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We construct modular invariants in non-minimal conformal theories of central charge c < 1. 
We show these can also be considered as partition functions of c = 1 theories, and describe a free 
field with defect lines on a torus. This is applied to the determination of partition functions for 
critical Q-state Potts and O(n) models, with a special emphasis on the polymer (n = 0) case. 

1. Introduct ion 

Conformal  invariant theories in two dimensions [1] play a central role in string 
theory and in the study of critical phenomena. The analysis of their properties and 
their classification are actively pursued. After the introduction of minimal theories 
[1] that possess only a finite number of primary fields, and of its important subset of 
c < 1 unitary theories [2], new families have been discovered using the conformal 
algebra [3]. 

The observation by Cardy [4] that the consistency of conformal theories defined 
on a torus restricts severely their operator content has opened a new route to their 

systematic classification [5, 6]. The idea is that the partition function of a conformal 
theory on a torus may be written as [4, 5] 

Z = Tr(q  L°-C/2' ~Lo-c/24), (1.1) 

where q = exp(2irrT), and • = to2/0~ 1 is the modular ratio of the torus. This trace 
which runs over all states of the Hilbert space may be decomposed on the various 
irreducible representations of the two Virasoro algebras in the form 

Z = E NhX, X h ( q ) x ~ ( q ) "  (1.2) 
h,h 

The non-negative integer Nh,~ represents the multiplicity of the operator of dimen- 
sions (h, h) in the partition function. The characters Xh read: 

Xh = Trh(q L°-c/24) (1.3) 

in each irreducible representation of highest weight h. 
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Imposing that Z is a modular invariant function of "r then puts strong constraints 
on the N's ,  hence on the operator content of the theory, leading ultimately to a 
classification of the possible partition functions. This has been recently achieved [7] 
for the minimal theories. These have a central charge 

6(p  _p,)2 
c(p,  p') = 1 (1.4) pp' 

p, p '  are two coprime positive integers, and the allowed values of h, h are given by 
the Kac formula [8] 

( p r _ p , s ) 2 _  (p  _p,)2 
h .  = , ( 1 . 5 )  

4pp' 

with the constraint that the integers r, s satisfy the bounds: 

l ~ < r ~ p ' - l ,  

1 ~< s ~ < p -  1. (1.6) 

Using modular invariance, a classification of such theories has been proposed. This 
has also been extended to superconformal theories [9] where a similar classification 
has been found [10]. 

In this paper, we want to consider non-minimal theories. We restrict ourselves to 
central charges less than one, in particular as in (1.4), but relax the conditions (1.6). 
This is of direct relevance in the study of 2D critical phenomena. For example, it is 
known [11] that there are lattice realizations of Ising-like systems which lead to a 
non-minimal c = ½ conformal theory. Even more interestingly, the scaling limit of 
polymer systems seems to be described [12] by the c(3,2)= 0 theory, which can 
obviously not be minimal. Moreover, various works [12,13] indicate that the 
spectrum of conformal dimensions in these systems is reproduced by the Kac 
formula (1.5) partly with integer indices r, s, and partly with half integer ones. This 
seems a rather intriguing feature. We recall that the hrs given by (1.5) with integral 
indices have an intrinsic meaning: they correspond to degenerate representations of 
the Virasoro algebra [8,14]. Fractional indices, on the other hand, do not seem to 
have any particular meaning. Is modular invariance of any relevance for non-minimal 
theories, and can it shed some light on this? These were the original motivations of 
this work. 

We first construct modular invariant partition functions in a rather abstract way, 
using the same elliptic functions as in minimal theories [7]. These partition functions 
may be expanded on conformal characters of c(p, p') theories: they involve an 
infinite number of primary fields, in particular the one with negative dimension 
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h = h = - ( p - p ' ) 2 / 4 p p ' .  This operator leads to a small q behaviour [15-16] 
described by an effective [17] central charge equal to one. Our partition functions 
may indeed be expanded also on c = 1 characters. These non-minimal theories thus 
appear as gaussian theories in disguise. This is presented in sect. 2, while technical 
details on characters [18-20] are collected in the appendix. 

In sect. 3 we give a reinterpretation of these partition functions in terms of a 
Coulomb [21-23] gas, or alternatively of a free field theory on a torus with defect 
lines. 

Sect. 4 is devoted to applications to a few statistical mechanical models. We use 
the preceding construction to derive partition functions of critical Q-state Potts [24] 
or O(n) [25] models on a torus for arbitrary Q, n. Special attention is payed to 
polymers, for which the above mentioned results are recovered. 

Sect. 5 contains a few final comments. 
A last word on notations. As we handle in this paper partition functions of 

various origins, we have introduced distinct notations. Z(~'~)(q, M), as defined in 
eq. (2.5) denotes the functions constructed by the formal procedure of sect. 2. 
Zc[g, f] (eq. (3.12)), with the argument q made implicit, stands for the Coulomb 
partition function for coupling g and magnetic charges integer multiples of f .  
Finally 3 in sect. 4 represents the partition function of explicit statistical models, 
and 3 ( . . . )  suitably modified versions of it. 

We hope the reader will not be bothered by these notations. 

