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Abstract. We reconsider the c o n j a m  by Gepner that the fusion ring of a rational conformal 
field theory is isomorphic to a ring of polynomials in n variables quatiented by am ideal of 
constraints that derive from a potential We show that. in a variety of cases, this is indeed true 
with one-vllri&Le polynomials. 

1. Introduction 

The fusion properties constitute an essential piece of information on a rational conformal 
field theory (RCm). A few years ago, Verlinde [l] was able to express the fusion rules in 
terms of the unitary matrix S that encodes the modular transformations of the characters of 
the RCFT 

where ‘1’ refers to the identity operator, and the labels i, ... . 1  run over n values 
corresponding to the primary fields of the (extended) chiral algebra of the R c F r  [2]. The 
fusion coefficients N& are the strclchue constants of a commutative and associative algebra 

A ; A ~  = N ~ ; A ~ .  
k 

(1.2) 

The matrices Ni defined by 

themselves form a representation of the fusion algebra 

as follows from the unitarity of the matrix S; this expresses the associativity property of 
the algebra (1.2). Relation (1.1) implies that the matrix S diagonalizes the matrices N;: and 
that their eigenvalues are of the form 

y y  = S{f/&I. (1.5) 
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The general study of these fusion algebras [3] and their classification have been the 
object of much work [4]. In particular, the possibility that they may be represented by 
sets of polynomials has been considered [4]. In fact, a fusion algebra is a very special 
associative and comrnutative algebra as it possesses a selected basis corresponding to the 
primary fields of the theory in which the structure constants are non-negative integers. For 
these reasons, one is unwilling to trade this basis for another (except in those cases where 
there is symmetry between several primary fields). In addition one wants to stress the 
addition and intemal multiplication of fields rather than their multiplication by scalars, i.e. 
the shucture of ring rather than that of algebra. 

Recently, Gepner [5] conjectured that in any RCFT, the fusion ring is isomorphic to a 
ring of polynomials in p variables quotiented by an ideal of constraints that derive from a 
potential. He was able to prove this for theories with an SU(N) current algebra, for which 
it is natural to take the p = N - 1 variables associated with the fundamental representations. 
This has since been extended to several other cases [6-9]. 

Particularly interesting are faithful representations which have a trivial kemel, that is in 
which no linear combination of the generators is represented by the zero polynomial. In the 
present paper we discuss the possibility that the fusion ring may be faithfully represented 
by a polynomial ring in a single variable that corresponds to one of the primary fields of 
the theory and is subject to a polynomial constraint that may be integrated to a potential. 
We shall first give a simple necessary and sufficient condition for this to happen, namely 
that the eigenvalues of one of the fusion matrices be non-degenerate. Curiously, cases such 
as the models with an SU(3) current algebra that are known to have a fusion ring described 
by polynomials in IWO variables, turn out to satisfy this condition and may thus be also 
described by polynomials in a single variable. Even when the previous condition is not 
fulfilled, in many cases, there is a way out that still enables us to use a single variable, at 
the expense of defining more carefully what is meant by linear combination in the above 
definition of a faithful representation. This will be illustrated on the minimal ( N  = 0) 
models, and on the D series of SU(2) models (& orbifolds). 

2. A necessary and sufficient condition for a one-variable polynomial ring 

There exists a class of RCFTs in which the existence of a representation of the fusion algebra 
by polynomials in a single variable may be ascertained. Assume that among the matrices 
Ni,  i = 1 , .  . . , n, there exists at least one, call it N f ,  with only non-degenerate eigenvalues. 
In other words, the numbers y,!) are all distinct. Any other NI may be diagonalized in the 
same basis as N f  and there exists a unique polynomial Pi(x)  of degree at most n - 1 such 
that its eigenvalues y,’” read 

fi  being given by the Lagrange interpolation formula. Therefore, any Ni may be written as 

N I  = Pi (N/ )  

with a polynomial Pi; as both Ni and N /  have integral entries, P h )  must have rational 
coefficients. 

