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We present new evidence for a roughening transition in the Z 2 lattice gauge theory in 
arbitrary dimension, using strong coupfing expansions to fourteenth order and an analysis at 
large dimension. 

1. Introduction 

Lattice gauge theories [1] are well suited for the study of the strong coupling 
behavior of physical quantities such as the Wilson loop ( W )  and of the coefficient 
of its area law, the string tension k = - I n  ( W ) / A  [2, 3]. However, it has recently 
been pointed out [4, 5]* that  strong coupling expansions are affected by a 
singularity at some roughening temperature. Roughening is a well-known phenom- 
enon in three-dimensional statistical mechanics [7], and describes the delocalization 
of the interface between two phases which occurs at a high enough temperature. In 
our context, the Wilson operator  ( W )  has a strong coupling behavior given by an 
average over surfaces bounded by the loop. At infinite coupling, only the minimal 
surface contributes. As the coupling decreases, the surface starts fluctuating. 
Ultimately, at the roughening temperature t R, the system has no remembrance of 
the minimal surface, even when examined on a large scale [7]. This manifests itself 
by a non-analytical behavior at this point of quantities related to the surface, but 
not of bulk quantities such as the free energy. 

That  this singularity exists and  is reached before the usual transition temperature 
is now clear in the case of the 3D Z 2 gauge theory, owing to the extensive study of 
the phenomenon in the dual Ising model [7]. In higher dimensions or for other 
groups, the situation is less clear [4, 5, 8]. In this article, we concentrate on the Z 2 
models in arbitrary dimension, leaving the case of other groups to a forthcoming 
publication. From Monte  Carlo calculations [9], and strong coupling expansions 

* That roughening may play a role in lattice gauge theories was first suggested by Parisi [6]. 
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[10], it is believed that the Z 2 model undergoes a first-order transition if d > 3. The 
issue is then to determine whether the roughening transition still exists and whether 

it takes place before (t  R = tanh f i r  < to) the first-order transition or in the metasta- 
ble region (t s > to). Answering these questions requires an accurate determination 
of t R. One may look for the nearest singularity of suitable extrapolations of the 
series for k. However, as k is expected to  have an essential singularity on top of a 
smooth background [4], it may  be safer to look at other quantities attached to the 
surface. In [4], the following observable has been introduced: 

( W exp - 213 Uv ) 
P w  = ( I V )  ' (1.1) 

where P is a plaquette in the minimal surface taken as a reference plane. Here and 
in the following, expectation values are defined as 

( X >  = z - I  E X e x p ~  E Up (1.2) 
{ UI -- +--" 1} plaquettes 

with 

z =  expB E up. 
{ U t - -+ i } plaquettes 

The quantity Pw measures the probability that the surface contains the test 
plaquette P. At the roughening temperature, Pw must become equal to the same 
expectation value in the absence of the loop: 

P0 = (exp - 2flUe ) .  (1.3) 

Thus, t R is determined as the singularity of the indicator 

2 
= - -  (1.4) 

Po - P w  

This is by no means the only operator which may be introduced to determine t R. In 
[8], the width o of the flux tube between two charges has been calculated in units of 
k -  i and shown to diverge at t R. In four dimensions, all quantities computed using 
strong coupling expansions up to the twelfth order in t - - t a n h f l  point to a 
roughening temperature t R ~< t¢, either just below or on top of t¢. In this paper  we 
first present the calculation of k and ~ to fourteenth order for an arbitrary 
dimension d. The results presented in sect. 2 confirm nicely the 12th-order 
computation. Roughening does take place for d > 3; at d = 4, t R seems to lie just 
below t c, while at d = 5, it is beyond to, hence in the metastable region. For  higher 
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d, the results are less reliable, due to oscillations of the coefficients of the series. 
This leads us to investigate the behavior at large d (sect. 3) using an expansion in 
powers of d -1/2 [11]. In this large-d approximation, the indicator ~ still exhibits 
singularities, which seem to connect smoothly with those calculated for low 
dimension. A discussion of what might happen at intermediate d, and our conclud- 
ing remarks are contained in sect. 4. The appendix deals with some technicalities of 
the d -  1/2 expansion. 

