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Strong coupling expansions for the string tension and other quantifies in lattice gauge 
theories are computed in arbitrary dimension for the groups Z3, U(I), SU(2), SU(3). This enables 
us to determine the location of the roughening transition, which seems to be group independent 
when measured in an appropriate variable. In four dimensions, the strong coupling expansion of 
string tension calculated up to fourteenth order for SU(2), and twelfth order for SU(3) agrees 
nicely with Monte Carlo data up to the roughening point. 

1. Introduction 

In the preceding paper  [1], the roughening transition for the Z 2 lattice gauge 
theories has been analyzed using strong coupling expansions up to fourteenth order 
in t = tanh ft. We now present the result of the same analysis for other groups. The 
expansions have been pushed to fourteenth order for the groups U(1) and SU(2), 

and to twelfth order in the more intricate cases of Z 3 and SU(3). The group Z 3 has 
been considered because it is the center of SU(3) and because the corresponding 
model is self-dual in four dimensions. In sect. 2, we introduce our notations, and 
present the series for the string tension and two possible indicators of roughening, 
which are mere generalizations of the observable ~ introduced for Z 2 [1, 2]. The 
nearest singularity of these indicators signals the roughening transition. Our results 
for the location of this singularity in various groups and dimensions are discussed 

in sect. 3. 
In four dimensions, it has been shown by Monte  Carlo calculations [3] and 

strong coupling expansions [4, 5] that there is a break in the behavior of the tension 
in a narrow region. We show that roughening takes place in this region and that 
strong coupling series reproduce very nicely the Monte Carlo data, up to the 
roughening point. This had already been noticed for SU(2) [2, 6] and is now 
established for SU(3). The roughening singularity is therefore confirmed to limit 
the domain of validity of the strong coupling expansion for observables attached to 

the surface. 
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The appendix gathers some technical details and dis~alays the string tension series 
up to twelfth order for an arbitrary group. 

2. Notations and expansions 

For a general group, we choose the Wilson action to be given in terms of the 
character of the fundamental representation: 

S = • s(Vv) -- fl 2~ vf (xf (Uv)  + x~(Up)) .  (2.1) 
plaq plaq 

Here and in the following, p, denotes the dimension of the representation r. The 
second term on the r.h.s, of (2.1) will be omitted whenever the fundamental 
representation is equivalent to its conjugate (e.g., in SU(2)). The exponential of the 
action for each plaquette is then expanded on irreducible characters [7] 

e$'UP' =f( /~)[  1 + r~l~OZ Pr~,Xr(Up)], (2.2) 

where the B, are functions of ft. We will actually expand them in powers of 

t = fit, (2.3) 

which is the natural expansion parameter. Indeed with the characters normalized 
according to 

8,, f DUXr(U)xs(U -IV) = ~rXs(V), (2.4) 

integration over non-singular links (i.e., links shared by two plaquettes) are easily 
performed and do not introduce new group theoretic factors. Those appear only 
when singular lines are present (see the appendix). It is just a matter of patience to 
expand the desired quantities to a given order. 

What we want to compute is the expectation value of the Wilson loop: 

<w> = z - ' E  e w ,  
W,} 

W = Xf(~-[ Ue), (2.5) 

or averages of various observables in the presence of I4/. We have computed here 
the expansion of the string tension 

k= lim ( - I n ( W ) }  
A~oo A 

(2.6) 
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and of the "pinch operators" introduced in [2, 1]: 

pw(c)=  (we'(~u')- '(u')) ( w )  ' (2.7) 

po(c) -- (e  ~(w~)-'(u~) >. (2.8) 

Here, c denotes an element of the center of the gauge group. We recall [1, 2] that 
P w and P0 measure the effect of "frustrating" a test plaquette P of the minimal 
plane in the presence or in the absence of the Wilson loop. The indicator of 
roughening is 

2 
~c = po(C ) _ p w ( c )  • (2.9) 

However, it is possible to introduce a slight modification in the definition of the 
pinch operator. Instead of frustrating the plaquette P, we may just delete it, i.e., 
subtract its contribution to the action. The corresponding observables read 

( W e  - ~W,,) ) (2.10) 
qw = ( W )  ' 

qo = ( e - S ( u ' ) ) .  (2.11) 