2. Construction of modular invariants 

In this section, we construct families of modular invariants, relying on the 
analysis and results (and the conjecture) of ref. [7]. For any even positive integer M, 
we introduce the set of functions 

1 o~ 
K~(q, M) = ~l(q) E q ("M+")2/2M, (2.1) 

n ~ - - 0 0  

where ,/(q) is Dedekind's function (see appendix, eq. (A.15)). (The integers M and 
v were denoted N and ~ in ref. [7], but the reason for this change of notations will 
appear soon.) We recall the main steps of [7]. 

(i) These functions satisfy 

K~ = K~+M = K _ , .  (2.2) 

There are therefore ½M + 1 independent functions, for 0 ~< v ~< ½M, but it is more 
convenient to keep v as a mod M variable. 

(ii) Writing q = exp(2i~rr), with "r in the upper half-plane, we let the modular 
group act on ~', and hence on these functions. One proves that they form a unitary 
representation of the modular group. 
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(iii) If one wants to construct modular invariants of the general form: 

Z =  EuV'~K,K*,  (2.3) 

one finds that there is an independent invariant associated with each factorization 
of ½M: 

½M = a2e • P',  (2.4) 

where P and P '  are coprimes. With this pair of coprimes, we associate a pair of 
integers R o and S o such that RoP - SoP' = 1 and construct the number ~t = RoP + 
SoP' mod(M/a2), which satisfies ~l 2 = 1 mod(2M/a2). A modular invariant is then 
obtained by taking: 

,/~_(?, ~') = 

v , P  

E ~ , . v + ~ M / a m o d M  i f  air and  al~ 
~Z/aZ 

0 otherwise, 

Z(~'~)(q, M )  = 3-'.A/'("'~)K K *  • . a - -  ~ - - u - - ~  " (2.5) 

In ref. [7], it was conjectured that this construction exhausts the set of independent 
modular invariants of the form (2.3)*. 

(iv) The resulting invariant Z("'")(q, M) must then be reexpressed in terms of 
the ½M + 1 functions K,, for 0 ~< v ~< ½M. This operation does not introduce any 
sign, since K~ = KM_ .. We thus conclude that each choice of (et, #) produces a 
modular invariant (2.3) with positive coefficients, and that the number of such 
independent invariants is 

q°(1M) = ½[ I--I (1 + r/) + 8] (2.6) 
ti>~l l 

if 1 _ r, ~M - I~ip i , Pi primes, and ~ = 1 if M is a square (all r i even), ~ = 0 otherwise. 
1 Contrary to the case studied in [7], if ~M is a square ½M= ~ 2 ,  the trivial 

factorization M / 2 ~ ¢  2--- 1.1 gives rise to a non-vanishing invariant. Among the 
possible invariants, let us mention two simple cases. For any M, choosing a = # = 1 
yields the diagonal invariant: 

M -  1 M / 2  - 1 

Z(X' t ) (q ,M)= ~ ]K,(q ,M)]  2= 1K0t2+2 ~ ]K~]2+ ]KM/2[ 2. (2.7) 
v=O v=l 

On the other hand, if M / 2  is a multiple of some square g~2 

M = ~ 2N,  N even, (2.8) 

* Note added in proof. That (2.5) exhausts all invariants of the form (2.3) has now been proved [37]. 
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we can take a = Y, /x = 1 rood N, and the resulting invariant couples only values of 
v multiples of C, v = f)t: 

a - 1  

E Kex+~M/2(q, M )  = Kx(q,  N ) ,  (2.9) 
4=0 

N - - 1  

Z(e'l)(q, g2N) = Y'~ I K x ( q , N ) I z = z o ' I ) ( q , N ) .  (2.10) 
)~=0 

This is the diagonal invariant of the functions K x relative to the even integer N. 
So far the discussion has been quite independent of conformal characters. In 

appendix A, we review the computation of characters for the c ~< 1 theories. The 
most important conclusion is that any expression of the form q"/~l(q), x >1 0 may 
be expressed as a (finite or infinite) sum of characters, with positive integer 
coefficients. 

qX 

rl(q) = Xh=x+(c-1)/24 + " '"  • 

In particular, for c = 1, 

either h = ¼n 2 , n ~ N,  

or h ~ ¼n 2 , 

qh 
- -  = X ( n + 2 m ) Z / 4  , 

~/ m = 0  

qh 

- - = X h .  

(2.11) 

This means that any of the previous invariants constructed in terms of the 
K-functions yields a modular invariant expression, sesquilinear in the characters, 
and with positive integer coefficients, i.e. an acceptable partition function for any of 
the c ~ 1 theories. 

