2j+ I I~~~/3)—I2f+2(J3)= 2(21+1)J~fl)

S0(3) e
813(Io(2/313)— Is(2f3/3)) j integer, sin(j+l12)O 2j + I ems((,(2/3/3)_1~+~(2/3l3))

U(N) detI~-
1(/3/N) l~ � . � ‘N (�0or <0) - ~ ‘ delI,~1+~(flIN)

1 ~ i, j ~ N U= diag(exp(ia1))

det(expi(l1 + N — j)a1)

X det(expi(N — j)a1)
SU(N) ~ detI•_1+,(fl/N) sameasU(N), but IN = 0 same ~ det Ii~_j+,+5(f3fN)

U(~) exp(J3/2N)
2 = exp(N2$l) low-lying representations (N/3f)5 exp(N2$~)

or (for /3~~ 1/2) arelabelledby two Young (n ~5 N)
SU(cc) tableaux

{r}= l~��l,�()
{s}=ki��k,�0

l~+ ~ k = n <N
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is an integralover a compactdomain, it is an entire function of /3, andthe ratios

Pr = d~13,J13~ (3.28)

to be usedin the following, aremeromorphicfunctionsof /3, with no poleson the realaxis on which /3°
cannotvanish. This remark will be important in the analysisof the series,wherecomplexpoles may
causetrouble.

Also noticethat theseanalyticity propertieshold for any given group,but that taking the limit N -* ~

of e.g. SU(N) or U(N) maygeneratesingularities[16].
iii) An important property of this characterexpansion,relevantfor strong coupling expansions,is

that only a finite numberof termsin (3.19) contributeto a finite orderin /3. In general,

Pr = JDU~~(U)exp{/3x(U)}= ~/3”(~ + C(8)), (3.29)

Table5

Expressionsof /3 and /3, in termsof /3,

U(1) f3~~= (1 + 0(t
2))

/32= t2 + t4 + to + to + ti° +

48 90 8640
= 1 ~3 + ~5 + ~7 + t9 +

6 8 120 4321
1 1 1 367

~

/3 1 ~+-~-t°+ 19 1769 ~ ~ ~ 124086301= + 2 12 48 360 4320 241920 5806080 261273600

SU(2) ~ = (2j 1)! (2t)21(1+ 0(t2))

~ 8 tb0+~_ti2+...
9 135 135 8505

496
15 9 2835

~= t+ +~t°+32t~+308t~+~t”~ 103216t15+55168t17+...

3 45 405 2835 42525 127575 ~
1 (3tYki~T(~0)(1+ 0(t)) (seeappendixA)

SU(3) ~ ~o

4 16 80 32 160 640

/3(3,0)= f3io = -~-t3 — ~ + ~6 2187 + 1037367~
20 80 80 80 11200

~ t2_9t3+81 481 1863
~

1t5+-~-to_~

7t7+~!t~+...

/3(2,1)= /3i~= -~- ~ — ~ + — + 81 ~ — 89181 ~8 +10 40 20 10 5 3200

— 3t2 + — to+ — ~ 3159~ 61479 89667 22076307~ + — 220994163~t2 + 73555371~13—
~ + 80 8960 128 25600 7168

8 2 ~ 4 8 80
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wherev. is the smallestintegerso that u~=—f DU~~(U)~”(U)~ 0. In the previouscasesof SU(2), with
the action in the fundamental(resp.adjoint) representation,we have i.~= 2j (resp.j), meaningthat we
need2j (resp.j) timesthe spin 1/2 (resp.1) representationto build up spin j. The successivetermsof the
expansion(3.29) may be worked out using the explicit expressionsof /3. in terms of modified Bessel
functions, etc It is often useful to recasttheseexpansionsas seriesin /3~ t, the fundamental
charactercoefficient. This is done on table 5 for the groupsU(1), SU(2), SU(3).

iv) The coefficients /3. definedin (3.28) arepositiveandvary between0 and 1, as /3 growsfrom 0 to
infinity. Indeedthey vanishat /3 = 0 accordingto (3.29), andas /3 —* ~, if the dominantsaddle-pointof
the integral is at U = 1,

= const.d. exp{/3~(~)}(1+ U(/3~)) (3.30)

whereX is the dimensionof the Lie algebra(numberof infinitesimal generators)of the gaugegroup.
Oncethe expansion(3.19) has beendonefor eachplaquette,we can write the Boltzmannweight for

agiven configurationof links as

exp(J3S)=1II~O[1+Edr/3rXr(Up)1 (3.31)

in termsof /3~andPr. Changingthe conventionfor theorientationof plaquetteschangesUi,, into Ui,, but
doesnot affecttheexpansion,thanksto (3.26).Theproductin therighthandsidemaythenbeexpanded.To
each termis associateda diagrammadeof the plaquetteswith a non-trivial representation.In this way,
everyplaquetteappearsat mostoncein eachdiagram,but decoratedwith a representationlabel. Clearly
theintegrationoverlink variablesof (3.28),(possiblyin thepresenceof sourcetermsfor thecomputationof
somecorrelationfunctions)leadsto selectionruleson thepossiblediagrams.We shall discussthem in the
caseof the partition function andof the Wilson loop. Let us first classify the geometricobjectswe are
dealingwith.

3.1.4. Someremarkson combinatorialtopology
We examinenow the topological propertiesof the relevantsetsof plaquettes.Let ~ be such a set of

plaquettes,connectedor not, each plaquette appearingat most once. Let n2 be the number of
plaquettes,n5 the numberof distinct links borderingtheseplaquettes,and n0 the numberof endpoints
of theselinks. A connectedsubsetIL

7’ is homeomorphicto a simplesurface(with possibleboundaries)if
each link of IL°’ belongs to at most two plaquettes.Links belonging to a single plaquetteform the
boundary.Any set of plaquettesis thereforehomeomorphicto a set of simple connectedsurfaceswith
boundaries(regularcomponents).The boundariesare a set of simple arcs,eachof which

— eitherbordersa surface(true boundary),
— or is a singularline borderingn (�3)surfaces(n-fold branchline).
All connectedsurfaceswith boundariesmay be classifiedaccordingto
i) their orientability. Two neighbouringplaquettesare coherentlyoriented if they induce opposite

orientationson their common link. A surfaceis orientableif there exists an orientation of all the
plaquettessuch that all neighbouringplaquettesarecoherentlyoriented.

ii) the numberb of holes,i.e. of simple closedcontoursmaking the boundary.
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iii) the genusof the surface

g = 2— (n2— n1+ n0+ b).

This numberis relatedto Euler’scharacteristicsandis a topologicalinvariant.
Any orientablesurfaceof genusg with b holesis homeomorphicto a spherewith b + g holes, g of

them being joined in pairswith first kind (orientability-conserving)handles.The spherecorrespondsto
b=g=0,thetorustob=0,g=2, andthedisktob=1,g=0.

Any non-orientablesurfaceof genusg with b holes is homeomorphicto a spherewith b + g holes,
the g last onesbeingclosedusinga Moebiusband. The Moebiusbandcorrespondsto b = 1, g = 1, the
projectiveplaneto b = 0, g = 1 andthe Klein bottle to b = 0, g = 2.

3.1.5. Classificationof diagrams. Group theoreticfactors
The partition function Z is obtainedby integratingover the link variablesU, the expression(3.28).

The following classificationappliesto Z, to its logarithm and its derivatives (internal energy,specific
heat,..

Fromthe orthogonalityrelation (3.15) with r� 0, s = 0 giving zero,it is clearthat no true boundary
occurs. All diagramsare closed,although they may of coursehavesingular lines. Considerfirst the
integrationoveran inner link of a regularcomponent.A typical integrationhasthe form

J DU1Xr(Ui[I uui~])Xs(L171[fl u1~~])= ~rsd~’Xr([fl U1.] [nu1.]). (3.32)

Hence orthogonality forces all adjacentplaquetteswith a coherentorientation to carry the same
representation.Thepreviousintegralhasto beusedrepeatedly,togetherwith

J DUXr( UU1U
1 U

2) d~
1Xr(Ui)Xr(U

2),

f DUXr(UU1UU2) = d~’~ Xr(U1U2

1). (3.33)

The latter appearsonly for a non-orientablesurface:we see that such a surfacecontributesonly for
self-conjugaterepresentationsr -= F.°’ If there are n~inner links with n~inner end-points (i.e. not
belongingto the boundary),thereare n — n~= n

1 — n0 integralsto carry out, andn~trivial ones.This
yields a contribution

Qn2 ,1n2—nl+no I
Pr ~r Xrt, boundary

boundaries

wherethe product is to be replacedby one if thereis no boundary.The powerof dr is 2— g — b for a
regular component.For example, diagrams with the topology of the sphere (resp. a torus) give
contributions ~r�0/3~2d~ (resp. ~ For more complicateddiagrams, one is left with group in-

*For self-conjugateunitary representations,D’ = VDr*V~with Va unitary symmetricmatrix (may be not unity!).
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tegrationsalongthe singularlines. For example,a diagrammadeof p disksof m1,. . ., m,, plaquettes,
solderedalonga single closedcontour(p-fold singularline) contributes

~ mp ~ /3~’~dri~t~rt rp (3.35)
TI r~,�O

where

Nr1 Tp JDUx~(u)..~Xrp(U) (3.36)

is the numberof times the trivial representationis containedin r1 ®~ - - ® r,,.
In section 3.2, we list all such group theoretical factors associatedwith the various topologies

involved in diagramswith sixteenor less plaquettes.
Let us turn to the computationof a Wilson loop. For a large loop of minimal areaA (minimal

numberof plaquettesneededto fill the loop) andundersomeconditionsoutlined hereafter,the leading
contributionto W~(C)is proportionalto /3~.This areafall-off is one of the main virtuesof the lattice
formulation of gauge theories.We alreadymentionedthat this meansa (linear) confinementin the
strong couplingregime(seeremarkson the convergenceand the reliability of strongcouplingresultsin
section3.1.2). This result actuallyrelies on two assumptions,namely

i) /3~ does not vanish, or, more generally, there exist representationss1,s2,.. . such that
rC s1 ®s2®. ..,with /3~,/3~,. . - � 0.

ii) thereexists no set of representationssuch that r appearsin the decompositionof the tensorial
product®~[s~®~],/3~,�0.

If i) is not fulfilled, the Wilson loop in representationr is obviouslya badorderparameter.A trivial
exampleis providedby SU(2)with an action invariant undera transformationof the centre U,,, —* — U,,,,
and r = ~. If condition ii) is not fulfilled, e.g., if s exists such that r C s ,~it is possible to form
tube-like diagramsaroundthe loop C (seefig. 8), thus giving a perimeterfall-off to the Wilson loop.
Physically it meansthat we havescreeningrather than confinement.The test charger is screenedby
dynamicalpairs s and§ to form a groupsinglet.An exampleof such a casefor SU(2) is given by r = 1,
screenedeither by 1/2®1/2 or by 1®1. Comparisonof the two types of contribution 13L

2 versus
/31o(L_1) showsthat a cross-overfrom arealaw to perimeterlaw occursat L = 15. If the gaugegrouphas
a non-trivial centre, a sufficient condition is that Xr transformsnon-trivially under transformations
belonging to the centre. In particular, this is always the casefor the fundamentalrepresentationof
SU(N).

To go beyond the leading term /3~,we retain plaquettesnot belongingto the minimal surface,or

carryinga representationotherthan r in the expansionof exp{/3S}. Relevantdiagramsnow haveC as a£7
Fig. 8. Diagramcontributingto theperimeterfall-off of theWilson loop.
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boundaryand maybeorderedaccordingto the numberof extraplaquettes,in addition to the minimal
number A. As in the caseof the partition function above, different group integralscorrespondto
different topologies.Thesecoefficientsfor diagramswith twelve plaquettesor less arelisted in section
3.2.1.

It mustbe clearnow that theseconsiderationsmaybe extendedto variousobservables:small closed
loops, plaquette—plaquettecorrelation functions, ‘t Hooft loop. The plaquette—plaquettecorrelation
function, for example,which is of particularphysicalinterestsinceit yields theglueballmass,is built up
from tube-like diagramsjoining the two sourceplaquettes.

3.1.6. Cumulants,connecteddiagramsand extensivity
As noticed above, the direct evaluationof the expansionin powersof /3 is not very useful in the

actual computationof the series.We review, however, this methodwhich leads to someimportant
results.The techniqueis relatedto the generaltheory of diagrammaticexpansions.The statementswill
be illustrated in the threeparticularcasesof the high temperatureIsing model (I), perturbativefield
theory (F) and,of course,lattice puregaugetheory (G).

The action is split into a free part S0 ((F): quadraticpart; (I) and(G): 0) andan interactionpart ~
The generatingfunctional is rewrittenas

Z(J)= f exp{S(q~)+ J . çb} Dq~

= exp{Sjnt(8/0J)}J exp{So(q5)+J . Ø} Dq~

= exp{S1~5(aI3J)}exp W0(J)

= [1+ S,,,~(8/aJ)+ ~S~,5(a/aJ)+ . . ~]exp{W~PJ+ W~J
2!2+ . . (3.37)

where W
0(J) is the connectedgeneratingfunctional of the free theory ((F): propagatorf f J(x) zl (x —

y)J(y) dx dy; (I) (resp. (G)): ~ u(J~),sum over the sites (resp.links) of the Fourier transformof the
field measure).Each monomialof the bracketcontainsderivativeswith respectto the sourcesJ, from
whicharisesa sum of termswhen applied to the exponentialexpW0.Eachresultingterm is interpreted
as a diagrammadeof “vertices” joined to “sites”.

— S~is a sum of monomials(1/k !) V~. . ,,, çb.,...,where~ i, denoteall indices (location as well
as internalindices).A “k-vertex” (drawn as a blackdot from which k lines originate)is associatedwith
everysuchmonomialandcontributesa factor V~,. . ,,, ((F): usualverticesof Feynmandiagrams;(I) S~1~
beingquadratic,only 2-verticesexist andareusuallyrepresentedby a line joining 2 neighbouringsites
insteadof a black dot; (G): S1,~is quarticand the vertex is usuallyrepresentedby aplaquette,although
weoccasionallydraw it as a blackdot).

— a “p-site” (drawnas an open dot from which p lines originate)is associatedwith apth derivativeof
W0: its contribution is the cumulantW8’~.((F): W0 being quadratic,thereare only 2-sites which are
representedas aFeynmanpropagatorline; (I) (resp.(G)): sitesarelocatedat the nodes(resp.bonds)of
the lattice andcontributea factoru

t”~(J~)for the locationx.)
The rule for computing the generatingfunctional Z(J) is the following: drawall possiblediagrams

with sites and vertices joined together by internal lines (external lines pertaining to a site are also
allowedandcontributeeacha factorJ); divide eachcontributionby the orderof the symmetrygroupof
the diagram.Z(J) is the sum of all the contributions.
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Due to the simplifications occurring in field theory (only 2-sites)and in statisticalspin models(only
2-vertices), this expansionis used in practice. In lattice gaugetheory, the methodhasto be refined
becausethe numberof diagramsincreasesdrasticallywith the order,making things quite untractable.
For instance,the readermay list all the diagramsof 4th order in /3 in the Z2 gaugepartitionfunction of
a oneplaquetteworld (i.e., derive by this methodthe expansionof /3°in termsof /3); the resultcontains
16 topologically different diagramsand one finds among them spheres,toni, projectiveplanes,Klein
bottles,...! Improvementof the methodmay consistin resummingsub-classesof diagrams.We will
later presentsome of them (1/d expansion).The characterexpansioncan be regardedas such a
reorderingof the /3 series,groupingall verticesor sites pertainingto the samelocation.

The first refinementof the methodis the restriction to connecteddiagrams.In this discussionof the
cumulantexpansion,connectivityrefersto the abstractgraph madeof “sites” and“vertices”, not to the
geometricalobjectmade(e.g. in latticegaugetheory)of links andplaquettes;in particular,two different
“sites” can sharethe samelattice location,while belongingto differentconnectedparts.It is clear from
the diagrammaticrules that a disconnecteddiagram contributesexactly as the product of the con-
tributionsof its connectedparts. Hence the connectedgeneratingfunctional W(J) in Z(J) is the sum
of contributionsof all connecteddiagramscomputedaccordingto the precedingrule. In particular,in a
latticewith periodicboundaryconditions,translationinvarianceimplies that the samediagramoccursX
times, aslong as its spatial extensiondoesnot allow it to closeusingthe boundaryconditions.The first
occurrenceof such an exceptionis the diagramconsistingof all L

2 plaquettesin a given 2-plane,which
generatesonly L”2 different copiesof itself insteadof X by translation.Hence

Z = e~+ C~(L~2/31~S). (3.38)

In contrast,in the characterexpansion,thereis no simple definitionof connectivitysuchthat in Z is
the sum of connecteddiagrams.This is due to the fact that 2 plaquettescannotsharethe samelattice
location and thereforespurious contributions to Z generatedin the exponentiationof the sum of
connecteddiagramshaveto be subtractedout. However, the property of eq. (3.38) provedusing the
cumulantformalism (namelythat to any finite order in /3, the expansionof Z exponentiates)is still true
in the characterexpansion.

Münster [87] has used a cluster version of the characterexpansion and a moment-cumulant
transformationto prove this result directly. His proof extendsto large rectangularWilson loops. It
showsthat, to any order smallerthan the sideof the loop

In W(C)= —KA+
1aP+ C (3.39)

whereP is the perimeterof the loop. Theperimeterand constanttermsreflect edgeandcorner effects
aroundthe loop, andcan bedisposedof by extendingthe loop to the boundaryof a finite lattice andby
taking periodic boundaryconditions.In the latter case,we havesimply

in W(C)=-KA.

We usetheseresultsin the nextsubsectionto deriverules for the free energyandthe string tensionin
the characterexpansionformalism.

The cumulantexpansionmayalsobe appliedto the largeN limit of U(N) theories.This is relegated
to appendixB.
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3.1.7. Geometricfactors. Configurationnumber
It follows from the previoussection that, to any finite order and for periodic boundaryconditions,

theseriesexpansionfor Z (resp. W(C))exponentiatesin the form e~(resp.e~~A).Fromthis follows a
simple rule to derive the expansionof F (resp.K). In the diagrammaticexpansionof Z (resp.of W(C)),
it will be identified with the coefficient of the term linear in ~N’(resp. in A, for X = 0). The numberof
inequivalentpositionsof a given diagramon the lattice is called its configurationnumber(c.n.), its linear
part in X (resp.in A) is thereducedconfigurationnumber(r.c.n.). Configurationnumbersof connected
diagrams (for which c.n. = X r.c.n.) are easily computed; the only delicate point is a possible
non-obvioussymmetrywhich reducesthec.n. by afactor. For example,the torus diagram (16.2of table
6) hasa r.c.n. ~x ~d(d— 1) x ~(d— 2)(d — 3), wherethe factors~reflect the threesymmetriesbetweenits
axes(1~-s~2),(3.s-*4) and (1, 2).s-* (3,4).

We recall that, in the characterexpansion,disconnecteddiagrams(i.e. made of pieceshaving no
plaquettein common)contributeto F and/orK. Theirr.c.n.aredeterminedin arecursiveway. Let D, and
D2 betwo diagrams,[D1], [D2]their c.n. Onemay write the identity

[D1][D2]= ~ nD[D] (3.40)
D=DiUD2

where the sum runs over all inequivalentdiagramsD (connectedor not) which may be split into
D1 U D2 in nD differentways.If the r.c.n. of the connecteddiagramsin the right handsideof (3.40)have
alreadybeencomputed,keepingthe term linear in ~N’(resp.in A) gives an equationfor the r.c.n. of the
disconnectedcontributions(the left handsidehasno linear contributionto X or A). For example,

[~I [~]~[~ ~ c :
[xd(d_lXd_2)]

2
2 [~ ~ ~

Thereforethe r.c.n. x of the contributionof two disconnectedcubesto F is

x = —d(d — 1)(d — 2)(12d — 29)/12.

Anotherexample, quotedfrom the computationof the string tension, is displayedin fig. 9. In higher
orders,it may happenthat a given r.c.n. appearsin severalsuch equations,thus providing a useful
cross-checkof the countingprocedure.

3.1.8. Computationof theglueball masses
The computationof the glueball masses(inverse correlation lengths) is more delicate.In section

3.1.2, it hasbeen shown that, at strongcoupling, connectedcorrelationfunctions are boundedby a
decreasingexponential.At largedistance,one actuallyexpectsa behaviour

G(r)= (C~(0)~

-= Ai(r) emt(P~+ A2(r) em2(t~ +... (3.41)
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[~].[o]

a [~] [~] [~] [~]
• [~]~ [~1 .2 [~]

•[~1
2(d — 2)A>< d(d— 1)(d —2) ~

= 2(d—2)A{(A—5)2(d—2)+4+4(2d—6)+4(2d—5)+ (2d— 5)+ 1 +(2d—5)}

Fig.9. Determinationof theen, of a disconnectedcontributionto thestring tension. Diagramshavebeenrepresentedby their cross-section.

with several massgaps m1(L)< m2(P)<. . ., dependingon the direction of observationP~In a lattice
gaugetheory, the simplest choice for f~ and ~2 is to take two distant plaquettesin the fundamental
representation,in variousrelativeorientations

G(r) = (tr U~1(0)tr U,,,~(r))— (tr U,,,)(tr U,,,2). (3.42)

Only the smallestmasscontributesto the leadingasymptoticbehaviour,but it may be that thesemasses
aredegeneratein the strong couplinglimit; thenthe identificationof the differentmassesm1, m2,.. . on
the strongcouplingexpansionmay be problematical.

This is a well-known problem in thecontext of spin models.For example,the first two ordersof the
connectedcorrelationfunction of the two-dimensionalIsing model at high temperaturedo not sum up
as a single exponential(seefig. lOa):

(uocTr=na)conn= t”[l + n(n + 1)t
2+ ~(t4)] ~ tt_narn

t~na ~ (.___~i i.t. *

0~i<j~n

(a)

________________• ~ (e ~ ... ..J ~ . ~. )
O+j~n

I(~~i~ sym.)
Oai<j~n

* ~ ( e2~ * cc.) * .

0 ~ iS jE n

(b)

Fig. 10. Leadingcontributionsto thespin—spincorrelationfunction of the two-dimensionalIsing model, a) (o~oiY,,,),b)~, e~’(o-ou,,).
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In such acase,whereonelooksat the asymptoticbehaviouralongan axis of the lattice,onemay usethe
transfermatrixformalism[88,89,35]: emt,em2in (3.41)correspondto variouseigenvaluesof thetransfer
matrix, and,to disentanglethem,it is suggestedto projectthecorrelationfunctionson eigenstatesof the
transfer matrix. As the latter commuteswith “spatial” discrete translationsand rotations (in the
(d — 1)-spaceorthogonalto the “time” axis ~ = (1,0,. . .)), one may considerlinear combinationsof
definitespatialmomentump, andwhichtransformunderan irreduciblerepresentationof the (d — 1)-cubic
group[90].Moreover,for gaugegroupslike SU(3)in whichtheorientationof plaquettesmatters,thereis a
discretesymmetry(C-invariance)U, —~ U’~,tr U,,, —o (tr U~)*= tr U, andstatesmaybeclassifiedaccording
to a C-parity+1 or —1. Forexample,the rotation invariant,C-evencombination,which shouldgive the
lowestmassgapof four-dimensionallatticegaugetheories,reads

~ exp(—ipx)(Retr(U,,,
1(O,0)) Retr(U~2(x,r)))~~,,~= G(p, T).

x 6 spatial
directions

of ptand PS

It implies a sum over the six plaquettesforming the cubecentredat 0 (resp.at x), over x, and over
internalorientationsof the plaquettes~i andP2, with a fixed time separation.At large ‘r, onehas

G(p, r) — exp{—E0(p)r} (3.43)

and the mass gap m0= E0(O) [91] and the dispersionrelation E0(p) [92] may be computedby strong
coupling expansions.It is known that such a methodsolves the above-mentionedproblemfor the
d-dimensionalIsing model.For example,if d = 2 (seefig. lob),

G(p, T) = ~ exp(—ipx)(o-o,00X.T)COflfl

= [1+ 2(n + 1)tcosp+ 2{(n + 1)2cos
2p— (n + 1) sin2p}t2+ ~I(t3)]t~

= t” exp{2(n+ 1) (t cosp — t2 sin2p + ~(t3))} (3.44)

whence

am
0= —In t — 2t + C(t

3), (3.45)

aE
0(p) = — In t — 2(t cosp— t

2 sin2p)+

in agreementwith the exactresults[93—95]

am
0= —ln[t(1+t)/(1—t)] (3.46)

a E0(p)= Arg cosh(coshm0+ 1 — cosp).

Moreover,with appropriateskew-periodicboundaryconditions[94],the term (n + 1) in the exponent
of (3.44) is changedinto n, anda simpleprescriptionto identify E0(p) is to takethe term linear in n in
the expansion.
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The rotation invariant plaquette—plaquettecorrelationfunction hasalsoa strongcouplingseriesthat
exponentiates,becausethe nextcontributionsareof a muchhigher order.Typically,

G(O, r = an)= t
4” (1 + ~(t))+ t°” (1 + C(t))+.-. (3.47)

wherethe term t°~comes from higher representationson the tube joining Pi to P2. Similarly, other
linear combinationsof plaquette—plaquettecorrelation functions (tr U,,,, tr Up2)COfl,, or of more com-
plicated loopsmaybe constructed,transformingunderotherrepresentationsof thecubicgroupandodd
or evenunder C-parity, andgive the massgapsin otherchannels[96,97].

