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1. Introduction and summary of results

The observation by Razumov and Stroganov [1] that the components of the ground state
of integrable quantum spin chains in some adequate basis enjoy integrality conditions
and are connected to known combinatorial problems, namely alternating sign matrices
(ASMs) and their avatars, has been the source of an amazing burst of new developments.
It was soon realized that in many cases these integers in fact count some configurations
of other lattice models [2, 3]. To be more explicit, the components of the ground state of
the Temperley–Lieb Hamiltonian describing the O(1) loop model on an even number
of sites with periodic boundary conditions are conjectured to count the numbers of
configurations of so-called fully packed loop (FPL) models: this is the now celebrated
Razumov–Stroganov (RS) conjecture [3]. Other types of boundary conditions have also
been considered [4]–[6].

After these original observations and conjectures, a major progress has been the
introduction of inhomogeneities in the original problem, in the form of spectral parameters,
thus enabling one to use the full machinery of integrable models [7, 8]. In particular, this
has led to recursion formulae between components of the ground state and ultimately to
a proof of the ground state sum rule, a weak but non-trivial version of the RS conjecture.
These recursion formulae have been shown to follow from an underlying algebraic structure
rooted in the affine Hecke algebra (AHA) [9], or alternatively, related to the so-called
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quantum Knizhnik–Zamolodchikov equation (see [10] and further references therein). This
has then been extended into several distinct directions. Loop models with crossings [11]
have been shown to display an amazing relationship to the algebraic geometry of matrix
varieties [12, 13]. Extensions to other types of boundary conditions [14], to higher rank
algebras [10], or to both [15], have been considered in turn.

In the present paper, we return to a case first tackled in the original papers in this
domain, that of the O(1) loop model on a square lattice wrapped on a semi-infinite cylinder
of odd integer perimeter [2, 5], or of the associated periodic XXZ spin chain [1]. In the
loop model, the sites of the boundary of the cylinder are pairwise connected via non-
intersecting links. The oddness of the perimeter implies that one site remains unmatched,
hence giving rise to a defect line, connecting it to the point at infinity on the cylinder.
In the spin chain on L = 2n + 1 sites, likewise, the ground state is made of n + 1 spins
pointing upward and n downward (or vice versa). It is also interesting to consider the
case of the O(1) loop model on a cylinder of even perimeter, when the loops wrapping
around the cylinder are not allowed to contract, or equivalently, when the corresponding
link pattern is drawn on a punctured disc. This case was called periodic with ‘distinct
connectivities’ in [6]. It must be distinguished from the more usual loop model with
‘identified connectivities’ which was the subject of [8], which will be also discussed in
what follows since we need it to analyse the other cases. The related XXZ spin chain of
even size L = 2n has twisted boundary conditions [2], as we recall below in section 4. See
also [16] for more data on these different boundary conditions.

Let An =
∏n

j=1 (3j − 2)!/(n + j − 1)! denote the number of alternating sign matrices

of size n (see [17] and further references therein) and Nn stand for

Nn =
3n/2

2n

2 × 5 × · · · × (3n − 1)

1 × 3 · · · × (2n − 1)
An = 3n/2

∏n
j=1(3j − 1)!

∏n
j=1(n + j)!

. (1.1)

Let us also introduce the number AHT(L) of ‘half-turn symmetric’ alternating sign
matrices [17]–[20]

AHT(L) =






n−1∏

j=0

3j + 2

3j + 1

(
(3j + 1)!

(n + j)!

)2

if L = 2n is even

n∏

j=1

4

3

(
(3j)!j!

(2j)!2

)2

if L = 2n + 1 is odd.

(1.2)

Okada [21] showed that this number AHT(L) may be expressed in terms of the dimension
of certain representations of GL(L)

AHT(2n + 1) = 3−n2

(dim
GL(2n+1)
Y ′

n
)2

AHT(2n) = 3−n(n−1) dim
GL(2n)
Yn

dim
GL(2n)
Y ′

n
.

(1.3)

The Young diagram Y ′
n which defines that representation is made of one row of length

n, two rows of length n − 1, two of length n − 2, . . ., two of length 1, while the Young
diagram Yn results from the ablation of the first row of Y ′

n.
In [2], it was conjectured that for the O(1) loop model on a cylinder of perimeter

L = 2n + 1, all components of the Perron–Frobenius eigenvector Ψ are integers if the
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smallest one is normalized to be 1, that the sum of components of Ψ over all loop
configurations π is
∑

π

Ψπ = AHT(2n + 1) = N 2
n = 1, 3, 25, 588, 39 204 . . . L = 2n + 1 = 1, 3, . . . (1.4)

and that the largest component is

Ψmax = A2
n = 1, 1, 4, 49, 1764, . . . L = 2n + 1 = 1, 3, . . . . (1.5)

As for the case of even L = 2n with distinct connectivities, it was conjectured in [6] that
the sum of components of the Perron–Frobenius eigenvector Φ∗ over all loop configurations
π is

∑

π

Φ∗
π = AHT(2n) = 2, 10, 140, 5544 . . . L = 2n = 2, 4, 6, 8, . . . . (1.6)

The largest component was also conjectured to be

Φ∗
max = AHT(2n − 1) = 1, 3, 25, 588, . . . L = 2n = 2, 4, 6, 8, . . . . (1.7)

In both the odd and the even cases, it was further conjectured in [5] and in [6],
respectively, that the individual components Ψπ, resp. Φ∗

π, count the number of HTSFPLs,
that is, half-turn symmetric FPL configurations drawn on an L × L grid, whose
connectivity pattern is described by the arch pattern π. For example, the unique HTSFPL
pertaining to L = 3 and the link pattern π = {� ·} is as shown below:

2

31

while further examples for L = 4, 5 are depicted in figure 1.
For completeness and future use in this paper we also recall here the sum rule written

in [2] for the loop model of even size L = 2n with ‘identified connectivities’. The Perron–
Frobenius eigenvector denoted Φ satisfies

∑
Φπ = An, (1.8)

together with Φmax = An−1. While the latter remains a conjecture, (1.8) has now been
established [8], as we recall below.