The n x n matrix N f ,  on the other hand, satisfies its characteristic equation P(x)  = 0, 
that is also its minimal equation, as N f  has no degenerate eigenvalues. The constraint on 
N/ is thus 

P(N/)  = 0 (2.3) 
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that may be integrated to yield a 'potential' V ( x ) ,  

V' (x)  = P ( x )  (2.4) 

that is a polynomial of degree n + I. 
This situation is far from exceptional. We illustrate it with a few examples. 
(i) king model. Take for f the spin U field. The fields 1, U and E obey fusion rules 

u . u = l t €  u . E = u  E . E = 1  (2.5) 

that may be represented by the polynomials in the variable o 

(2.6) € = U  Z - 1  1 U 

subject to the constraint 

U3 = 2u (2.7) 

V ( a )  = p -2 
that is derived from the potential 

1 4  

(ii) SU(2)k. This case is well known. (We are considering here the 'diagonal' case, 
labelled by the A ~ + I  Dynkin diagram.) At level k ,  there are k + 1 representations labelled 
by the integer n = 2 j ,  0 6 n < k and the fusion rules are represented by the multiplication 
of Chebishev polynomials ,f the second kind, Pn(x): 

sin@ + I)0 
sin 0 

P , J ~ C O S ~ )  = O < n < k  

with the constraint that 

Pk+l ( x )  = 0. (2.10) 

(iii) SU(3)k. We take for f one of the two fundamental representations. The eigenvalues 
are known to be of the form 

y,?' = exp icy!+ exp icyz + exp - i (q  + 012) (2.11) 

where the angles cy1 and 012 read 

(2.12) 

It is a tedious but straightforward exercise of trigonometry to check that two numbers of the 
form (2.1 1) cannot be degenerate (see appendix A for the detailed proof). (In contrast, for 
SU(4)z. it is easy to see that zero is doubly degenerate if we again choose the fundamental 
representation for f.) We thus conclude that the fusion ring of SU(3) current algebras 
may be represented by one-variable polynomials. As it is also naturally represented by 
two-variable polynomials [ 5 ]  (the two variables being associated with the two fundamental 
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representations), we have here a first instance of the non-uniqueness of this description of 
fusion rings by polynomial rings. For the sake of definiteness, we give the expressions for 
the various fieldst of SU(3)2 labelled by their indices hl ,  hz > 1, hl + hz 6 4 

P Di Francesco and J-B Zuber 

Q(I.1) = 1 o(2.1) = x  o(3,I)  = i(5x2 - x 5 )  

O(1.2) = k(x5 - 3x2) O(2.2) = k(x3 - 1) (2.13) 

Q(1.3) = k(x4 - 3 x )  

with the constraint 

(2.14) 

arising from the potential V = )x’ - x4 - x .  Note that the %3 charge (the ‘triality’) of each 
field may be read off the degrees modulo 3 in the monomials of its expression in terms of 

Although the number of variables and the form of the potential differ from that given by 
Gepner, the ultimate content of the constraint, namely the absence of certain representations 
in the Kac-Moody algebra, is the same and the constraint and the polynomial representation 
of the fields match after elimination of one variable in Gepner’s formulation. Keeping the 
case of SU(3)2 for illustration, we recall that the two-variable potential of Gepner reads 

6 3  x -4x - 1 = o  

X .  

V ( x , y ) = j * 5 - x 3 y + x ~ + x y 2 - y  (2.15) 

from which follow the constraints 

x4 - 3 2 y  +2x + y* = o  
x 3 - 2 x y + 1 = 0  

(2.16a) 

(2.16b) 

that express the absence of representations corresponding to Young tableaux with more than 
two columns. The fields are represented as 

2 
Q(l,l) = 1 

Q(1.2) = Y Q(2.2) = xY - 1 (2.17) 

Q(2,l) = x Q(3.l) = x - Y 

2 
@(1,3)’Y -xx. 

Eliminating y between the two equations (2.16) we find the equation (2.14) in x .  The latter 
may be written as x ( x 5  - 4xz) = 1, implying that x may be inverted on the ring. This 
makes it possible to solve in y using (2.16b) and one recovers all the expressions (2.13). 

Conversely let us suppose that one of the Ns. call it N f .  generates the n matrices 
Ni = f i ( N f )  as linearly independent polynomials on @. If N f  had some degenerate 
eigenvalue, then its minimal polynomial M would be of degree at most n - 1, which 
means that one could construct at most n - 1 linearly independent polynomials of N f ,  
in contradiction with the above. Therefore the condition that some N has nondegenerate 

t We shall henceforth make a slight abuse of notation and denote in the same way the fields a, regxdded as 
generators of the fusion algebra, and their representatives. 
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eigenvalues is necessary and sufficient to ensure that the fusion ring is faithfully represented 
by one variable polynomial. 