Onemayalsolook at the exponentialdecayof correlationsin directionswhich differ from the lattice
axes. Then the previous method is more delicate to set up, and an alternativeway to extract the
correspondingmass gaps from strong coupling serieshasbeenproposed[98—100,96]. One constructs
the ~d(d— 1) x~d(d— 1) matrix of correlationsbetweenall possibleplaquettedirections

~ = (tr U~(O)tr U~~(r))conn (3.48)

where Re or Im is understoodin front of tr U, dependingon whether C= +1 or —1. The Fourier
transformof G(r) is denotedG(k), with k now a d-vector

= ~ exp(—ikr)~ (3.49)

The large r behaviourof G(r) is dominatedby singularitiesof G(k) at K, i.e. det G1(K) = 0. The
correspondingeigenvectorof G behavesas exp(iK . r) = exp(—mr),with m = —iK P.

This methodis well adaptedto strongcouplingcalculations.To leadingorder,G~,,,,,,,may be seenas
describingthe randommotion of a piaquette(fig. 11), and

G°(k)= (1 — t4 M(k))t (3.50)

wherethe matrix M describesa unit stepof the randomwalk:

~ = M
00.,,.,,, = CM ~ C = ±1

M,,~,...= 2 ~ cosk~
p � p..~’

M — ~4cos(k,,/2)cos(k~/2) if C = + I
— ~4sin(kJ2)sin(k~/2) if C = —1 -

~

Fig. II. Randomwalk of a plaquette.
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To that order,the relevantpoleshave

em = e~= A(P) t~~”

hence

m =_4(~?~)lnt_lnA(P) (3.51)

wherethe constantA measuresthe entropyof the shortestpath. In four dimensionsfor example,along
an axis, A = 1 and

m=—4lnt+”~,

whereasalongthe diagonal(r = (1/2, . . - , 1/2)), A = 62

m = —81n t—21n6+-”.

Higher order correctionsmay be incorporatedinto this scheme.They correspondto “self-energy”
insertions H in the propagatorG, i.e. to inclusions of walls inside the tube or to decorationsor
deformationsof the tube; G takesthe form

G(k) = (1— t4M — H)’. (3.52)

In that way, the calculationup to order /34 hasbeencarriedout for the on-axis and diagonalglueball
masses;on-axis resultsagreewith thoseobtainedthrough the methodpresentedearlier in this section.

3.1.9. Computationstepsand cross-checks
In practice, a strong coupling computation will consist of several successivesteps: listing all

topologically distinct diagrams,connectedor not, computing their group theoretical factors (as a
function of the /3~’s)andtheir reducedconfigurationnumber,and re-expressingthe result as seriesin
the desiredvariable (J3, or t = /3k,. -

The first step,enumerationof diagrams,is the most tediousanddelicate.It can be done“by hand”,
with obvious limitations (thereare 26 distinct diagramswith 16 piaquettesor less for the free energy
(seetable6), about 300 with 14 plaquettesor lessfor the string tension).This enumeration“by hand”
suffersalsofrom a difficulty of notations:how to drawdiagramsin four (or more)dimensionsin aclear
andunambiguousway. As an alternativeto thestandarddrawings,usedfor examplein table6, onemay
usea descriptionby contour lines, valid for an arbitrary regular component.For definiteness,take a
regularclosedsurface;eachlink is commonto two andonly two plaquettes.Startingfrom thecentrex~°~
of someplaquette,a, ii, follow the path xp. = x~on the surface.It goesacrossplaquettesof directions
i.’, p,..., until it closesbackat~ This is representedby aclosedorientedcurvelabelledby ~, crossed
by closedcurvesindexedby is, p The orientationconventionis that crossingthe is-curve oriented
from right to left correspondsto a shift in the direction + is. This procedureis iteratedfor each centreof
eachplaquette,until every plaquettehasbeen traversedtwice. The resulting network of curvesis a
faithful description of the regular surface (see for example fig. 12); the original surface can be
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p P p ~ ~

(~) (b)

Fig. 12. Representationof diagramsby thesystemof contourlines. The numberof intersectionscountsthenumberof plaquettes.Going from a) to
b)correspondsto pulling plaquettep into theo-direction,which is representedby an additionalclosed curve,labelledby a- andencirclingp.

reconstructed(up to a displacementon the lattice) from this picture.Thereforethis representationmay
be used for our book-keeping.Similarly, all diagramswith the topology of a disk contributing to the
string tensionmay be representedin that way. Notice that this representationmight also be used to
generatedistinct diagrams, if we were able to write all the constraintsand selection rules on these
patterns.

It maybe thought that it is relatively easyto generateall diagramsby computer,using for instance
successiveaccretionsof three-dimensionalcubes. However, in the simplest algorithms, the same
diagram is often generateda large numberof times; to avoid doublecounting requiresan elaborate
patternrecognition programand reducesthe efficiency in a dramaticway. More elaboratealgorithms
canbe designed[101],but aredifficult to set up becausethe numberof specialcasesgrowsrapidly. Using
suchaprogramK. Wilson [102]hasbeenable togenerateratherlongseries(22ndorder)for thefreeenergy
of somefour-dimensionalpuregaugetheories.

The computationof the grouptheoreticalfactorsandof the geometricalweights(reducedconfigura-
tion number)hasbeen explainedin the two previous subsections.Finally, the manipulationson the
resultingseries(substitution of one variable for anotherone,...)are the ideal field of applicationof
symboliccomputerprograms.In this review,we shall mainly presentexpansionsin the original inverse
coupling /3, best suited for a direct comparisonwith Monte-Carlo data, or in the first character
parameter/3~ t, moreappropriatefor comparingseriespertainingto differentgroups.

At the endof such alaboriouscomputation,what arethe possiblecross-checks?If the calculationhas
beencarriedout in a generalway, valid for all groupsand dimensions,it mustpassa few tests:

— the three-dimensionalZ2 gaugetheory is, by duality, equivalentto the three-dimensionalIsing
model. Hence, strong coupling expansionsof observablesin the former must coincide with low
temperatureseriesof dualobservablesin the latter.For example,free energiesarerelatedby eq. (2.19).
The gauge string tension is identical to the Ising surfacetension, while plaquette—plaquetteand
spin—spincorrelationlengthscan be identified.Ratherlong low temperatureseriesexistin theliterature
for the Ising model.

In four dimensions,the Z2 andZ3 (and, in the generalizedsenseexplainedin section2.3.3, the Z,,)
models are self-dual. This means that strong coupling expansionsmay also be regardedas low
temperatureexpansionsof the dualquantities.For example,the low temperatureexpansionof the Z2
model starts from a ground statewhere all links are +1, up to a gauge transformation,and flips
successivelyone, two,... links. To any configurationof overturnedspins correspondsby duality a
permissible strong coupling diagram of the free energy, the plaquettesof which are dual to the
frustratedplaquettesof the former. However, in the weakcoupling expansion,somecare hasto be
exercised,sincegaugeequivalentconfigurationshaveto appearonly once.For example,a configuration
of 4 flipped links emanatingfrom the samesite is equivalentto the complementaryconfiguration of
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(a) (b)

Fig. 13. Examplesof low-temperatureconfigurationsof overturnedlinks in four dimensionsthat may be drawnin two equivalentways.a) is dual to
16.2 of table6, b) to 14.3.

links incident on that site (fig. 13). This equivalencecorrespondsto the symmetryfactor 1/2 attachedto
such a diagram.In short, duality is useful to visualize diagramsin an alternativeway andto checkthe
configurationnumbersof four-dimensionaltheories.

— for large dimensiond and d/34 of order one, lattice gaugetheoriesbecomeexactly solvable(see
section3.3). It is moreoverpossibleto computea few correctiontermswhich aresuppressedby powers
of /3 -~d”4. It is then possibleto expandtheseexact expressionsin powersof /3, andto check in this
way the termsof largestpower of d for a given order in /3.

— for largeN and /3 = /3/2N2 fixed, the U(N) or SU(N) gaugetheory goes to the limit mentioned
above.In this limit, thefree energyper site is proportionalto N2, while massscalesas thestring tension
or the massgapreachfinite limits. However,in the characterexpansionusedhere,the existenceof this
limit results from cancellations[103,104]; individual diagramscontributing to F may go as N4 or
higher powersof N. This providesan additionalcross-checkon the weightsof diagrams.

3.2. Series

3.2.1. Freeenergy
The free energyhasbeenderivedto sixteenthorder (diagramsup to 16 plaquettes)for generalgauge

groupsandarbitrary dimensiond, in terms of the charactercoefficients/3r. For a specific form of the
action /3 S(U~),thelatter maybe computedas functionsof /3~,andthe expansionre-expressedin powers
of /3. For an action of the simple form /3x~(u~),it is moreconvenientto choose/3. as the expansion
variable.The resulting expansionsaresomewhatmoreuniversal. Indeedthe lowestorderdiagramsare
only madeof plaquettesin the representationr, and the first coefficientsare thusgroup independent.
Notice that /3r has a simple interpretation; it is the internal energy (plaquette energy) of the
one-plaquettemodelwith the sameaction.

Let us first presentthe generalexpressionof thefree energyper siteF to 16th order.Fig. 14 displays
a hopefully suggestive,thoughnot faithful representationof thecoefficientsby meansof a cross-section
of a typical diagram.We define

a) 5,. = ~ /3~d~ (sphere) (3.53)
r,~O

b) T,. = /3~ (torus) (3.54)
r,’0

c) ~9,., flp = ~ /3~’/. . - ~ . N~, rp (3.55)
ri rp~”O

with

Nri rpJDUXn(U)”~Xrp(U)
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Table 6
Tableof diagramswith up to 16 plaquettescontributingto thefree energy.In ambiguouscases,plaquettesareshadedto indicate

that they havebeen selected,andbrokenlines aredrawn for theeye’shelp

Numberof Diagram r.n.c. Group
plaquettes theoretic
anddiagram factor
number

6.1 ~d(d—1)(d—2) S
6

10.1 ~d(d—1)(d—2)(2d—5) S~,

11.1 ~d(d—1)(d—2)(2d—5) 0551

12.1 ~.,, t1Ei:~:J —~d(d—1)(d—2)(12d—29) SI

12.2 ~. .. ~d(d—1)(d—2Xd—3) Si2

12.3 ~ d(d- 1)(d - 2)(d-3) Si2

14.1 ~ (T~’?J ~d(d—1)(d—2)(2d—5)

2 St
4

14.2 ~. 2d(d — 1)(d — 2)(4d

2— 22d + 31) St
4

14.3 ~ d(d — 1)(d — 2)(d—3) S,4

14.4 4d(d— 1)(d — 2)(d—3)

15.1 .~ ~d(d—1)(d—2)(d—3)(2d—5) 0555

15.2 d(d— 1)(d — 2)(d—3)

15.3 ~d(d—1)(d—2)(d—3)

15.4 t1iiøi_1:IIIj~.:J d(d — 1)(d — 2)(2d— 5)2 0951



i-M. Drouffeand i-B. Zuber, Strongcoupling and meanfield methodsin lattice gaugetheories 47

Table 6 (continued)

Numberof Diagram r.n.c. Group
plaquettes theoretic
anddiagram factor
number

15.5 4d(d- lXd - 2)(4d
2-22d+ 51) 0~s,

16.1 ~d(d- lXd-2)(4d2-24d+37) Si
6

16.2 ~ d(d — 1)(d — 2)(d — 3) T,6

16.3 ~j~)~. 8d(d— 1)(d — 2)(d — 3)2

16.4 .... 16d(d — 1)(d— 2)(d — 3)2 S16

16.5 16d(d— 1)(d — 2)(d — 3)2 Si6

16.6 ~d(d—1)(d—2)(d—3)(2d—5) 0555j

16.7 C —d(d— 1)(d — 2)(22d
2—113d+ 147) SSSth

16.8 2d(d— 1)(d — 2)(d—3)

16.9 ~ ~d(d-1)(d-2)(2d-5)2 ~5i45t

16.10 . . 2d(d — 1)(d — 2)(4d2— 22d+ 31) ~5t45i

16.11 4d(d— 1)(d — 2yd— 3) 0,0.4.2
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o

(sb) TI

n
1 (r,~

“1 ‘2 ‘p

ni ~ri~

~‘1’2’3’4’5

fl2~2i4 034

Fig. 14. Grouptheoreticalfactorsrepresentationfor diagramsof the Fig. 15. The lowestorder non-orientablediagramoccurring to order
free energy. 24: topology of a projectiveplane, representedby its three-dimen-

sional projection. To avoid a four-fold singular line, two plaquettes
havebeenshiftedin a new direction,as indicatedby thedotted lines.

d~ — ‘~“ - - - d d d Is.T) S flifl2fl3fl4fl5 — t—’ ri It 72 14 75 117213 131415

(diagramswith two 3-fold singular lines eachboundingtwo diskswith ni, n2 (resp.n4, n5) plaquettes,
andjoined with an annulusof n3 plaquettes),

e) ~ = [I (d,4/3~)J fl DU, fl x1,1(U1U7
1) (3.57)

i<j i i<j

(diagramswith four 3-fold singular lines joining two points A and B, and with six disks boundedby
pairsof theselines).

In theseexpressions,the n’s denotethe numberof plaquettesin each regularcomponent,and the
summationruns over non-trivial representations.For the sakeof completeness,all diagramswith 16
plaquettesor lesshavebeendisplayedin table 6. No non-orientablediagramcontributesto this order
(the first one occursto order24 andhasthe topology of a projectiveplane:fig. 15).
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In termsof thesecoefficients,the free energyper site in d dimensionsreads

F = ~d(d— 1) {ln $o + (d — 2)[~S6+ (2d— 5)S50+ ~(d — 3)512+ (20d
2— 106d+ 143)S

14

+(84d
2— 504d+ 757)S

16+ ~(d— 3)T16— (2d— 29/6)S~— (44d
2— 226d + 294)S

6S10

+(2d — 5)0~~~+ ~(d— 3)(2d— 5)(&~~~+ 05551)+ ~(d— 3)(30s~2+ 301042+ 20933+ 2�~4 +

+(20d
2— 108d+ 149)(2@951+ ~514i5)+ - - -]}. (3.58)

For the specific form of the Wilson’s action, onederivesthe expansionsof F to order t16 or /316

In table7, we haveonly given resultsfor somegroupsof interest.We think that expansionsin t arewell
behavedandusefulin the searchof singularities,especiallyfor “even” groups.Expansionsin /3, on the
otherhand,maybe directly confrontedto Monte-Carlodata. As all of them havealreadyappearedin
the literature,we only give referencesandcorrecta mistaketo order /316 for the caseof Z

3 andSU(3).
(In the publishedseriesof Z3 and SU(3), diagram 16.8 of table 6 had beenomitted. We just give its
additionalcontribution,usingthe sameconventionsas the original reference.)

Z2 [7] (cf. erratum)
Z3 [7] (erratum,add L~F= 4d(d— 1)(d— 2)(d— 3)(J3/2)’

6)

U(1) [7] (cf. erratum)
SU(2) [7] (cf. erratum)
SU(3) [7] (erratum,addz~F= 108d(d— 1)(d — 2)(d — 3)(/3/3)16)

SU(4) [105]
SU(5) [106]
SU(6) [105]
SU(N)/ZN [107]
SO(3) [108]

For specialvalues of d, longer expansionsmay be available.This is of course the caseof the Z
2

Table7
Strong coupling coefficientsf, for the free energyin termsof thefirst charactercoefficient t for Wilson’s actionF = ~d(d— 1) {In $o + (d — 2)~ f,t”}

n

G 6 8 10 12 14~ 16 Remarks

z2 0 2d —~ ~ (2d— 20d

2— 106d+ 143 d2— d + .!..!~ff li~n~er~e~iesexist

U(1) 0 2(2d—5) ~(~—~) 2(20d2_~.?d+i~_9)~ longer seriesexist

5U(2) 0 4(2d—5) — ~ 12d+ ~ 4(20d2_~ d + — ~d2. ~1~7d ~12787481 longerseriesexist
3 3\ 81) \ 3 243 ) 3 1620 14580 atd=4

U(~) ~N2 0 2(2d— 5)N2 ~(lOd — 23)N2 2(20d2— 106d+ 143)N2 2(84d2— 432d + 569)N2 only the leading
or term in N2 hasbeen
SU(~) written
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Table 8
The coefficientsf, for thefour-dimensionalfree energy,computedby wilson

n

G 6 8 10 12 14 16 18 20 22

Z
2 0 3 39 11017

U~) 0 6 —287 48 —131869 1788585347 —2974.75173 24390.66152

SU(2) 0 12 —3176 39980 —6569971 95936872 —79327880
3 243 243 14580 32805 6561 653 9.87679

theory in d = 3 dimensions,whereduality with the Ising modelenablesoneto write

Fz2gauge(1
3) = 3 In cosh/3 + ~ b~~)t2(T±s)

in termsof the “zero field coefficients”given by Domb [4].
In four dimensions,Wilson [102]hasbeenable to computethreeadditional termsin the expansionof

the Z
2, U(1) andSU(2) internalenergy.The correspondingresultsfor the free energyappearin table8.

For otherforms of the action, few explicit seriesareavailable.For the SU(2)mixed action,however,a
doubleexpansionin /3y~and /3Ya to 16th orderhasbeenderived[108].

Finally, the expansionof asimplicial lattice in d dimensionshasbeenrecentlyderived[31].We recall
that this lattice, which generalizesthe triangular lattice in two dimensionsand the face-centredcubic
lattice in threedimensions,may beconsideredas the cross-sectionof a (d + 1)-hypercubiclatticeby the
planex1 + + X~J+~= 0. The merit of thislatticeis to havelargecoordinationnumbers(a sitehasd(d+ 1)
neighbours).

3.2.2. Wilson ioopsand string tension
The quantity of interestis Wr(C) definedin (1.16).The curveC hereis rectangular.In section3.1.5,it

hasbeenexplainedunderwhich conditionsanarealaw wasexpectedfor Wr(C). Then, to leadingorder,

Wr(C) = d1/3~+... (3.59)

hencethe correspondingstringtensionK. behavesas

K,.=—ln/31+C(/3). (3.60)

We now turn to the computationof higher order corrections.Earlierworkson the subjectcan be
found in [109—111];we discusshere the most recentresults [87,112, 113]. The correctionsmay be
classifiedaccordingto the numberof extraplaquettesaddedto the minimal surface.The topologiesof
thesediagramscorrespondto thoseof diagramsfor the free energydrilled alongthe contourC. In the
following, we restrict ourselvesto Wilson loops in the fundamentalrepresentationr = f. Up to 12th
order,all the topologiesareobtainedin that way from the closeddiagramssymbolizedon fig. 14. This
resultsin the following list (seefig. 16)
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(~1
A,,

A,.

~ (ru

I~ _____

Op {rp(

n
1 (ri)

Cr,1n2nm

m (a)

k )r} t )s)

m{t) n)u}

Fig. 16. Representationof grouptheoreticfactorsfor theWilson ioop.

a) adisk with A + n plaquettesA,. = /3~.

b) a disk with a handle,A + n plaquettes:A~= /3~d~
2.

c) a hole in the topology 0 of fig. 14,

B,.
1 d~

1~ (d
75/3~

t)(drJ3~2)...

d) ahole in the topology ~of fig. 14,

C — ,l~ PtT P~T A A A Q’si,2n2QnDmnlnsnm — t I f’~iV ~

e) a hole in the topology t/

D~p7= d~’~drdsd
1dudv/3~/3~/37’/3z/3’~jDRDSDTDU~r(RT~)

x,(TS~)~t(SR1)x,(RU~)x~(SU~)x~(TU’).
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Using thesenotationsand those of the precedingsection, the string tension for arbitrary gauge
groupsanddimensionsreads

K~=—lnt—2(d—2)~I~,., (3.61)

with .k,., the contributionsof diagramswith A + n plaquettes,given by

I~:4=t~
k5=B51t1

K6—.2t
6—A

6
K-,, =0
K8 = (9d — 22)t

8+ 2B
82t-

2+ 4t2B
42

K9 = (lOd — 29)B91r
1+ (d — 5/2)B

55t’+ 2D~i~r
2+ (8d — 29)t3B

5,
K10 = (48d — 132)t

1°— (lld — 59/2)A,
0+ (d — 5/2)B551t-

1+ (lOd — 29)(C,
451t-’— t

4A
6)

—dB~1t
2+ 12t4B

42
I~,= (24d— 88)t

5B
51— (lid — 59/2)A55,— (lOd — 29)B51A6f

1+ 20(d — 3)B,,
1r~’+ 12tB73

+ 6B113r
3+l0t5B

33
K,2= (364/3d

2— 1666/3d+ 1831/3)t’2+ (72— 24d)t6A
6+ (lid — 29)A~— 20(d — 3)A12+ 12D~i~r

3
+ 12D~i~t+ 6B~

2+ B124r
4+ (16d — 40)t2BM + (48d — 160)t2B

82+ (60d — 168)t
6B

42
+8(d— 3)B~+ 4(2d — 5)B86t

2+ 4(9d— 26)B
12,2t-

2. (3.62)

The correspondingdiagramshavebeendisplayedin ref. [87] (actually, Münsterhasgiven diagrams
relevantfor hisclusterexpansionwhich differs from the expansiondescribedaboveonly by a reshuffling
of the disconnectedcontributions).The interestedreadermay alsofind theexplicit expressionof K~asa
function of the first charactercoefficientsfor Z,,, U(1) andSU(N) gaugegroupsin [87,112]. The series
hasbeen extendedto 14th order for the groupsZ

2, U(1) and SU(2) [113],but the formulae below
actually apply to all SU(N), N� 3. For thesegroups,diagramswith 13 plaquetteshaveone andonly
oneplaquettecarryinga higher representationandcontribute

K13 = (144d
2— 864d+ 1261)B

51t
7+ (80d2— 538d + 893)B

91t
3+ (140d2— 822d + 1211)B,

31r’

+ (8d — 20)C8151t
2+(16d— 44)C

4151t

2 + 8(d— 3)r’ C
1184+ ~Y(t’

6)-

Diagramswith fourteenplaquettesaremore numerousandcontribute

K,
4 = [(1080d

2— 5968d+ 8288)+ 2r(d — 3)+ (~d2— ~d + 283)a
+ (—450d2+ 253ld— 3568)y]t’4 +

In that expression,the four contributionscomerespectively from the topologiesA, A’, B and from
disconnectedterms. The weights are T = a = y = I for Z

2, r = ~, a = 8, y = 4 for SU(2), T = 1, a = 3,
y = 2 for U(1), r = 0, a = 6N

2, y = 2N2 for SU(N) (N —~cc).

The final resultsfor the coefficientsK,. of

K = — In t — ~ K,.t”

are listed in table 9. The readermay find more data in [112,113]. We also quote the longer series
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Table 9
CoefficientsK~for the strongcouplingexpansionof thestringtension in four dimensions.K = —In t — ~K~t~

n

G 4 5 6 7 8 9 10 11 12 13 14

Z
2 4 0 4 0 56 0 144 0 3616 0 4276

U(1) 4 0 2 0 ~ 0 ~ o 5754751
3 24 720 2160

SU(2) 4 0 0 0 ~ 0 ~ 0 1532044 0 3596102
3 405 1215 5103

SU(3) 4 12 —10 —36 391 1131 2550837 —5218287 2855515792 10 5120 2048 61440

SU(cc) 4 0 8 0 56 0 344 0 0 11688

computedfor the three-dimensionalZ2 modelby Weeks[114]from the dual Ising model

K = — ln t — 2t~ — 2t

6 — lOt8 — 16t1° — ~t12 — 150t14— 734t16— ~~4t18 — .. (3.63)

It is alsoof interestto computethe string tensionfor generalizedactions.The SU(2)string tension
with amixed action hasbeencomputedto the 11th orderin /3~and/3a [115].

To studythe U(N) gaugetheory,Greenand Samuel[104]haveintroducedthe Wilson loop in the
determinantrepresentation(det U~).This order parameteractually probesthe U(1) part of U(N)
U(1)® (SU(N)/ZN). They show that, at d = 4, (det ~ hasan area(resp.perimeter)fall-off for large
loops at strong (resp. weak) coupling, very much as in the four-dimensionalU(1) theory. On the
contrary, in three dimensions,it is only in the N —~ limit that (det U~)has two regimes. The
computationof the stringtensionof this loopoperatorhasbeencarriedout to twelfth order.