The new indicator, 

1 
~o = ~ ,  (2 .12)  

qo - qw 

is as good a candidate as ~c to signal roughening, since both are expected to diverge 
at t R. Notice t ha tpw(c  ) receives non-trivial contributions from all diagrams where 
the test plaquette P bears an "even" representation: X,.(c)--X,.(1)= 7,,., whereas 
only diagrams which do not contain P contribute to qw. It is easy to show that, for 
Z2, ~- 1 = ~0. We will see that for higher groups, ~0 seems to provide more reliable 
results than ~c, as the coefficients of its series have smaller oscillations. Moreover, 
for SU(3) or Z 3, ~0 is real while ~c_+~,~/3 is not. 

We now turn to the results. More detailed expressions are given in the appendix, 
enabling the reader to write the expansion of k up to twelfth order for an arbitrary 
group. We content ourselves here with the actual series for the groups Z 3, U(1), 
SU(2) and SU(3). They are displayed in tables 1 and 2. For  the sake of brevity we 
do not present the expansion for ~c. The U(1) and SU(2) series are even in t, while 
the SU(3) and Z 3 series are not. The former have been worked out up to fourteenth 
order, whereas the latter have been truncated to twelfth order, because of the host 
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TXeLE 1 
Series coefficients for the string tension in d dimensions 

•ou•pn 4 5 6 7 8 9 10 11 12 13 14 

364,42 _ 127o d 
% - - -  " 5 " - - -  

Z 3 1 1 0 0 9 d - 1 6  1 9 d - ~  1 8 d - ~  2 d - 3  
+ ?  

_~_~d2 _ 711s d 
3 - -  12 - -  

1 0 9 d - ~  0 4~v 1 8 d - ~  0 0 U(I)  1 0 ~ +2ml979 

364,,/2 _ r T s 4 j  

SU(2) 1 0 0 0 9 d - ~  0 8d  ~2,s 0 0 
405 8657"11 

+ 1215 

- -~--'d ~ d  2 - ~'~ 
1381323 ~ - - d  _ 5 _  9 d + ~  79s9 4 8 d - - -  SU(3) 1 3 ~ 9 5 7 d - ~ -  
20480 ÷ 5939217 + 29961179 

8192 245760 
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448d 2 -- no~91 d 

3e~7.~ H 
ac~o 

~ d  2 _ *acre1 d 
3 - -  2 7 0  

q Heo~061 t 
$1030 

Writing ( - k  - In t ) / 2 ( d -  2) = Y., k ,  t ", we display the k n up to n = 12 for Z 3 and  SU(3) and  n - 14 
for U(I)  and SU(2). 

of new diagrams contributing to the order t 13 and t 14 for SU(3) and Z 3. By 
contrast, the contribution of diagrams with fourteen plaquettes to the U(1) and 
SU(2) theories are easily obtained from the Z2 case (see the appendix). The reader 
will notice in tables 1 and 2 that the coefficients of highest degree in d in the terms 
of the form t 4n is group independent. This is no surprise; ref. [8] shows that the 
large-d limit does not depend on the group. Expansions to fourteenth order have 
been previously obtained for the SU(2) and U(1) string tensions in d =  3 by 
Duncan and Vaidya [9], and to twelfth order in d = 3, 4 for Z3, SU(3) and U(1) by 
MOnster and Weisz [10]. We have found smaU discrepancies between the results of 
[9] and ours [to order t 14 for 3D U(1) and SU(2)]. 

TABLE 2 
Series coefficients for the indicator 9 0 "  l / ( q o  - q w )  

•ou•pn 4 5 6 7 8 9 10 11 12 

Z 3 1 0 6 0 l O d - 7  9 d - ~  9 2 d - 1 4 8  7 0 d - 1 9 5  140d 2 - 2 1 0 d  
- !01 
140d 2 - - ~ d  

U(1) 1 0 6 0 l O d - l l  0 96d--~--~ ~ 0 
13403 + - - g -  

140d 2 - ~ - d  
SU(2) 1 0 8 0 1 0 d - l l  0 l l 6 d - - - ~  0 

+ ~  

140d z + 30d 
SU(3) 1 0 22 0 1 0 d ÷  1 2 7 d - L ~  2 6 4 d - ~ -  6 6 6 d - 1 7 2 5  ~ m  