One could object that even if all N s  have degenerate eigenvalues, one could still take 
some linear combinations thereof having all eigenvalues distinct. This possibility will be 
discarded in the present study in which we insist that the variable of the polynomials 
corresponds to one of the primary fields of the theory; in other words, the polynomial 
PI ( x )  = x is a representative of one of the fields. 

We have stressed in the introduction the importance of the selected basis of the fusion 
ring. This explains why situations described by potentials of the same degree, for instance 
SU(3)2 of equation (2.13), with potential (2.14) V ( x )  = i x ’  - x“ - x ,  and SU(2)5 with 
potential (2.10) W ( x )  = $x7-x5+2x3  - x ,  and thus ‘local rings’ of the same dimension are 
regarded as inequivalent. In fact, the potential is not a sufficient information to reconstruct 
the fusion ring with its special basis and its integral structure constants. 

Let us now examine what happens when the necessary and sufficient condition is 
not satisfied. As already mentioned, one cannot then represent all fields by one-variable 
polynomials linearly independent over C. It turns out that in many cases, one may represent 
them by polynomials with coefficients in Q, some extension of Q by some algebraic 
number(s), the polynomials being linearly independent over Q, This seem sensible since 
the operations in the fusion ring imply only integral combinations of the fields. We shall 
now present two families of RCFrs for which this happens: the minimal models and the 
non-diagonal ‘ D  SU(2) models. 

3. Minimal models 

In the generic ( p ,  q )  minimal model (that is with a central charge c = 1 - 6 ( p  - q ) z / p q ) ,  the 
condition of the previous section is not satisfied and the fusion matrices Ni have degenerate 
eigenvalues. We shall now ace that fusion rules can nevertheless be faithfully represented 
by one-variable polynomials with coefficients in some algebraic extension,,of Q. 

Let us consider the most general minimal theory (2p + 1, q )  (one of the integers has 
to be odd as they are coprimes). Its primary fields are labelled by integer Kac 
indices 1 < r < 2p, 1 < s < q - 1, and satisfy the reflection symmetry property: 
@ ( Z ~ + I - , , ~ - ~ )  = @(r,.v), leaving only p ( q  - 1) independent primaries. One can generate the 
fusion of these fields in a very simple way: 

(i) impose, respectively, the SU(2)2p-~ and SU(2),-2 fusion rules on the fields @(r,l), 

1 < r < 2p, and 
(ii) deduce the fusions of the fields Cyr,$) = by imposing the reflection 

symmetry property. 
From this procedure it is clear that all the fields in the Kac table can be realized as 
polynomials of the two basic fields A Q(2.1) provided the above reflection 
symmetry is satisfied. More precisely, if we use the Chebishev polynomials P, of the 
second kind defined in (2.9) 

1 < s < q - I; 
x 

Q(1.2) and B 

P,,(2cosx) = sin@ + l)x/sinx 

then. we have 

@(I..?) = Ps-l(A) 
Q(r.1) = P,-I(B) (3.1) 

@ ( r , ~ )  = P~-I(A)P~-I(B) 
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and the minimal equations for A and B read 

P,- l (A)  = P z p ( B )  = 0.  

ps-1 ( A )  Pr-r(B) = Pq-~-s(A)&p-r(B) .  

(3.2) 

To get the correct fusion rules, we have to impose the re0ection symmetry property 

(3.3) 

In particular, for s = q - 1 and r = 1, we must have 

Pq-z(A) Pzp-i(B). (3.4) 

It is possible to prove that (3.2), (3.4) are sufficient to ensure the reflection symmetry (3.3). 
At this stage, we have obtained a perfectly satisfactory representation of the fusion ring by 
polynomials in two variables subject to the constraints (3.2)-(3.4). 

In a search for representations by one-variable polynomials, we look for a solution of 
(3.4) in the form 

E LYP,-Z(A) (3.5) 

where 01 is a constant to be determined. Thanks to the sU(2),-~ fusion rules, we have 
P,-z(A)' = Po(A) = 1, therefore our ansatz for E satisfies B z  = a2Po(A) = aZ, 
The Chebishev polynomials of even (respectively odd) order are even (respectively odd), 
therefore the minimal equation for E implies P&) = 0. Multiplying both sides of (3.4) 
by B ,  and using the SU(Z),-z and SU(2)zP-~ fusion rules, we get 

B f z p - I ( E )  = f z p - z ( B )  = Pzp-~(a )  ~ i P q - z ( A ) ~  =CY (3.6) 

so that P+z(cY) = Pl(a). Recursively, we get P z ~ - I - ~ ( c I )  = !',(or), m = 0,1, ..., p ,  
which can all be obtained from the single equation 

(3.7) 

Pick any solution of (3.7), then the reflection symmetry property is ensured. Namely for r 
odd 

( P p  - P p - l ) ( f f )  = 0.  