3.2.3. Glueballmass
As explainedin section3.1.8, the computationof strong coupling expansionsof massgapsis quite

delicate,andonly a few termshavebeencomputedsofar.
Inversecorrelationlengthsalongan axis havebeencomputedto order /38 for the threecombinations

of plaquettesthat transformirreducibly under discretecubic rotationsand under C-parity (seesection
3.1.8). They form a singlet C

1, a doublet C2 anda triplet C3

C1=Retr(U12+U23+ U31) (C=+1) (3.64)

C2= {Re tr(U13— U23); Re(—2tr U12+ tr U13+ tr U23)} (C= + 1) (3.65)

C3 = {Im tr U12 Im tr U23 Im tr U31} (C = —1). (3.66)

Thelatter doesnot exist for groupswith a real fundamentalcharacter(Z2, SU(2), - - .). In the continuum
limit, thesestatesmaybe expandedonto stateswith definite angularmomentum,parity and C-parity.
Assuming that the smallest angular momentum gives the dominant contribution to each of the
multiplets,we expectthem to becomerespectivelystatesof J~= 0÷~,2~and1~.
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The coefficientsof

mJpc=_4lnt+~mktk (3.67)

arepresentedin table 10 [97,96] for somegaugegroupsin four dimensions.Also availablefrom [87]are
the seriesfor Z3, and for U(1) with the heat kernelaction. The energy-momentumdispersionrelation
for the singlet statehasalsobeencomputedin threeandfour dimensionsfor Z2 andSU(2) [92]:this is a
usefulquantity if onewants to seehow Lorentz invarianceis restoredin the approachof the continuum
limit.

For the samepurpose,it is useful to computeoff-axis correlationlengths.Thoughdifferent at small
values of /3, they should approachthe on-axis quantitiesin the scaling region. Their computationis
technically involved (see section 3.1.8) and fewer orders are known. In that case,statesmust be

Table 10
Table of on-axisglueball masses

k

G 1 2 3 4 5 6 7 8

—67 —287 —2279

Z2 0 1 0 —~—~ 0 —~~—— 0

u —793 —445 —1659829
(1) 0 0 0 —i--— 0 2880

SU 2 0 2 0 0 —20984 0 —151496
() 3 405 243

SU 3 3 9 —297 858827 47641149 —183140613
2 2 10240 71680 40960

SU(~) 0 0 0 —34 0 —164 0 —546

0~states

k

G 1 2 3 4 5 6 7 8

—19 37 —359

Z2 0 1 0 —i— 0 0

SU 2 0 2 0 —26 13036 0 —28052
() 3 405 243

SU 3 —27 17 —153 1104587 29577789 —90611973

~~ 2 2 10240 71680 40960

2 states

k

G 1 2 3 4 5 6 7 8

9 —99 33 —36771 117897 —1559
SU(3) 3 0 2 4 4 1280 448 2

l states
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classified accordingto irreducible representationsof other discrete subgroupsof 0(4) [116]; for
example,correlationfunctionsalonga diagonaldirection mustbeprojectedonto representationsof the
tetrahedralgroupTd, and form threemultiplets: a singlet, expectedto becomea0~÷,and two triplets
(2~and1~).Their masseshavebeencomputedto order /34 for Z2, Z3, SU(2) andSU(3)(the 1~only
exists for Z3 and SU(3)) [96,99].

We finally recall that again in the three-dimensional12 model,a longer serieshasbeencomputedin
the dual Ising model [117].

3.3. Resummationof diagrams

3.3.1. Largedimension
The large dimensionlimit is not uniform and different techniquesmust be useddependingon the

region under study. Here, we are interestedby a rearrangementof the strong coupling series,which
can be performedonly when it is convergent,that is, in the strongcoupling phase,including possible
metastableregions.This methodis differentfrom others,studiedlater;comparisonandfinal conclusions
aboutthe largedimensionlimit arethereforepostponedto the endof section4.2.3 devotedto the 1/d
expansion.

A simple inspection of the strong coupling expansionfor the free energy(table 7) revealsthat the
highestpowerof d increasesby oneevery fourth term.It is thereforetemptingto reorderthe seriesas
an expansionin d”

4 at fixed /34d. This rearrangementcan be performedexplicitly [118].
We havefirst to understandthispropertyon the maximumdegreeof d in the termsof the seriesand

to identify all the contributing diagrams. Note that the degree in d for a given diagram is its
“dimensionality”, i.e. the maximum numberof different dimensionsit uses.Let us considernow the
following reductionprocesson a connecteddiagram. Suppressa slab of the lattice limited by two
consecutivehyperplanesk <x

3 <k + 1 and containingat least one plaquetteof the diagram.As the
diagramis closed,at leastfour plaquettesdisappear(in the constructiondescribedin section3.1.9, the
reduction processconsists in suppressinga closed oriented curve); other plaquettes(within the
hyperplanesx1 = k or = k+ 1) maybeduplicatedandmustbe replacedby eithera single plaquetteor
no plaquetteat all. In any case,this operationdecreasesthe numberof plaquettesby at least4, while
the dimensionalitydecreasesat mostone,whencethe quotedproperty (seedetailson the subdominant
role of disconnecteddiagramsin [118]).It is also clear that the maximum dimensionalitytermsare
obtainedwheneverexactly four plaquettesdisappearat eachreductionstep,until the simplestcube
diagram is obtained.So the contributingdiagramsareall connectedtreesmadewith three-dimensional
cubes,with all plaquettesin the samerepresentation.

The next problem is to sum their contributions. Since each cubehas six faces, it hasup to six
neighboursin the tree diagram.In a step-by-stepconstruction,the addition of a new cubeon a given
plaquetteof acubeleadsto 2d— 5 (‘=2d) possibilities. Some of thesemay be forbiddenby excluded
volume effects,but their numberis negligible with respectto 2d, whend is large. Theexpectationvalue
of a single plaquettein the representationr, Pr = (~r(Up))/drsatisfiesthe self-consistencyequation

Pr/3r+2dpr
5. (3.68)

IntroducingPr = /3rfr, Xr = 2d/3~,oneparametrizes(3.68) as

fr = (1— u
1)’, X~= Ur(1 — ur)

4
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Fig. 17. The free energyin the strongcoupling phasefor large dimensions.

andthe free energyis easyto integrateto

FsssF—~d(d_1)ln/3o

d312
= 12\/2~ d~x~2g(x

1) (1 + C(d~
4)) (3.69)r�0

with

g(x~)= ur(13ur)/(lur)2.

With the Wilson action, only the fundamentalrepresentationand its conjugategive a dominant
contributionto (3.69). Up to an overall factorN2 (or 2N2 dependingwhetherf andf areequivalentor
not), the limiting free energyF(x

1) is universal.
A graphicalrepresentationof theresultingfree energyis displayedin fig. 17. It presentsa cusp at the

pointA for X~= 2d/3~= 44/55 (for u = 1/5). As the rearrangementof theseriesis only possiblewithin the
disk of convergence,and as A is obviously a singular point, only the arc OA is physically acceptable.
We shall seein section4.2.3 that a part of this arc endingat A representsa metastablephase.At point
A, the secondderivativeof the free energyhasa singularbehaviour8

2F/8/3~ (j3,~— /3~1/2; this looks
like a secondorderphasetransition,sincethe correspondingcorrelationlengthbecomesinfinite, with a
critical index 1/4 (zero mass“boxciton”).

The Wilson loop may alsobe computedin the sameapproximation.It amountsto replacingeach
plaquetteof the minimal surfaceby the expectationvaluePr- Hence

= exp(—KA)

Kr = — ln Pr = — ~lfl(UrI2d) (3.70)

from which the leadingterms(dt4)75 in the expansionof K maybe recovered.
Correctionsto the formula (3.69)—(3.70) can also be computed;the first onesare presentedin ref.

[118]for thepartition function, in ref. [113]for the 12 string tension.Forgroupslike Z
2, U(1), SU(2)or

SU(cc) whereonly evenpowersof t areinvolved, the correctionsin (3.69) is C(d”
2). Thefirst termsof

the expansionaregiven in table 11.
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Table 11
Coefficientsof thefree energyF1d

2 in the large d limit

dt6 dt5 d2t’° d2t’2 d3t’4 d3t’6 d4t’5 d4t2°

1 2 62 380 7298
Z

2 0 1 10 ~ T J~

U(1) 0 2 20 20 760 2762

SU(2) 0 4 —~ 40 8 1520 3952

SU(~) 0 2 20 84 ~

3.3.2. Partial resummation.Bethe—Cayleylattice -

The educatedreaderhasrecognizeda Cayley treein the relevantdiagramsof the precedingsection.
This suggestsa considerationof the samepatternin finite dimensions.We recall that, in the Ising
model,onemayperformalow temperatureexpansionin termsof irreducibleclusters;truncatingto first
orderyields the meanfield approximation,andto secondorderamountsto solving the problem on a
Cayley tree (Betheapproximation)[4]. In the gaugetheory,we haveunfortunatelyno gaugeinvariant
equivalentof the magneticfield andmagnetization,andthe Betheapproximationcannotbe justified in
sucha way. Let us just considerit as a partial resummationof strongcoupling diagrams,by solving the
modelon a Bethe—Cayleytree of cubes[119].

This Bethe—Cayleylattice is definedrecursivelyby building successivegenerationsof cubes.Given a
cubeof generation1, we add (2d— 5) cubesof generation(1 + 1) on eachof its five free faces.On the
resultinglattice, 2(d — 2) cubesare incident on each face, and thereis no cluster nor cycle of cubes.
Accordingly, the solution on this lattice resumsstrong couplingdiagramsof the original model which
may be consideredas treesof cubes,but misses, for example,diagrams12.2, 16.1, 16.2 of table6, or
overcountsthe diagram of fig. 19. On the other hand,every link is sharedby an infinite numberof
plaquettes,andthereis no weakcouplingexpansionin modelswith adiscretegaugegroup.Let us solve
the model in its strong couplingphase,in the simplestcaseof a 12 gaugegroup. Considera cubeC of
generation1, andthe plaquettep separatingit from its ancestor.Let x, be the sum of closeddiagrams

A 1:1 ~eneratio~ 1.1
generationI c ~ ~ —

generation I—i / — ‘

/ —.... generation 1*2

Fig. 18. Constructionof a Cayley tree of cubes.Eachface asABDE Fig. 19. A diagramovercountedin theBetheapproximation.
has2(d — 2) adjacentcubes(only two are representedhere). Noneof
the cubesbuilt on thefaces of C, andC2, nor their descendantswill
ever meet.
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madeof C and its descendantsnot containingp, ty, the sum of such diagramscontainingp. Onemay
write in dimensiond the following recursionrelations

x, = [(x,+
1 + ~,~,)..2d_5”]5

y, = [(tx,+,+ yt+1)
2d3’]S. (3.71)

The quotation marksmeanthat, in the binomial expansion,one sets t2’~ 1, t2~~1t. Assuming the
= y,/x, goesto a limit p as I -+ cc, we derive the self-consistentequation

p = [(t + p)’2’~5’/(i+ pt)’2d5”]5. (3,72)

At d = 3, this is easilyseento be equivalentto the well-known Betheapproximationof the dual Ising
model. At d = 4, the following parametrizationof the free energymay bewritten

F = 6 ln cosh/3 + 20 ln(1 + 3pt+ 3p2+ p3t)— 14 ln(1 + 4pt + 6p2+ 4p3+ p4) (3.73)

with

p=p5, p= t+(1—pt)p5(3+p’°)/(1+3p10).

To havea sensiblelimit as d goesto infinity, onehasto rescalet so as to makedt4— dp4 finite. This is
nothingbut the regimestudiedin the previoussubsection.

At d = 3 or 4, the Betheapproximationhasa secondorder phasetransitionat a physicalvalueof t2

(t2 = 0.44 at d = 3, t2 = 0.19 at d = 4). However, in dimensionfour, this singularpoint takesplacein a
metastablephasebecauseof an earlier first order transition(at t2 = 0.178) to a weakcoupling phaseof
free energyF,,. = 6/3 — 3 ln 2. All thesefigures andphasepatternsagreewell with the propertiesof the
original model. This makes the Bethe approximation attractive. It would be desirable to have a
systematicandefficient way of computingcorrectionsto this approximation.

3.4. Analysisand extrapolation

3.4.1. Generalities

Given a seriesexpansionof somefunction f(z)

f(z)= ~f,.z”+ .‘ (3.74)

truncatedto someorder N, one may beinterestedin two relatedproblems:
i) finding the singularitiesz, of f close to the origin, andstudyingthe behaviourof fin their vicinity;

in particular,determiningwhetherthe singularbehaviouris algebraic,and,in the latter case,what is the
critical exponenta

f(x) -~A,(z— z~)’~. (3.75)

ii) extrapolating the function to a region lying outside the radius of convergence,for instance
computingits limit f(z = cc).
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It may happenthat additionalinformationon the function (suchas analyticity properties,behaviour
nearsomesingularitiesor at infinity,...) is available. This is of courseof utmostimportancein the
study of thesetwo problems,andmaysuggestthe most appropriatemethod.In the mostcommonand
unfortunatecasewhere no such informationis available, oneproceedsmore blindly andtestsvarious
possibletechniques.

We are not going to makea detailedstudy of thosemethodsand refer the readerto the abundant
literature[120].We only reviewrapidly someof them,to be usedin thefollowing applications,in order
to fix the notations.

i) The simplest methodto set up is the ratio method.Supposethat f,. are real, that the closest
singularity z

0 is unique,hencereal, andthat f hasan algebraicsingularity (3.75).Then, for largen

f~If~+~-~ zo[1 + (1 + a)/n + C(1/n
2)]. (3.76)

Therefore,forming the ratiosandlooking at the way theyapproachtheir limit should yield both z
0 and

a. The useof Neville tablesmayacceleratethe convergence.However,it mayhappenthat short series
are not yet dominated by their closest singularity. Moreover, this method is restricted to real
singularitiesandcan handleonly one singularityat a time.

ii) Padéapproximantsare rational fractions [L/M](z) = PL(z)/QM(z) (F, 0 of degreesL and M,
with L + M + 1 = N) suchthat the Taylor expansionat z = 0 reproduces(3.74)up to C(z”~’)

f(Z)—PL(Z)/QM(Z)= C(zr~~). (3.77)

Padéapproximantshave the nice property of approximatinga meromorphicfunction within a large
domain restrictedby non-polesingularities.In particular,theyenablean extrapolationoutsidethe circle
of convergenceof the series.They can also accommodatepower behaviourat infinity; for example,if
f(z) behavesat infinity as z”, p a positive or negativeinteger, thenthe [L/(L + p)] approximantsare
appropriatefor studyingthe large zI region.

Some problemsof Padé approximantslie in a sometimeserratic convergenceand the possible
occurrenceof spurious singularities in some approximants.It is observedthat they reconstructa
branch-pointby an accumulationof interlacedpoles andzeroessimulatingthe cut. Hencetheyare not
of direct use for a singularity of the form (3.75). However, if there is no confluentsubdominant
singularity, i.e. if A(z) = (z — z~)~f(z) is regularat z,~,the logarithmicderivative

(1/f) df/dz= a/(z— z~)+ A’/A (3.78)

hasan isolatedpoleandthe correspondingPadéapproximant(“D-Iog Padé”)is well-suited;its poleand
residueyield z~,and a. Practical cases(non-factorizablesingularity (z — z0)’~A(z)+ B(z), confluent
singularity (z — z0)~A(z)+ (z — z5)

8B(z), or even worse) can make the method less effective. In
general, the location of the singularity is reliable, whereas the estimateof the exponent is more
unstable.

iii) Integralapproximants[121—122]generalizePadéapproximants.Onewrites a linear differential
equationwith polynomial coefficientssatisfiedby f. We limit ourselvesto a first order equation

QK(z)f’(z)+PM(z)f(Z)+RL(z)= C(z”). (3.79)

The coefficients of the polynomials are determined uniquely (up to a common factor) provided
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K + M + L + 2 = N. The [L/M] Fadeapproximantcorrespondsto the case0 0, while R 0 yields the

[M/K] D-log Padé.In the vicinity of a simplezero z
0 of 0, f behavesas

f(z)-~-A(z—z0)~+B, (3.80)

with

a = —P(zo)/Q’(z0), B = —R(zo)/P(zo).

Suchapproximationsmay sometimesgive accurateestimatesof a. On the otherhand,as thereis a large
variety of approximants,the spreadof the resultsmaybe importantandpuzzling.Thenonetriesto find
a priori reasonsto selectsubclassesof stableapproximants.

iv) Theseintegralapproximantsmay alsobe generalizedto handledoubleseries[122,123]t

F(z, w)= ~fnmZnWm. (3.81)

Oneis particularlyinterestedin singularpoints (z0, wo) whereF exhibitsthe scalingbehaviour

F(z, w)—(~z)’~çb(z~sw(z~z)~)+B (3.82)

with ~w = w — w0, ~z = z — z0, and~w and~z two linear combinationsof ~z and~w:

w=Z~w—e,~z, ~=~z—~w/e2. (3.83)

Fromthe availabledata,namelya finite numberof coefficientsf~m,onedeterminesfour polynomials P,
Q, R, S in both variablesw andz so that

QaF/az+R3F/aw+PF+S=0. (3.84)

The vanishing right hand side meansthat the matchingis actually done to a certain order, i.e. for a
given pattern{(n, m)} of termsz~w

m,andthe patternof termsfor the polynomialsarechosenso asto
makethe resulting linear systemsolvable.

Thesingularbehaviour(3.82)isencounteredateverycommonzero(z
0,wo)of Q(z, w) andR(z,w), with

B =

(e1, e2) roots of

(aQ/aw)e
2+ (~0/az— 3R/aw)e— aR/az~ ~ = 0

and

/3 = (aR/aw— e
1 8Q/aw)/(aQ/az— e~.’aR/az)(~0~0,

a = —P/(dQ/c9z— e~’aR/az)(~5,~,,.

l~Thegeneralizationof Fadeapproximantsto the multidimensionalcaseis not unique andothertechniquescan be applied[1241.
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Theseapproximantshavebeenusedwith successin the study of bicritical spin systems[123].We
reportbelow on a lesssuccessfultrial; in latticegaugetheories,theyhavebeenfoundto be unstableand
thereforeunreliable.The origin of theseinstabilitiesmay lie in a morecomplicatedsingularbehaviour,
or in a morecomplicatedpatternof singularities.

3.4.2. Analysisof thefree energyandrelated quantities
It is importantto know wherethe singularitiesof the free energyF (or of its derivatives,the internal

energyE, the specific heat C, . - .) lie. Realphysical singularitiesmay signal the occurrenceof a phase
transition;complexonesarerelevant insofaras theylimit the convergenceof seriesexpansionsor affect
thephysicsat real /3.

Strong coupling expansionsseemwell suited for this researchof singularities.However, we recall
that generically,abovetheir lower critical dimension,latticegaugetheoriesundergoa first orderphase
transition.At somevalue /3~of the inversecoupling, the free energychangesfrom its strongcoupling
determinationF~~(/3)to a thermodynamicallymorefavourableoneF~~(/3).F~~(/3)maybe analyticup to
/32> /3~while the true free energyF = max(F~,F~~)is singular at /3~.An examplewill be provided
below by the four-dimensionalZ2 theory.~ and ~ maycorrespondto the sameanalyticfunction in
differentRiemannsheetsandcontinueto describemetastablephasesbeyondthetransitionpoint. Explicit
examplesof such behaviourare constructedin section4. It may evenhappenthat two modelshavethe
samestrong couplingbehaviour,but undergofirst (or higher)order transitionsat differentpoints. The
“naive” Eguchi—Kawaimodeloffers an exampleof this puzzling behaviour.Both the full U(cc) model
and its one-sitepartnerhavethe samestrong couplingexpansion.However, they areknown [78,791 to
havetransitionsat differentpoints, towardsdifferentweakcouplingphases.

It is clear from this discussionthat strongcouplingseriesare a priori unableto seesomefeaturesof
the phasestructure.When a first order transition is present,the strong coupling expansionignoresit
anddescribesthe metastablephasebeyondthe transition.If thisphaseterminates,however,at some/32,

this couplingis seenasa singularity andgivesthereforean upperboundon /3~.If sufficientanalyticity is
granted,it might be theoreticallypossibleto continueanalytically F’s. to ~ henceto determinef3~,but,
in practice,the seriesare muchtoo short for suchan extrapolation.

Sucha simplescenarioseemsto happenin the four-dimensionalZ2 theory.Self-duality tells us that
the transition, if unique, must happen at t~= tanh/3~= \/2— 1 = 0.414, and indeed Monte-Carlo
simulations [1251show clearly that the internal energy is discontinuousat this point. This is cor-
roboratedby the fact [126]that the seriesfor E (eithertruncatedor Padé-extrapolated)gives a stable
value at t~(0.48—0.49)which is far from the value predictedby self-duality if the transition keeps E
continuous(V2/2 0.71).Onthe otherhand,D-log Padéapproximantsfor E (resp.C) indicatea stable
singularity at 0.44 (resp.0.42—0.43),in the vicinity, but significantly different from t~.This analysishas
beenrefined [1271;to deal with a single-valuedfunction betweent~and t2, it is proposedto invert the
function E(t) andto computethe seriesexpansionof t(E). The resultingseriesdoesnot show any stable
singularity for 0 ~ E ~ 1, but dt/dE vanishesat t 0.424. This seemsto indicate that the changeof
variablehas unfoldedthe singularityat t2 sucha propertyis knownto be sharedby the infinite d limit
of the strong coupling phase where E has a squareroot singularity at t2 (see section 4.2.3). To
summarize,the picture that emergesfrom this analysislooks like fig. 20, and agreesremarkablywell
with Monte-Carlodata[125].

In the caseof the four-dimensionalU(1) theory,a continuousphasetransitionis expectedbetweena
confinedand a Coulombphase,and indeedobservedin Monte-Carlosimulations[128].The expansion
of U(t

2) E(t)/t in powersof t2, on the otherhand,displaysalternatingsigns(as in the casesof 12 or
SU(2)) which indicates a real negative nearestsingularity. This unphysicalsingularity t~,to which we
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Fig. 20. The internalenergyE in termsof t = tanh$ for Z
2gauge theory.

shall return below, may be mappedaway by a conformal changeof variablesz = t
2/(t2—t~)[127]

(diagonaland sub-diagonalPadéapproximantsare invariant in this mapping,but D-log approximants
are not). Dependingon the method,one finds, assuminga form (t~— t2)~*for the singularity of the
specific heat, t~—0.42—0.45(i.e. /3~—0.98—1.01),with an exponenta ranging between0.35 and 0.65.
This mustbe comparedwith the Monte-Carlodata/3~— 1.005, a — ~[1291.In spiteof the spreadof the
estimates,coming from the shortnessof the series,oneseesthat strongcoupling expansionsarequite
consistentwith the observedbehaviour.

The caseof the four-dimensionalSU(2) theory seemsmoreelusive. On the onehand,onedoesnot
expectany deconfiningtransition.However,a sharpstructurein the specific heathasbeenobserved,
and modifications of the action may create first order transitions (e.g. mixed fundamental-adjoint
actions).We may expect strong coupling series to havea hard time reproducingsuch a complicated
pattern.Indeedthe Fadeanalysisfinds a singularity in the region t — 0.45—0.5(J3 — 2.1—2.4); sometimes,
this singularity splits into two complexconjugatesingularitiesin the highestavailableapproximants.It
is, however,not clearwhetherthis is a genuineeffect or an artefact.The authorsof [130]haveapplied
the samemethodas in Z

2, inverting the expansionof E(t) into an expansionof t(E), and used the
additionalinformationon the first term of the weakcoupling limit

E—1-~f3~+--’

to constrainfurther the approximants.They find the nearbysingularitiesof E in the complexplaneat
t -~0.47±i 0.05 (i.e. /3 -~-2.2±i 0.32), in sucha way that [131]they alsoreproducewell the bump in the
specific heat. Direct evidenceof the presenceof thesecomplexsingularitieshasalsobeenderivedfrom
a Monte-Carloinvestigationof the complexzeroesof the partition function [132].If oneusesonly the
strongcouplingexpansion,the distinction betweennearbyconjugatesingularitiesanda single real one
might requireas manyas 30 terms(11 only areavailable).

Onemaytry to usethesetechniquesfor the mixed SU(2)action of eq. (1.10), in order to reproduce
andunderstandbetterthe phasestructure.Severalmethodshavebeenattemptedon the doubleseries
in (Pt, Pa) [133]. One may look at singularities of one-variablePadé approximantsalong lines of
constantslope in the (fit, /3a) plane.The resultsareconsistentwith the patternof fig. 6, but not stable
enoughto locateaccuratelythe (critical?)end-pointof the first order line; incorporatinginformationon
the weak coupling behaviourdoes not help. We havealso tried [134] to use the two variable Padé
approximantspreviouslydefined; theyhavegiven very unstableresults.It maybe that the form of the
singularity at the end-pointis more complicatedthan the oneassumedin (3.82).
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Thesemethodsalsoapply to othergroups.For SU(3), resultsaresimilar to SU(2), with a singularity
of F(/3) at /3 — 6.2, a little beyondthe cross-overregion seenat /3 — 5.6. For mostothergroups,wherea
first order transition occurs, the results look like those of Z2. One finds a singularity beyond the
expectedtransition.This is the caseof SU(N)/ZN [107],and of SU(N), N = 4, 5, 6, cc [105,106]. For
SU(4) and SU(6), the occurrenceof complexpoles in the Fadeapproximantsmakesthe analysisless
reliable. It is worth mentioning that the seriesE(t) are generallybetter behavedthan E(J3). They are
lessoften plaguedwith complexsingularities,andmoreuniversalin the sensethat they approachfaster
their limit at infinite d (section4.2.3) or, for SU(N), at infinite N. The SU(cx~)seriesitself showssome
evidenceof a singularityat t

2 = (/3/2N)2— 0.13—0.14,alittle beyondthe first order transitionat t2 — 0.12.
Thelatternumberis extrapolatedfrom theSU(4)—SU(6)transitionpoints.Noticethatthereis asubstantial
discrepancywith the correspondingfigure extrapolatedfrom the U(N) groups~u(oo)— 0.14, the origin of
which remainsobscure.