13 14 

1734d 2 - n~ls d 
0 

- -  SlO d 
0 

74O4289 
+ slo 

We write ~o " 1 + 2 ( d -  2)Y,. 9o,~t" and fist the coefficients ~o... 
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3. R o u g h e n i n g  transit ion for d = 3, 4, 5 

Using the strong coupling expansions for the various indicators, we may now try 
to locate their nearest singularity, identified with the roughening point t R. For  U(1) 
and SU(2), the coefficients of the expansions of 5 o and 5 1 are real and positive; 
computing the ratio of successive terms leads to consistent determinations of the 
nearest (real positive) singularity. We find that 50 yields more stable results than 
5_1, and, as in the Z 2 case, that the ratios (Sn/Sn+4) 1/4 oscillate less than 
(5 n/~+2)1/2: this has been shown [1] to be a reflection of the large-d behavior of 
the coefficients of the series. We illustrate this on the 4D SU(2) indicators: 

50= 1 + 4t4 + 32/6 + 116t8+27-7~ 76 tl° 4- T "  +T'281522 t14 ' (3.1) 

= 6 356 8 47584 10 610556t12 4- 292002826t14 (3 .2 )  5_ 1 l + 4 t 4 + 4 0 t  + T t  + ~ - - t  + ~-73T-" -- 8--~-6V--" " 

The ratios are 

(50,o/50, +2) 1/2 = 

i /4  
(50,n/50,n+,) = 

/5 ¢/2 _ (9 -1 ,~ /  -l,~+2J - 

/ 6  $1/4 - -  
( 5 _ l , n / J  1,n+4] -- 

(0.353, 0.525, 0.354, 0.468, 0.367}, 

(0.431,0.431,0.407, 0.415) ; (3.3) 

{0.316, 0.581,0.335, 0.483, 0.363}, 

(0.428, 0.441,0.402, 0.419} ; (3.4) 

pointing to a singularity at 

ta ~-. 0.41 _ 0.01. (3.5) 

The cases of SU(3) and Z 3 are more difficult to analyze, because terms of odd 
degree in t show up to order t 9 and cause wild oscillations of the ratios. On the 
other hand, the quantity 5 e ~2,,/3 is complex and the corresponding singularities lie 
in the complex plane, rather close to the real axis and to the singularity of 5 o . 

The results of this analysis for d = 3, 4, 5 are gathered in table 3, where we have 
also reproduced our estimates in the case of Z 2, for an easier comparison. The 
errors are estimated from the oscillations of the last ratios and are not to be taken 
too seriously. 

The most striking feature is the group independence of the location of the 
roughening point, when measured in the parameter t. This had already been 
noticed by other authors [11, 10] on a different sample of groups and dimensions. It 
was expected to some extent, as roughening comes from large scale fluctuations of 
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TABLE 3 
Location of the roughening point measured in the variable t for various groups and dimensions; 

we also give the corresponding value of fl for four-dimensional non-abelian theories 
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d ~ 3  d ~ 4  d ~ 5  

Z 3 0.46 _ 0.01 0.40 _ 0.01 0.37 _ 0.01 
U(I)  0.465 +__ 0.01 0.41 _ 0.01 0.37 ± 0.01 

SU(2) 0.465 -4- 0.01 0.41 +__ 0.01 0.375 • 0.010 
/320.47 +_ 0.01 f l~0 .415 

SU(3) 0.47 +__ 0.04 0.41 +__ 0.02 0.37 ± 0.03 
fl ----- 0.33 +__ 0.02 

Z 2 0.46 _ 0.01 0.40 _ 0.01 0.364 _+ 0.015 

the surface which are insensitive to the symmetry group. However, small group- 
dependent corrections might have shifted the roughening point. This is seemingly 
not the case, and in view of table 3, we can talk of universality of the roughening 
point. It may be worth recalling that all observables attached to the surface, not 
only our indicators, must possess this roughening singularity. We find it gratifying 
that our determination of t R for Z 3, U(1) or SU(2) agrees with other methods [6, 
10, 11]. We have also checked that the string tension, extrapolated from its series, 
has a singularity in the roughening region. 