Let us examine more closely the "rational case" (1.4), where c is specified by two 
coprimes p and p'. We then define 

N = 2pp' (2.12) 

and for t ~ an arbitrary integer, it is natural, as we shall see, to choose: 

M = e2N = 2g2pp ' . (2.13) 

The corresponding K functions may be expressed as linear combinations of 
characters. First, any K, with v multiple of g reads 

Kex(q, g Z N ) =  1 2 q (eu"+x)2/zu (2.14) 
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TABLE 1 
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Expression of the K-functions (2.1) for M = 2/*pp’ in term of characters of the c(p, p’) theory 

1+ (-l)k 
2 &2k+l)~‘.~ 

m 

K/N a 4 k+l-(-l)k 
2 X(Zk+l)p’.~ 

k-0 

K /N/-2 - - $I kXup’.p 

00 

K Ip’ro = x( k+ l+wk 
a 

X(lk+l)p’.p-so + kXap’.r, 
k-0 

Kf(N-p’+,, = 

k+ l-(-lIk 

2 X(2k+l)p’.p-so+ kX2kp*.so 

m 

K /Pro = zt k+ l+(-llk 
x(Zk+lI~‘+ro.~ -t kX.(zk+l,p’-r0.p 

k-0 
2 

&N-pro) = 

k+l-(-9k 
2 x(Zk+l)#+ro.P + kX<zt+lip*-r0.p 

K/(p,o-,w = xr,.r, 
1-k (-1)’ 

2 Lx (2k+l)p’+q,.p-so+ XZ(k+l)p’-ro.so 1 

+k[X2kp~+,o.ro +X(2k+l)p’-w-r,, 1 

K~(~-~r,+~~r,, * k+ w-l)k 
2 IX (Ik+l)p’+r,.p-so +Xz(k+l)p’-q,.rl, I 

fk[Xzkp~+~,.s, +x(2k+l,p’-ro.p-so 3 

k+ 1+(-l)’ -l- (-l)k 
K I(pro+p’so~ = 2 2 XZ(k+l)p’-ro,so 

+k[X2kp’+r,.s, + x(Zk+l)p’-q,.p-so I 
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and may therefore be expanded on the degenerate characters of appendix A (eqs. 
(A.19), (A.25)). The somewhat cumbersome formulae are displayed in table 1. On 
the other hand, if v is not a multiple of ~, v = ~a + b, K v reads: 

K . ( q , ~ Z N )  = 1_ ~ q ( n e N + a + b / e ) 2 / 2 N  

with 

= ~ Xh,., (2.15) 

( g'nN + a + b / e )  2 - ( p  _p,)2  

he" = 2N (2.16) 

There exist two numbers r o and s o such that 

rop - Sop' = 1 (2.17) 

expressing that p and p '  are coprimes. We can thus rewrite he,  in (2.16) as 

(2:npp '  + ( a + b / e ) r o p  - ( a + b / : ) s o P ' )  z - ( p _p,)2  
he. = (2.18)  

4pp' 

and interpret it as given by the Kac formula (1.5) with fractional indices r, s of 
denominator (at most) g. 

h = h r ,  s = h2enp ,+(a+b /Y ) ro , (a+b / i ) so  . (2.19) 

We have thus constructed a finite dimensional representation of the modular 
group by means of a finite number of infinite sums of characters. We can then 
rewrite the modular invariants constructed in terms of K ' s  as 

z = ESh xhx  (2 .20)  

with non-negative integer coefficients Nh7 ,. In particular the invariant ZO'l)(q,  M )  
given in (2.7) involves all the characters either degenerate or of the form (2.15)-(2.16), 
whereas Z(<l)(q,  M ) =  Z° ' I ) (q ,  N )  in (2.10) uses only the degenerate ones 
(A.19)-(A.25). Conversely we do not know if this construction exhausts all modular 
invariants of the form (2.20). It is interesting to observe that the modular invariants 
of the minimal theories may be recovered as linear combinations of the former 
invariants. We recall from ref. [7] that minimal characters can be simply represented 
by: 

x x ( q )  = Kx(q)  - Ko, ox(q),  (2.21) 
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where to o = roP + SOP', r o, s o the same integers as in (2.17). The class of minimal 
modular invariants considered in [7], may be written up to a factor, as: 

4Z(m~ ~''~') = ~,  ~,  XxX~*x+t,I¢/,~ 
X E Z / N Z  I2~Z/aZ 

h multiple of a 

= 2 ( K a -  K,~oX) ~-.(K~*x+,N/~ - Ko,*O,X+,N/.)) 
x t 

= 2~_, E K x K ~ x + ~ N / ~ -  2 Z  ~_,KxK,*.o,x+~N/~ 
x t  x ~  

= 2 ( Z ( ~ , ~ )  - Z ( ~ , ~ , o ~ ) ) .  (2.22) 

An important observation is that each of the matrices (2.5) has 

at '~ ~'~) = 1 (2.23) 

and that the corresponding invariant contains the contribution of the operator with 
the most negative conformal dimension 

h = h = h o =  

(p  _ p,)2 

4pp' 

Z(-,~,) = IXp,,l 2 + • . . .  (2.24) 

If IP - P ' I  = 1, this is the only spinless operator of negative dimension among those 
with integer indices. It seems that the only way to get rid of this operator by linear 
combinations of Z ("'~) while preserving the positivity of the coefficient Nh~ is to 
construct the minimal modular invariants (2.22). If moreover all the modular 
invariants are reached by our procedure, this would mean that any non-minimal 
theory with central charge c < 1 (but of the form (1.4)) would be affected by 
negative dimension operators. 

What are the implications of these negative dimensions? In ref. [15,16], it has 
been shown that the value of the central charge c may be regarded as the coefficient 
of a finite size contribution to the free energy per unit length of a conformal theory 
on a strip, i.e. 