We havementionedabovethat the nearestsingularityin t is oftencomplex. In the threecasesof Z
2,

SU(2) andU(1), the signsof the expansionof E/t in powersof t
2 alternate,pointing to a singularity at

negativet2. The patternof singularitiesis summarizedin fig. 21. The three-dimensionalcounterpartof
this phenomenonis well-known in the dual languageof spin models [135].The low temperature
expansionsof theIsing modeldisplay nearbycomplexsingularities,whichmay dependon the natureof
the lattice. Moreover, it hasbeenshown in that case,by direct numericalinvestigationof the model,
that theseunphysicalsingularitiesare not an artefactof the expansion,but a genuinefeatureof the
model,andthat theyshow a good evidenceof a non-trivial universalcritical behaviour[136,119]. In the
otherextremesituation, as d x cc, wehaveseenin section3.3 that the model is solvableandexhibitsa
singularity at 2dt4 = 44/55; hence,in that limit, therearefour singularities,degeneratein magnitude,in
the t-plane,and only one is real positive andphysical (endof the metastablephase).At intermediate
dimensions,as d = 4, the Bethe approximationdescribedin section 3.3 lifts that degeneracyand
reproduceswell the singularitypatternof fig. 21. For example,for Z

2, it predictsa first order transition
at t

2 = 0.178, andtwo singularitiesat t2 = 0.190and t2 = —0.151. On the otherhand,analysisof the free
energyseriesat the unphysicalsingularities (Z

2, U(1) and SU(2)) showssomeevidenceof a universal
critical behaviour,with the specific heatdiverging with an exponenta’ rangingfrom 0.45 to 0.6 (Bethe
approximation predicts a classical value of ~) [119]. The interpretation and role of the complex
singularitiesandthe natureof the correspondingcontinuoustheory remainopenproblems.

So far, we havediscussedthe analysisof the singularity patternfrom seriesexpansions.The other
applicationof theseexpansions,namelythe accuratecomputationof F(/3), E(J3) or C(/3) in the strong
coupling region should not be underestimated.It is quite valuable in the discussionof Monte-Carlo
computations.In practice, becauseof possible nearbycomplexsingularities,Padéapproximantsare
usedin this extrapolation;this yields accuratedeterminationsof E(/3) up to the vicinity of the first real
singularity (transition point for U(1), “cross-over” for SU(2), end of the metastablephasefor models
with afirst order transition).The caseof Z2 hasbeenillustratedhere,and similar resultsareavailablein
the literaturefor othergroups.

f
t order

0.172

.1 A A .4 M 0
-0.18 0.19 —0.17 0.19 -0.15 0.23—0.25

~a) ~b) ~c)

Fig. 21. Singularitiesin thecomplex t2 planeof four-dimensionalgaugetheories:a) Z
2,b) U(1), c) sU(2).
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To summarize,strongcoupling expansionsenableoneto reproducewell the strongcoupling phase.
They also allow an investigationof the singularity pattern.Although the seriesare still too short to
achievea precision comparableto the caseof three-dimensionalspin models,they give a consistent
pictureof thepossiblesingularities.Improving qualitatively this picturewould presumablyrequire much
longer series.

3.4.3. The string tensionand the rougheningtransition
In four-dimensionalnon-Abeliantheories,wherethe only deconfiningphasetransitiontakesplaceat

/3 ~ g~2= cc, one would like to makecontactwith the scaling limit of the string tensionand of other
physicalmassscales,for exampleto computethe constanta- in (2.12). It seemsthat, if strong coupling
expansionsmaybe extrapolatedin a suitableway from /3 = 0 to /3 large, so asto reproducethisscaling
limit, oneshould beable to determinea- andto computeratiosof massscales.

It turnsout that this programencounterstwo kindsof difficulties. First, as discussedin the previous
section,most non-Abelianmodelsundergoa discontinuousnon-deconfiningphasetransitionat finite /3.
The string tensionandmassgapsdo not vanish there,but are reasonablyexpectedto be discontinuous.
This makesthe extrapolationfrom small /3 to the asymptoticfreedomregimequite hazardous.

Even in the casesof SU(2) or SU(3), whereno such first order transitionoccurs, anotherdifficulty
arises. The string tension, which, loosely speaking,is an observablerelated to a two-dimensional
surface,is sensitiveto the “rougheningtransition” of that surface.We shall reviewbriefly someaspects
of that transition, referring the readerto the literature [137,1381 for moredetails.

i) Rougheningin the three-dimensionalIsing model.
Considera three-dimensionalIsing latticeat low temperaturewith appropriateboundaryconditions

creatingan interfacebetweentwo phasesof oppositeorientations(fig. 22). The interfacialfree energy
~F is the difference between this new free energy and the usual one; it is proportional to the
cross-sectionA of the lattice

~F=—KA (3.85)

andK is the surfacetension.At zerotemperature,the interfaceis planar.As T grows,it becomesmore
and more chaotic,until a value TR, the rougheningtemperature,lower than T~(the ordinary “bulk”
critical temperature),where its propertieschangequalitatively. Beyond this point, fluctuationsare so
largethat onecanno longer talk of a localizedsurface.If h, denotesthe altitude of thesurfaceaboveits
position at point r, of the minimal surface,one may define the probability distribution of h~— h for
distantpoints

p(z, r, — r~) = (6(h, — h
1 — z)~. (3.86)

Fig. 22. An interfacein the Ising model. Fig. 23. A stepof length L costsan extrafreeenergyfL.
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The secondmoment of that distributionbehavesfor largeseparationsas

~ z2p(z, r
0) = ((h, — h1)

2) — (~h)2 (asr
11 —* cc). (3.87)

measuresthe width of the interfacial region. At TR, z~hdiverges for an infinite system.The
rougheningtransitionis causedby long-wavefluctuationsof the surface;the step free energyf (thefree
energyper unit length requiredto createa single stepin the interface,seefig. 23) vanishesfor T � TR,
and thereforethe large scale deformationsof the surfaceare costless.The surfacetensionK of eq.
(3.85) doesnot vanishat TR, but is singular.

There is a convergingevidencefor this singularbehaviourcoming from the study of exactmodels,
seriesanalysis,Monte-Carlosimulationsand,recently,real experimentsin crystal growth.Theoretically,
a convenientapproachis the solid-on-solid (SOS) model, whereconsideringa simple class of surface
deformations leads to an equivalencewith the discrete Gaussianmodel /3~= /3 ~ (h1 — h~)

2,or
with the (dual) two-dimensionalxy-model. To the transitionof the latter correspondsthe roughening
temperatureof the SOS model. The surfacetension K, which is the free energyof the xy-model, is
expectedto havean essentialsingularity of the form

K = A(/3)+ B(/3) exp(—C/V TR— T) (3.88)

while the stepfree energyidentifieswith the inversexy correlationlength

f— ~ -~exp(—C’/VTR—T). (3.89)

The length scalerelevantin the discussionof surfacefluctuationsis actually ~ for T < TR, i.e. in the
high-temperaturephaseof the xy-model. For T> TR, ~ vanishes,andthe relevantscaleis the size L
of the lattice.Let A = ln(~~~/a)(resp.ln(L/a)) for T< TR (resp.T> Ta). The functionp(z, r) readsfor
largeseparationsr — L

p(z, L) — (l/V4n-A) exp(—z2/4A). (3.90)

In particular,thewidth t~hof eq. (3.87) is

~h=V2A

while the probability that the surfaceis, at somepoint, at the sameheight as on its boundaryis

p(O)= 1/V4~rA.

Fromthe behaviourof ~, onederivesthat

p(O)= (~h)’ ~(TR~)”4 for T< TR
-‘-l/VlnL for T>TR. (3.91)

Thissingularbehaviourderivedin the SOS model is presumablyuniversal,andshouldalso takeplacein
the original Ising model. According to the standardlore, the rougheningsingularity doesnot affect
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“bulk” quantitieslike the free energyor its derivatives,or like thespin—spincorrelationfunctions.The
non-analyticitiesshowup only in surface(non-local)observables.

To conclude,we recall from section 2.3.5 that by duality, the surface tension K of the three-
dimensionalIsing model is nothingbut the string tensionof a Wilson loop lying at the boundaryof the
interface.The previousdiscussionsuggeststhat the samephenomenonmay occur in higher-dimensional
lattice gaugetheories.

ii) Evidenceof rougheningin higher dimensions.
The two-dimensionalsurfacespannedby the Wilson loop may no longer be viewed as an interface

betweentwo regions.However,longwavelengthfluctuationsarestill expectedto makesurfaceobservables
non-analyticat somecoupling.At strongcoupling /3 </3R, the surfaceis smooth,it is roughfor /3 � /3R.

Rememberthat thisrougheningtransitionisnot adeconfiningtransition.Thestringtensionis non-analytic,
but doesnot vanish.

To get a clear evidenceof the rougheningtransition,we needa good indicator.The string tension
itself [1391is only expectedto presenta weak singularity at 13R, as in 3 dimensions.Howeverother
quantitiesmay divergeat /3R andgive a clearersignal of roughening.For example,consider[1401

~2 [~E(x)x~]/[~E(x)] (3.92)

where

E(x)= ((W(C)x(U~)~— (W(C))Kx(U~)))/(W(C)) . (3.93)

E(x) measuresthe chromo-electricenergydensityat the locationx; the test plaquettep of centrex is
parallel to the minimal planeof the Wilson loop. This ~2 is a generalizationof ~h2 in eq. (3.87). The
dimensionlessproduct o-s~2 should diverge at the rougheningtransition for an infinite loop. Another
possibility [141]is to characterizethe rougheningtransition as the point where the systemhas lost its
memory of the boundarycondition, viz, the Wilson loop. For any observableU, e.g. x(U~)for a
plaquetteof the minimal surface,we expectthe difference

= (UW(C))—(U)(W(C)) (3.94)

to vanishat /3R. Both ~2 and(UW)~,,maybecomputedin strongcouplingexpansionsandareexpectedto
haveapowerlaw divergenceat /3R; this is whathappensin thethree-dimensionalSOSmodelfor thesimilar
quantities~h2andp(O)~1.It is thus quite satisfactoryto seethat both quantitiesgive quite consistent
determinationsof /3R for a variety of gauge groupsand dimensions[112,142, 1131. One observesa
remarkablegroup-independenceof therougheningpointmeasuredin thevariablet; thisreflectsin fact the
natureof therougheningtransition,causedby largescalefluctuations,whereasgroupdependenteffectsare
short scaledetails,

d=3 tRO.46

d=4 t~0.40

d=5 tRO.37.

The estimatederroris of order ±0.01.We shouldmentionthat the seriesof SU(3), which containsodd
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powers of t, leads to less stable results. One also notices that tR may be below or above t~,the
deconfinin&transition,dependingon the groupand the dimension.For Z2 for example,t~< t~(d = 3),
tR t~, V2 — 1 (d = 4) and tR> t,, (d = 5). In the latter case,the rougheningtransition takesplace in
the metastableregion. It hasbeenarguedby Gliozzi [1431that it is naturalfor thephasetransitionto be
first order as soon as t~~ tR. Indeed, if the deconfining transition is secondorder, the interquark
potentialhasthe form [144]

V(R)= Const.+ C/R (t = t~secondorder) (3.95)

whereasit is naturalto expectan exponentialfall-off of the correctionsto the leadingbehaviourup to

the rougheningpoint
V(R)= kR+ const.+ e_m~~ (t < tR). (3.96)

Consistencyof theselast two equationsat t = t~requiresthat the transition t~be first order. Notice,
however, that this argumentseemsto connect roughening and the order of the bulk transition, in
contrastwith the standardlore.

It must also be emphasizedthat the locationof the rougheningtransition is by no meansuniversal.
Changingthe form of the action, or usingthe Hamiltonianformalism [145]may modify the location of
tR substantially.Even more dramatically,if we take a twisted Wilson ioop as in fig. 24 insteadof a
planar one, it is easy to see that there is a large number of minimal surfaces.This results in a
delocalizationof the surface,androugheningtakesplacein the strongcoupling limit /3 = 0. Therefore
such an off-axis string tensionshould havebetter analyticity propertiesthan the conventionalplanar
one.This phenomenonhasbeenexposedparticularlyclearly in the Hamiltonianformalism[146,147]. It
also manifestsitself on speciallattices as the simplicial lattice [31] where, for some directions, the
minimal surfaceis highly degenerate(even for planarloops), or as the randomlattice [32] wherethe
mereconceptof minimal surfacedoesnot makesense.

iii) Implications of roughening.
What is the critical theory at the rougheningpoint? In threedimensions,the rougheningtransition

hasbeenshownto bein the universalityclassof the two-dimensionalxy-model. Similar arguments[141]
suggestthat in d dimensions,the effective theory is given by (d — 2) decoupledtwo-dimensional
xy-models.This shouldgive a critical exponent— ~to quantitieslike ~ or (t~1W~

1and makethe step
free energyvanish with an essentialsingularity. Seriesanalysesare in rough agreementwith these
expectations.Typically, the exponentof the zero of (CW~is found to lie between0.3 and 0.15
dependingon the groupanddimension[1381.The stepfree energyhasalso beencomputedfor the 12
theory at strong coupling to eighth order in t [148];it is found to vanishat tR, more likely with an

Fig. 24. A twisted ioop, theboundaryof alarge numberof minimal surfaces.
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essentialsingularity exp[—C(tR— t)~Ithan with a powerlaw. Estimatesof theexponentx are~
at d = 3, ~~ x~ ~ at d = 4. A similar calculation has beenperformedin Hamiltonian formalism [146];
there,onelooksat the lowestexcitation of the stringbinding two staticcharges(this is nothingbut the
cross-sectionof fig. 23). The massof this “kink” excitation is also found to vanishat tR with a similar
behaviour.Clearly, longer serieswould be requiredto confirm fully the equivalencewith thexy-model,
but it is gratifying that seriesanalysessupportthis equivalencereasonablywell.

The vanishingof the stepfree energyor “kink” massat and above /
3R is physically important. It

meansthat the surfaceis free to movein directionsorthogonalto its minimal plane; in other words,it
acts like a continuoussurface,and part of the translationand rotation invariancesof the continuum
theory is restoredfor surfaceobservables.For example,thepotentialbetweenstaticcharges,hencethe
stringtension,shouldbecomerotationalinvariantin the roughphase.This hasbeennicelyillustrated by
strong coupling calculationsof the off-axis potentialwithin the Hamiltonian formalism [1461and by
Monte-Carlosimulations(seefig. 5); in both cases,oneseesthat,in a two-dimensionalspace-likeplane,
equipotentiallines are essentiallycircular at andabove the rougheningpoint. As the latter occursfor
both four-dimensionalSU(2) and SU(3) just before or inside the cross-overregion wherescaling is
observed,oneseesthat rougheninghasthe agreeableproperty of restoringrotationalinvarianceof the
string tensionin the region of interest.

In the roughconfinedphase,a descriptionof the surfacein termsof a continuous(d — 2)-vectorfield
h

1 is possible,with an effectiveaction proportionalto ~ (h1 — h~)
2,plus irrelevant terms.As in the SOS

modelof paragraphi), h, describestheposition of the surfaceabovethe point i of the minimalsurface,
but now h is a continuousvariable. From this effective theory, one deducesimmediately that the
squaredwidth of the surface(~h2)divergeslike 5d2k/k2-~In L as the size L of the loop grows.This is
of course in agreementwith (3.91), and expressesthe impossibility of spontaneouslybreaking a
continuousinvariance(heretranslation)in a two-dimensionaltheory [149].Anotherconsequenceof the
existenceof masslesstranslationmodesis the creationof a hr term with a universalcoefficient in the
static potential[150]

V(r) = a-r + Const.— (d —2) ir/24r + U(l/r2). (3.97)

This appearsas a Casimir effect: introducingthe boundarycondition that h vanishesalong the loop
modifiesthe energyof the system.

Returningto the strongcoupling methods,we see that rougheningjeopardizesthe extrapolationof
the string tensionto large/3. It is actuallydifficult to predictthe quantitativeeffect of the non-analyticity
at PR. In the three-dimensional12 model, neglectingrougheningand extrapolatingthe string tension
gives the fallacious impressionthat it vanishesfor t < t~.In the four-dimensionalSU(2) and SU(3)
theories,rougheningtakesplaceat the edgeor within the cross-overregion,and, in a first attempt,one
may assumethat it is still meaningful to use strong coupling expansionsin that region. If one faces
seriousinconsistencies,the blamewill be on roughening.We only recall or mention for completeness
variousproposalsto avoid the problemof roughening:

— work with non-planar,off-axis Wilson loops, but at the expenseof a much more difficult strong
couplingcomputation(see,however,the Hamiltoniancalculations[146]).

— as a variantof that strategy,work on a simplicial lattice [31].
—use small loops [151],large enoughto obey an arealaw decay,small enoughto be insensitiveto

roughening.
— usevariant actions,for which rougheningtakesplacedeeperin theweakcouplingregime.
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iv) Thestring tensionin four-dimensionaltheories.
The first theorieson which we mayprobeour truncatedseriesof table 9 arethe 12 andU(1) theories.

In both cases,thereis a critical point wherethe bulk correlationlength divergesandwherethe string
tensionshould also vanish continuously.In the U(1) theory, it is the deconfiningtransitionat /3 — 1.
(t~— 0.45); in Z2, it is the end-pointof the metastableregion at t,~— 0.43, a fair evidenceof which has
beenfoundin the analysisof section3.4.2.Also, in both cases,rougheningoccursata strongercoupling
t — 0.41. It is not a priori very clearwhetherthe seriesof K haveto be usedas theystand,i.e. truncated
to a certain order, or extrapolated.Fadeapproximantsarenot obviously the bestway to extrapolate
them beyondthe essentialrougheningsingularity. When truncated,the seriesgive a zero at t — 0.48—
0.5, dependingon the order.This is well beyondthe expectedzeroat t~,andshowsthat, if the previous
picture is correct, neglectingthe lack of convergenceof the seriestendsto overestimatethe string
tension.We recall that the oppositeeffect is observedon the three-dimensionalZ2 theory,wherethe
naive seriesseemto indicatea vanishingof the tensionbefore t~.Thesepuzzlingobservationsshow that
theforthcomingresultsin the non-Abeliancasehaveto be takenwith a grain of salt..

In the case of SU(2) with the conventional Wilson action, the Monte-Carlo results and the
approximationsresultingfrom truncatingtheseriesto variousordershavebeenplottedin fig. 3.Thecurves

representestimatesfrom varioustruncationsof theseries;from top to bottom: — ln t, orderst
4, ~8, ~ ~.12

t’4. Theexpectedpositionof therougheningtransitionis alsoindicated.Thefact thatorders12 and14 (the
lowestcurves)givevery close estimatesshouldnot deceivethe reader.We recall thatorders t4” give the
major contributionto K. The convergenceof the methodshould thereforebe determinedfrom the
comparisonof 8thor 10thorderto the12thor 14th one.The apparentlyremarkableagreementof thelatter
with Monte-Carlodatamightbespoiledatahigherorder.Eventhesign of theerrorin theblind useof the
strongcouplingseriesin the cross-overregioncannotbeasserted,aswe havejust discussed.On the other
hand,it mightbethatMonte-Carlosimulationshavenotyet hadtheirlastword,i.e. thatmuchlargerlattices
would be requiredto takefull accountof finite size effects andof roughening,with a resultingtension
reducedby a small amount.

The nextstep is to try to extractthe physical,renormalizationgroup invariant ratio u/A~ (with AL
definedin (2.10))from the strongcouplingcomputations.Oneobservesthat strongcouplingresultshave
the right slopepredictedby asymptoticfreedomin a narrow rangeof valuesof /3

K = oa2lorderfl K~exp{—6ir2(J3— /3~)/11} for /3 -=/3~. (3.98)

Dividing by the renormalizationgroupexpression

Aa2= (61T2/3/11)’211102exp{—6ir2/3/11},

onegetsan estimateof cr/A2

a-/A2Iord
0r~— Kn (61T

2/3~”~/11)’211102exp[6i~-2/3”~/11]. (3 99)

Clearly, such an estimateis highly sensitiveto the value of /3~.One finds A/Va- = (0.9, 0.93, 1.36,
1.39)x 102 at resp. orders 8, 10, 12, 14. These values have to be compared with Creutz’s fit
(1.3±0.2)x 10~.Although the twelfth and fourteenthorder estimateslook quite satisfactory,it seems
difficult to estimatethe error madein this procedure.We think that herelonger serieswould not help
muchandthat the rougheningsingularity is the stumblingblock of strongcouplingmethods.
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The caseof SU(3) presentssomedifferences.First the truncatedstrong coupling estimatesseemto
convergein a more erratic way. This is due to the irregular signs in the expansion(table 9) and to a
rather big coefficient at order 11 (see fig. 25). By the same procedureas for SU(2), one finds
A/Va-~(2.6,3.1, 3.7, 3.5)x10~from the 8th, 9th, 10th and 12th approximantsrespectively, to
comparewith the Monte-Carloestimate[1521(6±1) x 10~.On the otherhand,rougheningtakesplace
in the presentcase at /3 5.8—5.9, which is already in the weak coupling region, according to
Monte-Carlodata (the samephenomenonwas observed,even more pronounced,in the Hamiltonian
computations[1531). Therefore,it might seemthat, in SU(3),a strongcoupling determinationof A/Va-

is morereliablethanfor SU(2), andthat longer seriesimprove the situation.In the SU(3) Hamiltonian
calculation[153],however,it was found that the ratio of the spatial cut-off A~to Va- takesthe values
(4.4, 5.4, 6.2)x 1O~to orders 8, 10 and 12 in g~2respectively.This was extrapolatedto a number
rangingbetween12 and 18.5x 10~,which is in cleardisagreementwith the previousestimatesof A/Va-

andthe computedratio As/A = 0.91. This apparentlack of convergenceremainsa puzzle.To makethis
discussionevenmore confused,we mention that recentMonte-Carlo computations[154]on a larger
latticehavegiven a valueof A/Va- twice larger.

Checking the universalityof the ratio A/Va- for variantactionsshouldbe an importantconsistency
test of our currentunderstandingand numericalaccuracy.Monte-Carlosimulationshavebeenrun for
SU(2)Manton and heat-kernelactions [156]and for the mixed fundamental—adjointaction [1551,with
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Fig. 25. SU(3) string tension. Strong coupling estimatesare superimposedon Creutz—Moriartydata [152].The solid lines arefrom top to bottom
zeroth,11th, 12th and 10th order.Also indicatedis therougheningcoupling.
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rather puzzling results. The mixed action has also beenanalyzedtheoreticallyin [115]; the strong
couplingexpansionin /3~and/3a is derivedto eleventhorder, for a fixed ratio Pa/Pt. The stringtension
estimatedin that way is found to have, for increasing/3a//3f, a more and more pronouncedshoulder
betweenits strong and weak coupling regimes.Moreover,by comparingthe curvesof constantstring
tensioncomputedby strong couplingmethodswith the weakcoupling, asymptoticfreedomprediction,
these authorsargue that the Monte-Carlodetermination of A/Va- has been done in a region of
couplingswhich are still strong, andwhere scaling hasnot yet set in. The strong and weak coupling
estimatesseemto matchonly in a smallregion around/3a//3f 0, /3~ 2.2—2.3. However,this pessimistic
conclusionmight be affected by an improved treatmentof the weak couplingbehaviourin the lower
half-plane, wherethe expression(2.3) may be too naive. Such an improvement,abstractedfrom the
large N limit, hasbeenproposedin [159—162].Othermechanismshavealso beenproposedto explain
the apparentviolation of universality[156—158].Clearly the situationstill needsclarification. On the
numericalside,amoreaccuratedeterminationof A/Va-, possiblythroughaction improvement,is highly
desirable;on the theoreticalside,strongcouplingcomputationswill remainusefulonly if the roughen-
ing effectsaresomehowmastered.

We finally discuss shortly the Green—Samuelorder parameter[104] in U(N) theories, namely
(det W(C)). We recall from section3.2.3 that this probesthe U(1) part of U(N) andthat it is expected
to havean arealaw decayat strongcoupling, anda perimeterlaw at weak coupling (d = 4). Therefore
the point wherethis U(1)-likestring tensionvanishesshouldbe a critical point of the system.Fromthe
12th orderseries,GreenandSamuelfind azeroat tGs = /3 0.4in the N —* cc limit. This is againbeyond
the first order phasetransitionat t — 0.33—0.35,as well as the endof the metastableregion estimated
at 0.37. As in the caseof the string tension of the U(1) theory discussedat the beginning of this
section,this may signal that the rougheningsingularity spoilsthe seriesextrapolation.

3.4.4. Theglueball masses
The glueball mass spectrumseemsto be the ideal field of application of strong coupling series.It

should not suffer from spuriouseffectslike roughening,and,provided the seriesare long enoughand
convergereasonably,onemight be ableto matchstrong couplingandasymptoticfreedompredictions.