Turning now to the XXZ spin chain of odd size, the parallel (and prior!) conjectures
read [1]

∑

α

Ψ̃α = 3n/2Nn = 1, 3, 15, 126, 1782 . . . L = 2n + 1 = 1, 3 . . . (1.9)

for the sum over all spin configurations of total spin 1/2, the largest component is

Ψ̃max = An = 1, 1, 2, 7, 42 . . . L = 2n + 1 = 1, 3, . . . (1.10)
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2 3 4

1 5

2 3

1

4

2 3

1

4

π

π’

Figure 1. A sample of half-turn symmetric FPL configurations of size 4 and 5.
The lower half of these configurations has a link pattern described by, respectively,
{� �}, { � } and {� � ·}.

and the square norm of Ψ is
∑

α

Ψ̃2
α = N 2

n = AHT(2n + 1) (1.11)

when the normalization is such that Ψ̃+···+−···− = 1. For an even size L = 2n, (with
twisted boundary conditions, see section 4), the ground state wavefunction is complex,
and the parallel conjectures of [2] and [22] read

∑

α

Φ̃α = 3n/2An (1.12a)

∑

α

Φ̃2
α = A2

n (1.12b)

∑

α

|Φ̃α|2 = AHT(2n) (1.12c)

Φ̃max = Φ̃(+−)n = Nn−1e
iπ/6 (1.12d)

with the normalization that Φ̃min = Φ̃++···+−−···− = eiπn/6. The first of these conjectures is
now established, since it is a corollary of the sum rule (1.8), as will be reexplained below.

Examples. L = 5 (n = 2): Ψ = (1, 1, 1, 1, 1, 4, 4, 4, 4, 4) in the loop basis, Ψ̃ =
(1, 1, 1, 1, 1, 2, 2, 2, 2, 2) after change to the spin basis. Note that for L odd, there
are always L repeats due to the breaking of rotational symmetry by the defect.
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Table 1. Notations for the different models and boundary conditions considered
in this paper.

Perron–Frobenius Transfer
Size L Model Space Dimension eigenvector matrix

2n + 1 Loop LP2n+1

(
2n+1

n

)
Ψπ T

2n Loop (‘I.C.’) LP2n Cn = (2n)!
n!(n+1)! Φπ T

2n Loop (‘D.C.’) LP ∗
2n

(
2n
n

)
Φ∗

π T ∗

2n + 1 Spin {sz = 1
2} Cn+1 Ψ̃α T̃

2n Spin {sz = 0} Cn Φ̃α T̃

Indicating these repeats with a superscript, at L = 7, Ψ = (1(7), 6(7), 14(14), 49(7))
for link patterns, Ψ̃ = (1(7), 3(14), 4(7), 7(7)) for spins. In even sizes, for L = 4,
Φ∗ = (3(2), 1(4)) and Φ̃ = (

√
3e±iπ/6, e±iπ/3, 1(2)); for L = 6, Φ∗ = (25(2), 9(6), 5(6), 1(6)),

Φ̃ = (5e±iπ/6, (
√

7e±iα)(3), (
√

7e±iβ)(2),
√

7e±iγ, (e±iπ/6)(2), e±iπ/2) with α = arctan 1/3
√

3,
β = (π/3) − α, γ = (π/3) + α.

In view of previous experience, it is very natural to extend the discussion to the
inhomogeneous version of the loop model (whose precise definition is recalled below in
section 2). Indeed the main result of [8] (Theorem 5) is that for the even-size (IC) loop
model,

∑

π∈LP2n

Φπ(z1, . . . , z2n) = 3−n(n−1)/2sYn(z1, . . . , z2n), (1.13)

so that in the homogeneous limit zi → 1, (1.8) follows. The main result of this paper is
that

∑

π∈LP2n+1

Ψπ(z1, . . . , z2n+1) = 3−n2

sYn+1(z)sY ′
n
(z) if L = 2n + 1

∑

π∈LP ∗
2n

Φ∗
π(z1, . . . , z2n) = 3−n(n−1) sY ′

n
(z)sYn(z) if L = 2n,

(1.14)

as we will show in sections 2.5 and 3. In these expressions, sY (z) stands for the Schur
function labelled by a Young diagram Y , a symmetric function of z1, . . . , zL. The diagrams
Y ′

n and Yn have been defined above, after (1.3), thus Yn+1 has two rows of length n, two
of length n − 1, etc, two of length 1. From this follow the proofs of the sum rules (1.4)
and (1.6). The sum rule (1.9) for the odd spin chains will be also derived in section 4.5,
and (1.11) and (1.12b) in section 4.6. On the conceptual level, it may be interesting to
notice that our derivation makes use not only of the previously mentioned techniques,
introduction of spectral parameters, recursion equations and qKZ equation, etc, but also
of a new idea borrowed from knot theory, namely the use of skein relations.

The educated reader will recognize in (1.14) formulae equivalent to those written
by Razumov and Stroganov [20] for the partition function of the square-ice model with
boundary conditions appropriate to the enumeration of half-turn symmetric ASMs. We
return to this in our conclusion.

For the sake of the reader, we summarize in tables 1 and 2 some notations and data
for the various situations that we consider in this paper.
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Table 2. Some other notations with the section or equation number where they
first appear.

B Equation (4.10) B0, B∞ Equation (3.2)

L2n+1 Section 2.1 L2n+2 Section 2.3
P0, P∞ Section 2.3 Q, P± Section 4.3
S Section 4.2 sYn , sY ′

n
, Yn, Y ′

n Equations (1.3), (1.14)

2. The inhomogeneous O(1) loop model in odd size

2.1. Link patterns, transfer matrix and R-matrices

The model is defined on a semi-infinite cylinder of a square lattice of odd perimeter 2n+1
whose faces are covered by either of the two following face configurations:

or . (2.1)

In a given configuration, labelling cyclically i = 1, 2, . . . , 2n+1 the centres of the boundary
edges (and with the convention that i+2n+1 ≡ i), we note that these points are connected
among themselves or to the point at infinity via non-intersecting curves. Actually, drawing
on each face the two configurations (2.1) with probabilities p and 1−p, p ∈ (0, 1), leads only
to situations where one boundary point is connected to infinity, while the remaining 2n
are pairwise connected. Forgetting about the underlying lattice, the connection pattern,
also called the link pattern, is simply a chord diagram, namely a configuration of 2n + 1
points on a circle, pairwise connected by non-intersecting arcs within the interior disc,
with one unmatched point that we connect to the centre of the disc. The set of such link
patterns is denoted by LP2n+1 and has cardinality dn =

(
2n+1

n

)
. Later on, we regard this

set as a linear space, spanned by the previous link patterns, and thus of dimension dn.
Here we study the inhomogeneous version of this model, in which plaquettes above the

boundary point i are picked among the two faces (2.1) with respective probabilities pi and
1 − pi, pi ∈ (0, 1). We wish to compute the probabilities Pπ that random configurations
connect the boundary point according to a given π ∈ LP2n+1. Clearly, these probabilities
are invariant under the addition of a row of 2n + 1 plaquettes to the original semi-infinite
cylinder, which amounts to an equation of the form

∑

π′∈LP2n+1

T (p1, . . . , p2n+1)π,π′Pπ′ = Pπ (2.2)

where the transfer matrix T acts on link patterns in an obvious way, by concatenation.
The vector P = {Pπ}π∈LP2n+1 is determined as the properly normalized Perron–Frobenius
eigenvector of T , with eigenvalue 1.