Z - (q~)-c/24 as q ---, 0. (2.25) 

This is, however, only justified when all the conformal dimensions appearing in the 
expansion of Z are non-negative, in particular in unitary theories. If some negative 
dimension is present, the small q behaviour of Z is dominated by the lowest 
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h = h = h 0, and the "effective central charge" to be substituted in (2.25) is [17]: 

c eff= c - 24h o . (2.26) 

In the case at hand, eqs. (1.4) and (2.24) lead to 

c a f =  1. (2.27) 

This suggests that the non-minimal c < 1 conformal theories described by the 
invariant partition functions Z t' '~) may be naturally given an alternative descrip- 
tion in terms of a c = 1 conformal theory, i.e. in terms of a free (gaussian) field. 

This interpretation is supported by the fact that, as already mentioned, our 
modular invariant partition functions of the c(p ,  p') theories may be expanded on 
c = 1 characters. 

Z= ~_,Nh~Xh(q; c(p, p'))XT,(//; c(p, p')) 
h,h 

= E Nh'~'Xh'(q; 1)X~,(g/; 1) 
h',h' 

- (q~)-1/24[1 + 0(q)]  for q , ~ 0 .  

Surprising as it may be, this equivalence originates in the presence of negative 
dimension operators. It corresponds to a redefinition of the ground state and of the 
generator which annihilates it. The "old" vacuum (h = O, h = 0) of the c(p ,  p') 
theory is indeed not the state of minimal "energy" L o + L,o, and the true ground 

state is Ih = ho, h = h0). 
In the c = 1 theory, all the conformal dimensions are non negative. If some 

physical operator is assigned the dimension h in the c(p ,  p') conformal theory, it is 
assigned the dimension h '=  h -  h o in the c = 1 theory. These distinct conformal 
dimensions describe the power law behaviour of their correlation functions in the 
old and the new ground state, respectively. 

This correspondence also implies a certain reshuffling of the primary fields (or 
heighest weight states). What used to be considered as a secondary field may be 
promoted to the status of primary field and vice versa. For example, in the c(p ,  p ')  
theory, the state h = h = 0 has no level one descendant. The contribution h = h = 1 
to the partition function is regarded as coming from an independent primary field, 
whereas in the c = 1 picture, it is interpreted as the contribution of a level-one 
descendant of h = h = - h  0. This whole discussion parallels the construction of 
Dotsenko and Fateev [13]. 

In the next section, we show that the resulting c = 1 partition functions have a 
simple and nice interpretation in terms of a Coulomb gas. 
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3. Free field or Coulomb gas representation 

We now show that the modular invariants of the previous section may be 
interpreted as partition functions on a torus of Coulomb systems or free field with 
some kind of frustrations. 

We first recall [21-23] that a two-dimensional Coulomb gas is a lattice system 
with electric and magnetic charges e j, mj (not necessarily integers) whose interac- 
tion is described by the action 

1R-x_, [ ej im j f~ ) ( f i (R j_Rk) (  e~gg imkvl~)+ ~ logX(e j ,  mj).  A = ~  c /..., / - - ~ +  
j ~ k  \ J ig  j 

(3.1) 

g is a coupling constant, i f (r)  is the lattice propagator (fi(R) = (fiR(R) + i~ I (R)  
satisfying 

A(fi R = 2~r8~,o 

~Tx~ I = ~Ty~R ' ~Ty(ff R = _ ~Tx(~i ' (3.2) 

which behaves at large separations as i f (R)  - ln(x + iy) and X(ej, m j) are fugaci- 
ties controlling the density of charges. Most two-dimensional statistical models are 
known [21-23] to renormalize at their critical point on the vacuum of (3.1) i.e. 
X(ej,mj) = 6¢i,o6mj,o. In this case, the various fields of charge (e, m) in the theory 
have scaling dimension and spin 

i.e. 

h h e2 gm 2 
+i,--  Tg + -  T - 

- h  em, 

h =  + m  , 
1 e 2 

(3.3) 

(3.4) 

The "electric" fields (e, m = 0 )  may be represented in a continuum the- 
ory as exp[ieq~(r)], cp being a gaussian free field with propagator (cp(r)cp(r'))= 

- (1/g)log[r - r' I derived from the action 

- g  f l V ~ 1 2 d x d y .  (3.5) 

The "magnetic" fields (e = 0, m) are disorder operators which create defects. Their 
correlation function is obtained [26] by imposing a discontinuity of 2~'m of tp when 
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one crosses a line connecting r to r'. At any rate, the gaussian e = 1 conformal 
theory is the natural framework for the Coulomb system. 

Any modular invariant partition function Z(~'~)(q, M) (cf. (2.3)-(2.5)) may be 
represented in terms of Coulomb gas conformal dimensions. First, we recall that if 
a ~ l :  

Z(C"~°( q, M) = Z(l'")( q, M/a2), (3.6) 

with/~2 = 1 mod(2M/aa). As at this stage, M is an arbitrary (even) integer, there is 
no loss of generality to assume that a = 1. We then recall that the number/~ stems 
from the factorization of M/2 into two coprimes P and P '  (cf. eq. (2.4)). By 
definition, Z 0'~) is the sum: 

1 M - 1  
E ~ q(M,+X)2/ZM ~/(Mn+,X)2/2M. (3.7) 

ZO'~)(q, M)  = 7/(q)71(~) x=0 , ,n=-o~ 

One can then prove that 

1 oo 
ZO'~)(q, M) = ~l(q)~/(q) Z q (Pe*p'm)2/4PP' ~t (Pe-P'm)2/aPP' 

e ,  r n ~  - - o o  

1 _ ~_, qh~h, (3.8) 
*/(q) 7/(F/) h,~ 

where the later sum runs over all h and h of the form 

h= ~ --fi-T e + v --~- m } , 

~ = -~ e - w --F m ] , (3.9) 

to be compared with (3.4). The derivation of (3.8) is straightforward. One shows that 
any term of (3.7) appears once in (3.8) and vice versa. 