One should first recall the pioneering work in Hamiltonian formalism [90]. The massesof the
lowest-lying scalar,axial-vectorandtensorstateswerecomputedto fourth orderin g~4andthe diagonal
Fadeapproximantsenabledoneto extrapolatethe massratiosto infinity, with the result

mT/ms= 1.003, mA/ms= 1.575. (3.100)

In Euclideanformalism, the samethreemasseshavebeencomputedto eighth order in /3 — g~2for
the SU(2)andSU(3)gaugetheories,asreviewedin sections3.1.8 and3.2.3.

In SU(2), the resultsfor the scalar0~stateare encouraging.Oneusesa truncatedseriesto 6th or
8th order,or a diagonalPadéapproximantto the non-trivial part F(t) of the series

ma = —4 ln t + F(t) - (3.101)

The resultsdisplay, as the stringtension,a “shoulder” betweenthe strongandweakcouplingregimes.
Using again the empirical rule that the part of this curve with the asymptoticfreedombehaviouris
reliable,one getsthe following estimates[91]
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ms/A = 193, 127,92 (3.102)

for the 6th, 8th orders and Fade approximant respectively. This gives ms/Va-= 1.8±0.8 which
compareswell with the Monte-Carlodetermination2.0±0.4 [1631and similar resultsof othergroups
[164—167].

The sameanalysisperformedin SU(3) gives m5/A = 490, 310 to 6th and 8th order [91].The results
obtainedby Padéapproximantsare not very stable.This suggeststhe use of moreelaborateextrapola-
tion techniques.Following the suggestionof [130]discussedin section3.4.2,Smit [168]hasre-expressed
the expansionof m in the variable E, the internal plaquetteenergy,and constructedan approximate
E(J3) valid for both smalland large/3. The resultingestimatesof m(/3)display a behaviourconsistent
with scalingin a much largerregion than the original series,andgive

m5/A =340±40

or

ms/V~=2.1±0.6. (3.103)

This is in good agreementwith the Monte-Carloanalysisms/A = 280±40 [169](seealso [170]).Let us
mentionthat, if oneusesthe valueVa- = 400MeV (derivedfrom the Reggeslopein the real world with
quarks),this glueball hasa massof about800 MeV.

The caseof higher statesis moreembarrassing.In numericalstudies,a rich spectrumhasbeenfound
by somegroups[170,164], whereasothers[169]could not find any scalingfor the possiblecandidates.
This mayeithermeanthat thesestatesdo not exist in the continuumlimit, or that the scaling“window”
is still too narrowto observethem. It is quite conceivablethat, in the approachto the critical point at
g0 = 0, someof the statesdecoupleand keepa fixed productma. Clearly, the strongcouplingmethods
are biasedand implicitly assumethe existenceof a state(in thecontinuumlimit) by trying to fit its mass
with the renormalizationgroup formula. The massesof the A = 1~and T = ~ statesin SU(3) have
beenextrapolatedby the samemethod [1681as the0~with a resulting massratio mT/mS= 1.1±0.1,
whereasonly weak indicationswere observedfor the axial-vectorglueball, with possibly mA/mS— 2.
Miinster [1711usesa different techniqueof extrapolation,implementingautomaticallythe scalinglimit.
He introducesthe expression

s = [exp(~m5a)—11~~ (3.104)

as a new expansionvariable. Indeed

s=f3+U(/3
2) forf3=~()

s-~(msa)~—~ccfor/3—*cc

andscalingmeansthat SA andST shouldalso behaveas s for large s. In the expansionof

SA,T [exp(~amA,T)—il-i = s[1+ ~ ~kS] -
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the bracketis thusextrapolatedby a diagonalFadeapproximant.This gives for SU(3)

mT/ms=l, mA/mS—I.8±O.3.

In spite of the words of caution at the beginning of this paragraph,the agreementbetweenthese
numbersand the Hamiltonianestimateslooksvery encouraging.

In thecaseof thestring tension,rougheningis expectedto restorepart of the rotationandtranslation
symmetriesfar from the critical point. There is no such phenomenonfor plaquette—plaquettecor-
relations,andit is important to seeto which extentthesesymmetriesare approximatedin the cross-over
region.Strongcouplingmethodshavebeenusedin two differentways.

i) The energy-momentumdispersionof glueballs hasbeencomputed[92] at strong coupling. The
function E(p) may be expandedfor smallp as

aE(p) = F(/3)+ a2F
1(/3) ~ p~+ a~F2(P) [~~ + a~F3(/3) ~ p~p~+-~- (3.105)

In the approachof a critical point, we expectto recovera Lorentz invariant spectrumE(,p)= Vm2+ p
2

hence

F(/3)—~am; 2FF
1 —~ 1; —8F

3F
2—~1; F

3F
3—~0-,.... (3.106)

Thesecombinationsmay be computedin strong coupling expansions,extrapolated,and the relations
(3.106) tested.This programworks reasonablywell in three-dimensionalgaugemodels,but suffersfrom
the lack of convergenceof the (short)seriesin four dimensions.

ii) The off-axis (diagonal)glueball masseswere computedto fourth order in /3, andtheir extrapola-
tion comparedto the on-axismasses.In view of the low convergenceof the latter to 8th order, it is not
surprising that the shorter seriesof the former do not give any very conclusive signal of rotation
restoration.Neverthelessthe resultsareencouraging;for example,the ratio of the diagonalscalarmass
(to 4th order)to the on-axisone (8th order)is about 1.2 [96].

To conclude,we mention that, in the four-dimensionalZ2 gaugetheory, the extrapolationof the
massgapseriesgives a rathersmallmass,consistentwith zero,at the self-dualpoint. A vanishingmass
would be an unconventional,thoughnot impossible,situationat a first order transition.This hasbeen
the objectof somespeculations[172].It is alsoconceivablethat themassis non-zerothereandvanishes
at the nearbyend-pointof the metastableregion,as in the three-dimensional3-statePottsmodel [173].

3.4.5. Conclusions
In the three precedingsubsections,we have seen that strong coupling methodshave achieved

remarkableresultsin spiteof various pitfalls. To improve their accuracy,it is of course tempting to
suggestthe computationof a few additionaltermsin the variousseries.The situation,however,is more
subtle.

We havesho~in,in the discussionof the free energy,that strongcouplingmethodsareblind to first
order transitions, a very ordinary circumstancein lattice gauge theories. In cases free of such
discontinuities, it seems that much longer series are necessaryto see and analyse the intricate
details— nearbycomplexsingularities,end-pointsof first order lines — of the phasestructure.Clever
matchingswith otherexpansionsor approximationsmight be morerewarding.
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Similarly, in the caseof the string tension,the exploitation of the seriesexpansionsis hamperedby
the occurrenceof the rougheningsingularity. It seemsthat neglectingthe lack of convergenceof the
seriesin that region leads to systematicerrors.Therefore, a better way of extrapolating the string
tensionin that region is neededmorethanlonger series.

On the contrary, it seemsthat the glueball statesare awaiting courageouspeoplewilling to extend
their series.Suitably extrapolated,theselonger series might offer a real alternativeto Monte-Carlo
simulations.

4. Mean field approximation

4.1. Generalities
This subsectionpresentsgeneralitiesabout the mean field approximation and relatedquestions

[1,5,7, 174—193];the applicationto latticegaugetheorieswill be treatedin the nextsubsection.We use
the general notationsdefined in subsection 1.2 for arbitrary fields (excluding, however, fermions)
parametrizedby a set of (real) variables{4~}.We are interestedin the evaluationof the generating
functionalof connectedGreenfunctions W(J). The generatingfunctionalfor the irreduciblecorrelation
functionsf(I~),obtainedby the Legendretransformof W

F(~)+W(J)=J-cP,

with

cli=8W/3J, (4.1)

is useful in the critical region to identify the relevantcontinuumfield theory.

4.1.1. Variationalanalysis
Therearemanystandardequivalentways of deriving themeanfield approximation.Oneof them is a

particularcaseof avariational estimate,andwe describeherethe generalmethodused in Lagrangian
formulation of lattice models. Although this is not well adaptedto a systematiccomputationof
corrections,it is interestingboth for the simplicity of the derivationandfor the rigour of the resulting
inequalities.

The idea is to comparethe systemunderstudy to a set of referencemodels,dependingon external
parametersh (“collective coordinates”);thesemodelsareassumedto be exactlysolvable,or, at least,
muchinformationabouttheir propertiesis available.Denotingby the subscripth all quantitiesrelative
to thesereferencemodels, the partition function of the original systemcan be viewed as a mean
value

Z= Jexp{S(~)-Sh(q5)+ Sa(ç~)}Dcb= Zh (exp{S(~)-Sa(cb)})a. (4.2)

The convexitypropertyof the exponentialfunction (~expX) � exp(X)) yields the inequality

F~W(J 0)�Fh+ (S(q~)—Sh(cb))h, (4.3)
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andthe following variationalestimatefor F

Fvar = Max [Fh+ (S(4i) — Sh(~))h], (4.4)

bounding from below the exact free energy. Eq. (4.4) shows that the “effective coupling” h is

self-consistentlydetermined.
Thevariationalsolution Fvar presents,of course,the singularitiesof the referencemodelsFh. This is

what happenswhen the referencesystemis known to havephasetransitionsof its own. However,
anothersourceof singularitiesexists in (4.4) and is in fact the great interest of the method for the
determinationof the phasestructures.Indeedthe valueh * maximizing the right-handsideof (4.3) is a
function of the coupling constantsof the original model and may presentsingularities.These sin-
gularities have been mathematicallyclassified (this is the object of “catastrophetheory” [194])
accordingto the numberof couplingconstantsand the numberof degreesof freedomleft for h. We
only give a sketch for onecouplingconstantg (typically the temperature)andoneparameterh. Fig. 26
illustratesthe two possiblepatterns.

In the first one, h* jumps from onevalue to another;Fvar is continuous,but not its first derivative,
nor thephysicalobservables.However,the contributionof the subdominantextremummaybe followed
in (4.3) by continuity, correspondingphysically to a metastablephase(dottedsolution in fig. 26a).This
behaviouris typical of a first order transitionand,as will be seen,is often encounteredin latticegauge
theories.

The secondscheme(fig. 26b) leavesh*, Fva. and its first derivativescontinuousand characterizesa
secondorder transition. The secondderivative and the correlation lengths ~ are singular. As the
continuumlimit of latticetheoriesis obtainedwhenever~/abecomesinfinite, this kind of transitionis of
particularinterest.

It should be noticed at this point that such a behaviourfor Fvar is only suggestiveof the real
behaviourof F. It is indeedeasyto constructexampleswhereFvar hasa transition(first or secondorder)
whereasF is regular,andconversely.If both presenta transition, the ordersmaydiffer; andfinally, in
the case of a secondorder transition in both cases,the critical indices characterizingthe critical
behaviourmay be different (due to the genericbehaviour(g — g~)112of h ~‘, Fva. always has“trivial”
critical exponentsin the variationalapproach).In any case,the phasestructureandsingularbehaviour
of Fvar mustbe confirmedby acarefulstudy of corrections.

The choice of the referencemodels hasnot yet beenmadeexplicit. The first criterion is that the

Fig. 26. Sketch of the function to be maximized (right hand side of eq. (4.3)) as a function of h for different couplings;a) first ordertransition,b)
secondorder transition.
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variational solution (4.4) may be easily estimated.There must also exist some physical arguments
explainingwhy the referencemodelsarereasonablerepresentativesof the systemunderstudy, so that
the variationalapproximationis expectedto simulatethe exactsolutionfairly well. Sufficient flexibility
for the parametersh must be introduced to allow the computation of corrections. If the set of
parametersis largeenoughto provide a completebasis for all possiblefield configurations,it is indeed
clear that correctionsinvolving fluctuationsaroundthe value h * can be computed.From now on, we
restrictourselvesto a particularchoiceleadingto the so-calledmeanfield approximation.

Remark:Re-expressedin the Hamiltonianformalismby taking the limit of the transfermatrix as the
latticespacing in one direction vanishes,this variational method amountsto finding the ground state
energyby minimizing ~ for trial states ~Ph).

4.1.2. Meanfield approximation(variational)
A very simple, exactly solvablemodel is providedby non-coupledindependentfields in an external

field H

Sff(cb)= H - = ~ H~çb~. (4.5)

This model, with a suitable“meanfield” H, may give a reasonablerepresentationof a given system.H
representsthe global effect of other fields interacting with a given field /~.Of course, this ap-
proximation is accurateonly if the fluctuationsaroundthe self-consistentlydeterminedmeanfield are
smallandcan be neglected.This is expectedwhena given field interactswith degreesof freedomwhich
are either very numerous(large d, i.e. large numberof interacting neighbours)or almostfrozen in an
orderedstate(large /3). We shall seethat thecorrectionscan be reorderedfor lattice gaugetheoriesasa
lid expansionandthat theyare smallat large /3.

Accordingto this discussion,the replacementof fields interactingwith & by H~leadsto the action
(4.5) only if the original action S is linear in the set of variables /~relative to a fixed location x. We
assumenow that this is the case.Note that this is true for the Wilson action in the fundamental
representationwhen the correspondingmatrix elementsare chosenfor the field parametrization;see
remark 3 below aboutthis constraint.

Using the particularform (4.5) with H = h + J in the variationalprinciple,it is now easyto complete
the above calculationsfor the mean field approximation. Introducing the test free energyper field
location

u(h)= In Je~d~(~), (4.6)

which gives

Fh = ~ u(h~+J~), (4.7)
x

we find

W(J)� WMF(J)= Max {~u(h~±J~)±S(~)-~ (4.8)
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with

= au(h + J)/oh, (4.9)

while thestationarityconditionson h read

h = aS(~)/o& (4.10)

The Legendretransform(4.1) can alsobe performedandyields for the irreduciblefunctional

FMF(cP)= H~~— u(H)—S(k),

with H solutionof

= ôu(H)/~lH. (4.11)

The meanfield is often searchedfor as a constantfield H independentof x, to be consistentwith
translationinvariance;however, this restriction is not necessaryand may even be questionablefor
lattice gauge models where gauge transformationsdo not preservetranslation invarianceof these
solutions.

Remark1: The linear form (4.5) chosenfor the test action implies that the result dependson the
parametrization{4~}of the fields in termsof real parameters.Again, physicalintuition is the guide in
this choice. It must be kept in mind that averagevalues ~4) have to be estimated using this
parametrization.For instance,the U(1) parametrizatione’°in termsof only onereal parameter0 misses
the high temperaturephasewhere all 0 are equally probableand the averagefield (e~°)vanishes.
Furthermore,the action is not linear (as assumed)in the parameter0. This parametrizationis
neverthelessvalid at low temperature;but representationas a complexnumberin terms of two real
parametersis moreadaptedfor a global studyat any temperature,althoughit requiresa 5-functionfor
the modulusin the measure.

Remark2: The supportof the measuredj~(4)maybefinite anda prescriptionis necessaryto extend
the definition of the action S(4)from the original domainof variationsof the fields to all valuesof the
real parametersq~.The variationalprinciple allows any extension,but thisaffectstheresults.However,
we shall seethat, as soonasone wantsto computesystematiccorrections,or evento treatcorrectly the
effects of degeneratesolutions,the extensionS(I~)mustbe as analyticalas possible.The linear form
assumedfor S(’I’) obeysthis criterion at best.

Remark3: Some actions(as compositegaugeactionsinvolving both the fundamentaland adjoint
representationsof the group)do not seemto satisfythe linear assumptionfor the action.A first strategy
consistsin modifying slightly (4.8)—(4.10) to get correctequations.In the simplecasewhereS alsouses
squaredfields S = S(~,42), both (t’)h and (‘/

2)h arerequiredandthe modified equationsfollow

W(J)� WMF(J) = Max u(h~+ J~)+ S(~,~(2)) - h ~}, (4.8’)

with

= i9u(h + J)/ah, (4.9’a)
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and

~(2) = — a~u(h+ J) + au(h + J) 8u(h + J) 4 9’b

- 3h~ah~ ah~ - (. )

which differ from the precedingresult by the secondderivativeof u in (4.9’b). The differencebetween
(~)2 and (42) due to the fluctuationsof j is now takeninto account.Note that, in the saddlepoint

methodpresentedbelow,oneobtainsat lowestordereqs.(4.8—9) andnot (4.8’—9’); the secondderivative
appearingin (4.9’b) will appearin corrections.A secondstrategyis to linearizetheactionby considering
the quadraticterms~ as additional and independentreal parameters,imposingthe constraintby a
suitable 6-function in the measured~t(4).This leadsto independentmeanfields associatedboth with
fields and their squares,andthereforethe function u in (4.6) is morecomplicated;on the other hand,
the system(4.8—9) remainsvalid.

Remark4: The method is not applicableto the fermionicdegreesof freedom since inequalitiesdo
not makesensein Grassmannalgebras.Similarly, the saddlepoint approachcannotbe directly applied.

4.1.3. Saddlepoint methodand corrections
The variational approachpresentedin the precedingsubsectionsis not well adaptedto a systematic

computationof correctionsaroundthe mean field result. A morepowerful andsystematicapproachis
basedon an integralformula estimatedthrough the saddlepoint method [195,174,181]. The systemis
equivalentto a problem of independentdegreesof freedomin a randomexternal field; the meanfield
approximation has neglected the fluctuations of this random field and thus appearsas a classical
solution.We nowconstructthe “quantum” correctionsto this approximation.

The usualexponentialrepresentationof the 6-function

6(q~- ~) = (h/2iir) J exp{h~(~- ~)} dh~ (4.12)

is insertedin the definition of the generatingfunctional,

~

= JJJexp{S(~)+(J+ h)- ~ - h - fl (1/2i~)d~dh d~(~). (4.13)

Integrationoverthe decoupledfields i~ is performedaccordingto (4.6) andwe obtain

Z(J) = JJexp{S(~)+ ~ u(J~+ h~)- h - fl (1/2ii,-) d~/idh. (4.14)

The measureis now flat in cP andh, andtheintegrandis regular.This allows acomputationusingthe
saddlepoint method in both variables~ andh

W~~(J)=~ u(h~/+J~)+S(t1*)_h*P*, (4.15)



f.M. Drouffeand 1.-B. Zuber, Strongcoupling and meanfield methodsin lattice gaugetheories 79

with the saddlepoint determinedby the stationarityconditions

‘I~= au(h~+J~)/t9h~, (4.16)

h~= 3S~/9I~. (4.17)

Theserelationscoincide with the mean field variational solution (4.8)—(4.10) derivedpreviously. The
Legendretransformcan be recastas

= ~ Y(’1’x) — S(~I’), (4.18)

where y(1) is the Legendretransformof the one-siteintegral (4.6)

y(~P)+u(h)= h ~, with c1= au(h)/ah. (4.19)

The integralrepresentation(4.14)now allows the computationbeyondthe saddlepoint contribution.
Onewrites

4~’~=cJ~*~

andexpandsthe effectiveaction of (4.14)in the fluctuations~, ~. Keepingonly the quadratictermsin ~
and~ buildsup thefirst correction

Z = Z~J fl (dq5~di~~/2ir)exp{_~~ u”(h * + J)r~ — i~. — ~ (o2S/3~~&) cbx& }
= Z~,det~2{6~~— u”(J + h*) 0~S/3~a4~} (4.20)

W’1~(J)= W
5~(J)— ~Tr ln[6~~— u”(J + h*) a

2S/3~&~] (4.21)

F(1)(~)= F~~(’I~)+ ~Tr ln[6~~— (a2S/94~I2~
19~P,~,){8

2y(’~Px)/ô’I’~Y1]. (4.22)

Notice that the factors(2ii~)1havedisappearedin the Gaussianintegration.Eq. (4.22) is the one-loop
approximationto the field theory of action (4.18), where y(’b) representsthe free part and S the
interaction. A diagrammaticinterpretation of higher order corrections is of course possible, with
Feynmanrulesderivedfrom the expansionof (4.18).

One may wonder about the justification of this saddle point approximation.What is the large
parameterwhichsuppressessuccessivecorrections?It turns out that a largedimensiond mayplay such
a role; correctionsbuild up a 1/d expansion(seebelow). On the otherhand,we shall see that the saddle
pointexpansionappearsasarearrangementof alarge/3, i.e. smallcouplingexpansion:only afinite number
of termsof theloop-wiseexpansioncontributeto agivenorder/3~”. We finally recallfor completenessthat
meanfield isalsojustifiedin somecaseswherethenumberof internaldegreesof freedomgrowslarge:large
N-vectormodels[7], largeq-Pottsmodels[196].
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4.1.4. Diagrammaticinterpretationof corrections
In this section,we showthat the meanfield approximationandits correctionsmaybe regardedas a

resummationof the strongcouplingdiagramsdiscussedin section3. This is, of course,expectedin the
strong coupling phaseof the meanfield approximationwherecorrectionsare nothingbut a reshuffling
of the strong coupling diagrams.It may also be understoodto be the casein generalin the large d
interpretationof meanfield. As is well known ([7] andsubsection4.2.3below), the naturalscalefor /3 is
l/d, i.e., one seemsto be in the strong coupling regime. However, powers of d come into the
configurationnumbersof diagramsand makethe argumentmoreinvolved. Onehasto use functional
techniquesthat we describenow to work out the correctlarge d limit. The notationsandformalismof
subsection3.1.6are used(noticethat the characterexpansionmethodcannotbe usedhere).

A connecteddiagram is reduciblewith respectto a given k-vertex, if deleting this vertex cuts the
diagram into exactly k parts. Any connecteddiagramtakesthe tree structuredisplayedin fig. 27a,

W(J) = 0 Y~:x;::.~~~ a

- ~ b

S(~) c

d

~ +~~+ ~ e

1(J) 0 +~

Fig. 27. Diagrammaticconstructionof thefree energyfrom irreduciblediagrams.
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whereonly the flk k-vertices(k = 2, 3,. - .) with respectto which the diagram is reducible(reducibility
vertices)havebeendrawn, all otherpartsbeinggatheredin hatchedirreducibleblobs.

Let 1(J)be the sum of contributionsof all irreduciblediagrams,computedaccordingto the rulesof
subsection3.1.6.In particular,1(J)containsthe trivial contributiongiven by the single-sitediagramwith
no vertex,namely u(J). Our problem is to reconstructW(J) (the sum of contributionsof all connected
diagrams)from 1(J). We denoteby P the sum of all diagramswith a markedsite (P= aW(J)/oJ,see
fig. 27b).We mayconstructreduciblediagramsin threedifferent ways:

i) since “vertices” aredefinedby the expansionof the functionalS(.), the quantity S(P)generates
any reduciblediagramwith a multiplicity ~k n,. (seefig. 27c);

ii) from the diagrammaticinterpretationof 8S/ô~’(fig. 27d), it follows that S(i1)/ätJ countsall
reduciblediagramswith the multiplicity ~ knk;

iii) reduciblediagramscan also be generatedfrom irreducible blob by “dressing” the sites. The
particulardressingof oneof thesesitesis diagrammaticallyshownin fig. 27e. For this particularsite, the
initial contributionu”~(J~)mustbe replacedby

u~(J~)+ u°’~1~(J~)aS/ok~+ ~ u~”~2~(J~)(~S/8~~)2+... = u~(J~+ 3S/a~~)-

Therefore the replacementJ—~ J+ 3S/8’k in 1(J) performsthe simultaneousdressingof all the sitesof
the irreducible blobs. All connecteddiagramsare constructedin this way, with a multiplicity n

1, the
numberof irreducibleblobsin eachdiagram.

Taking into accountthesedifferentestimatestogetherwith the topologicalrelation

n1 — ~ (k — l)nk = 1,

which expressesthat W(J) is a treemadeof blobsandreducibility vertices(seefig. 27a), eachdiagram

is countedjust oncein the combination
W(J) = I(J + aS/8P)+ S(P)— ~PaS/ak. (4.23)

The similar constructionof 1 (fig. 27b) yields the relation

= ôI/öJIJ+aS/a~,, (4.24)

which meansthatthe right handside of (4.23)is an extremumin cP.
1(J) appearsas a sum of diagramswith 0, 1,... loops (see fig. 27f). It is easyto check that the

restriction to no ioop (i.e. 1(J)= u(J)) reproducesthe meanfield result, and that the first correction
derivedfor F(~b)from the steepestdescentmethod is obtainedby the loop expansionof 1(J) up to
i-loop terms. Note that the saddle point expansionbrings a supplementaryinformation to this
diagrammaticderivation; amongthe extremaof the right hand side of (4.23), the maximum must be
selected.In the caseof several maxima, the considerationsof the following subsectionswill apply to
(4.23).

This diagrammaticinterpretationof correctionsto the mean field approximation is useful for the
computationof thesecorrectionsand for reorganizationsof the series(asthe 1/d expansiondiscussed
later).
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4.1.5. Multiple solutionsof the stationarityequations
Stationarityconditionsmay have, and generallydo have, more than one solution. This occursin

modelsobeying a symmetry (as gauge models)as soon as the solutions are not invariant under the
correspondingtransformations.Let us first discussthe caseof well separatedsolutions.

As the saddlepointmethodis basedon the expansionof the integrandaroundonepoint, followed by
a term-by-termintegration,it maybe thoughtthat the full result is obtainedas the sum of the seriesof
correctionsaroundjust one arbitrarilychosensaddlepoint. This is not correct, however,becausethese
seriesareasymptoticand Stokesdiscontinuitiesare encounteredwhen this term-by-termintegrationis
performedinsteadof the right procedureof integratingthe summedseriesfor the integrand.