P~p-i-r(B) = P~p-l-r(~) = Pr(a) 

ff = 2cos (-) X 

2 p +  1 
(3.10) 
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The Kac table can be described in the following way: the first column @(I,$) consists 
of (1. P,(A), Pz(A), . . . , P,-z(A)) where all fields are independent; the second column of 
a(P,-z(A). Pq-3(A) ,..., l),  the third one of Pz(cr)(l, Pt(A) ,..., Pp-2(A)), etc. Hence 
the linear independence over Q of (1, PI (CY), Pz(cY). . . . , PP-, (CY)) automatically implies the 
linear independence of all the fields in the first p columns of the Kac table, i.e. of all the 
primaries in the theory. 

We have thus completed the proof that the fusion rules of the minimal models may be 
represented faithfully on a ring of polynomials in the variable A. We may illustrate it with 
the case of the (4,5) minimal model (the hicritical king model). There are six fields that 
may be represented according to the previous method (Beware! here the roles of r and s 
have to be interchanged in the previous formulae) 

(3.11) 

where CY is a primitive root of PZ(CY) - PI@) = aZ - CY - 1 = 0, i.e. CY = 2coslrr/5,1= 1 
or 3 and A satisfies the constraint 

(3.12) 

In fact there is another representation of the (4,5) fusion ring where the variable 

3 4(A) = A - 2A = 0. 

corresponds to the (1,2) field 

2 a0.1) = P3(B) = B ( B Z  - 2) Q(3.2) = % ( E )  = B - 1 

subject to the constraint 

P4(B) = B4 - 38' + 1 = 0. (3.14) 

The choice of the determination of the square root of 2 is arbitrary and its change reflects 
the fact that the fusiod algebra admits a & automorphism under which s = 1 ,  2 are 
odd. 

This solution is not unique: there is another way of representing this fusion algebra by 
polynomials of B ,  with the same expression for the ZZ even fields, but 

1 1 
@(z,1)=-(B-3)(B2+B-1) ~(2,2)=-(1-2B)(B2+B-1) .  (3.13') m 4% 

As further evidence of this non-uniqueness, we shall now establish that one may also 
represent the fusion ring by polynomials in a variable corresponding to the q5 = O(2.2) field, 
the 'order parameter'. When the two integers labelling the minimal model are odd, this 
follows from the analysis carried out in section 2, see the end of the footnote on p 1448. So 
let us concentrate on the case where the integer g is even, in particular the unitary models 
where 2p+  1 and g have to be consecutive integers. Then, it is well known (section 8.5 of 



1448 

[IO]) that the fusion algebra admits a automorphism (this is what we have just used in the 
hicritical king model) under which the fields @@,$I, s even, are odd. These N = p ( 4 q  - 1 )  
fields thus form a subset of the fusion ring. Call @ = @(2,2) and consider all its odd powers 
@"-', 1 6 n 6 N ,  they are & odd, thus linear combinations of the N fields a(,,$), s even. 
This linear system may be invertedt to yield polynomial expressions (in Q[@]) of all these 
@. In particular @(1,2) = P ( @ ) .  but we have seen above that all the fields may be expressed 
polynomially in terms of A = @(I,*). 

For example, in the (3,4) (king) model, the constraint on 4 is of degree 3, integrating 
to a quartic potential, for the (4,5) (hicritical king), the @-potential is sextic. Up to this 
point, these degrees seem to agree with those expected for the Landauairisburg potentials 
by the argument of Zamolodchikov [Ill. Unfortunately, this breaks down for the higher 
minimal models. In general for the (m,  m + 1) unitary minimal model we expect a degree 
2 N  + 2 = [(m2 + 1)/2] - m + 2 whereas Zamolodchikov's potential is of degree 2m - 2. 