The Z (1"~) partition function may thus be interpreted ( i n a  sense to be defined 
below) as the partition function of a Coulomb gas with coupling: 

p '  p 
g =  P or g P '  (3.10) 
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Conversely, we can now introduce for g arbitrary 

465 

E Z c [ g ' l ]  = Z c [ 1 / g ' l ] =  n(q)n(gl)  e,m~Z 
q(e /~  + mcg):/a~(e/¢~-- m¢7)~/4 

( (e2m,) ) 
1 Y~ exp -2~r¢, 2--7 + - -  + 2i~rrRem (3.11) 

~/(q) ~(~/) e , m ~ Z  2 ' 

where we have written q = e 2i*r', r = r R + ir I. In particular for g rational g = P / P ' ,  
g c [ g  , 1] -- Z(l'/*)(q, M) .  By means of a Poisson summation formula on both e and 
m it is easy to check that this expression is modular invariant; g being fixed one can 
also consider for arbitrary f 

1 q(e/Cg ÷ mvrg)2/4 q(e/Cg-mv cg)2/4 , 
Z c [ g ' f ]  = ~/ (q) r / (~)e~Z/f  

m ~fZ 

(3.12) 

which is equal to Zc[f2g, 1]. Note that the minimal partition functions, which as 
noted in (2.22) are linear combinations of Z ~"'~), may be represented as combina- 
tions of coulombic partition functions. For example the diagonal modular invariant 
((AK-1, Ap_ 1) in the notations of [7]) which describes in particular for p '  = 3, p = 4 
the Ising model reads 

2Z~n = ZO'l)( q, N)  - Z("'°°)(q, N)  

(3.13) 

the value g = p / p '  being naturally associated to c(p,  p') (see below sect. 4). We 
shall not pursue here the analysis of this queer relationship. 

We want now to give a physical interpretation of (3.11). To this effect we perform 
again a Poisson summation, but only on the variable e. One finds 

exp( - ~rg m ' 2 + m 2 ( r 2 + r I 2 ) - 2 % m m ' )  
Zc[g,1]  = £ r~/2~l(q)~(O) ri 

m,m'EZ 

(3.14) 

The prefactor in front of the exponential is recognized as the partition function Z 1 
of a free field [5] (3.5) and each term Zm,,, , in the sum corresponds to the 
introduction of two lines of defects. Indeed, suppose we demand that qo in (3.5) has 
a discontinuity of 2rrm' (2¢rm) when one crosses the geodesics o:1, %. For simplicity 
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take o~ 1 = L, ~2 = iT. Then the classical solution which satisfies these constraints 
and Arp = 0 is 

%lass = 2rr(m ' y  + m L )  (3.15) 

and the frustrated partition function 

z,.,~= [D~]exp-~ I~Z(~+~la~s) dxdy ,  (3.16) 

where ~ is now doubly periodic, is easily obtained 

((m2 m2)) 
Z,,,m = Zlexp -~rgTL --T- £ + - ~  (3.17) 

in agreement with (3.14) for rR = 0, r1 = T / L .  The result remains of course valid for 
any ~'. Zm," ,,, is not modular invariant, with transformation laws 

Z m ' , m ( - - 1 / ' )  = 

Zm, ' m( 1 "-~ ,-/-) = Zrn,+m,rn(,'i'), (3.18) 

which can be easily recovered from the above interpretation. Summation over m', m 
gives Zc[g, 1], describing a free field with an arbitrary discontinuity multiple of 2~r 
across ~1, °~2. It is modular invariant and thus remains unchanged under a redefini- 
tion of ~1, w 2. In the same way, Z~[g, f ]  corresponds to discontinuities multiple of 
2~rf. Returning to a Coulomb gas picture, the charge content of such a model on a 
torus is clear. From the definition of correlation functions of magnetic charges given 
above, it follows that they are quantized as integer multiples of f:  m ~ f Z ,  and thus 
e ~ Z / f ,  in order to have integer spin. 

4. Application to some statistical mechanics models 

In this section, we interpret the partition functions Z c (3.12) in terms of Q-state 
Potts or O(n) models. 