We usethe following prescriptionin the computationof correctionsto the meanfield approximation.
The contributionfrom the different saddlepoints to Z(J) (and not to W(J)!) must be summedup. It
must be recognizedfrom the beginningthat thereis no guaranteethat contributionsfrom expansions
aroundthesesaddlepoints are exactly additive, for the expansionperformedaroundone point might
extend to the vicinity of a secondone, resulting in spuriousduplication if the expansionof the same
function aroundthe secondsaddlepoint is added.A hint on the correctnessof thisprescriptioncomes
from the mathematicalstudyof the one-variablesteepestdescentmethod[197].Indeed,the additivity is
justified by appealingto Cauchy’stheorem,accordingto which the valueof an integral is unaffectedby
deformationof the path in the complexplane,providedno singularity is crossedin the processand no
divergencesare introduced. Let us explain this mechanism on a simple example. The integral
5 exp{f(x)} dx, where f(x) is an analytical function as shown in fig. 28a, is computedusing the new
variable y = f(x). This leadsto the integral ~ e~f’(x)~dy along the path displayedon fig. 28b. This
contour is deformedup to —cc as shown by the brokenarrow and breaksinto two independentpaths
turning around the singularities yi and Y2, each of which yields the correspondingsaddle point
expansion,as may be easilyverified. Hence the summationprescription follows, as long as “sufficient”
analyticity propertiesallow the necessarypathdeformations.

In the caseswhere completereduction to single saddlepoints proves impossible(for instance,if
betweentwo such points the function cannotbe divertedout to infinity becauseof somebranchpoint),
thereis no generalway to determineto which extentcontributionsfrom onesaddlepoint are included
in higher termsof the expansionaroundthe other.

For the present case of several variables, very little is known about the correctnessof the

f(x)

Y3 Y2 Yi

Fig. 28. a) A function with severalmaxima,theexponentialof which mustbe integrated.b) Correspondingcontourof integrationin thecomplex
plane y = 1(x) and its deformation.
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prescription.Wehaveassumedthat S(’~P)is analyticin P andevenlinear in the set of variables I~ for
fixed x. Under theseconditions, we have done our best and we can reasonablyhope that the
prescriptionis correct.Note that someresultsdependingon this prescriptionhavebeencheckedto be
correct in lattice gaugesystems;for instance,the weak coupling expansionof the4 meanfield gauge
theory is correctonly if the prescriptionis applied.

In the thermodynamiclimit, the extensivityof the free energyleadsto a new simplification.Only the
highestcontributions(including,however,all corrections)of the saddlepointshaveto be summed,the
otheronesvanishingexponentiallyin this limit.

Becauseof the plausible occurrenceof a Stokesdiscontinuity when two saddle points coalesce,
separateinvestigationis neededfor eachrangeof parametersover which the numberof saddlepointsin
the complex plane is constant. Continuity of asymptotic forms should not be presumedwhen this
numberchanges.This remarkis essentialin the caseof a secondorder transition; the approachof the
critical point must be studiedindependentlyin the differentphases.

Remark: Similar saddlepoints expansionsaroundmore general variational estimatescan be per-
formed,using 6-functionintegralrepresentationsinvolving moregeneraltest actions.However,for the
reasonsexplained in this subsection,the mathematicalmeaning of the resulting series may be
questionable.

4.1.6. Continuouslydegeneratesaddlepoints
The aboveconsiderationsremainvalid when the saddle points are continuouslydegenerate.The

techniqueto be used is, however,slightly different. One hasto perform a changeof variables in the
integral so that the integration variablessplit into two subsets.The first one must parametrizethe
manifold of the degeneratemaxima; it correspondsto zero massexcitations,and the integration must
be carriedout separately.The integrationover the secondsubsetis treatedusingthe usual steepest
descentmethodsinceno degeneracyis left.

In general,all suchsaddlepointsaregeneratedfrom oneof them by applying a Lie groupof (gauge)
transformations.In this case,gaugefixing terms are introducedand compensatedby Faddeev—Popov
ghosts.We do not recall this well-known methodhere.

4.2. Applicationsto pure latticegaugetheory

We now apply the generalformalismdescribedin the previoussectionto the particularcaseof pure
gaugetheories.

4.2.1. Generalfeaturesof the meanfield solution
Restrictingourselvesto theWilson action, the meanfield approximationintroducesaone-parameter

constantexternalfield h linearly coupledto the gaugefields which representsthe meaninteractionwith
otherfields

Sh(Ut)= (h/N) ~ ReTr U,. (4.25)

This trial action is not adequatefor the calculation of correctionsand is inconsistentwith gauge
invariance.We shall see,however,that a more elaboratetreatmentreducesto this simple casein the
saddlepoint approximation.A detailedstudyof the correspondingsolution is thususeful.
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The functionsu(h) introducedin eq. (4.6) coincidewith in /3°of eq. (3.28)for /3 h. They havebeen
listed for variousgroupsof interestin table4, andtheir generalpropertiesarerecalledin section3.1.3.
In the absenceof externalsources,the variationalsolution (4.8) leadsto a free energyper link

(ln Z)/Xd = F/d � F,~1id Max {u(h)— h u’(h) + /3* u’
4(h)/4} (4.26)

h

with a rescaledcouplingconstant

/3* = 2/3(d— 1). (4.27)

The extremalityconditionsdeterminethe meanfield h as the solution of

h =f3’~u’3(h). (4.28)

In this approximation,every link field is an independentrandomvariable, with an average

(4.29)

As it stands,this formulaviolatesElitzur’s theorem.This diseasewill be examinedandcuredlater on.
The free energyexpressedin eq. (4.26)hasthe characteristicshapedisplayedin fig. 29,irrespectiveof

the gaugegroup. Its qualitative featuresare the following.

Fig. 29. Mean field solutionfor the free energy.The dashedpart is metastable,the dottedarc is unphysical.The curvecorrespondsto theZ
2 case.

but all gauge groupsdisplay a similar shape.
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h = 0 is always a local maximum and dominatesin the strong coupling region. Indeedthe energy
term /3* U’

4 is quartic in h (we recall that u(h) is regularnearh = 0 andbehavesthere as h2) and is
subdominantwith respectto the entropy term u — hu’. As this entropypart is concavewith only one
maximum at h = 0 (the exponentialin the definition (4.6) of u(h) is indeed a convex function of its
argumentTr U,, maximal at U, = 1), the aforementionedpropertyis true.

As /3* increases,a shoulderappearsin the right handsideof eq. (4.26) as a function of h andsplits
into an unphysicalminimum and anotherlocal maximum.This is the behaviourillustratedin fig. 26a,
whereasthe caseof fig. 26b doesnot occur. Therefore,the meanfield approximationalwaysprovidesa
first order transition,separatingthe strong coupling region, where the maximum at h = 0 dominates,
from the weakcouplingregion (h ~ 0). This transitionoccursat pointT of fig. 29, whenthe two maxima
areequal.Thedottedpart BA correspondsto theminimumratherthan to amaximumin the right hand
sideof eq. (4.26), andis unphysical.Note that the end-pointA of the strongcouplingmetastableregion
lies at infinity.

The Wilson loop parametershows that this transition is deconfining. The mean field picture
approximates

W(C)=(Trfl u,)

as W(C)= Tr (n u
1) = Tr fl (U,) + connectedcorrections,

and thereare arguments— thoughno proof to our knowledge— to the effect that the correctionsfade
away as the exponentialof the area.The first term N(u’(h))” vanishesfor h = 0, leaving only an area
law; it gives a perimeterlaw for the weak couplingsolution h� 0.

In spiteof its simplicity, thisapproximationis qualitativelygood; it is expectedto beaccuratein high
dimensions,where a first order transition is always observed.Even in rather low dimensions,the
locationof the point T is reproducedup to 10—20%; we cannotexpectmoreprecisionwithout the l/d
correction.Somenumericalresultsare

Z2 /3~= 2.755, d = 3: /3~= 0.689 (0.7613 from dual Ising)
d = 4: /3~= 0.459 (0.4407exact)

Z3 /3~= 4.383, d = 3: /3~= 1.096 (1.085from dualPotts)
d=4: /3c=0.730 (0.6700exact).

Here,d = 3 is the lower critical dimension,wherea transitionfirst appears(this critical dimensionlimits
the validity of the approximation).

Continuousgroupsareexpectedto havetheir critical dimensionat d = 4; evenif the phenomenaat
thisdimensionarepeculiar,somethinghappens(cross-overphenomenon)which might beconsideredas
theshadowof first order transitionoccurringat higher dimensions.The comparisongives

U(1) /3~= 7.293, d = 4: Pc = 1.216 (1.01Monte-Carlo)
SU(2) /3~= 1.060, d = 4: /3~= 2.826 (2.2Monte-Carlo)

d = 5: /3~= 2.120 (1.64Monte-Carlo).
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Calculationscan also beperformedin the axial gauge.Temporallinks areset to 1 andareno longer
dynamicalvariables.Only spatiallinks areinvolved in the trial action(4.25),andthe free energypersite
reads

F � Fmi,ag= (d — 1) Max {u(h) — h u’(h)+ /3*(d_2)u’4(h) + (d—l) u12(h)} (4.30)

andthisformulacoincideswith (4.26)in the larged limit. Resultsobtainedwith this estimatearequite
similar to the precedingones.The point A in fig. 29 is nowat finite distance,becausethe energyterm
hasa quadraticpart and can competewith the entropy term near h = 0; this maximum disappearsat
point A

/3X= (d — 1)/u”(O). (4.31)

As d decreases,the pointsA andT comeclose to eachotherandmergeat a critical dimension

d~= 2 — ~u°”1(0)/u”3(0) (4.32)

wherethe transitionbecomesasecondorderone.
In this gaugefixing formulation, the problem of violation of Elitzur’s theorem is avoided, but

replaced by the problem of long-rangecorrelation of spatial links in the temporal direction. For
instance,a temporalWilson ioop R x T hasan exponentialfall-off only in R (—N(u’(h))21~),ratherthan
the expectedperimeterbehaviourin (R + T). For a loop of largeT andfinite R, this seemsto violatea
rigorousbound [198].The approximationhasalso a wrong weak coupling behaviour.However, both
diseasescan be curedas will now be illustratedin the Z

2 case.
The weak coupling expansionof the actual model starts from a configurationwith all gaugefields

U, 1. The first correction comesfrom flipping one link; 2(d — 1) plaquettesare frustrated in this
process and the relative weight factor is exp{—4(d— 1)/3}, yielding a total correction (1 +

Xd exp{—4(d— l)/3} + ~)to thepartition function.The samecalculation,carriedout in theaxial gauge,
only yields 1 + X(d— 1) exp{—4(d— 1)/3}. It is clear that this comesfrom the now forbiddenoverturnof
atemporallink, which amountsto flipping an infinite numberof spatiallinks (seefig. 30). Adding these
extraconfigurationsrestoresthe right low temperaturelimit. The sameproblemoccursin themeanfield
approximation,whereFmf of eq. (4.26)reproducesthe correctlarge/3 behaviour,whereasFmt,agof eq.
(4.30)doesnot. This suggeststhat we shouldconsiderthe configurationsof fig. 30, wherenowall spatial
links read±u’(h).Such a “defect” configuration is not generatedby any finite ordercorrectionto the
original meanfield, and doesnot makethe action stationary.In principle,it is possibleto “broaden” the

Fig. 30. Flipping onetemporallink is equivalentto flipping an infinite numberof spatiallinks.
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defectso as makeit a saddlepoint (see[199]for details).For our presentpurpose,however,the simple
pictureis good enough.The contributionof the defectsis exponentiallysmallerthan theoriginal mean
field configuration,but, in a dilute gasapproximation[182],theycontributeto the free energyand cure
the large/3 limit, at leastto leadingorder. It may alsobe seenthat theyreinstatethe correctperimeter
law of theWilson loop [199].The fact that contributionsof two different saddlepointshaveto be added
in the axial gauge formulation for discrete groups makes the computation of corrections more
hazardous(seethe discussionof section4.1.5).

4.2.2. Generalizedmeanfield: restorationofgaugeinvariance,corrections
As noticed in section 4.1.3, the one parameteraction (4.25) is not adaptedto a systematic

computationof corrections.It is necessaryto couplea “meanfield” to eachgaugedegreeof freedom.
For instance,weuse the trial action

S{h}(U,) = ~ (1/N)ReTr(h1~L.~,,) (4.33)

wherethe generalizedmean field h0 is now an arbitrary complexNx N matrix associatedwith each
link, andwe recall that i andj label the sites. For convenience,we conventionallywrite h~,= h~.It is
hopelessto try to solve the general saddle point equationsfor the mean field configuration {h,};
however,a rathernaturalansatzfor the solution is

h11 = hg,g~
1 h E R, g, E G (4.34)

dependingon a real constanth and on a local gaugetransformation{g,}. In the saddlepoint eqs.
(4.16)—(4.17),the g,’s disappearand the meanfield solution of the precedingsubsectionis recovered.
Neverthelessthis formulationoffers someadvantages.

i) The possibility of computingcorrectionsaccordingto the generalformalism of sections4.1.3—4.
Illustrationsof this techniquearepresentedin the following sections.

ii) Restorationof gaugeinvarianceand recoveryof Elitzur’s theorem.Solution(4.34) is degenerate
with respectto {g

1}; the procedureof section4.1.5 mustthereforebe applied,andthe meanfield solution
for the partition function Z is summedover the g’s. In particular,

(U0) = J J u’(h) g, g~’Dg, Dg~ 0 (4.35)

and Elitzur’s theorem is satisfied.The readermay object that such an argument,when applied to a
model with a global symmetry, a spin model, say, seems to imply the vanishing of any order
parameter— e.g. the magnetization— andrules out the possibility of a spontaneousbreakdownof the
symmetry.To understandfully the differencesbetweenmodelswith global andlocal symmetries,one
has to break that symmetryby an externalsourceJ, and look at the behaviourof the (infinite) system
when the breakingterm is removed.The discussionfollows very closely the lines of section2.4. In a
gaugetheory, if a given meanfield is the true saddlepoint in the presenceof an infinitesimal sourceJ,
thereis also a largesetof gaugetransformsof that meanfield which are almost saddlepointswith a
very close contribution. This set conspiresto give a vanishingexpectationvalue to any non-gauge
invariant observable,in the limit J —* 0. A similar argumentis not possible for a global symmetry,
becauseof the lack of commutativityof the limits .X —* ~ andJ—*0 (cf. section2.4).
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iii) The entropyof the gauge degeneratemean field must be takeninto account.When the gauge
groupis discrete,the saddlepointsareseparatedandtheir equalcontributionsmustbe summed;there
are jGft~’ such configurationswhen h is non-zero.Hencea term d~lnIIGIj mustbe addedto the right
handside of eq. (4.26) for the free energyper link. In a model with a global symmetry,such a term
X’ ln~G~in the free energyper site would play no role in the thermodynamiclimit X —* cc The caseof
continuousgroups,wheregaugefixing is necessary,is discussedbelow.

iv) We finally mention here that this saddle point approach is also useful in identifying the
continuoustheory at the critical point. This remark is of no use in this section,but will be relevant in
section5 for the critical point of the Higgs model.

The parametrization(4.33)and ansatz(4.34) may sometimesbetoo restrictive.This is the caseof the
mixed SU(2) fundamental—adjointsystemthat we review briefly here[177,178, 180, 191, 193]. In the
large Pa region, the action has two local maxima for U~= ±1;correspondinglink-configurations
fluctuatearoundU, = ±1(up to a gauge).The role of these“fluxon” configurationsin the SU(2)theory
hasbeenthe objectof muchinterest[200,69]. Within the meanfield approach,theycannotbehandled
by (4.33)which allows fluctuationsaroundonevalueonly. Therefore,the Z2 degreesof freedomof the
fields mustbe explicitly extractedfor a separatetreatmentif onewants to describecorrectly the largePa

region.A practicalway is to write

U,=~,V,, r,=±1, V,ESU(2). (4.36)

The Z2-degreesof freedome, maybe treatedas defectsin a dilute gas approximation[193]andthe
SU(2) variablesin a meanfield picture. Alternatively, onemay introducemeanfields for both {e,} and
{V,}. We shall discussherethis secondapproach[177].The parametrization(4.36)is not one-to-oneand
introducesa new “gauge”-symmetry(e,—*—e,,V,—*—V,).A gaugefixing proceduremightbe introduced
to suppressthesespuriousdegreesof freedom,such as, e.g., a constraint tr V, � 0. It is nevertheless
moreconvenientto keepthis discretesymmetryunbrokenin the meanfield procedure,bearingin mind
that non-zeromeanfield solutionsare2~times degenerate.The resultingphasediagramdisplays three
phases:

a) strong coupling: Pa, Pt small ((V,) = 0, (e,)= 0).
b) SO(3) weak coupling phase,Pa large, /3, small ((V,) � 0, (e,)= 0). The gaugefield U, fluctuates

aroundtwo separatedvalues ±1which play the samerole, becausef
3~is too small to break the Z

2
symmetrybetweenthesestates.

c) SU(2) weak coupling phase,Pa, Pt large ((V,) � 0, (e,)� 0). The phase diagram of fig. 6 is
reproduced,but the first order line doesnot end andseparatescompletelythe regionsa andc.

The configurations(4.34) set all plaquettetermsh~= h,Jhfkhk,h,,proportionalto the unit matrix (up to
agauge).In general,this maximizestheaction andsuchsolutionsare expectedto dominatein the weak
coupling regions. However, the energyis no longer maximal [201]at U~= 1 when Pa is negative;the
ansatz(4.34)is thereforecertainly incorrect in thisregion andothersolutionsof thestationaryequations
mustbe lookedfor. We do not reporthereon thesesolutionswhich generaterathercomplicatedphase
diagrams,with secondorder lines which may be relatedwith the continuumlimit in dimensionsstrictly
greaterthan 4 [180,1911.

4.2.3. lid expansionfor discretemodels
We haverepeatedlystatedthat the meanfield techniqueandits extensionsareexpectedto provide

an accuratedescriptionof high dimensionalstatisticalsystems.Thesaddlepoint approximationyields a
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critical inversecoupling /3 of orderd~.Thediagrammaticmethodof section4.1.4is well suitedto show
that, for large d and/3d fixed, the loopwiseexpansionyields a 1/d series.

The variationalformula (4.22)is used togetherwith the knowledgeof the irreduciblefunctional 1(J)
as an expansionin 1/d at fixed /3d. Let us first showthat the loop expansionof fig. 27f can be usedfor
this reordering.For a pure lattice theory, the “vertex” (black dot) is geometrically the centreof a
plaquetteandis joinedtofour “sites”(opendots),herethemiddlesof theborderinglinks. Thelinejoining a
vertex to a site is therefore geometrically a segmentof length a/2 parallel to an axis. In order
to constructa closed loop, it must be possibleto associatethesesegmentsin parallel pairs of opposite
directions;thereforea single loop with n vertices(2n segments)hasat most n different orientations,
and the choice of theseorientationsleadsto a behaviourd” for its configurationnumber.With each
vertexbringing a factor/3 d1, the final contributionof a single loop at fixed f3d is of order 1 + C(l/d).
Every additionalloop yields at least an extrafactor lid becauseat least onelink mustbe sharedwith
the old loop andits orientationin the new loop cannotbe freely chosen.On the otherhand, the lowest
order term in the loopexpansion,i.e. asingle “site” (link) is of orderd (thereareXd links on the lattice).

Therefore,we havecharacterizedthe diagramswhich contributeto the lid expansionof 1(J). Note
that, in contradistinctionwith spin systems[202],an infinite numberof diagramscontributeto eachterm
of this expansion.Thefirst correctioninvolvesonly one-loopdiagrams.Plaquettesmustbe arrangedas
shownin fig. 31 in order to allow themaximalnumberof orientations.With n plaquettes,such diagrams
yield a contribution

d! (2Pu’2u”)~/[(d — n)! 2n]

andtheir asymptoticcontributionsin the limit d —* cc at fixed Pd can beeasilysummedup overn � 3. In
addition, the irreduciblediagramswith two plaquettesat the samelocation andlinked in variousways
mustalso be added.Details andsecondordercorrectionscan be found in [174].

This methodworkscorrectly with discretegaugegroups,for whichthe variationalsolutionis isolated.
Similar calculationsfor continuousgroupshavenot yet beenattempted.We recall that, in addition to
the variational estimate(4.22), a supplementaryterm X lnjIGIl must be addedto the weak coupling
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Fig. 31. Diagramscontributingto the first lid correctionto themeanfield result.Heren = 5 plaquettesaredrawn.
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branch,to take into accountthe degeneracyIGIIX of thesaddlepoint. This term is of orderd°andthus
contributesto the first ordercorrectionof the lid expansion.

Fig. 32 displays the resultsfor the4 gaugegroup. The first two correctionshavebeenincludedin
1(J), before using the variational principle (4.22). As the dimensiondecreases,the weak coupling
metastablephaseshrinks; it disappears,in this approximation,at d 2.9, very nearthe true critical
dimension3 wherethe first order transitionis replacedby a secondorderone.

The end-pointA of the strongcoupling metastableregion remains,in this expansion,at infinity. At
such cusppoints, one seesa uniquemaximum exploding into a large numberof degeneratemaxima.
Whathappensthereis badly reproducedin the crudeststeepestdescentmethod;moreover,the sudden
occurrenceof the additional entropy terms taking into account the multiplicity of the saddle points
yields an incorrect discontinuity. The complementarydescriptionmade in section3.3.1 for the strong
coupling phasemust be used instead. In particular, the position of the end point was found to be
d/3 = ~10114d314,which is at infinity for d = ~, but which cannotbe obtainedas a lid expansion.This is
reflectedby a decreasingradiusof convergenceof this lid expansionin the strongcouplingphaseas
increases.

Similarly, the d114 expansionof section3.3.1 cannot handlethe weakcoupling phasecorrectly. In
the variablesof fig. 17, the weak couplingregion (J3d C(1)) correspondsat d = cc to the verticalaxis.
A detailedstudy of thed~4expansionshowsthat correctionsdevelopmoreand moresingularitiesat

= I to constructthe end-pointof the weak coupling metastablephase.The two methodsappearas
complementaryin the descriptionof the larged limit.

We finally quote the lid expansionof the first order transition.Numerically, in the Z
2 case,

2(d — 1)/3~= 2.755205— 0.9l2561d~+ 0.601169d
2+ ~(d3) (4.37)

(the saddlepoint entropyIn 2 is responsiblefor the sign of the lid correction).

4/I /
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Fig. 32. Behaviour of the Z
2 free energyas thedimensiondecreases(from l/d expansioncut to 3 terms). Solid lines are the physicalparts. The

metastableand unphysicalbrancheshave been representedas dashed,or indicated by an arrow.The dotted lines showthe trajectoriesof the
transitionpointsas d varies.
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4.2.4. Correctionsto meanfield for continuousgroups
In the caseof a continuousgauge group, gauge fixing is mandatory for the computation of

corrections.Otherwise,zeromodescorrespondingto infinitesimal gaugetransformations(eq. (4.34)) of
the solutionto the saddlepoint equationswould give rise to infinite fluctuations.Themost convenient
choiceis againthe axial gauge(see,however,the endof thissubsectionfor a brief discussionof other
choices).The axial gaugealsohasthe merit of alreadyyielding the right low temperaturelimit of the
free energyat the meanfield “tree” approximation,as we shall see now. We considerfor definiteness
the SU(N) or U(N) Wilson action in d dimensions[182,193, 184, 203]. Following the samelines as in
sections4.1.3 and4.2.2,oneconsidersthe partition function in the axial gauge

Z= J fl DUiexp{(J3/N)Re[ ~ tr U~+ ~ tr U1U~.]} (4.38)
spatial space- time-
links like like

I plaquettes plaquettes

andoneinsertsin Z the following representationof 1

1= fl Jd21~2V,62N2(V,_U,)
spatial
links

= fl J dV, dH, (2i~N)2N
2exp{(l/N) Re H(U - V)} (4.39)

where V is a N x N complexmatrix, and dV is the flat measureH~d Re Va~dIm Va
0, andlikewise

for dH As in section4.1.3, the 2iirN factordisappearsultimately in the Gaussianintegration,andwe
omit it in the following. Onegets

Z = J fl dV, dH, exp{Sett[ V,, H,]} (4.40)
spatial
links

Seff= (/3/N)Re ~ tr V~+ ~ (u(H,)—(1/N) ReH,V,) (4.41)
p

wherewerecall that

u(H) In JDU exp(1/N)Retr(UH). (4.42)

The saddle point of the functional is assumedto be uniform: H,, V, independentof I, real and
proportionalto the unit matrix:

H,=H1, -V,=V1. (4.43)

Of course,we haveno a priori guaranteethat suchc-numbersolutionsarethe dominantsaddlepoints,
but we shall verify that theyexist for smallenoughcoupling and that they describewell the physicsin
that region.Then H, V must be a saddlepoint of the real function
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[l/X(d - 1)] S~ff[V1,Hi] = /3[~(d-2) V4+ V2] + u(H)- HV (4.44)

hence

IV* = u!(H*)
1H*=13V*(2+2(d_2)V*2). (4.45)

Theseequationshaveonly the trivial solution H* = V* = 0 for P <PB, and a non-trivial solution
appearsat /3 � PB. For investigatingthe large/3 limit of this solution andof the relatedfree energy,we
haveto expandthe function u(H) at large argumentH. It turns out that such an expansion is also
sufficient in the whole weak coupling phase,and that we do not need the exact expressionof u(H)
[204]:this is becausethe critical coupling /3~is largeenoughso that V is of order oneandH largefor
/3 > f3~. Onemaywrite

u(H) H + C—A
0ln H+ A1/H + A2/2H

2+~-- (4.46)

A
0 countsthe numberof infinitesimalgeneratorsof the Lie algebra,and the constantsA1 andA2 have

been computedin [176].The constantC is worked out using the explicit form of the integration
measuregiven in appendixA (seetable12).