This system is known to be integrable, as T may be constructed by multiplying
and then tracing plaquette operators that satisfy the Yang–Baxter equation. Indeed,
parameterizing the probabilities as

pi =
q zi − q−1t

q t − q−1zi
(2.3)

doi:10.1088/1742-5468/2006/08/P08011 7
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where q is a complex cubic root of unity q = −eiπ/3, we may identify the ith plaquette
operator (or R-matrix) as

Ri(zi, t) =
q zi − q−1t

q t − q−1zi
+

zi − t

q t − q−1zi
(2.4)

where zi and t are spectral parameters attached respectively to the vertical line above point
i, and to the horizontal one running around the cylinder. With the parameterization (2.3),
the probability vector P is clearly a rational fraction of the z s. In what follows, we will
use a different normalization Ψ ∝ P in which the entries of Ψ are coprime polynomials of
the z s.

In [8, 12], it was shown that the transfer matrix relation (2.2) may be equivalently
replaced by a system of relations of the form

Ři,i+1(zi, zi+1)Ψ = τiΨ, i = 1, 2, . . . , 2n + 1 (2.5)

where τi is simply the interchange of spectral parameters zi ↔ zi+1 and Ř is the tilted
plaquette operator

Ři,i+1(z, w) =
q z − q−1w

q w − q−1z
I +

z − w

q w − q−1z
ei (2.6)

in terms of the local identity I and Temperley–Lieb operators ei, i = 1, 2, . . . , 2n + 1
defined pictorially as

I = and ei =

and acting at points i and i+1 on link patterns by concatenation as indicated schematically
below:

B Bj k

i+1

i i+1

i i+1

j k

i

A AC C (2.7)

Note that if k = i and j = i + 1, ei acts by creating a loop which we allow ourselves to
erase, and therefore this action leaves the pattern invariant.

The ei obey the usual conditions eiei±1ei = ei and e2
i = ei that define the (cyclic)

Temperley–Lieb algebra TL(1).
The last equation i = 2n+1 of (2.5) may be replaced by a cyclic invariance condition

Ψ(z2, z3, . . . , z2n+1, z1) = Ψ(z1, z2, . . . , z2n+1). (2.8)

Finally, we will also be using Ř matrices with the second spectral parameter sent either
to zero or to infinity. Up to a multiplicative redefinition by −q±3/2, the two corresponding

doi:10.1088/1742-5468/2006/08/P08011 8
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plaquette operators4

t−1
i ≡ −q3/2Ři,i+1(z, 0) = q−1/2I + q1/2ei

ti = −q−3/2Ři,i+1(z,∞) = q1/2I + q−1/2ei

(2.9)

may be interpreted respectively as under- and over-crossings of links, with pictorial
representation

ti = and t−1
i =

and the two pieces of equation (2.9) are nothing else than the celebrated skein relations
for knots, which read pictorially

= q−1/2 + q1/2

= q1/2 + q−1/2 .
(2.10)

2.2. The quantum Knikhnik–Zamolodchikov equation

More generally, it was noted in [9] that the condition that q be a cubic root of unity
could be relaxed and that equations (2.5) and (2.8) are a particular case of quantum
Knizhnik–Zamolodchikov (qKZ) equation [10, 15]. The latter amounts to the system

Ři,i+1(zi, zi+1)Ψ = τiΨ i = 1, 2, . . . , 2n

σΨ(z2, . . . , z2n+1, sz1) = cΨ(z1, . . . , z2n+1)
(2.11)

where s, c are scalars and the operator σ acts on link patterns via the cyclic rotation of
labels i → i + 1. Here Ř denotes the same plaquette operator as before, except that its
definition involves the generators ei of the Temperley–Lieb algebra TL(τ), (i.e. satisfying
the relation e2

i = τei), with τ = −q − q−1. Note that we may replace the second line
of (2.11) by an equation of the form

Ř2n+1,1(z2n+1, sz1)Ψ(z1, . . . , z2n+1) = Ψ(s−1z2n+1, . . . , sz1) (2.12)

where the omitted zs are left unchanged.
We now look for polynomial solutions Ψ(z1, . . . , z2n+1) of this system, with minimal

degree. From the first line of equation (2.11) we learn that whenever points i and i + 1
are not connected in π, Ψπ factors out a term qzi − q−1zi+1, and more generally if no two
points between i and j > i are connected, then Ψπ factors out qzi − q−1zj. For the link
pattern π0 connecting points i ↔ 2n+2− i, i = 1, 2, . . . , n while n+1 is unmatched, this
fixes the base component Ψπ0 to be

Ψπ0 =
∏

1≤i<j≤2n+1

q zi − q−1zj

q − q−1
(2.13)

4 Note that the following choice of normalization for ti is ad hoc to ensure rotational invariance of the crossing
move, and coincides with the standard crossing operators of knot theory. However, the prefactors −q±3/2 will be
irrelevant at the particular point q1/2 = e−iπ/3 to which we will restrict later on.
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up to multiplication by a symmetric polynomial, which we pick to be 1 for the sake of
minimality. This in turn determines both scalars in (2.11) to be s = q3 and c = q3n. The
other entries of Ψ are then determined from equation (2.11), which reads in components

−(q−1zi+1 − qzi)∂iΨπ =
∑

π′ �=π
eiπ′=π

Ψπ′,

Ψπ(z2, . . . , z2n+1, sz1) = cΨσ−1π(z1, . . . , z2n+1),

(2.14)

where

∂if(z1, . . . , zi, zi+1, . . . , z2n+1)

:=
f(z1, . . . , zi+1, zi, . . . , z2n+1) − f(z1, . . . , zi, zi+1, . . . , z2n+1)

zi+1 − zi

. (2.15)

Also true for any q is the recursion relation:

Ψφi(π)(z1, . . . , zL)|zi+1=q2zi
=

1

(q − q−1)2L−3
zi

i−1∏

j=1

(qzj − q−1zi)(zj − qzi)

×
L∏

j=i+2

(qzi+1 − q−1zj)(zi+1 − qzj)Ψπ(z1 . . . zi−1, zi+1 . . . zL) (2.16)

where φi inserts two consecutive points connected via a ‘little arch’ between points i − 1
and i in any link pattern π of size 2n − 1; all other components vanish when zi+1 = q2zi.