2. Fourteenth-order  calculat ion 

The calculation of the fourteenth order uses the by now familiar diagrammatic 
techniques [2, 3]. It is, of course, impossible to display here the 302 diagrams 
contributing to that order, but their table may be obtained on request. In d 
dimensions, - k  = In ( I4 / ) /A ,  Pw,  Po and $ read: 

- k = ln t  + 2 ( d -  2)[ t  4 + t 6 + ( 9 d -  22)t s 

+ ( 2 8 d -  76)t l° + (3-~d2 -l~--Ad + 2-~)t12 

+ ( ~  d2 - L ~ d  + 4997)tl4] , (2.1) 

pw = - l  + 4 ( d - E ) [ t 4 + 4 t 6 +  ( 8 d -  7)t s 

+ ( 5 8 d -  103)tl° + (104d 2 -  262d+ 165)t 12 

+ (3~--3-2 d2 - ~ d  + 4668)t14], (2.2) 

Po = 1 - 2t O-~- 

= 1 - 4 ( d -  2 ) [ t  6 + ( 1 0 d -  25)t 1° 

+ ( 8 d -  31)t 12 + (140d 2 - 742d+ lO01)tl4], 

2 

• P o - P w  
= 1 + 2 ( d -  2)[ t 4 + 5t 6 + ( l O d -  l l ) t  s 

+ ( 8 8 d -  168)t l° + ( 1 4 0 d  2 - 312d+ 106)t 12 

+ ( - -~-d2-  =°a16--T-d + 7213)t '4 ] 

(2.3) 

(2.4) 
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In eq. (2.3), J~ denotes the non-trivial part  of the free energy per plaquette 

 a(a- 1) 
l n Z = l n c o s h t + f f .  (2.5) 

The expansion of - k  at d = 3 was already known [2, 6]. On the other hand, the 
terms of highest degree in d may  be calculated by an independent method, using 
the expansion around d =  oo in the strong coupling phase (see ref. [11] and sect. 3). 

This provides a useful cross-check of our computation. 
The series (2.4) for ~ may be analyzed by Pad6 approximants,  or by other 

generalizations of the method of successive ratios. Their nearest positive singularity 
turns out to be very stable with respect to the various procedures, for 3 < d < 5. 
This is displayed in table 1. The value at d = 3 is to be compared with the value 

t R = 0.4593 obtained by Weeks [7] through a careful analysis of various 18th order 
series. 

At d =  4, tR--~0.40 ___ 0.01 seems to lie below t c -- V ~ -  1 = 0.414. Of course, we 
cannot bar possible oscillations of the further terms in the series, and it is therefore 
premature to assert that t R ~  t c. At d = 5, in spite of the larger uncertainty on the 
location of the roughening point, there is some evidence that it lies beyond the 
critical point t R > to. Indeed the first-order transition point may be as estimated as 

[1/ 
t ¢ = t a n h  2 ( d - 1 )  2.755205 

0 . 9 1 2 5 6 1 0 . 6 0 1 1 6 9  )1 
d t- d------- T -  + . . .  . (2.6) 

This expression is obtained by a systematic 1 / d  expansion about the mean field 
approximation [13], not to be confused with the previously mentioned d -1/2 

expansion. For d - -  5, this yields: 

tc--~ 0.313 ___ 0.01, (2.7) 

to be compared with 

l R ~'~ 0.364 ___ 0.015 (2.8) 

TABLE 1 
Nearest singularity of the series ~ ~ ~ ~kt 2k, as determined by various procedures 

Pole of Pole of 
(~8/~10) 1/2 (~10/~12) 1/2 (~12/~14) 1/2 (~8//~12) I/4 (~10/~14) 1/4 [5/2]Pad~ [4/3]Pad~ 

d = 3 0.4449 0.4725 0.4482 0.4585 0.4602 0.4594 0.4522 
d= 4 0.3970 0.4094 0.3910 0.4031 0.4001 0.4019 0.4011 
d = 5 0.3787 0.3646 0.3623 0.3716 0.3635 0.3619 0.3461 
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As we let the dimension grow, the nearest singularity of (2.4) becomes increasingly 
unstable with respect to the extrapolation procedure. The ratios of consecutive 
terms (5~/5n+2) 1/2 oscillate wildly, while the ratios (5~/~+4)  I/4 are stable. This 
comes from the structure of the series 

~4n ~ 4 , ÷ 2  ~dn  (2.9) 

which will be at the center of the forthcoming discussion of the behaviour at 
large d. 