The mean field free energy is the saddle point value of
5eti- The internal (plaquette)energy is

therefore

E = {2/d(d — 1)}oF/a/3 = [(d — 2)V*4 + 2 V*2]/d. (4.47)

For /3 —* cc, H* 2/3(d — 1), V* 1— A
0/{4/3(d— 1)}, hence

E= 1—A0/df3—~~ (4.48)

which is the correctlarge/3 behaviour,countingthe numberof degreesof freedom.Had we not fixed
the gauge,we would havethe wrong result

E = V
4 = 1—A

0/{/3(d — l)} — - -.

which would haveto be amendedby the corrections.

Table 12
Asymptoticbehaviourof u(H) = Inf DU exp{(H/N) ReTr U}

I ff~
1k! N2—2 1 N2—1 N2—l (2N2—5)(N2—l)

SU(N) u(H)~H+ 1n(
2 )(N_i)f2+—~-——lnN]———~----lnH—--~—— 48Ff

2

U(N) u(H)—H+ [In ~~nN] _! InH+f +j +

SU(N)/ZN u(H)~H+ [In (2 )I?-i)f2~21n 2N +2ln N] NllnH+ (N2—l~~~ ~
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Computationof the one-loopcorrectionsto thenon-trivial saddlepointproceedsin a standardway. It
requiresthe functions

82u(H)/8H
0aÔH~HHI = ~

2u(H)/3H~,S3H~(H=Hl= A ~ + BP~
7~ (4.49)

and

a
2u(H)/l9H$aoH~,IHH,= A’ ~ + B’ ~ (4.50)

wherep(O) andP~arethe projectorson the trivial andadjoint representations

P(o) — 11 ~— k / )Uaf3Uy~

P~,g= — (l/N)3a
05n,~. (4.51)

Asaconsequenceof theinvarianceof u(H) underaunitarytransformationon H andHt, it is easyto see
that,for all H,

A’ — A = B’ — B = u’(H)/2NH (4.52)

(the first equality doesnot hold for SU(N)). Moreover, for largeH,

B—-B’----1/4NH

and

A-=-A’--’-1/4NH forU(N)

A -= A’ — ~(1/H
2) for SU(N). (4.53)

It is thusnatural to project the fluctuationsof H and V about their meanfield valuesH* and V*, on
the trivial and adjoint representations.Moreover, their Hermitian and anti-Hermitianparts are not
coupledto eachother in the Gaussianapproximation:the anti-Hermitianparts, coupledto A— A’ or
B — B’, give the dominantcontributionto the large/3 (largeH) limit.

The caseof SU(2) deservesa special mention.If one usesthe representationof SU(2) matricesin
termsof Pauli matrices

U=u
0+iu-o- u~+u

2=1,ureal

andwrite

H=h
0—ihu, V=v0+iv~r

with complexh, v, oneseesthat

u(H) = ln J DU expRe(houo+ h o)
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does not dependon the imaginary part of h. In the loop expansion,integration over Im h gives a
delta-functionfor Im V andthesedegreesof freedomdecoupleto all orders.

Finally, the secondderivativesof Wilson’s action with respectto the link variablesintroducestwo
bond-shiftingoperators,the Fourier transformsof which read

~i~(k) = [2 coskd +2V2 ~ cos k~]6~+4V2(l - 6~)exp[i(k,. - k~)/2]sin(k
5J2)sin(kJ2)

p s~/L,d

~ (4.54)

and

~~k) = [2 coskd +2V
2 ~ cosk~]~ +4V2(l - 6~)exp[i(k~- k~)i2]cos(k~/2)cos(kJ2)

p s~p~d

(~,.‘= 1,...,d—1). (4.55)
~ and ~i are relevantfor the anti-Hermitian and Hermitian parts of the fluctuations, respectively.

Straightforwardalgebrathen leadsto the one-loopresult

Z = exp{S~
0(H~V*)} x {deF~

2(i— 2/3N(A’ — A)~i)xdet_~’2_1~2(i— 2/3N(B’ — B)i)

x det~2(i— 2/3N(A’ + A)~i)xdet_~’2_~2(i— 2/3N(B’ + B)z~)}’~. (4.56)

Becauseof eq. (4.53), only the first two determinantscontributeto order /3°in the free energy.Using
eqs. (4.52), (4.45), onemay write

2/3N(A’ — A) = 2/3N(B’ — B) = f3V/H = li[2 + 2(d — 2)V2] (4.57)

(for SU(N), the first equationis absent),so that the one-loopfree energyreads

F = Fmt- {(N~~)i2} tr ln(i - (/3V/H)~i)+ C(l//3) (4.58)

whereN2/2 refersto U(N) and (N2 — 1)/2 to SU(N).
Severalcommentsare now in order.
i) It is of coursepossibleto pursuethe loop-wiseexpansionto higher orders.The importantpoint is

that only a finite numberof termsin the expansioncontributeagiven order in 1//i This resultsfrom the
behaviour of successivederivatives of u(H) (see e.g. (4.53)) and from a simple power-counting
argument.For example, only one-loopand two-loop diagramscontributeto order 1//3 in F, and so
on . . - This hasto be contrastedwith the caseof discretegaugegroups,say Z

2 for definiteness,where
one may show that an infinite number of terms are expectedto contributeto the secondcorrection
exp{—8(d— l)/3}. Therefore,one may say that, for continuousgroups,the meanfield approximation
(including the corrections)resumstheweakcouplingexpansion,andmoreoverdoesthis resummationin
a very efficient way. Fig. 33 displays the plaquetteenergyof the four-dimensionalSO(3) theory (the
presentdiscussionmaybe easily extendedto SO(3)or any othergroup).

ii) The spectrumof excitationsin the mean field approximationmay be read off the expressions
(4.54)—(4.56),sincethe argumentof the determinantsis their propagator.For instance,1 — (J3V/H)zi has
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Fig. 33. TheS0(3)plaquetteenergy.Monte-Carlodata[42](full circles)comparedto thestrongandweakcouplingexpansionsandto themeanfield
solution.

two eigenvalues,A1 (4/3V/H) sin
2(k~/2),and A

2= (4/3V/H) (sin
2(kd/2)+ V2 ~ sin2(k~j2)),the latter

(d — 2) times degenerate;A
1 vanishes at kd = 0, which correspondsto “time”-independentgauge

transformationsallowedin the axial gauge,whereasA2 vanishesonly at k = 0, and representsthe other
global transformations.Both are masslessexcitations.On the contrary, theother (Hermitian)channels
haveno masslessexcitations.That the most relevantchannelsin the large/3 limit correspondto the
anti-Hermitianparts of the fluctuations, and give a zero mass to theseexcitationsshould be of no
wonderto us,andfits with the continuumtheory.

iii) Had we not fixed the gauge,we would havefound (1 — {1/2(d — 1) V
2}~i’)as the argumentof the

determinantsin eqs. (4.54—56), with ~1~. a d x d matrix obtained from ~l by replacingcoskd by
V2 cosk~.This matrix hasa zero mode sin(kj2)exp(ik~/2),correspondingof course to local gauge
transformations.

We now cometo the determinationof thetransitionpointbetweenstrongandweakcouplingphases.
This is achievedby comparingthevariousfree energysolutionsprovidedby meanfield pluscorrections.
In the strongcoupling phase,where the meanfield is trivial, we haveseen(section4.1.4)that loop
correctionsreconstructthe strongcouplingexpansiondiscussedat lengthin section3. At weakcoupling,
one maytakethe one-loopexpressionof (4.56); the “Hermitian” channelsplay a minor role, andthe
determinantis a slowly varying function of /3. For most gaugegroupsSU(N), N � 4, U(N), all N,
SO(3),...,this methodgives a valueto the (first order)phasetransitionin very good agreementwith
theMonte-Carlosimulations.The resultsarepresentedin table13. The characterexpansionsof section
3 have been used and suitably extrapolated.The small, but systematicdiscrepancybetween the
mean-fieldestimateandMonte-Carlodatashouldbecorrectedif a smallpositivetwo-loop contribution
is addedto F in the weak coupling phase.For illustration, the two free energydeterminationsare
plotted in fig. 34 for U(cc). Of course,for U(1), the phasetransitionis incorrectlypredictedto be first
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Table 13
Comparisonof mean-fieldand Monte-Carloresultsfor thepositionof thetransition

Mean field Monte-Carlo

d=4 11(1) 1.03 1.01 [205]
U(2) 3.45 3.30 ±0.05 [205]
U(3) 7.30 6.88±0.5 [205]
U(4) 12.5 12.14±0.7 [205]
U(S) 19.5 18.8 ±1.1 [205]

U(6) 28.0 27.0 ±2.6 [205]
U(~) /3/2N

2= 0.38 0.375—0.38 (extrap.)
SU(4) 11.6 10.2 [206,207]
SU(5) 18 16.4 ±0.2 [206,208]
SU(6) 26.5 24.0 ±1.0 [209]
SO(3) 2.6 2.48 [42]

d = 5 SU(2) 1.77 1.64 [210]
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Fig. 34. Four-dimensionalfree energyfor U(x) gaugegroup.

order,but we cannotexpectmeanfield to reproducethe physicsof monopoleloop condensation.The
moststriking effect takesplacein SU(2)or SU(3)wherethe strong andweak coupling determinations
do not crossand are almost degeneratein a rangeof /3 (fig. 35); the correctionsto meanfield have
removedthe first order transitionpredictedto lowestorder.Of course,it is an exaggerationto saythat
meanfield predictsthe absenceof a phasetransition,becausethebadconvergenceof thestrongcoupling
expansionand possible higher order contributions in the weak coupling phase limit the accuracy.
However,it is quite gratifying to see the consistencyof the methodwith the “experimental” situation.

The computationof correctionshasalsobeenappliedto the SU(2)model with a mixed action.The
meanfield incorporatesthe fluxon configurationsdiscussedat the end of section4.2.2. The resulting
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Fig. 35. Mean field plus correctionsfor four-dimensionalSU(2) case.
phasediagramreproducesvery well all the featuresof fig. 6, with all the transitionlines shifteda little
to the right, as in the previouscase[193].

The computation describedso far has been carried out in the axial gauge. Gauge invariant
quantitiesshouldof coursenot be affectedby the choiceof gauge,but gaugeinvariancedoesnot hold
orderby order in the ioop expansion.For aestheticalreasons(covariance)or for their suitability in the
computationof higher order corrections,other choicesof gaugehavebeenproposed[188,211]. The
stationarityequationsaresolvedin the absenceof gaugefixing andthegaugeconditionis imposedon the
fluctuations;for example,theLandaugaugeisaconstrainton theanti-Hermitianpartof the V fluctuations

~ [(v~4— Vn_~,4)~h.c.} — 0.

Such a constraintmust generallybe accompaniedby the appropriateFaddeev—Popovdeterminant,
which also contributesto the corrections.So far, actual computationshaveonly beencarriedout for
U(1). It hasbeenverified that the correctlarge/3 behaviourof E(J3) is recovered,althoughthe original
meanfield approximationseemsworsethan in the axial gauge.

Finally, the meanfield approachhasbeenrecently appliedto thepuzzlingHiggs—Coulombtransition
of Z. gaugemodels.We recall from section2.3.3 that thesemodelspossessthreephases.For n large,
Z, looks like U(1), and the confinement-Coulombphaseis well reproducedin a standardmeanfield
picture. However,the secondtransition requiresa more elaboratediscussion.It hasbeenshown [186]
that thosefluctuationsaroundmeanfield which areU(1) gaugetransformationsplay an importantrole.
When n —~ ~, Z~is supposedto approachU(1), and theseexcitationsshould becomea zero mode.
Actually,at /3 finite, their eigenvalue(mass)is exponentiallysmall in n, whereasat /3 —~ C(n

2), it is large.
This suggeststo separatetheseU(1) degreesof freedomfrom theGaussianfluctuations,andtreatthem as
collective coordinates.Using this method,Alessandrinihasbeen able to reproducequalitatively the
behaviourfor n largeof the transitionpoint /3 — 0.02n2observedin Monte-Carlosimulations[128].
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4.2.5. Conclusions
The meanfield approximationin latticegaugetheorieshasbeenconsideredwith muchsuspicionfor

many years,becauseof its seeminglyirremediableconflict with Elitzur’s theorem.We hope to have
convincedthe readerthat this was not founded,and that this approximationgives an accurateway of
analyzingthe local propertiesof gaugesystems.The phasediagram andlocal observables[189]arewell
reproducedand it seemsthat grinding out a few higher order correctionswould still improve the
agreement.On the otherhand,it is clear that long distancephysics,the approachto thecontinuumlimit
and its scaling propertiesare not expectedto be within the reachof the approximation.However, it
might be that meanfield with its correctionsreproducesthis limit to someextent, as strong coupling
approximationsdo. Also, the fact that scaling alreadyseemsto take place at rathersmall distances
leavesopenthis possibility.

5. Higgs fields

5.1. Generalities

The precedingsectionshavebeen devotedto the pure gaugemodels.However, a realistic theory
necessarilyincludesmatterfields. As bosonsappearto be simpler andperhapsbetter understoodthan
fermions,we restrict ourselvesto this case.

It is known in field theory that the inclusion of matter fields can exert a dramatic effect on the
behaviourof gaugetheories.The Higgs mechanism,where scalarfields interactwith gaugebosons,
makesthem massiveandcutsthe forcesto a short range.In the lattice regularization,the occurrenceof
sucha phenomenonis expectedto be seenin the phasediagramof the combinedmatter-gaugemodel.
This sectionis devotedto somediscussionof this system.

The latticeHiggs model is definedas follows. We introduceon eachlatticesite a scalarfield 4, with
dr components.It transformsundera gaugetransformationaccordingto somedr-dimensionalirreduci-
ble representationof G

-~ D~(g1)~. (5.1)

In view of this gauge transformation,it is natural to split thesefields into a subsetof gauge
parametersfor the orbit, and a subsetof complementaryparameters(“radial excitations”). A little
thoughtshowsthat only the first subsetinteractswith the gaugefields, andthat only the secondsubset
can be involved in the local (= dependingon only one site) gaugeinvariant potential terms of the
action.Even in the absenceof gaugeinteractions,i.e. with global transformations(5.1) g, independent
of i, the interactionbetweenthetwo subsetsleadsto a very rich structure(relatedin particularwith u-
and CP(n)-modelsin the continuum limit). When gauge fields are added,we expect an even more
complexstructurewhich hasremainedunexploredso far. Therefore,we restrict herethe variationsof
the Higgs fields to a single orbit, without radial excitations.For instance,with the Z2 gaugegroup, 4,

can takeonly the discretevalues±1insteadof anyreal value;with the U(1) group, ~, is constrainedto
be a unimodularcomplex number (or, equivalently,a two-dimensionalunit vector); more generally,
with the metric preservinggroupsSO(N) (resp.SU(N)),4, is aunit real (resp.complex)N-component
vector. Also, we do not treatherethe caseof severalHiggs fields in the system.

A new term YSH involving Higgs fields must be addedin the action to the pure gauge action f3Sg,
extensivelystudiedin the previoussections(we addnow a subscriptg for gauge).The restriction to a
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single gauge orbit suppressesthe terms in SH dependingon only one site; keeping only nearest
neighbourterms, we areled to the following gaugeinvariant form

YSH= y~D’~(U0)4~, (5.2)
(i,j)

andwe now considerthe generatingfunctional

Z(J,j) = J fl D~J fl D U1 exp~f3S5+ YSH + ~ tr(J1U1) + ~ j~çt~}. (5.3)

The invariant measureD~,on Higgs fields is naturally inducedby the Haar measureon G, for 4., can
be parametrizedby an elementg, of the gaugegroup

(5.4)

usinga fixed, arbitrarily chosenvector
4o; in thisparametrization,the measureis clearlyDg

1.
The gL’s of the parametrization(5.4) define a transformation,which fixes the gauge in a given

configuration of Higgs fields. This is called the unitary gauge.Performing this transformationon the
U1’s, the partition function reducesto

z= Jfl DU1 exp{/3Sg+~ ~ ~0Dr(U~1)~0}. (5.5)

The integranddependsno longer on ~‘s andthe correspondingintegrationhasthusbeencarriedout.
Hence,the model is equivalentto a (non-gauge-invariant!)puregaugesystem in an externalconstant
field.

Beforediscussingthe (/3, y) phasediagram,it is instructiveto study variouslimiting cases.
a) y = 0 is, of course,the well known puregaugemodel.
b) /3 = 0 is a trivial modelof non-interactinggaugefields (asseenin the unitary gaugeformula (5.5))

and hasno transitionwhen y varies.
c) /3 = cc is the purestatisticalspin systemwith an action y ~ j~.Indeed,thislimit selectsonly the

gaugefield configurationsmaximizingSg, i.e. with all U~,set to unity; in an appropriategauge,all U1 are
set to unity, hencethe result.We recallquickly somepropertiesof thesemodels,extensivelystudiedin
statisticalmechanics.Among them arethe Ising model (~= ±1),the xy-model (2-dimensionalreal ~),
the Heisenbergand generalizedmodels(3- and more dimensionalreal q~).They generallypresenta
secondorder transition for sufficiently high dimension: 2 and above for Ising, 3 and above for the
others.The2-dimensionalxy-model is ratherpeculiarandexhibitsa continuousorder transitionline for
Y > Ye [212].The phasesare characterizedby the meanvalue of the Higgs field, vanishingidentically
only in the low coupling(high temperaturey~)phase.Thelargedistancebehaviourof the correlation
function is

(4so4~r~—~ Cst exp(—r/fl y < Yc ((4~ 0) (5.6)

(~2 + Cst exp(—rI~) 1/ > Yc, discretegroups (5.7)

(~)2 + Cstexp(Cst’/r~
2) V > Yc, continuousgroups. (5.8)



100 J.-M. Drouffe and f-B. Zuber, Strong coupling and mean field methods in lattice gauge theories

The last behaviour(5.8) is a consequenceof the existenceof Goldstone’smodes(spin waves) in the
spontaneouslybroken model. Finally, note that the phasestructuremay be richer, for instance,Z~
models(n > 4) exhibit threephases,separatedby two secondorder transitionsandcharacterizedby the
successivelyencounteredbehaviours(5.6), (5.8) and(5.7) when y increases.

d) y = cc selects,in the unitary gaugeformula (5.5), the values of U, maximizing the matterpart of
the action. They form a subgroupH C G and thusthe limit is the puregaugemodel for H. When the
representationr is the fundamentalone, H containsonly the unity; the system is trivial and, in
particular,doesnot undergophasetransitions.Otherrepresentations,hereafterreferredto as multiply
chargedHiggs systems,lead to non-trivial cases.Examplesareprovidedby the U(1) systemwith charge2
Higgs field

/3 ~ cos(9q+ Ojk +
0kI + O,~)+ y cos2(~~+ — ~) (5.9)

or by the SU(2)systemwith isospin 1 matter

/3 ~ tr U~+ r ~ Ø
1D’(U0)~1 (5.10)

(~/,are3-dimensionalunit vectorsonto which actsthe SO(3)rotationD’). The unitary gaugeselects,at
large y, the gaugeconfigurationsO~— 0 or IT, or U1 = ±1;the systemthus reducesto the pureZ2 gauge
model for both cases,with its first order transition.

5.2. Thephasediagram

Fig. 36 displays the expectedphasediagramsin Higgs systemsfor various cases.Thesequalitative
sketchesaresuggestedby the limiting casesstudiedin the previoussubsectionandwill beconfirmedby
the resultsobtainedlater.The threeexpectedphasesare

a) /3 and y both large: the Higgs field takesa non-zeromeanvalue and the gaugefield fluctuates
around 1 (in the unitary gauge).This is a Higgs mechanism,with massivegaugebosons.The force is
short rangedandthe Wilson loop exhibitsa perimeterfall-off.

b) /3 large, y small: finite energystatesrepresentingfree chargesare observed.For continuous
groups,the gaugebosonshavemasslessexcitationsandcausea Coulombforce betweenstaticcharges.

c) /3, y both small: this is the confinementphase.Onemight expectan arealaw for the Wilson loop;
however,the introductionof matterfields hasmodified drasticallythe situation.Indeed,the separation
of staticchargeswith a linearly growing potentialis balancedby the energeticallyfavouredcreationof a
particle—antiparticlepair from the vacuum. This is always possible if the Higgs fields are in the
fundamentalrepresentation;a gauge-invariantsinglet can be constructedfrom the static sourceand
Higgs particles, and this resultsin a perimeterlaw for the Wilson ioop. Conversely,with multiply
chargedHiggs fields, fundamentalsourcescannotbe screenedandthe fundamentalWilson ioop keeps
an areafall-off. In this case, the confinementphase is characterizedby Wilson’s criterion, and is
certainlynon-connectedwith otherphases(fig. 36, c—d).

The problem of finding order parametersthat discriminatebetweenthesephaseshasbeenrecently
reconsidered.Mack and Meyer [213]proposeto look at the vortex free energy,while Bricmont and
Fröhlich [214]havepointed out that only in phase(b), the gaugeinvariant correlation function has a
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Fig. 36. Theexpectedphasediagramsof theHiggs system.a) Z2, b) U(1), charge1 Higgs, c) U(1), charge2 Higgs, d)U(1), chargep >4 Higgs. The
analyticity domain resulting from eqs.(5.14—5.15)is shaded.

powerlaw correctionon top of its exponentialfall-off

(~o[I U1&) xI~~
2~

IxHo~

With singly chargedmatter fields, the failure of Wilson’s criterion leadsone to wonderabout the
differencesbetweenphasesa andc. In fact, the two phasesarecontinuouslyconnectedby an analyticity
domain,whichprovestheir identity. Theproof [215,216] usesan extensionof the convergencetheorem
presentedin section 3.1.2. The introductionof Higgs fields is performedin the unitary gaugeby just
modifying the measure

DU, -~ DHU, = e~’~ DU
1/J e~~’DU,, (5.11)

and the convergenceproof is done for the strong coupling expansionaround /3 = 0 for fixed y. The
inequality (3.7) hasto beimprovedto get a sensibleresult,andthe bound(3.2) is too crude. For thefree
energy,Holder inequalityallows one to write

1/p DiiJ HDHUI jJ f~(U~)~c2{[J DHU fl(U)I”] } (5.12)

wherep is a given positive integer.This improvedinequality shows immediately that the analyticity
domain includesthe region
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1/p

16(d - 1) [JDHU 12(U)~] <1 (5.13)

in which the seriesareabsolutelyboundedfrom aboveby a convergentgeometricseries.In the Z2 case,

this yields

8(d — 1){Ie~
2~— 1~’cosh2y cosh4y}1’~< 1 (5.14)

hencethe shadedanalyticity domain displayedin fig. 36a. Note in particular the finite width on both
extremities of this domain, observedfor any discrete gauge group. This completes the proof of
connectivitytbetweenthe Higgs andconfinementphasesfor the Z

2 gaugegroupand, similarly, for all
discretegaugegroups.

The estimationof (5.13) is more complexfor continuousgroupsas y increases,and it is no longer
sure that the analyticity domain extendsup to (y = cc, /3 = cc) However, this result still holds for U(l)
(seealsofor thisgroup [217]),wherethe simple upperbound12(U) < Const./3Sg(U)leadsto the result
displayedin fig. 36b

/3

2P f d6e 0sO~cos0— i~/ fd0e~0s0<Const. (5.15)

Note that this region of analyticity hasno longer a finite width near(/3 = cc, -r = cc).
Another importantexactresultconcernsthe transitionsobservedin the limiting models:theyarenot

isolated,but connectedto transition lines inside the phasediagram.This stability theoremis againbased
on convergencepropertiesof expansions.Let us first consider the small y region. In a fixed
configurationof gaugefields, the Higgs systemappearsas a spin modelwith varying couplings.The first
diagramappearingin the small y expansionis the closedcurveboundinga plaquette;at order ~‘ the
resultingeffective actionfor the gaugefields is therefore

Sett = (/3 + tanh4y) ~ Tr U~,+ C(y6). (5.16)

We specializeto the Z
2 case,although the result is quite general.Hence the systemat small fixed y

reducesto the puregaugemodel with a shiftedeffectivecoupling /3eff = /3 + ‘r
4 Therefore,the transition

entersthe phasediagram,with thecurvatureshown in fig. 36.
Next correctionsdo not modify this result, sincethe high temperatureexpansionin y is convergent.