Let us recall some basic results. The Q-state Potts model [24] is first defined for 
Q ~ N * by the action 

1 
= -  E ~ojok' (4.a) A T ( j , k )  

where T is the temperature, the sum is restricted to nearest neighbors of a regular 
lattice (we shall consider for definiteness the square lattice) and oj = 1 . . . .  , Q. By 
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Fig. 1. A typical graph in the high temperature expansion of 3Q (4.2) and its alternative polygon 
representation. After arbitrary orientation, the polygons are considered as walls between regions of 

constant height in a solid-on-solid model. 

high temperature expansion of the partition function one gets the Whitney poly- 
nomial [24] 

/BQ= E e~ = E ( e l /r-  1) ~"Q~c"  (4.2) 
{ o } graphs 

The sum is taken over all distributions of bonds on the edges of the lattice, JV" B 
being the number of bonds and -/tic the number of clusters (connected compo- 
nents) in a given graph. (4.2) defines now a model for Q ~ R; the case Q ~ 1 
corresponds to the percolation problem [27]. A graph in (4.2) can also be repre- 
sented by a polygon decomposition [28] of the "surrounding lattice" (see fig. 1). Use 
of Euler's relation gives then 

80=Q ~/2 E [(el/r-1)Q-1/2]~"Q wp/2, (4.3) 
graphs 

where ~ is the total number of sites and sVp the number of polygons. If 
Q ~ [0, 4], there is a second order phase transition at the self-dual point [24] 

( e l / ~ -  1 )Q- I /2=1 .  (4.4) 

This can be studied by mapping onto the Coulomb gas, after 3Q is interpreted [23] 
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as the partition function of a solid on solid (SOS) model. For this purpose one 
introduces discrete height variables q~ on faces and vertices of the surrounding 
lattice and one considers a polygon in the representation (4.3)-  after arbitrary 
orientation - as a wall between two regions of constant height. By convention, the 
corresponding qo difference is taken to be 1 Ur, the highest ~ being on the left of each 
arrow. The Boltzmann weight of a given SOS configuration is obtained by a product 
of phase factors e TM (e -iu) for left (fight) corner of a wall. Since the difference 
between the total number of left and right turns on a polygon is +_ 4 for the square 
lattice, one has (at criticality) 3 Q = Q'A"=/28 sos provided Q1/2= 2 cos 4u. The SOS 
model renormalizes on (3.1) with a coupling constant given by 

Q = 2 + 2cos ½~rg, g ~  [2,4]. (4.5) 

One can follow the same procedure for the O(n) model defined initially [25] for 
n ~ N *  by 

3,,= (I-I dSi I-I (4.6) 
<j, k) 

where S is a n-component spin, ISI 2 = n. By high temperature expansion one gets 
on the hexagonal lattice 

8 ,  = Y'. ( l / T )  w" n wp- (4.7) 
graphs 

The sum is over all configurations of non-intersecting self-avoiding polygons (fig. 2), 
~ p  being the number of polygons and ,4~B the total number of bonds in a given 
graph. (4.7) can then be considered for n ~ R, the case n ---, 0 corresponding to the 
polymer problem [29]. One transforms (4.7) into a SOS model [25] by introducing 

J. 

Fig. 2. A graph in the high temperature expansion of 3 n (eq, (4.7)). 
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height variables ep on the centers of the 

between two regions of constant height. 
factor 1/T for each bond, times e i° (e -iv) 

provided n = 2 cos 6 v. If n ~ [ - 2 ,  2] there 

hexagons, a loop being a wall of step ~r 
The Boltzmann weight is obtained by a 

for each left (right) turn. Then 8 ,  = 8 sos 
is a second order phase transition for [25] 

1 =[2+(2_n)l/:z]_l/z (4.8) 
re 

where the model renormalizes on (3.1) with coupling constant given by [25] 

n = - 2 cos ~rg, g ~ [1,2] .  (4.9) 

An important  property is that (4.7) is also critical for T < T c (this may be regarded 
[30] as the two-dimensional analogue of Goldstone singularities), the corresponding 
g being another branch of (4.9), g ~ [0,1]. 

So far, we have assumed implicitly that we worked with free boundary conditions. 
Suppose now we consider (4.3) or (4.7) on a strip with transverse periodic boundary 
conditions. Then, in the associated SOS models defined above, a polygon which 
wraps around the cylinder has a weight 2 instead of 2 cos 4u (2 cos 6 v) because the 
numbers of left and right turns are equal. The correspondence between 3Q (3n)  
and 3sos  is thus no more valid. As suggested in [13,15] this can be repaired by 
adding a pair of electric charges ± e  0 at ± oo. These contribute to the partition 
function by exp[ie0(cp ~ -q~ ~)]. Each polygon wrapping around the cylinder 
modifies (rp~ - qo_~) by an amount + ½~r(± ~r), having thus a new weight 2cos ½e0~r 
(2 cos e0~r ) while polygons homotopic to a point have a weight unchanged. One gets 
then the desired result if e 0 = 8u/~r (6v/~r). The SOS model which renormalizes 
onto the gaussian free field has c = 1 while after the introduction of these charges 
one finds the behaviour of the free energy at small q corresponds to [13,15] 

which gives 

6e 2 
c =  1 - - - ,  (4.10) 

g 

3(g - 4) 2 
CQ = 1 2g ' (4.11) 

6 ( g -  1) 2 
c,, = 1 , (4.12) 

g 

the latter formula being valid for both T =  T c and T < Tc in (4.7). For instance O(n) 
models at T~ and g rational pip' are associated with c(p, p') theories. Percolation 
and polymers have both c = 0 [12]. 