2.3. Projections to link patterns of larger size

In this section, we introduce two projection operators P0 and P∞ from LP2n+1 into the
vector space generated by the link patterns with 2n+2 points without unmatched points,
denoted LP2n+2. These two projections would allow us to relate the solutions of the qKZ
equation for punctured discs with 2n+1 points on their perimeter to those for unpunctured
discs of perimeter 2n + 2. We decide from now on to restrict ourselves to the particular
value q = −eiπ/3 (RS point), as we will be mostly reasoning on transfer matrices for the
loop model on a punctured disc, for which the periodicity is requested.

The projections P0 and P∞ are defined as follows. For any link pattern of size 2n+1,
let us first add an extra point labelled 2n+2 on the boundary of the disc, between points
1 and 2n + 1. Next this point is linked to the centre of the disc, which is itself connected
to the (unique) unmatched point of the link pattern. But by doing so, the added link
may have to cross existing links. As illustrated in figure 2, we define P0 by imposing that
all these crossings be undercrossings, and P∞ by imposing that they all be overcrossings.
We then simply have to use the skein relations (2.10) at each crossing to obtain a linear
combination of non-crossing link patterns of size 2n + 2.

It is also clear that the mappings P0 and P∞ are surjective: every π′ in LP2n+2 in
which the point 2n + 2 is matched with some i is the image by P0 or P∞ of a π ∈ LP2n+1

in which i is unmatched and the other points form the same pairs. This justifies calling
P0 and P∞ ‘projections’ from LP2n+1 to LP2n+2.
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P0

P00

4
3

2

1

5 6
7

8

9

10
111213

4
3

2

1

5 6
7

8

9

10
111213

14

4
3

2

1

5 6
7

8

9

10
111213

14

Figure 2. Example of projections P0 and P∞ of a link pattern of size 13. We first
add a point 14 between 1 and 13 on the boundary of the link pattern, and then
connect the latter to the centre, itself linked to the unmatched point (labelled
5 here), via a link passing under (P0) or over (P∞) those separating the two
points. Finally, we must use the skein relations (2.9) to express the latter as
linear combinations of non-crossing link patterns of size 14.

For illustration, there are 3 link patterns of size 3, and their projections in the vector
space of non-crossing link patterns of size 4 read:

P0 1

2

3

=

4

2

1 3

P0 1

2

3

=

4

2

1 3

P0 1

2

3

= q 1 2

4

2

1 3 + q1 2

4

2

1 3 

(2.17)

P 1

2

3

=

4

2

1 3

P 1

2

3

=

4

2

1 3

P 1

2

3

= q1 2

4

2

1 3 + q 1 2

4

2

1 3 

(2.18)
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T2n+1
T2n+2

P0

0P

Figure 3. The projection P0 intertwines the transfer matrices for size 2n +1 and
2n + 2, the latter with z2n+2 = 0. We have represented the transfer matrices
pictorially as adding an extra row to the disc. Each intersection between lines
stands for an Ř matrix operator. That z2n+2 = 0 imposes here that the added
intersection be an undercrossing, in agreement with the action of P0.

2.4. Projections and transfer matrices

Let T (t|z1, . . . , z2n+1) denote the transfer matrix for the loop model on a punctured disc
of perimeter 2n + 1, obtained from (2.2) via the parameterization (2.3), and likewise
T (t|z1, . . . , z2n+2) for a non-punctured disc of perimeter 2n + 2. Then the projection
operators P0 and P∞ of previous section act as intertwiners between odd and even transfer
matrices, where in the latter the additional spectral parameter is taken to zero or infinity
respectively, namely:

P0T (t|z1, . . . , z2n+1) = T (t|z1, . . . , z2n+1, 0)P0

P∞T (t|z1, . . . , z2n+1) = T (t|z1, . . . , z2n+1,∞)P∞.
(2.19)

This equality is easily proved graphically; see figure 3.
Now apply equations (2.19) to Ψ: we find that P•Ψ is an eigenvector of

T (t|z1, . . . , z2n+1, •) with eigenvalue 1, • = 0,∞. This eigenvalue being generically non-
degenerate, we conclude that P•Ψ is proportional to the vector Φ(z1, . . . , z2n+1, •), defined
as the ground state eigenvector of the system on a disc of even perimeter 2n + 2, as
introduced in [8]:

P0Ψ = A0(z1, . . . , z2n+1) Φ(z1, . . . , z2n+1, 0)

P∞Ψ = A∞(z1, . . . , z2n+1) Φ(z1, . . . , z2n+1,∞).
(2.20)

Here the notation Φ(z1, . . . , z2n+1,∞) is slightly abusive, and stands for the limit
limz2n+2→∞ Φ(z1, . . . , z2n+1, z2n+2)/z

n
2n+2. The polynomial character of the quantities A0

and A∞ may be deduced from the recursion relations (2.16) by sending spectral parameters
to 0 or ∞; these polynomials will be determined in the next section.
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2.5. Ground state sum rule

The fundamental remark of Razumov and Stroganov is that at the special point q = −eiπ/3

(RS point) the problem simplifies drastically, and leads to all sorts of combinatorial
wonders. This point may be characterized as the unique one (up to conjugation) where
there exists a non-trivial common left eigenvector to all operators ei, or equivalently to all
plaquette operators Ř. In view of the action (2.7) of ei on link patterns, it is clear that,
under ei, each link pattern gives rise to exactly one link pattern. However, if i is already
connected to i+1 in the link pattern, the action of ei creates a loop, which may be removed
at the expense of a multiplicative factor τ . The existence of a common left eigenvector to
all ei imposes therefore that τ = 1, for which we pick the root q = −eiπ/3, q1/2 = e−iπ/3.
This eigenvector is then simply the sum of components over all link patterns, namely the
covector v with all entries equal to 1 in the link pattern basis.