in 
(3.13). (3.13') belong to the field U obtained by adjoining to Q all the eigenvalues y,'"' of 
all the N s .  This is not an accident, and we shall now prove this fact in general. Suppose 
we have found a representation of the fusion algebra of an RCFT on a ring of polynomials 
P i ( X )  quotiented by the constraint V ' ( X )  = 0. As before, we assume that one of the Ps, 
call it P,, is simply P f ( X )  = X ,  and that the constraint is the minimal polynomial of degree 
p satisfied by N f :  in other words, the roots of V' are all distinct, x t ' .  Now the Pi($) 
form a one-dimensional representation of the fusion algebra, thus are nothiig other than 

system in the coefficients of the polynomial Pi 
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Note that all the irrational coefficients that have appeared, LY in (3.10), or fi  or 

the eigenvalues yi (0 . In particular x t )  = yj' . If we regard this set of equations as a linear 

this system may be inverted, since its determinant is the Vandennonde determinant of the 
distinct roots x i ) ,  and gives for the coefficients Pi' values in the field U generated by the 
U) Yi ' 

It would seem possible to reduce further the one-variable polynomial representation 
by substituting for the variable X one of the roots .#) of V ' ( X ) .  This would lead to one- 
dimensional representations of the fusion ring. If the polynomial V' of degree p is reducible 
on Q, however, the choice of a root x i )  amounts to setting to zero a factor of V' of degree 
less than p ,  resulting in an unfaithful representation. In all the cases relative to minimal 
models considered above, the constraint is indeed a reducible polynomial on Q: P a + , ( X )  
factors out X whereas 

P d X )  = ( - l ) k ( P k ( x )  - ~ k - l ( X ) W k ( - X )  - Pk- l ( -X) ) .  

T That this linear system may be inverted can be seen by proving ulat among the eigenvalues of @ = ~ P n . 2 ) ~  
of the form y('.') = 4corrrr/(Zp + l)coslrs/q, only zem is degenerate (p times), it follows that the minimal 
polynomial in @ is of degree p(q - I )  - ( p  - 1) = 2N t I. whereas the linear dependence of @, , . , , Q2N-' 
would lead to a smaller degree. Degeneracies other lhm zero cannot occur for number theoretic reasons: if 
y(',ll = y(r ' ,s') ,  the ratio cos(lrr/Op + I))/ms (nr'J(2p + I ) )  has to be a rational. which can occur only in the 
trivial cases I =I' or I' = 2 p +  I - r .  We relegate the proof of these assertions to appendix B. The same argument 
shows that for nonmituy (p,q) minimal models with bolh p and q odd, or for the (3.q) models, On.2) has 
non-degenente eigenvalues and is thus a generator of the fusion algebra 
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4. The SU(2) models of D-type 

For even level k = 2n, the SU(2)t fusion admits a & automorphism with the fields of 
half-integer spin (2j  odd) odd; the orbifold with respect to this symmetry gives rise to the 
so-called Dn+2 models [12,13]. For k = Omod4, i.e. n = 2u, these models have block- 
diagonal genus-one partition functions, with the v + 2 representations of their extended 
algebra labelled by an integer 1 between 0 and v (U twice degenerate). Their fusion algebra 
is known to be described by the rules 

00 ’ 01 = 01 

01 .e, = 0i-]+ 01 + 
(4.la) 

(4.lb) 

(4.14 

1 < l <  v - 2 

01 ‘ @”-I = 0 ” - 2  + 0”4 + 0$+) + 0:-) 
01 . 0L*) = 0”- l  + 0y  ( 4 . 1 ~  

0$+’ . 0L-) = 0”-, + 0“-3 + . . ’ (4.k) 

with the other fusion rules deduced from those by the associativity property. In particular, 
it follows from (4 . Ib ,4  that 

opt+’ + = (0, - 00) . @ “ - I  - 0”-2 ( 4 . W  

( 0 1  - 00).(0$+’ + @:-)) = 2 0 , 4 .  (4.2b) 

From the orbifold picture, one expects this case to be related to the Ah+l discussed in 
section 2, and the even Chebishev polynomials to be the appropriate objects. We set 

PI@) = P z ( y )  where x = y2 - 1 (4.3) 

in such a way that 

Po = 1 PI(X) = x .  (4.4) 

They satisfy the rules (cf the tensor multiplication by spin 1 in SU(2)) 

PIP1 = PI-I + Pr + PI+]. (4.5) 

To complete the identification with (4.1), we have to define two polynomials PL*) satisfying 

Pi+] + Pi-) = P” 
P;’) .Pi-) = P,-I + Pv-3 + , , I E Q, 

and to impose on x the constraint that follows from (4.2) 

R, = (x - 1)P” - ZP,-, 

= P”+l -?“-I = 0. 