However, even with theseconvergenceproperties,induced interactionsmight destabilizethe system
neara secondorder transition.But, first, theeffectiveactionhasthe samesymmetriesas the puregauge
model; hence the situation differs from the case where an external field removes the transition.
Secondly,the long rangecouplingscontainedin the effective action are exponentiallydampedand are
not expectedto affect the transition.

tin fact, it seemsthat theproof is not complete.A first ordertransition line might endat thepoint $ = 0, y = ~, andtheanalyticity domain lust
derivedmight apply to the metastablephase.A completeproof would show,for instance,the identity (afterre-ordering)of the expansionsaround

= 0 at fixed y and aroundy = ~ at fixed /3.
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We do not reproducethe similar reasoningfor the transitionnear/3 = cc~In the three-dimensionalZ2
model, this is particularly obvious,becausethe phasediagram is symmetricunder the duality trans-
formation (/3, ).~(/3* y*):

sinh2/3 sinh2y* = sinh2/3* sinh 2y = 1, (5.17)

as discussedin subsection2.3.
It seemsthat strongcouplingexpansionsshouldbe an effective tool for investigatingthe quantitative

featuresof the phasediagrams,viz, predicting the location of the transition lines, and studyingthe
critical behaviour at the end-point of the confinement-Higgsline. For this purpose, two variable
expansionshavebeenderivedto 16th order in /3 andy for the Z2 Higgs model [218].Unfortunately,the
analysisof theseseriesby either of the methodsdescribedin section 3.4.1 turned out to be quite
delicateanddid not yield any stableresult.Evenin highdimensions,where,accordingto the meanfield
picture, the critical behaviourshouldbecomealgebraic,we could not pin point accuratelythe location
of the end-point,nor extractreliable exponents.It seemsthat our expansionswere not long enoughto
allow a detailedanalysisof the complicatedpatterndepictedon fig. 36. It may be worth mentioningat
this point that strong and weak coupling methodshavebeensuccessfullyapplied in a class of Higgs
models,with a Zq symmetry,andPotts-likeinteraction [196].Expandingaboutthe limit q = cc madeit
possible to resum in a non-trivial way strong and weak coupling expansions.The resulting phase
diagramswere found to be in good agreementwith Monte-Carlodata, evenfor valuesof q as low as 2.

5.3. Mean field analysis

The meanfield techniquescan easily be applied to the Higgs system. In the early days of lattice
gauge theory, they were used to predict the qualitative featuresof the phasediagram [5]. In the
parametrizationof the degreesof freedom,it might seeminterestingto use the unitary gauge,where
only one dynamicalfield remains.However, this parametrization,which gives, as one will see,good
resultsin the large y region,fails for small y. Indeed,in this region,the Higgs field fluctuateswildly and
so does the unitary gaugetransformation.It is thereforenatural to treat separatelythesedegreesof
freedom and to introducemeanfields for both the U, and cui, fields. On the other hand, this other
techniqueusesredundantdegreesof freedom,which maycreatespurioustransitions;this is the case,as
we shall see,for the Z2 Higgs model:the transitionline betweentheconfinedandHiggs phasesdoesnot
end andseparatescompletelythesetwo regions.

For simplicity, we only describethe explicit calculationsfor the Z2 Higgs model.Usingfirst two mean
fields h, andH, for the two fields /, and U,, we look for a constant,translationinvariantsolutionh, = h,
H, = H. The variationalfree energy(4.8) per site reads

FMF1 = Max {d(u(H) — Hu’(H))+ v(h)—h v’(h) + ~ d(d 1) u’
4(H) + ydu’(H) v12(h)}. (5.18)

The testfree energiesu and v arethe samein this Z
2 case

u(H) = in coshH, v(h)= in cosh h, (5.19)

and the extremalityconditionsread
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JH = 2/3(d — 1) u’3(H)+ yv’2(h) (5 20

~h=2ydu’(H)v’(h). . )

The threepreviouslydescribedphasesare easily identified in this system.The generalsolution H� 0,
h� 0 yields non-zeroaveragevaluesfor both gaugeand Higgs fields, andthereforecorrespondsto the
Higgs phase.Therearealso two otherparticular solutionsh 0, H� 0 and h 0, H 0 corresponding
to the free chargeand confined phases.It is also clear that the solution h = 0, H 0 is always an
isolatedmaximum and thereforethe confinementregion is, in this approximation,separatedfrom the
otherphasesby a first order transitionline; thisis not the caseof the two other phases,separatedby a
secondorder transitionline obtainedby requiringthatthe secondderivativewith respectto h of theright
handsideof (5.18)vanishes.The numericalresultof this studyis displayedin fig. 37,curveMF1. As stated
previously,thefirst ordertransitionline doesnot terminate.Theresultsareparticularlygoodin the low y
region;wealsodisplaythe numericalresults[219]obtainedusingMonte-Carlotechniquesfor the triple
point andthe end-point.

Let usturnnowto themeanfield approximationin theunitarygauge.Thevariationalfreeenergyisnow

FMF
2 = d Max { u(H)- Hu’(H) + /3 (d 1) u’

4(H) + yu’(H)} (5.21)

with the extremalitycondition

H=2/3(d—1)u’3(H)+y. (5.22)

This equationhasoneor threesolutions(notethat H = 0 is no longer a solution asy� 0); one finds a
first order transitionline (curve MF2 of fig. 37) which endson a secondorderpoint. As expected,this
method is not accuratein the small y region,but gives a correctdescriptionof the systemwhen y is
large. The end-pointcorrespondsto a triple solution of eq. (5.22) andthe critical valuesare

0.5
Higgs

~L mnem~t I I, ~

Fig. 37. Thetwo meanfield techniquesappliedto theZ
2Higgsmodel. Thenumericallyestimatedlocationsofthetriple pointandoftheend-pointarealso

indicatedwith their error bars[219].
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H~=ln(1+V2)

(d — 1)f3~=

= —V2/3 + ln(1 + ‘12). (5.23)

The continuousfield theory describingthe critical behaviourat long distancenearthis pointhasbeen
identified [181].Oneusesfor this purposethe Legendretransform(4.18) which allows the calculationof
the variousirreducibleGreenfunctions

F(U)=~(H,—y)U,—u(H,)—f3~.U~, (5.24)
p

with H, solutionof

U, = u’(H,). (5.25)

The secondderivativeof this functionalat the critical point gives the propagator

= 82F/5U,
1~U,2I~= ~ — {1/3(d — 1)}P1112. 1 (5.26)

~‘t’2 is one if l~and 12 belong to the same plaquette, zero otherwise.In momentum space, this
inversepropagatorreads

1~(q)= ~ e~F~= 3(d 1) (&~- + ~ [~(q
2 - 2q~)+ ~(q~+ q~)]+ C(q4a4). (5.27)

(d — 1) of the eigenvaluesof thismatrix aredegenerateanddo not vanishat q2a2= 0; theycorrespondto
massivedegreesof freedomwhich decouplein the continuumlimit. The last eigenvaluedoesvanishat
a2q2 = 0; usingtheprojectionoperatorP on thecorrespondingeigenvector(1/\/d) (1, 1,. . ., 1), weobtain
the usual,rotation invariant masslessinversepropagator

PF~23(q)P= (2a213d2)q2+C(q4a4). (5.28)

The critical domain can thereforebe describedat long distanceas a single componentscalar field
theory.Similar estimatesof the 3- and4-point functionsshow that only the latter doesnot vanishat the
critical point; the continuumlimit is thereforedescribedby a çb4 scalarfield theory.

This simple exampleshowsexplicitly how the approachof a secondorder transition is related to a
continuousfield theory. In this case,the resulting limit is not particularly interesting;however, the
methodmight be promising.

Appendix A. Group theory complementson U(N) and SU(N)

A.1. Representationsof U(N) and SU(N)

Considerfirst the caseof U(N). We use the following notations: U is a N X N unitary matrix with
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eigenvaluese~= exp(ia1),j = 1, . . . , N. Theirreduciblerepresentationsof U(N) arelabelledby a set of
N positiveor negativeintegers

{A}={Al�A2�~~~�AN},(AN�Oor<0) (A.1)

or alternativelyif I, = A, + N —

l5>l2>~ ~>1N. (A.2)

The correspondingcharacterreads[220]

x{A}(U) = det~/det(e~
3)~iA(e)/~io(e) (A.3)

andits dimensionis

d{A} = [1(l~— l~)/(j— i) = XA(1) . (A.4)
~<1

If all the A’s aretranslatedby the sameintegers, we haveof course

X{A±S}(U)= (det U)’ xA(U). (A.5)

If all the A ‘s are non-negative(polynomial representations),it is natural to considerthe associated
Youngtableauandthe representationof thesymmetrygroup2~nof n = Al ~ A, objects.This leadsto
the Frobeniusrepresentationof X{A} in termsof tracesof powersof U. Let [p] be a classof elementsof
£,~,denotedas usual[221]

[~1 = [1n~2~. . n’~’] , (A.6)

with ~ pap = n, if it consistsof a
1 1-cycles,a2 2-cycles Thereare

n10] = n!/(lnl a1! 2~2a2! . . .) (A.7)

elementsin this class.We now introducethe notation

t[~](U) = (tr U)~”(tr U
2)~2.. . (tr ~ (A.8)

and denoteby ,~{A}([p]) the characterof .~,,pertainingto the Young tableau{A}. Frobeniusrelation

reads
X{A}(U) = (1/n!) ~ n

1~1Xn}([P1) t1~1(U), (A.9)
[~1

At~A2��AN�0, n=AI+”~+AN

or conversely,usingthe completenessrelationof the ,~,
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~ ~{A}([p])xtAl(U). (A.10)
{A},IAI=n

In particular,for [p]= 1”, ,~i{A}(i)=

trnU= ~ 0{A}X{A}(U). (A.11)
{A},IAIn

Therefore,the dimension°{A} of the representation{A} in 1n identifieswith the numberof timesthe
representation{A} of U(N) appearsin the nth tensorproductof thefundamentalrepresentationU®H.
Oneshows[220,222] that

= ni! H i!/(AN, + i)!. (A.12)

Whensomeof the A are negative,one maymakeuseof (A.5) to write

x{A}(U) = (det U)~’x{A_AN}(U)

andthenuse(A.9) for X{A—AN}. However,thisexpressionis not convenientin strongcouplingexpansions.
In that context, oneis ratherinterestedin “low-lying” representations,so that x may be expressedin
termsof a small numberof tracesof powersof U andU~.If we denote

{A}=mi�”~�mp�0�...�0�—ni�...—nq

which may be visualizedby a doubleYoung tableau(fig. 38), an expressionof X{A} in termsof t1~1(U)
and t1p1(Ut), involving no more than ~ m, U’s and ~ n, Ut~scan be given [223].A list of low-lying
representationswith Al ~ 3 is given in table14.

In the caseof SU(N),the eigenvaluese~= exp(ia1)havea productone.The representationsareas in
eqs. (A.1)—(A.3), but constrainedby AN = 0. Onecan thereforeuse the expression(A.9) of x~but, as
noticedabove, it is not alwayssuitedfor strong couplingexpansions.

A caseof physical interest—maybe the only one, ultimately!!—is the group SU(3). Its represen-
tationsarecommonlylabelledby two integersA, j~such that the notationof (A.1) reads

Fig. 38. DoubleYoung tableaufor U(N) representations.
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Table 14
The presentationsof U(N) with A I � 3. For thepolynomial representations,wehavealsodisplayedu~defined

in (All)

Representation Dimension r Character

{1} LI (f) N I trU

{—1} conjugate N tr Ut
{2} ELI N(N + 1)/2 1 (tr

2 U + tr U2)12
{—2} conjugate N(N + 1)/2 (tr2 U’ + tr Ut2)/

2
{1, 1} N(N—1)12 1 (tr

2 U—tr U2)/2

{— 1,— 1} conjugate N(N — 1)/2 (tr2 U’ — tr U52)12
{l.—1} m adjoint N2— 1 tr Utr U’— I

{3} LIJIIII N(N+ l)(N+2)/6 I (trt U+2tr U3+3trUtrU2)l6

{—3} conjugate N(N+ 1)(N + 2)/6 (tr3 Ut + 2tr U’3 + 3 tr U’ trU52)/6
{2, 1} N(N2— 1)/3 2 (trt U — tr U3)/3

{—2, — l} conjugate N(N2— 1)/3 (tr3 U’ — tr Ut3)13
{1, 1, 1} N(N— i)(N — 2)/6 1 (trt U + 2 tr U’ —3 tr U tr (12)16

{— 1, — I. —1) conjugate N(N— 1)(N — 2)/6 (tr’ U’ + 2 tr U’3 —3 trU’ tr U’2)16
{2, —1) N(N— l)(N + 2)/2 tr U’(tr2 U + tr U2)12—tr U
{l, —2) conjugate N(N— 1)(N+ 2)/2 tr U (tr2 U’ + tr Ut2)12 — trUt
{1, 1,— 1} LIJI~Ij N(N — 2)(N+ 1)/2 tr U’(tr2 U — tr U2)/2— trU

{1, — 1,—i) conjugate N(N— 2)(N + 1)/2 tr U (tr2 Ut — trU’2)/2 — trUt

(A.13)

The dimensionof that representationis

d(A,~)=~(A+ l)(~L.+1)(A +~+2), (A.14)

its triality is 2s+ A (mod. 3). Onenoticesthat

~

~ (A.15)

wherethe secondterm appearsonly when A� 0, andthe third when ~� 0. It is then easyto compute

recursionformulaefor the coefficients

T~)=JDU(xf+xy)nx~) (A.16)

which countthe numberof times the representation(A, ~s)occursin the tensorproduct®“ (f+ 7):
T~

3= ~ ~ (A.17)
neighbours

(A’.p.’)
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where the sum runs over the neighboursof (A, ~) that appearin (A.15). The contributionof those

(A’, ~‘) for which A’ or ~s’is negativeis dropped.
A.2. Group integrals

If U = 11 diag(e”) Il~,the measureof integrationtakesthe form [224]

DU= const.fl~-’fl exp(ial)—exp(iak)l2Dul (A.i8)

for U(N), and

DU= const.flda6p(~a
t)fl exp(ial)—exp(iak)1

2D12 (A.19)

for SU(N),whereDli is of no concernto us, sincewe only considerclassfunctions. In (A.i9), 6~is the
periodic deltafunction. The constantsareadjustedby normalizingf DU = 1. It is useful to noticethat,
with the notationsof (A.3),

H (exp(ia,,)— exp(iak))= ~iO(E’). (A.20)
j<k

Many integrals encountered in strong coupling expansions are easily computed using
character orthogonality (3.32), (3.33), (3.35). However, more complicated integrals, e.g.
5 DUXr(UV) x,(UW)x,(U)call for a different treatment.They may be expressedin termsof general-
ized Clebsh—Gordancoefficients, or using explicit expressionsof the Xr in terms of the fundamental
representation(seesectionA.i), computedin termsof the genericintegrals

5D U U~ . U
1,,~U~1k, . ~ (A.2i)

on which we now focusour attention.
In the caseof U(N), invariance under the U(1) subgroupensuresthat only n = p integrals are

non-vanishing.The generatingfunction

Fn(A, B) = JDU tm AU tr~BU
t, (A.22)

with A andB two unitary matrices,is computed,usingthe expression(A.11) and the orthogonalityof
characters:

F~(A,B) = J DU ~ ff{A} U{A’}X{A}(UA)X{A’}(UtB) = ~ (r~}Id{A})x{A}(AB)
{A},{A’} {A}

AI-IA’I~n IAI=n

= n~,
1t~,1(AB)~ n!

1 (cr~A}/d{A})X{A}([p]) = n! ~ fl
1p1 C1p1t[~1(AB). (A.23)

[~1 {A} [~1
classes IAi~n
of ~,,
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The polynomial natureof t~1(AB)now permits acontinuationto arbitrary N x N complexmatricesA
andB, anddifferentiationof the expressiongives

f DUU11~•~~ = ~ C~16~11~
8jik~

1~~~

~

wherethe coefficient C[~] dependsonly on the classof the permutationp

C[p] = n!
2 ~ (o~A}Id{A}),,~{A}([p]). (A.25)

In this expression,as in (A.23), the summation~ runsover all polynomial representationsof U(N)
with n boxes. If n ~ N, this may also be consideredas a sum over all the representationsof the
symmetricgroup. The coefficients~ areeasyto computefrom the ,~given by Hamermesh[221].We
only list the first ones (see also [225])

n=1 C
111=1

n = 2 C1121 = 1/(N
2— 1)

C
121= — 1/N(N

2 — 1)

n = 3 C[ls] = (N2 — 2)/N(N2— i)(N2 — 4)

C
11,21 = — 1/(N

2— 1)(N2— 4)

C
131 = 2/N(N

2— 1)(N2— 4). (A.26)

They exhibit polesat N2 = 0, 1,. . . , (n — 1)2. Thesepoles,known as de Wit—’t Hooft anomalies,come
from the zeroesof d{A), the dimensionsof representations{A}, and are, of course,not presentin the
actual resultat n > N, obtainedby keepingonly representationswith no more thanN rows in (A.23),
(A.25). Furthermore,for n > N, the tensorsappearingin the right handside of (A.24) are no longer
independent,or, stateddifferently, tr U-”, p > N, may be re-expressedin terms of tr U”, q � N. For
example,in the caseof U(2), with n = 3, t[S](AB) maybere-expressedin termsof t[tS] andt

1~2~usingthe
identity X{l,I,l}(AB) 0. This gives

F3(A, B) = 3!(n [1~] ~ t1531(AB)+ n [12] GLiTZ] t[1 2](AB)) , (A.27)

with
r.U(2) — 1 ç’U(2) — —
‘~ [1~] — 6 ‘~ [12] — 24

In the caseof SU(N), the genericintegral (A.21) vanishesunless n — p is a multiple of N, as a
consequenceof ZN-invariance.If n = p <N, as any polynomial representationof U(N) with n <N
boxesis also a representationof SU(N), the formulae (A.23)—(A.25)still apply. In the generalcase,
however,onewrites, with A, B two U(N) matrices,

Fn,p(A,B)= J DU tr~AU trl)BUt = J DU ~ J{A} ~T{A’}X{A}(AU)X{A’}(BU
t)

{A},IAI=n
{A’},IA’i=n

= J DU ~ u{A}u{A}det~Adet~BX{A_AN}(AU)X{A’A~(BUt)
{A},{A’}

= U{~±AN} U{~±Ak}det~A det~BX{,.~}(AB)/d{~}. (A.28)
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Now the sum runsover all representationsof SU(N) (since /~LN= 0) andover the non-negativeintegers
AN andA~,such that l/.Ll+AN~N n, li.i,I+A’r-.rN=p. In the casep=O (to which one might always
restrictoneselfthanksto the condition det U = 1), onefinds [226]

FnqN(A) = JDU tr~NAU= (qN!)fl ( i)! det” A. (A.29)

As before,theseresultsextendto arbitrary N X N complexmatricesA, anddifferentiatingthem yields
the desiredintegral(A.21).

A.3. Characterexpansioncoefficients

Using the previousmachinery,calculationsof characterexpansioncoefficientsare easy. For U(N),
andWilson’saction,using (A.3), (A.11),

~N) = JDU exp{(/3/2N)tr(U + U~)}~~i(U)

= const.J J] (da,/2’ir) z10(e”)LI ‘~(e~)exp{(/3/N)~ cosa}

= const.N! ~e0, Jfl (da1/2ir)exp{(J3/N)cosa1} exp{ia(A,,7— oJ + j)}

= det{IAJJ±,(/3/N)} (A.30)

wherethe normalizationconstanthasbeendeterminedby setting/3 = 0, {A} = 0, /3~= 1.

In the caseof SU(N), we havean extras-function in the measure

21T ~ a, — 2k~7r)= n~’(1~1’ n ~ a.}. (A.31)

The summationover n goesthrough the previousU(N) calculationandwe are led to

/3SU(N) = ~ det{IA1_J+~+fl(f3/N)}. (A.32)

In the N -~ ~ limit, theseexpressionshavea remarkablysimple form, when/3 = /3/2N
2 is kept fixed.

As shownby GrossandWitten,

= e~’= exp(J3/2N)2, for /3 <1, (A.33)

hence

Nf3~= N dw/df3= f3I2N = N/3. (A.34)

More generally,using the notationsof sectionA.1, one mayshow that for the generalrepresentation
{A}={m;n}
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d{A}/3{A} = (0{m}!i m !)(o-{fl}/I n !)(N/3,)L~l. (A.35)

Moreover, as N—*cc, the correctionsto theseexpressionsareexponentiallysmall [227].For example,
for SU(N),

in /~= (/3/2N)2+ (2/N!)($/2N)’~+.

However,afterrescaling/3/2N= N/3, this becomes

In /3~= N2/32 + 2(N~’/N!)f3N’, (A.36)

andthe coefficient in front of the “exponentiallysmall” correctiongrowslike eN(2irN)~/2.

Appendix B. Diagrammatic analysis of the large N limit

In order to prove that the free energyper site of the U(N) theory behavesas N2 at strong coupling
(seesection2.5), onemay usethe Dyson—Schwingerequations[77].This infinite set of equationsrelating
averagesof loops of all sizesand shapesis sufficient to generateorder by order the strong coupling
expansionof all closed loops.For example,given the lowestorder of the single plaquette

(N’ tr U~)= t +

it showsthat all expectationvalues(Nt tr U~)are also(at most) of orderN°to any finite order in t. In
the Wilson action for example,wherethe coupling is rescaledaccordingto /3 = 2N2/3,this entails that
FxN2

(N1 tr U~)= (2/d(d— 1))8F/8f3 = (1/d(d— 1))o(N2F)/a/3. (B.1)

However, it may be interesting to havea purely diagrammaticderivation and to characterizethe
relevantdiagrams.For this purpose,onemayusethe cumulantexpansionof section3.1.6. The partition
function reads

Z= [1+S(a/aJ)+~S2(9/aJ)+ ~]exp~ W(J,,J,) (B.2)

with

666S(J)=/3N ~ (B.3)
C1u13 ~iTh’ ~ ~f~°

oriented ~‘~‘ (I ~JJ 12 U’ 13 V 14
ptaq.

and

= JDU exptr(JU + JUt). (B.4)
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The latter integral hasbeen thoroughly studiedby Brézin and Gross [2281in the largeN limit. It is
sufficient to sayherethatat strongcoupling (JJ small)

W(J,J) = W(JJ)= a, .~ a,, C~(N) [tr JJ/N]”~[tr(JJ)2/N]~”~ (B.5)

= n

wherethe cumulantsCa(N) are such that N2”2 Ca(N) hasa limit as N—*cc. The first Ca havebeen
computedexplicitly by Bars [229],Brower and Nauenberg[230] and Samuel[225].According to the
previousrules, the free energyis computedin terms of connecteddiagramsmadeof P “4-vertices”
tr((6/3J)(t5/6J)(6/5J)(6/8J))andof va “a-sites” (trJJ)~1.. . [tr(JJ)f]a~. Contractionsof matrix indicesare
convenientlyvisualizedby usingdoublelines following ref. [73](fig. 39). For a gaugeinvariant quantity
like F, all indices must be contracted,and a factor N is associatedwith eachof the f closed loops of
indices.For F, the total powerof N is therefore

#P~ Va ~(~2k+1)ak2)+f.

Onethen usesthe relationbetweenVa andthe number1 of lines joining sitesto vertices

/ = 2 ~ Va ~ kak

andintroducesthe genusg of the c-connectedsurfacebuilt by the index loops

2c_g=f_1+(P+~va zak) ~‘f+P~~va ~(2k1).

This enablesoneto write

#=2c—g+2~va (1_~ak)~2_g~2. (B.6)

The last inquality expressesthe fact that the splitting of a “site” into ~ a,, tracesmay increasethe

-:7

(a) (b)

Fig. 39. Double-linerepresentationof 4-vertices(a) and a-sites(b: at = 2, 02= 1).
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I~?1’~?I~ 1 (tr
2fJtr(JJ)2

\5J of! ~6JOf! L2(N2— 1) \ N2 N

_ 3
_(N2_1)[N2 + —2

Fig. 40. Dominantdiagramsin the largeN limit. Computingthediagramdepictedon the left amounts,afterintegrationover the links commononly
to two plaquettes,to computingtheexpressiondisplayed.In turn, thismay berepresentedby graphs.The secondonehas 2[c + ~ v~(l— ~ a

1)] = 0,
the two othershave it equalto 2.

numberof connectedparts (fig. 40). From (B.6), we concludethat, as in the continuoustheory, only
planargraphs(g = 0) contributeto the leading(-—N

2) behaviourof F. We emphasizethat thesegraphs
are abstractgraphsexpressingindex contractions,and not diagramsmadeof plaquettesof the lattice.
We alsolearn from (B.6) that correctionsaresuppressedby inversepowersof N2.

This also implies the factorization propertyof the largeN limit. Given two observablesUt and C
2,

onehas

(U1U2) = (U1) (U2) (1 + U(1/N
2)) . (B.7)

Indeed,onemayrescaleU~andU
2 to makethem of orderN

2 andaddthem with sourcesin the action,
without modifying the previousproperty

Z = JDU exp{$S+ J
1U1 + j2U2} = exp{N

2 F(j
1, j2)}.

Then

(U1U2) = Z
1 (a!8j

1)(aI/3j2)Z31=12=o = N
4(aF/aj~)(0F/~j

2)+ N
2(a2F/aj

11312)

hencethe factorizationproperty.
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