As a consequence of this definition, we have vŘ = v for all arguments, including
when the second spectral parameter is zero or infinity; hence vti = vt−1

i = v as well (as
q3/2 = −1 at the RS point). Moreover, let v′ be the vector with all entries 1 in the link
pattern basis of LP2n+2. This implies that

v′P0 = v and v′P∞ = v; (2.21)

hence we finally get

v · Ψ = A0(z1, . . . , z2n+1)v
′ · Φ(z1, . . . , z2n+1, 0)

v · Ψ = A∞(z1, . . . , z2n+1)v
′ · Φ(z1, . . . , z2n+1,∞).

(2.22)

In [8], the quantity v′ · Φ(z1, . . . , z2n+2) has been identified with the so-called Izergin–
Korepin determinant, which, at the RS point, is equal to the GL(2n + 2) Schur function
sYn+1(z1, . . . , z2n+2) for the Young diagram Yn+1 with two rows of n boxes, two rows of
n− 1 boxes, etc, two rows of one box, as defined in section 1. Sending z2n+2 to 0 amounts
to restricting the Schur function to GL(2n + 1), while keeping the same tableau Yn+1.
Sending z2n+2 to infinity amounts to restricting the Schur function to GL(2n + 1), while
truncating the Young tableau into Y ′

n equal to Yn+1 with the first row removed. Hence
v · Ψ = A0sYn+1(z1, . . . , z2n+1) = A∞sY ′

n
(z1, . . . , z2n+1). Finally, we make the hypothesis

that the Schur functions sYn+1(z1, . . . , z2n+1) and sY ′
n
(z1, . . . , z2n+1) have no common factor.

From this hypothesis, which is supported by the examination of the first cases but would
require a complete proof, we deduce that v · Ψ is a polynomial multiple of sYn+1sY ′

n
.

Now the degree of sYn+1 is the total number of boxes in Yn+1; hence sYn+1sY ′
n

has degree
n(n + 1) + n2 = n(2n + 1). This coincides with the degree of Ψ as given by that of Ψπ0

in equation (2.13); hence we conclude that v · Ψ is proportional to sYn+1sY ′
n

by a scalar

factor, fixed to be 3−n2
by the recursion relation (2.16).

We therefore identify the polynomials A0 ∝ sY ′
n

and A∞ ∝ sYn+1 , and get the
multiparameter sum rule

∑

π∈LP2n+1

Ψπ(z1, . . . , z2n+1) = 3−n2

sYn+1(z1, . . . , z2n+1)sY ′
n
(z1, . . . , z2n+1). (2.23)

In the homogeneous limit where all the zi tend to 1, the Schur functions sYn+1 and sY ′
n

reduce to the dimensions of the corresponding representations of GL(2n+1), and we note
that dimYn+1 = dimY ′

n
because the two Young diagrams form together a rectangle of size

(2n + 1) × n, (and thus sY ′
n
(1/z) =

∏
j z3n

j sYn+1(z)). This leads to (1.4) via (1.3).
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3. The inhomogeneous O(1) loop model in even size

As discussed in section 1, the inhomogeneous O(1) loop model may also be considered
on a punctured disc of even perimeter 2n: link patterns now have an isolated puncture
in the centre of the disc, and we denote by LP ∗

2n their set, of cardinality
(
2n
n

)
. Applying

the same line of thought as in the previous section, we now define mappings P0 and P∞
from LP ∗

2n to LP2n+1, by simply creating an extra point between the points 1 and 2n,
and connecting it to the puncture via a link passing below or above all the crossed ones.
Comparing the dimensions it is clear that P0 and P∞ cannot be surjective, though they
are presumably injective. Using the same type of arguments as in section 2, we find that
there is an intertwining relation

P0T
∗(t|z1, . . . , z2n) = T (t|z1, . . . , z2n, 0)P0

P∞T ∗(t|z1, . . . , z2n) = T (t|z1, . . . , z2n,∞)P∞
(3.1)

where T ∗ is the inhomogeneous transfer matrix acting on the span of LP ∗
2n. This now

leads to

B0(z1, . . . , z2n)P0Φ
∗(z1, . . . , z2n) = Ψ(z1, . . . , z2n, 0)

B∞(z1, . . . , z2n)P∞Φ∗(z1, . . . , z2n) = Ψ(z1, . . . , z2n,∞)
(3.2)

where once again Ψ(z1, . . . , z2n,∞) denotes the highest degree (=2n) terms in z2n+1 of Ψ
and B0 and B∞ will be determined soon.

As a consequence, we find that the even case sum rule B0v · Ψ(z1, . . . , z2n) must
be equal to the quantities (2.23) taken for z2n+1 = 0, while B∞v · Ψ(z) equals that
for z2n+1 = ∞ (with the above-mentioned division by an appropriate power of z2n+1).
These restrictions on the last spectral parameter have the effect of truncating the Schur
functions. More precisely, when z2n+1 → 0, the factor sYn+1(z1, . . . , z2n+1) tends to
sYn+1(z1, . . . , z2n) = (z1 . . . z2n)sYn(z1, . . . , z2n), where Yn now has two rows of length
n − 1, two rows of length n − 2, etc, two rows of length 1. Meanwhile, the factor
sY ′

n
(z1, . . . , z2n+1) tends to sY ′

n
(z1, . . . , z2n). When z2n+1 → ∞, the leading coefficient

in sYn+1(z1, . . . , z2n+1) truncates to sY ′
n
(z1, . . . , z2n+1) as explained before, while that in

sY ′
n
(z1, . . . , z2n+1) truncates to sYn(z1, . . . , z2n). This is consistent for B0 ∝ z1 . . . z2n and

B∞ a constant. In both limits, we reach the same sum rule:

∑

π∈LP ∗
2n

Φ∗
π(z1, . . . , z2n) = 3−n(n−1)sYn(z1, . . . , z2n) sY ′

n
(z1, . . . , z2n). (3.3)

The proportionality factor is fixed by the even analogue of the recursion relation (2.16),
together with the normalization of the component

Φ∗
π0

(z1, . . . , z2n) =
∏

1≤i<j≤2n

q zi − q−1zj

q − q−1
(3.4)

for the fully nested link pattern π0 connecting points i and 2n + 1 − i, i = 1, 2, . . . , n,
while the puncture sits in the face delimited by the little arch connecting n to n + 1 and
the disc boundary.
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4. The XXZ spin chain and six-vertex model at ∆ = −1/2

We present here results concerning another closely related model: the XXZ spin chain
at the value ∆ = (q + q−1)/2 = −1/2 of the anisotropy. As above we shall need an
inhomogeneous version of the model, which is the inhomogeneous six-vertex model. New
results are found mostly in the case of an odd-size chain, since the even case is already
covered (if a little implicitly) by [8], but we shall need to introduce the model for arbitrary
size anyway.