(4.ld‘) 

(4.le‘) 

(4.6) 

We have just seen that Pj*) have to be solutions of the equation 

x2 - XP” + Q” = o  (4.7) 
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and we shall indeed now prove that this equation admits polynomial solutions. Using (4.3, 
it is easy to see that one may factor out (1 + x )  in the polynomial R, 
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R, = (1 +n)Z, 

Z” = P“ - 2(P,-, - PA + ” ’  + (-1)”-1PO) 

thus that x p Z ,  = (-1)pZ, mod% and that 

Z,(X)~ = Zu(-l)Z&) modR,. 

(4.8) 

(4.9) 

Now, Pi(-1) = (-1)l is established recursively, whence Zv(-l) = (-1)”(2v + 1) from 
which we conclude that 

z: = (-1)”(2u + 1)Z”. (4.10) 

On the other hand, since the P s  are Chebishev polynomials (see (4.3)), one has 

P: = Po+P, +. . .+P, (4.11) 

(‘addition of two spins L‘), but from (4.6) follows that = Pv-i, i = 1,. . . , U, whence 

P~=P”+2(P”-,+P”-,+. . .+P~) . (4.12) 

We may thus assert from (4.10) and (4.12) that the discriminant of the equation (4.7) is a 
perfect square 

A = P: - 4(PV-l + Pv-3 + ‘ .) 

= P” - 2(P,-, - P A  + ‘ ’  .) 
= 2, (4.13) 

z: =- 
2v + 1 

and that the two desired polynomials Pi*) read 

(4.14) 

We conclude that the polynomials 

P, o <  I < U -  1 P y  

form a representation of the fusion algebra of the D2”+2 models of SU(2) current algebra. 
That the diagonalization of the D ~ ” + z  fusion rules involves imaginary coefficients whenever 
U is odd is a well known fact (see for instance [ 141). The last point that we want to make 
is that these polynomials are not independent on Q when 2u + 1 is a perfect square. In that 
case the representation of the fusion algebra by the P s  is not faithful. The first instance 
occurs for Dlo. for which the combination of fields 

x = 44i-l - z@p) - 2(@3 - 0 2  + @ I  - @o) 
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that has the property that for any field Y, X . Y = AyX, (Ay E Z), is represented by 0. 

a bit exceptional, as the generator of the ring is one of the 'degenerate' fields 
For illustration we provide explicit formulae for the D4 and Da cases; the case of D4 is 

D4 : * 0 = 1  @ I + ) = X  1 -  - X2 X3 = 1 (4.15) 

whereas D6 exhibits the phenomena discussed above 

The cases of the E6 and Eg SU(2) theories are readily dealt with if one observes that 
their fusion algebras are, respectively, isomorphic to those of the (3,4) (king) and (2,5) 
(Lee-Yang) minimal models for which the discussion of the previous section applies. 

5. Conclusion and questions 

In this note we have shown that in several classes of rational conformal field theories the 
fusion ring may be represented as a ring of polynomials in one variable, quotiented by a 
certain polynomial constraint that may be integrated to a 'potential'. This extends to,cases 
like the SU(3) models or the 'D' series of SU(2) models which were generally belie<ed to 
require two-variable polynomials. In most cases, the solution to the Gepner conjecture does 
not appear to be unique, and even the degree of the polynomial constraint depends on the 
generator of the ring. In fact, this non-uniqueness shatters the nGve idea that was one of 
the original motivations of the present work, namely that this fusion potential might serve 
to characterize the fusion ring. 

In minimal models, in particular, we have seen that there are quite a number of 
alternative ways of constructing this polynomial representation and the corresponding 
potential. Beside the information they encode on the fusion algebra, it would be quite 
interesting to find a physical (Landau-Ginsburg?) interpretation of these potentials. 

Not all R C ~ S  admit such a representation of their fusion ring: for example the D I ~  
orbifold whose representation is not faithful, or sU(4)z etc. It would be nice to have a 
characterization of those R m s  that have this property. 

In a forthcoming paper, we shall comment on some connections between this fusion 
potentials and the potentials that emerge from perturbed topological field theories. 

