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A class of lattice models with a global symmetry characterized by a solvable group are 
shown to be equivalent to ones having an Abelian symmetry, to which the Kramers-Wan- 
nier dual transformation can be applied. Examples are afforded by the permutation 
groups S3 and S4. 

The Kramers-Wannier duality [l] for the two-dimensional Ising model has recent- 
ly been generalized to various statistical and lattice gauge systems, giving a surprising 
wealth of information [2-71. Attempts have been made to extend this method in 
the non-Abelian case [8]. It is soon realized that a non-trivial amount of group the- 
ory and topology is required, except in a few examples involving groups with a sim- 
ple structure such as the permutation group on three objects Ss. The latter belongs 
to a class of solvable groups for which a general property holds as we shall demon- 
strate below. 

Consider a “classical spin” model on a lattice in arbitrary dimension d. The spin 

variables gi take their values in a non-Abelian group G and the latin index (i, j, . ..) 
labels the lattice points. For the applications we have in mind G is likely to be a dis- 

crete (and even finite) group. The Hamiltonian reads 

g = c $&g~‘) . (1) 

The discussion applies to any type of interaction Jii between a pair of spins 
although the duality transformation will later require Jii to couple only nearest 
neighbors. We assume that 5X is G-invariant, i.e., that its value is unchanged under a 
global transformation 

gi + ggi 7 all i . (2) 

Note that Bc is also invariant under right transformations gi +gig, by construction. 
Therefore f is a class-function (or character) 

fkkig~‘)g-‘) =fkig~l) . (3) 

We will show that, under certain circumstances, the partition function (0: inverse 
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temperature) 

2 = C exp(-/?BC) 
{&G 

(4) 

may be re-expressed as the one pertaining to a different model on the same lattice, 
with spin variables taking their values in a different group. 

Assume that G may be regarded as a semi-direct product G = A B H of an invari- 
ant subgroup H and its Abelian factor group A. This means that there exists an 
homomorphism from A into the group of automorphisms of H which, for any a EA, 
we denote as 

hEHsahEH. (5) 

Any element of G may be written as a pair g = (a, h), with the multiplication law 

gg’ = (a, h)(u’, h’) = (au’, h “h’) . 

Since (a, e)-’ = (a-‘, e), we have 

(a, e)(a’, /~‘)(a, e)-’ = (a’, ah) . 

(6) 

(7) 

It is natural to associate with any element g = (a, h) of G an element y of the direct 

product r = A X H through a bijection (Y, not a group homomorphism, with p its 
inverse 

GfI-. (8) 
This mapping will satisfy a constraint designed to transform the model with sym- 
metry G into a model with symmetry I. Let 4 be a function on r defined through 

NY) =f(P(r)) * (9) 

In order that the interaction (1) be expressible in terms of the new “spins” 

Yi = ~dpi), Yj = C+j) and of the function 4 we must have 

f@igFr) = @Caki) acgi)-‘) =f(P[aki) @-(gi)-ll) . (10) 

The minus one superscript on the r.h.s. refers to the inverse in I. 
If we deal with the most general G-invariant functionf, the previous requirement 

means that the two arguments belong to the same class in G. We denote this equiva- 
lence by the symbol -. The mapping 01 should therefore fulfill 

g&j -’ -PIa Q(gi)-‘I * (11) 

A solution to this condition is, withg = (a, h) 

o(g) = (a, a-Q) , (12) 

where the element on the right is considered in I’. Indeed 01 is a bijection and 

fl[o(g) a@‘)-l] = (aa’-‘, (I’-l(h na’--lh’--l)) 
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= (a’-l, e)(ua’-l, h aa’-lh’-l)(u’, e) 

-(au’-‘, h aa'-lh'-l 1. (13) 

The last element is nothing but gg’-’ so that the desired property (11) holds. We 

conclude that the initial model with symmetry G has been re-expressed as a similar 
model with symmetry r. 

If the process can be iterated, i.e., if G = Al FJ HI and the invariant group H, can 
in turn be written as a semi-direct product HI = Az 8 Hz, Az Abelian, and so on, the 
initial group G is solvable. 

Proceeding as before we can progressively eliminate the non-Abelian features 
and finally obtain a theory with a purely Abelian symmetry Al X Az X . . . . The class 
of solvable groups which can be written in cascade as semi-direct products is the one 
mentioned earlier. 

As a consequence the Kramers-Wannier duality may be carried out easily for any 
spin model based on a solvable group since the transformation is known in the gen- 
eral Abelian case [9]. 

As already mentioned an example of a solvable group is S3 which has a structure 
of semi-direct product Zz o Z3. The previous construction maps such models on 
equivalent ones with Z2 X 23 as a symmetry, among which a self-dual case corre- 
sponds to the Potts model [lo]. The permutation group of four objects S4 has a 
similar structure. We have S4 = Z2 8 x4 with x4 the group of even perturbations 
being itself the semi-direct product Z3 @V4. The Abelian (dihedral) group V4 is the 
set of products of disjoint transpositions. 

As is known since the work of Galois, permutation groups of higher order are no 
longer solvable. It is also clear that the above construction does not extend to lattice 
models with a local gauge invariance where spins defined on links interact by four. 
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