4.1. Definition of the XXZ spin chain

The XXZ spin chain is given by the Hamiltonian

H̃ = −1
2

L∑

i=1

(σx
i σx

i+1 + σy
i σ

y
i+1 + ∆σz

i σ
z
i+1) (4.1)

acting on (C2)⊗L, each C2 being a single spin space: |+〉 ≡
(

1
0

)
, |−〉 ≡

(
0
1

)
. We first

take ∆ and q generic, ∆ = (q + q−1)/2. We choose here periodic boundary conditions
for L odd: σL+1 ≡ σ1, and twisted periodic boundary conditions for L even: σz

L+1 ≡ σz
1 ,

σ±
L+1 ≡ q±2σ±

1 , where σ± = σx ± iσy. We can also write these as σL+1 ≡ Ω σ1 Ω−1 with

Ω =
(

−q
0

0
−q−1

)
for L even and Ω = 1 for L odd.

We also define the transfer matrix of the inhomogeneous six-vertex model (see also
appendix B of [8] where the case L even is treated). For spectral parameters z1, . . . , zL,
it is given by

T̃ ≡ T̃ (t|z1, . . . , zL) := tr0 (RL,0(zL, t) · · ·R1,0(z1, t)Ω) (4.2)

where the R matrices act on the tensor product of the physical space (C2)⊗L, each factor
being labelled by i = 1, . . . , L, and of another C2, labelled by 0. The expression of R
acting in C2 ⊗ C2 reads (in the so-called homogeneous gradation)

R(z, t) =
1

q t − q−1z






q z − q−1t 0 0 0
0 z − t (q − q−1)t 0
0 (q − q−1)z z − t 0
0 0 0 q z − q−1t




 . (4.3)

The twist Ω acts on the auxiliary space, which is consistent with the chosen boundary
conditions for the spin chain since Ω−1R1,0Ω = R(σ1, Ω

−1σ0Ω) = R(Ωσ1Ω
−1, σ0) = RL+1,0,

where the second equality follows from U(1) invariance of the R-matrix.
When all z s are equal, T̃ commutes with the Hamiltonian H̃ . In particular their

ground states are identical.

4.2. Equivalence with the O(1) loop model

For any q there is a mapping from the O(1) loop model to the XXZ/six-vertex model.
See also [16] for a similar construction. Call ω1/2 a square root of ω := −q. To a link
pattern π in LPL associate the tensor product over the set of arches of π, of the vectors
ω1/2 |+〉j ⊗ |−〉k + ω−1/2 |−〉j ⊗ |+〉k, where the indices j, k are the endpoints of the arch

(and indicate the labels of the two spaces C2 in which these vectors live) ordered in the
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following way: j < k for L even, while for L odd, j < k < � or � < j < k or k < � < j,
� being the label of the unmatched point. In the case L odd we also choose the spin of
the unmatched point to be |+〉�. The result is a vector in (C2)⊗L which satisfies that its
total z spin sz = 0 or sz = 1/2 depending on parity. For generic q this mapping, which we
call S, is injective. In the case L odd its image is in fact the whole sz = 1/2 subspace, of
dimension

(
L

(L−1)/2

)
. In the case L even it is a subspace (Uq(sl(2)) singlets) of dimension

L!/(L/2)!(L/2 + 1)!. Furthermore, it is easy to show that the transfer matrices of the
O(1) loop model and of the six-vertex model are intertwined by S:

T̃ (t|z1, . . . , zL) S = S T (t|z1, . . . , zL). (4.4)

This is essentially a consequence of the fact that the R-matrix (4.3) involves just another
representation of the Temperley–Lieb algebra; explicitly, if Ř = RP, where P switches
factors of tensor products, then the formula (2.6) holds with the Temperley–Lieb generator

e =






0 0 0 0
0 ω 1 0
0 1 ω−1 0
0 0 0 0




 .

The twist, necessary for L even to take care of the arbitrariness in the ordering j < k of
the indices, disappears for L odd thanks to the unmatched point. Henceforth, the loop
model is equivalent to a sector of the six-vertex model.

At q = −eiπ/3, however, the mapping S is no longer injective for L odd. In fact,
one can show that the kernel of S is exactly the same as the kernel of the projector P0 of
section 2.3, so that the dimension of the image is nothing else than (2n+2)!/(n+1)!(n+2)!,
the dimension of the space of link patterns of size 2n+2. So at this special point, the odd
six-vertex model is equivalent to the even loop model of size one more.

4.3. Mapping of odd size to even size

In analogy with the loop model, we now define a mapping of the six-vertex model from
L = 2n + 1 to L = 2n + 2. It is very simple: to a basis element α, that is a sequence of
2n + 1 spins, we associate the new vector α− obtained by concatenating α and an extra
minus spin. Call Q this mapping. We also need the projections P± within the model of
size 2n + 2 which project onto the subspaces where the last spin is ±, orthogonally to the
subspace where it is ∓, so that P+ + P− = 1, P+P− = P−P+ = 0.

We now have the two following properties of the P± and Q operators:

(i) The subspace Im(P+) is stable under T̃ (z1, . . . , z2n+1,∞):

P+T̃ (t|z1, . . . , z2n+1, 0) = T̃ (t|z1, . . . , z2n+1, 0)P+. (4.5)

Indeed, if the last spectral parameter is zero, the corresponding matrix R2n+2,0

becomes

R(0, t) = −q−1






q−1 0 0 0
0 1 q−1 − q 0
0 0 1 0
0 0 0 q−1




 (4.6)

which means that if the spin 2n + 2 is + it will stay so.
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(ii) At q3 = 1, Q intertwines the odd and even spin-chain transfer matrices, up to the
projector P−:

QT̃ (t|z1, . . . , z2n+1) = P−T̃ (t|z1, . . . , z2n+1, 0)Q. (4.7)

This time we assume that the last spin is −. According to equation (4.6), it might
become + after action of T̃ ; so we project again with P−. Now the action of
R2n+2,0(0, t) becomes simply the twist of the auxiliary space with its lower right

submatrix, that is the diagonal matrix
(

−q−1

0
0

−q−2

)
: at q3 = 1 this compensates

exactly the twist Ω =
(

−q
0

0
−q−1

)
and we find that the right-hand side of equation (4.7)

is simply the transfer matrix of odd size with periodic boundary conditions and an
additional spin at site 2n + 2 which is −.