Next, it is interesting to compare the location of this roughening point with the 
usual transition point when it occurs at a non-trivial coupling. Estimates of the 
latter come either from self-duality (Z 3 in four dimensions), or from Monte Carlo 
experiments, for U(1) in 4D [12, 13] or SU(2) in 5D [12]. We recall that in the 4D 
Z 2 model, the roughening point was found [2, 6, 1] hardly distinguishable from 
t¢ = V ~ -  1. This is dearly not a general feature, as all possible cases seem to 
occur ' -  

d=4 ,Z3 : t c - - - -½(V~- - l ) - - - -0 .366< tR ,  

U(1):flc"~0.5[12,13] or t ¢ ' ~ 0 . 4 5 > t R ;  

d =  5, SU(2):fl¢"~0.41 [12] or t ¢ ~ 0 . 3 7 ~ t  R. 

We finally turn to the most interesting cases of SU(2) and SU(3) in four dimen- 
sions, and compare our strong coupling expansions for the string tension to Monte 
Carlo data [3] (see fig. 1). In the case of SU(2), the series or its extrapolation agree 
very well [5] with the data, up to r =  1 /g2~0 .5 .  (Here g2 is the conventional 
coupling constant of continuum gauge field theories.) Beyond this point, the strong 
coupling expansion seems to indicate a zero of k and becomes unreliable. This fits 
nicely with the observation that the roughening singularity at f i r  ~ 0.47 limits the 
convergence domain of the series. For SU(3), the strong coupling series departs 
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from its asymptotic behavior - i n  t ~ - I n  fl = In 3g 2 much faster than for SU(2). 
However, the series truncated to order 12 or its Pad6 approximants reproduce the 
existing data very well up to a value f l=  1/3g2~0.35, to be compared with our 
estimate of the roughening point fiR ~ 0.33. 

4. Conclusion 

In this paper we have presented new strong coupling expansions for the string 
tension and indicators of roughening for various groups and in any dimensions. We 
have found good evidence of roughening at a universal value of the parameter 
t = f D U e x p { s ( U ) } x ~ ( U ) ,  a property which remains to be fully elucidated. 

For four-dimensional SU(2) and SU(3) theories, the string tension agrees very 
well with Monte Carlo data, up to the roughening point. We think that this is a 
further evidence of the roughening singularity which limits the radius of conver- 
gence of the strong coupling series. As already stressed, we are left with the 
important task of finding an effective theory beyond the roughening point [14]. 

We acknowledge fruitful discussions with C. Itzykson, N. Sourlas and K. Wilson. 

Appendix 

The contribution of any diagram to the strong coupling expansion of a quantity 
such as k or Pw, P0, etc., is the product of two factors, a geometrical configuration 
number independent of the underlying symmetry group and a group theoretic 
factor. We will here give some indications on these group theoretic factors, and 
give the expression of the string tension to twelfth order for an arbitrary group. 

We use the notations and normalizations of eqs. (2.2)-(2.4). Let Nr~t... denote 
the number of times the trivial representation appears in the decomposition of the 
product r ® s ® t . . . .  

N,,, = f DUxr(U)xs(U)xt(U ) . . . .  (A.1) 

We introduce the following expressions: 

Ai  ~ ,  2 i = v;'fl;, (A.2) 
r~0 

AUk E N i j k = rstPrP, Ptflzrfl;~t , (A.3) 
r , s , t~o  

= N, p'p, W a J  Bij E frs~fl'Srl'Ss, (A.4) 
r,s~O 
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~ PrPmPt I~il")jtT~k 
a i j  k ~ ~ ~ ,frst---~c p r p i p  t , 

r,s,t~¢=O f 

~ ItrlttPu f~injl~kt~l 

r , s , t , u~O 

DikmJl ~- E PrtlslPtltultv t~il~j~k~l t"ur-v 
r,s,t,u,v=/~O Pf 

(A.5) 

(A.6) 

× f DR DS D T D U x , ( R T - ' ) x , ( T S - ' ) x f ( S R - ' )  

X x t (  R U - I ) X u (  S U - I ) X v ( T U - I ) .  (A.7) 

These coefficients may be pictorially represented as shown in fig. 2. The 
computation of our observables Po and p w also involves slight modifications of 
these expressions, where the value c r of the selected element of the center in some 
representation may appear under the summation sign in the r.h.s, of eqs. (A.2)- 

i 
A i  = I t }  

- i i r l  

Ai jk  = ~ k ~ t }  

Bij k = - ~ ~ / -  

ktt} k{ t}  

C qkt = I f r f ~ - - ~ \ ~ N ~  " -  

Dimk t ~ J - "  If itr} j{,} 

Fig. 2. Pictorial representation of group theoretic factors. 