3. Roughening at large dimension 

Let us first review the method for studying the large-d limit [11, 12]. In the strong 
coupling phase, it is easy to select the leading contributions to F or ( W )  as d---> oo: 
they are tree-like or "hydra-like" diagrams, where an arbitrary number of three- 
dimensional cubes are glued together, a new direction being chosen at each step. 
This implies that t4d is the relevant parameter in this limit, and that subdominant 
terms are suppressed by powers of t 2 ~  d -  1/2. Introducing the variable u through 

u(1 -- u) 4 = 2dr 4 , (3.1) 

the free energy F is found to be: 

~ =  d -1/2 
- - u 3 / 2 ( 1  - 3u) + O(d -1).  (3.2) 
6V~ 

The resulting swallow-tail shape of ff is depicted in fig, 1. The parametrization u( t )  

L 

H 

dt ~, 

Fig. 1. Qualitative behavior of the free energy/~ for large d. 
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is singular at u H -~-~ and u L = 1. This introduces singularities in F(t)  at 

4( 1 "~1/4 
tn = 5 k ~ ]  ' t L = O. (3.3) 

However, these singularities are unphysical: they occur on the boundaries of the 
metastable regions. As t increases from zero or decreases from l (low coupling 

region), the system undergoes a first-order transition at t c, with tL< t c ~ t n. AS 
mentioned above, tc may be determined by a different method and turns out to be 
of order d-1.  

The effect of d - 1/2 corrections in the expansion of ff is to shift slightly u H and 

u L but does not upset the previous picture. 
We now turn to the calculation of the surface tension k and  of the operator p w, 

in this d -  I/2 expansion. The leading contribution comes again f rom trees of cubes 

glued to the plaquettes of the minimal surface. The next-to-leading terms are also 

easily characterized (see the appendix). This leads to 

k ~ - - ¼ 1 n ~ d + V ~  1 l _ _ - 5 f f ( l u + a u 2 - 1 u 3 ) + O ( d ) ,  (3.4) 

p w = _ l + 2 u + 2  ~2.~/~,, 1 (2U__~U2 + 23, 3 7.4"~ 
1 --- 5u T u --3 u 1' ¥ u 

(3.5) 

u,, (3.6) 

When re-expanding these expressions in powers of t at fixed d, we recover the 
leading terms of the form t4nd n and t4n+2d ~ in eqs. (2.1)-(2.3): this provides the 

cross-check mentioned above. 
It  is now possible to compute the expression of the indicator ~ -  2(p  0 - P w ) - 1  to 

order d - 1/2: 

1 ~ u ( 1 5 -  63u + 38u 2 -  14u 3) 
~ =  1 - u  + ~ l = u - - ~  ----Su) " (3.7) 

To this low order in d -  1/2, a proper analysis of the singularities u R of ~ requires 
further assumptions, as we have to disentangle u n, u L f rom u R. For  instance, the 
simplest hypothesis is that the leading singularity is of the form 

= - u ) - a  ( 3 . 8 )  
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This leads to 

and 

or 

~ =  1, (3.9) 

(3.10) 

fR=.  21/4 
d3/4 . (3.11) 

The knowledge of one more term in the expansion (3.7) would allow one to assert 
the consistency of the assumption (3.8), or to discriminate among other possible 
schemes. 

4. Discussion and conclusion 

How are these results at large d to be interpreted and how do they fit with those 
obtained at low dimension, f rom the strong coupling expansion of sect. 2? Under 
the assumption (3.8), we can follow the singularity JR(d) of (3.11) as d decreases. A 
remarkable feature is that this extrapolation seems to be smoothly connected to the 
curve tR(d ) for low d. This is clear in fig. 2 which illustrates the following scenario. 
As d grows from 3, the roughening point tR(d), defined as the nearest singularity of 
$, increases from trt(d = 3) < to(d= 3), crosses the first-order transition and enters 
the metastable region at d>~4, and reaches H, the end of the strong coupling 
metastable phase at some dc ~ 6 - 8. This particular value de might have something 
to do with the upper critical dimension appearing in polymer physics [6, 14]. It then 
bounces off H and goes on the unphysical branch HL, reaching L at d = oo. It 
must be clear that what happens above d¢ is a very academic problem, and that 
many other schemes may be suggested. 

It is physically more interesting to investigate the features of roughening and to 
wonder whether the same mechanism takes place in higher dimensions. For  d - -  3, 
there is clear evidence [7] that the delocalization of the surface results from 
long-wavelength fluctuations rather than local (short-wavelength) deformations. On 
the other hand, we have seen that as d---~ oo, local deformations play a dominant 
role. It is then legitimate to wonder about the behavior at intermediate values of d: 
4 < d < d ¢ .  