470 P. Di Francesco et al. / Modular invariance 

However, since our partition functions Z c have c ~ff= 1, they do not involve 
charges at infinity. Working now on a toms we will thus define a modified Potts 
model by 

~(~/2)=Q~/2 ~_, [(e1/r_l)Q-,/z]W, QW~/22~. (4.13) 
graphs 

The sum is the same as in (4.3) but the J~p polygons non-homotopic to a point in a 
given graph have a weight 2 instead of Q1/2. In the same way we replace (4.7) by 

~1/2)= ~ (1/T)X,n~p2~. (4.14) 
graphs 

The weights are now correctly reproduced by the associated SOS models. In a free 
surface model however, the different heights must be compatible: by describing a 
closed path and computing q0 differences for each wall crossed one must find a total 
variation 3q0 = 0. Since in (4.13)-(4.14) the polygons wrapping around the torus can 
be arbitrarily oriented in two possible ways, 3 Q (3  n) describe in fact SOS models 
with defects of the type (3.15). For the Potts case, the variation 3rp obtained by 
describing a geodesic of the toms is a multiple of rr because each wall corresponds 

1 and ,4~p is always even. For the O(n) case it is of the same form, ,4?p to a step u r  
being now arbitrary but walls corresponding to steps ~r. Since these topological 
defects remain unrenormalized [15] we conclude that at criticality the continuum 
limit of ~ / 2 )  or ~(1/2) is precisely Zc[g, 1-]2 • In the same way, one can define other 
models ~ (/) by taking only configurations where the variations 3q0 are multiple of 
2~rf with a continuum limit Zc[g , f]. 

Some examples are of special interest. First consider n ~ 0, T = T c which de- 
scribes the self-avoiding walk (polymer) problem [29]. So far, most studies con- 
cerned exponents. The asymptotic variation of the radius of gyration of a polymer 
graph with the number of monomers ,t/" B 

(IRgyrl2)  - M/'~ ~ (4.15) 

defines u (which is also the standard correlation length exponent for n ~ 0) known 
[25] to be 3 Z. In the same way, the number of configurations for 1_ chains of common 
length .A/'B/L which connect two fixed points behaves as 

12 t _ /~x,  A/.ffL - 1 , (4.16) 

# being a non-universal connectivity constant (# = To) and 3'L a critical exponent. 
"/L can be expressed by [31] 

YL = ( 2 -  2x t ) u -  L, (4.17) 
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a) 

b) 

Fig. 3. The partition function (4.19) describes a grand canonical ensemble of non-intersecting self-avoid- 
ing loops on a torus which, are non-homotopic to a point, such as in 3a or 3b. The weight of a 
configuration is ( 1 /~ ) x~2  ~p where ~ p  is the number of these loops, .A/" B the total number of bonds 

(monomers) and # the connectivity constant (4.16). 

where x t is the scaling dimension of some composite operator in the O(n), n --* 0 
model, and has been recently obtained [31] 

1 2 x L = ~ (9L  - 4) .  (4.18) 

The knowledge of the x t gives then the gamma exponents of arbitrary networks [32] 
as well as contact exponents [33]. In addition to this we are now able to construct a 
non-trivial partition function for polymers on a torus in contrast to the standard 

3,,=o = 1. Indeed 

~(1/2) E (1//~) "¢" 2xP, (4.19) n~ 0 -~- 
graphs 

which describes a grand canonical system of chains of variable length non-homo- 
topic to a point (fig. 3) has the continuum limit 

1 
E q (Snt+3n2)2/96 ~1 (8nl-3n2)2/96 (4.20) 

Z c [ t '  ½] = ~l(q),l l(~l) nl,n 2 

which is also Z(l'17)(q,48) in the notations of sect. 2. When developed on the 
characters of the c = 0 theory, (4.20) reproduces all the x L in (4.18). It contains also 
new dimensions which describe the properties of chains with a fixed number of 
rotations around extremities [34]. Eq. (4.20) gives the spectrum of the transfer 
matrix numerically studied in [12]. 
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In the same way we consider the case Q ~ 1. It corresponds to the bond 
percolation problem in which bonds of the lattice are randomly occupied with a 
probability p =  1 -  e -x/r. At the threshold pc = 1 - e  -~/To an infinite cluster 
appears. Although 3 Q= x = 1 we can construct an interesting partition function 

~(1/2) E ( Pc ]~"2~-, (4.21) 
Q = I ~ -  graphs 1-Pc] 

with continuum limit 

1 
Zc[8 '~ ]  ~/(q)7/(~) Z q ~3"~+2"~)~/24 q ~3"~-z"~)~/24, (4.22) 

r/l , n 2 

which is also Z~l'5)(q,12). When developed on the characters for c - -0 ,  it gives 
dimensions which describe various properties of perimeters (or "hull")  of clusters 

[351. 
Consider next the standard Ising model with action 

1 
E SjSk, (4.23) A ¥ 

i <j, k> 

Sj = + 1. On the hexagonal lattice, the partition function 3 , =  1 is the same as in 
(4.6) up to a change t h l / T ~  1/T. With the usual boundary conditions for (4.23) 
on a torus one has at criticality 3 ,=1  = Zm~n (P  = 4, p '  = 3) (3.13). If instead one 
modifies the weights for polygons of the high temperature expansion non-homo- 
topic to a point as in (4.14) one can get for i n s t a n c e  ~(n3)__1 = Zc[ 4, 3] = Z(l'l)(q, 24). 
Although these two partition functions give the same free energy in the thermody- 
namic limit, they have a very different expression on a torus, the expansion on c = ½ 
characters involving only the minimal block (1.6) in the first case and the whole Kac 
table in the later one. 