I 
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Appendix A 

Given the rational numbers a1 and az, let us look for rational solutions ,91 and pz to 

+ e-i(al+nd = eiBt + &% + ,-i(h+&) 

P Di Francesco and J-B  Zuber 

( A 4  

Multiplying both sides of (A.l) by ei(al+wz+~I+&)/2, and taking the real and imaginary parts, 
we are left with the system 

elul + 

Introduce the variables 

then equations (A.2) read 

sin(c - d) sin(u + b) = sin(b - a) sin(c + d)  

sin@ - d)  sin a sin b = sin@ - U )  sin c sin d. 

(A.4a) 

(A.4b) 

Note that the vanishing of any sine factor on each side of (A.46) (e.g. c - d = b - a = 
Omodn) just amounts to taking one of the six trivial solutions of (A.1). namely (all the 
equalities are understood modulo n) PI =a], = (YZ. or PI = ( Y I ,  Bz = -(ai +(Yz) or the 
four permutations obtained by letting ( Y I  ct ( ~ 2  or at i+ -(ai + az). Let us exclude these 
trivial solutions, then we can divide (A.44 by (A.4b) to get 

sin@ + b) sin(c + d )  
sinasinb sincsind 

- - 

and rewrite (A.4b) as 

sin(b - a) 
sin a sin b 

sin(c - d )  
sin c sin d 

- - 

(A.5) 

hence we get cot-I a = c o r i  d and cot-' b = cot-' c, already excluded above. In 
conclusion the only solutions to (A.1) satisfy [pi, h, -(PI + 82)) = [ai, az, -@I + a2)I 
and reduce to pi = ai when the angles are constrained by (212). This completes the proof 
that the SU(3)x fusion rules may be represented by polynomials in one variable. 
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Appendix Bf 

For two given coprime integers p and q ,  and r and s such that 1 < r < p/Z, 1 < s < 412, 
we look for solutions I' and s' to 

cosx(r/p)cosa(s/q) = cosn(r'/p) cosx(s'/q). (B.1) 

This amounts to 

the value of (3.2) belongs to the intersection of the extensions Q(cosn/p) nQ(cosn/q), 
and is therefore rational. Let us show that indeed Q(e'"/P) nQ(e"/q) = Q. Set = e'"/W, 
LY = c q ,  ,3 = t p .  Suppose we have 

2p-1 248-1 

aiai - 
i=O j=O 

b jp j  = f(<) = 0 (B.3) 

where ai and bj are rational. The equation f(:) = 0 is algebraic with rational coefficients, 
and is therefore satisfied by any conjugate tc,  1 < c < Zpq, c coprime with 2pq .  In 
particular let us choose those which preserve 01 = e q ,  namely take c to be of the form 
Ck = 1 + Zkp, k defined modulo q.  It is straightforward to see that there exists a subset 
K of (0.1,. . . , q - l}, such that [ c ~ ,  k E K }  runs over all the integers coprime with 2q 
modulo 2q, which means that @Q runs over all the conjugates of 8.  Thus if we write 

the second sum on the right-hand side of (B.4) is a symmetric function of ,9 and its 
conjugates, therefore rational. Hence both sums in (B.3) are rational and we proved the 
statement. 

We are now left with the problem of finding solutions to 

G Q  
cosnr/p 
cos nr'fp 

where say p = 21 + 1 is an odd integer (otherwise exchange the roles of p tt q,  r c* s 
and r' c) s'). Consider the polynomial 

This polynomial has integer coeflicients (as polynomial symmetric functions of [ e n a / p ,  
a = 2 ~ 1 , .  , . , 2Z(p - I)}). Moreover it is monic, due to the well known identity 

I P i j Z c o s n g  r = (-1) 

,=I 
(B.7) 

t This proof is entirely due to Michel Bauer 
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for odd p = 21 f I ,  of degree ( p  - 1)’ and reciprocal, i.e. n ( x )  = x(p- l ) ’ I l ( l fx ) .  The 
root of a monic polynomial with integer coefficients is what is called an algebraic integer; 
if it is rational, it has to be an integer (otherwise one could write it afb, and one would 
have an equation (afb)” = integer/b”-I, which is impossible). But if a is a root of n(x), 
then l / a  is also a mot, therefore the only rational roots of n(x) are i=1 and thus the only 
ways of realizing (B.5) are by taking cosnrfp = fcoszr’ /p ,  i.e. r’ = r or r’ = p - r ,  
from which we deduce that s’ = s or s’ = (I - s. This completes the proof that the only 
possibly degenerate eigenvalue for N<z,z) in the ( p ,  q )  minimal conformal theory is zero. 
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