To summarize, we have re-examined in this paper the roughening t~ansition of 
Z 2 lattice gauge theory in arbitrary dimension. New information comes from the 
strong coupling expansion pushed up to order tanhl4 B and from a study of the 
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Fig. 2. Plot of t n ,  t L (broken lines), t c (heavy solid line), t a (solid and dotted line) as functions of 1/d. 
The roughening line is obtained for d~<5 by the analysis of strong coupling series, and for d~>8 by the 

large-d expansion. 

large-d behavior. The strong coupling series, through suitable extrapolation, leads 
to a roughening singularity in good agreement with the results of lower order 
calculations, for d ~  6. This stability makes us rather confident in the determina- 
tion of the location of this singularity. The large-d expansion provides a cross-check 
on the strong coupling series. Moreover, the analysis of its singularities, though not 
unambiguous, seems in reasonable agreement, for intermediate values of d with the 
previous method. The resulting picture is that the roughening transition lies in the 
physical region up to d ~ 4 ,  and in the metastable region for 4 < ~ d ~ d  c ~ 6 -  8. It 
is now a theoretical challenge to establish firmly the existence of this roughening 



J.M. Drouffe,J.B. Zuber / Roughening transition 261 

transition, to find how to compute beyond this point, and to see its effect on 
numerical simulations. 

Stimulating discussions with C. Itzykson are gratefully acknowledged. 

Appendix 

This appendix gives some indications on the computation of various expectation 
values in the large-d limit. The appendices of ref. [I I] describe the basic techniques 
needed here, and in particular present the determination and the summation of the 
dominant contributions and of the first d -I/2 corrections to the free energy. 
Therefore, we restrict ourselves to the specific features of the computation of the 
string tension k and of the operator P w. 

We recall that the diagrams contributing to k and Pw have the topology of 
surfaces made of plaquettes, bounded by the Wilson loop. Each contribution is a 
polynomial in N, the number of sites, and in A, the minimal area. The string 
tension is obtained by retaining in the summation over all the diagrams (connected 
or not), the linear term in A and by setting N to zero. Similarly, ½(I +Pw) is 
computed by setting to zero both N and A in the sum over all diagrams which do 
not contain the test plaquette P [cf. eq. (I.I)]. 

In the large-d limit, the fundamental objects are the boundary surfaces of trees 
made of adjacent three-dimensional cubes. This kind of diagrams has been shown 
to give a dominant contribution in the strong coupling region for large dimensions. 
They can be summed up and they contribute, for example, to the free energy per 
site an amount 

d3/2 

12v~ 
~ u 3 / 2 ( 1  - 3u), (A.1) 

where the parameter u has been defined in (3.1). We may define a dressing 
operation by replacing each plaquette of a given diagram by a tree of cubes. This 
yields a multiplicative factor 

1 
(A.2) f = l - u  

for each dressed plaquette. For example, 

( w ) = ( t f )  ~ (A.3) 

and therefore 

k =  - ln f t  = ¼1n 2 d .  
U 

(A .4) 
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;/ 
a) b) 

Fig. 3. Skeleton diagrams contributing to d -  1/2 corrections. 

For  the computation of pw,  we have to distinguish whether the test plaquette P is 
not dressed [no contribution to ½(Pw + 1)] or dressed with a non-trivial tree, 

1 whence the leading contribution ( f -  1)If= u to ~ (Pw + 1). 
We now turn to the d -  i/2 correction. Let us first consider a diagram made of 

two connected pieces: the dressed Wilson surface and some disconnected tree. In 
view of the factor d 3/2 in (A.1), this seems to give a dominant  contribution to ~ W )  
[cf. (A.3)]. However, such a term contains a factor N coming from the translations 
of the disconnected tree and hence does not contribute to ( W )  or Pw. We only 
have to subtract the forbidden configurations where two (or more) plaquettes of the 
two disconnected pieces coincide, and to count the diagrams when these discon- 
nected pieces intersect along a closed singular line (though allowed, these diagrams 
must be considered separately to avoid multiple counting). As such coincidences or 
crossings occur with a probability 1 / d  2, we see that disconnected diagrams and 
diagrams with singular lines contribute to the d - 2  × d3/2 _ d -  i/2 order. 

Apart  from these contributions, the d -1/2 correction involves two types of 
connected diagrams depicted in fig. 3. First, n three-dimensional cubes ( n ) 2 )  
sharing one link may be put on two plaquettes on the Wilson surface, as illustrated 
for n = 5 in fig. 3a. Second, a closed diagram generating the d - i / 2  correction to the 
free energy (see [11]), depicted as a shaded blob in fig. 3b, may  be connected to the 
surface by a string of cubes. In either case, the resulting skeleton diagram have to 
be dressed by "hydra-like" trees. 

Using these indications and the techniques of ref. [11], the reader can easily 
recover our results (3.4)-(3.7). 
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