J.M. Drouffe, J.B. Zuber / Roughening transition ( H) 273 

(A.7). We are now in a position to give the expression of  the string tension up to 
twelfth order for an arbitrary group in any dimension. We write 

oo 
k + l n t  = _ ( A . 8 )  

2 ( d -  2) n-4 

where/~,  is the contribution from diagrams with n plaquettes. We find 

k 4 ~ / 4  , 

K5 -~ Bslt - l , 

/(6 = 2t6 - -  A 6 ,  

A 
K 7 = 0 ,  

/ ( s  -- ( 9 d -  22)t s + 2Bs2t -2 + 4t2B42, 

/~9 ~- ( 1 0 d -  29)B91 t - I  + ( d - 5 ) B 5 5 t  -1 + 2D4114t -2 + ( S d -  29)t3Bsi, 

/~1o---- ( 4 8 d -  132)t 1° - (1 l d -  ~ )A ,o  + ( d - ~ ) B s s , t  - l  

+ ( 1 0 d -  29)(C,45, t -1_  t4A6) _ dB~lt-2 + 12t4B42, (A.9) 

/~11 ffi ( 2 4 d -  88)tSB51- (1 l d - ~ ) A 5 5 1  - ( 1 0 d -  2 9 ) B 5 1 A r t - I +  2 0 ( d -  3 ) B n , , t - !  

+ 12tB73 + 6BII,3 t - 3  + 10t5B33, 

/¢12 -- (121½ d2 - 555½d + 610½) + trA6(-24d+ 72) + ( l i d -  29),42 

- 2 0 ( d -  3)A12 + 12D271~t-3 + 12/Di413 + 6B22 + BI2.4t -4 + (16d- 40)t2B64 

+ tZBsd48d- 160) + trB42(60d- 168) + 8 ( d -  3)Bs4 

+ 4 ( 2 d -  5)Bs6t-2 d- 4 ( 9 d -  26)B12,2t-2. 

Of course, these expressions have then to be expanded to the required order in t, 
using series expansions of the higher fir in t = fir. Needless to say, use of a computer 
is almost compulsory. We have throughout this work used the Algebraic Manipula- 
tion Program (AMP) written by one of us [J.M.D.]. 

To push these expansions to order fourteen in t, in the case of SU(2) or U(1), we 
just have to add the contribution of diagrams with thirteen and fourteen plaquettes. 
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Diagrams with 13 plaquettes have one and only one plaquette bearing the represen- 
tation of spin 1 for SU(2) or e _+2is for U(1). They contribute 

/~!3 ~- ( 144d2 -- 864d + 1225)t7B51 + (80d 2 - 538d + 893)t3B9~ 

+ (140d 2 - 822d+ 1211)Bl3,1t - l  

+ ( 8 d -  20)Cs~5~t-2 + (12d- 32)t2C4151 + O(tl6).  (A.10) 

Finally diagrams with fourteen plaquettes are those already encountered in Z 2, 
affected by group theoretical factors: 

/~14 = [  (16570-- 11934d + 2160d 2) + 2~ ' (d -  3) + (566 - , o 9 o . -  ,72.2x -~-a'l- T a  )a  

+ ( -7136  + 5062d -  900d2)y] t 14 + O(t16), (A.II)  

where the four terms come respectively from diagrams topologically equivalent to a 
plane, to a plane with a handle, from diagrams with one closed singular line along 
which four plaquettes meet, and from disconnected parts. The weights are ~" -- a - 
, / - -  1 for Z 2, • ---~, a -- 8, y - 4 for SU(2), I" = 1, a = 3, y - 2 for U(1). 

Putting everything together, one readily derives the expression listed in table 1. 
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