4.4. Polynomial eigenvector

From now on we always set q = −eiπ/3, ω1/2 = eiπ/6. It is easy to check that T̃ , just like
T , possesses the eigenvalue 1; we denote by Ψ̃ (resp. Φ̃) the corresponding polynomial
eigenvector for L odd (resp. even), normalized so that its entries are coprime. This leaves
an arbitrary constant in the normalization which will be fixed below.

The various maps defined above allow us to write several relations between the various
eigenvectors. First and foremost, using properties (i) and (ii) of section 4.3 we find that

QΨ̃(z1, . . . , z2n+1) = CP−Φ̃(z1, . . . , z2n+1, 0) (4.8)

or in components, Ψ̃α(z1, . . . , z2n+1) = CΦ̃α−(z1, . . . , z2n+1, 0), with C a normalization
constant. Let us prove this. In this paragraph parameters are omitted with the assumption
that z2n+2 = 0. On the one hand, one can apply Ψ̃ to equation (4.7). We find
QΨ̃ = P−T̃QΨ̃. On the other hand, decompose Φ̃ = P+Φ̃ + P−Φ̃ and apply P−T̃ : using
equation (4.5) we find P−T̃ P−Φ̃ = P−Φ̃. Comparing, we find that QΨ̃ and P−Φ̃ must be
proportional. The proportionality factor must be a constant because components on both
sides of the equation are coprime polynomials. Its numerical value will be determined
below.

We also have the connection with loop models. For L even this was already discussed
in appendix B of [8] and we find simply

SΦ = Φ̃ (4.9)

(up to a constant, which we fix to be 1). However, for L odd, we only have

SΨ = B(z1, . . . , z2n+1)Ψ̃ (4.10)

where B is a polynomial to be determined in next section. B appears because S is not
injective (at q3 = 1), so that the components of SΨ can have a non-trivial GCD. (Such a
situation does not arise for L even since S is then injective.)
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4.5. Sum rule

We now wish to compute the sum of entries of Ψ̃. In order to do so we can rely on the
mapping to the even-size system:

∑

α

Ψ̃α(z1, . . . , z2n+1) = C
∑

α

Φ̃α−(z1, . . . , z2n+1, 0) (4.11)

and then use the mapping S to the loop model. The normalization constant C will
be adjusted at the end of the computation. Via S, each link pattern of size 2n + 2
contributes ω1/2(ω1/2 + ω−1/2)n to the right-hand side of equation (4.11), so

∑
α Φ̃α− =

ω1/2(ω1/2 +ω−1/2)n
∑

π Φπ = ω1/23n/23−n(n+1)/2sYn+1(z1, . . . , z2n+2) according to (1.13). So
we have

∑

α

Ψ̃α(z1, . . . , z2n+1) = 3−n2/2ω1/2CsYn+1(z1, . . . , z2n+1). (4.12)

To adjust the constant C in (4.11), we finally impose that the ‘base component’ of Ψ̃,
i.e. its smallest component in the homogeneous limit, be 1. By (4.8), it is given by that
of Φ̃, itself proportional to that of Φ,

Ψ̃+···+−···− = ω(n+1)/2C
∏

1≤i<j≤n+1
or n+2≤i<j≤2n+1

q zi − q−1zj

q − q−1

2n+1∏

i=n+2

q zi

q − q−1
, (4.13)

so at zi = 1, C−1 = (−i
√

3)−nω(n+1)/2qn = 3−n/2ω1/2 and the homogeneous sum rule is
∑

α

Ψ̃α = 3−n(n−1)/2sYn+1(1
2n+1) = 3n/2Nn. (4.14)

As a side-product, by using S directly on an odd-size system, we can also compute
the proportionality polynomial factor B:

B
∑

α

Ψ̃α = (ω1/2 + ω−1/2)n
∑

π

Ψπ = 3n/23−n2

sYn+1sY ′
n

(4.15)

so that B = 3−n(n−1)/2ω−1/2C−1sY ′
n

= 3−n2/2sY ′
n
(z).

4.6. Bilinear form and sum of squares

These sum rules possess obvious corollaries dealing with the sum of squares of components.
Indeed, for generic q there is a bilinear form which to a pair of link patterns π and π′

of LP2n+2 associates 〈π|π′〉 = (−q − 1/q)# where # is the number of loops obtained by
pasting together the two diagrams along their common boundary. Via S, this bilinear
form becomes simply diagonal in the spin basis:

〈π|π′〉 =
∑

α

(Sπ)α(Sπ′)α. (4.16)

We now specialize to q = −eiπ/3. Since −q − 1/q = 1, we have the identity
v · Φ = 〈Φ|π0〉, where π0 is here any fixed link pattern. More generally, the bilinear
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form is degenerate of rank 1 so that we can write (in size L = 2n + 2)
∑

α

Φ̃2
α = 〈Φ|Φ〉 = 〈Φ|π0〉 〈π0|Φ〉 = (v · Φ)2 = 3−n(n+1)s2

Yn+1
(4.17)

and in particular in the homogeneous limit,
∑

α Φ̃2
α = A2

n+1, which is (1.12b).
As noticed in [22], the even-size twisted XXZ Hamiltonian is invariant under

simultaneous complex conjugation and spin reversal, and the ground state Φ̃ is chosen

to be invariant under this operation. Thus Φ̃α+ = Φ̃α−, and (4.17) may be rewritten as

〈Φ|Φ〉 = (v · Φ)2 = 3−n(n+1)s2
Yn+1

=
∑

α

Φ̃2
α =

∑

α′

(Φ̃2
α′− + Φ̃2

α′+) = 2�
(∑

α′

Φ̃2
α′−

)

.

Using equation (4.8), we can then derive the sum rule for the squares of the Ψ̃, in odd
size. By taking the real part of C−2

∑
α′ Ψ̃2

α′(z) =
∑

α′ Φ̃2
α′−(z, 0), (the Ψ̃ are real), and

using the value of C determined above, we get

∑

α′

Ψ̃2
α′ =

�
∑

α′ Φ̃2
α′−

�C−2
= 3−n2

s2
Yn+1

(z1, . . . , z2n+1, 0). (4.18)

In the homogeneous limit, we get
∑

α′

Ψ̃2
α′ = N 2

n = AHT(2n + 1) (4.19)

as announced in (1.11).
In contrast, the alleged sum rule (1.12c) seems to be of a different nature, since its

deformation by spectral parameters does not involve symmetric functions of z1, . . . , z2n.

5. Conclusion

In this paper, we have proved multiparameter sum rules for the components of the ground
state vector of the inhomogeneous O(1) loop model on a punctured disc of odd or even
perimeter, or of its XXZ chain counterpart. Our strategy has relied on the construction
of projection operators onto components of the ground state vector of the same model,
but on a non-punctured disc of perimeter one more, in which the extra inhomogeneity
(spectral parameter) is taken to either zero or infinity. The new ingredient here is the
use of knot-theoretic crossing operators to relate the non-crossing link patterns of both
models. Admittedly, our proof in the odd case still relies on a technical assumption that
we have been unable to prove in general, namely the fact that the two Schur functions
sYn+1 and sY ′

n
of section 2.5 have no common factor. It would be highly desirable to fill

this gap.
In the derivations of sections 2 and 3 we made an assumption of minimal degree,

namely that the base component of Ψ or Φ is given by (2.13), (3.4). The justification
of this assumption could be done as in [8], through the use of the Bethe Ansatz, or by
appealing to the representation theory of the qKZ equation.

As already mentioned in section 1, our formulae for the sums of components of the
O(1) loop model lead to the same expressions as those derived by Razumov and Stroganov
for the partition functions of the square-ice model with adequate boundary conditions.
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The latter are designed so as to make a bijection between the states of the lattice model
and half turn symmetric ASMs of size L×L. In [20], the partition function of the six-vertex
model on a L× 1

2
(L + 1)� grid with such ‘half-turn symmetric’ boundary conditions [19]

was computed as a function of spectral parameters xi and yj, i, j = 1, . . . , (L + 1)/2�. It
is a symmetric function of the x s and the y s, thanks to the Yang–Baxter equation, and it
was shown to be a product of two factors. For the special value of the crossing parameter
corresponding to our q = −eiπ/3 (their a = −q), and in the odd-size case (L = 2n + 1),
upon specialization of the last spectral parameter yn+1 = xn+1, it becomes a completely
symmetric function of all its spectral parameters and it reads (in our notations)

ZHT(x1, . . . , xn, y1, . . . , yn)

= (−3)n

n∏

i=1

(xiyi)
1−2nsYn(x2

1, . . . , y
2
n)sY ′

n
(x2

1, . . . , y
2
n) L = 2n

ZHT(x1, . . . , xn+1, y1, . . . , yn, yn+1 = xn+1)

= 3n
n+1∏

i=1

x−2n
i

n∏

i=1

y−2n
i sYn+1(x

2
1, . . . , x

2
n+1, y

2
1, . . . , y

2
n)sY ′

n
(x2

1, · · · , y2
n)

L = 2n + 1

(5.1)

that is, up to a trivial factor ((−3)n2 ∏
(xjyj)

1−2n, resp. 3n(n+1)
∏

x−2n
j

∏
y−2n

j ), the
same expression as

∑
π Φ∗, resp.

∑
π Ψ. Recall that the partition function, upon some

specialization of its spectral parameters, yields the ‘refined x-enumerations’ of HTSASMs.
The agreement between ZHT(z) and the sum of the components is a further indication
of the detailed connection between the two sets of problems: the determination of the
Perron–Frobenius eigenvectors of the O(1) loop models and the counting of HTSASMs.
More precisely it gives support to the strong RS conjecture that Ψπ or Φ∗

π count the
number of HTSFPL configurations of link pattern π (see section 1).

At this stage, our results do not, however, provide any direct way to verify the
conjectures about the largest components of the Perron–Frobenius eigenvectors (see
section 1), nor to even confirm the empirical observation that in all cases (but the twisted
Φ̃) all components are positive integers once the smallest one is normalized to 1.

Another interesting question is what survives of these constructions for generic values
of q (not at the RS point). One expects in particular from previous experience [10, 23] that
the point q = −1 should have some geometrical interpretation, involving (multi-)degrees
of some matrix schemes, and we indeed checked for odd sizes that all components of Ψ
become (possibly vanishing) non-negative integers in the homogeneous limit zi → 1. It is
not too difficult to convince oneself that the correct definition of the projection operators
P0 and P∞ of section 2 requires switching to different conventions for the crossing operators
Ti ≡ Ři,i+1(z, 0). Via these projections, we may relate the vector Ψ at generic q to solutions
of a modified qKZ equation for size one more, but with the extra spectral parameter sent
to zero or infinity. In the case of size 2n + 1, we have found that P0 creates a solution of
this modified qKZ equation in size 2n + 2 with z2n+2 → 0, whose base component Θπ0,
corresponding to the fully nested link pattern π0 relating i to 2n+3− i, i = 1, 2, . . . , n+1,
simply reads

Θπ0(z1, . . . , z2n+1) = Φπ0(z1, . . . , z2n+1, 0) G(z1, . . . , z2n+1,∞) (5.2)
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where Φπ0 stands as before for the (completely factorized) base component of the loop
model on an unpunctured disc of size 2n + 2, while G stands for the so-called Gaudin
determinant

G(z1, . . . , z2n+2) =

∏
1≤i,j≤n+1(qzi − q−1zn+j+1)(q

1/2zi − q−1/2zn+j+1)
∏

1≤i<j≤n+1(zi − zj)(zn+i+1 − zn+j+1)

× det
1≤i,j≤n+1

(
1

qzi − q−1zn+j+1

1

q1/2zi − q−1/2zn+j+1

)

(5.3)

and the symbol ∞ in place of z2n+2 stands as usual for the suitably normalized large
z2n+2 → ∞ limit. Note that P∞ does just the opposite, namely interchanges 0 and ∞ in
equation (5.2). This is remarkably reminiscent of the higher degree solution to the qKZ
equation found by Pasquier [9] on the even-size unpunctured discs, for which the cyclicity
condition analogous to that of the second line of equation (2.14) has the same shift s = q3

(as opposed to s = q6 for the minimal degree solution).
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