Finally, all the loops are treated in the same way in "O (1/2), namely with the 
weight n = 2. We thus expect 3 .=2  = ~,=zS(t/2) to represent the Kosterlitz-Thouless 

point of the XY model: 

3KT = 3 ,=2  = Zc[4,11 = Z~l'l)(q, 8), 

in accordance with the well-known value g---4 of the Coulomb coupling at this 

point [23]. 
On the other hand, the same kind of argument does not hold for the Q = 4 Potts 

model, since the transformation of (4.2) into (4.3) is not valid on a torus. The 
function 3 ~ / ]  = Zc[1,1] does not coincide with 3Q=4"  
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5. Conclusion 

In this paper, we have constructed modular invariant partition functions for 
non-minimal c < 1 theories. They incorporate the contribution of an infinite number 
of primary fields, and may accommodate operators of dimension given by the Kac 
formula with non-integer indices. These partition functions have been seen to 
describe also c = 1 theories. This is naturally incorporated in their Coulomb or free 
field representation. The fact that minimal partition functions may also be repre- 
sented as linear combinations of Coulomb partition functions is more surprising. 
Somehow, these results provide a relation between the conformal theory approach 
and the standard lore that most two-dimensional statistical mechanics models are 
expressed at criticality in terms of free fields. This connection seems different from 
the one mentioned in [5]. We do not know if our procedure exhausts all non-minimal 
c ~< 1 partition functions (for instance Q-state Potts or O(n)) models with loops 
weighted irrespective of their homotopy class). 

Our whole discussion relies on the assumption that the partition function of the 
system is of the form (1.1). This is perfectly justified in unitary conformal theories 
that describe the continuum limit of some discrete statistical model, endowed with a 
positive transfer matrix. In non-unitary theories, and especially in cases where there 
is no natural definition of a transfer matrix, this assumption seems more question- 
able. One may imagine a different option, where the symbol "Tr"  takes into account 
the signature of the states of the Hilbert space .Yt a= Je~+ • 

Z =  (Try+-  Tr~_)(q L°-C/24 ~Zo-c/24). 

For instance, the partition function of hamiltonian walks on the Manhattan lattice 
[36] which corresponds to the special T = 0 point in the low temperature critical 
phase of the n = 0 model [30] may be shown to have the continuum limit ZMa~h = 
Z12. When expanded in power of q, ~, this leads to an expression with plus and 
minus signs, analogous to the formula above. This would lead to a totally different 
formalism, involving signed characters: clearly, more work is needed to explore this 
possibility. 

Stimulating discussions with B. Duplantier, C. Itzykson, S.K. Yang are gratefully 
acknowledged. We have also benefited from conversations with J. Cardy, D. 
Dobrev, D. Friedan, B. Nienhuis, A. Rocha-Caridi and S. Shenker. 

Appendix A 

CHARACTERS OF THE VIRASORO ALGEBRA 

Highest weight representations of the Virasoro algebra are constructed by re- 
peated action of the generators L n, n < 0 on a highest weight (h.w.) state I h) which 
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satisfies by definition 

L o l h ) = h [ h ) ,  Ln[h) = 0  V n > 0 .  (m.1) 

The linear span of the states 

1~ ( a ) >  = L ~ I  . .. L~_%lh > (m.2) 

is called the Verma module of h.w. h and denoted V h. All the states in V h are 
eigenvectors of L o with integer spaced eigenvalues 

L01t ~ {a})  = (N + h)l~k { a } ) ,  (A.3) 

where N = Z, k a  k is the level of the state; the dimension of the subspace of level N is 
p ( N ) ,  the number of partitions of N. 

Such a representation may not be irreducible, depending on the values of c and h. 
Reducibility (or "degeneracy") occurs when at some level N, there is a "singular" 
(or "null")  vector 1~), linear combination of Iff{a}), that satisfies (A.1). For c 
parametrized as 

6 
c =  1 x ( x  + 1) (A.4) 

(where x may be complex) a theorem [8,14] states that this occurs whenever h may 
be written as 

[(x + 1 ) r -  xs]  2 - 1 

h = hrs = 4 x ( x  + 1) ' (A.5) 

with r and s integers of the same sign. Moreover the smallest level N for which a 
singular vector I~) exists is the positive infimum of r . s  over all pairs ( r , s )  
satisfying (A.5). For example, in the case (1.4), the parameter x is rational, 
x = p ' / ( p  - p ' ) ,  and if there is a pair of integers (r, s), there is an infinite number of 
them since 

h r s =  hr+p , s+p  = h r _  s . (A.6) 

The singular states and their descendants form one submodule Vh,, or two distinct 
submodules Vh~ and Vh~,, depending on the case [18]. The irreducible representation 
is obtained from V h by factoring out all the singular states, i.e. by constructing the 
coset Vh/Vhl or Vh/(Vh~ • Vh~, ). In the latter case, Vhl and Vh~, have actually a 
non-empty intersection, which is again of the form Vh, ~ • Vh,,, etc. 

The character (1.3) of an irreducible representation of the Virasoro algebra is, up 
to the factor qh-C/24, the generating function of the number of states at level N. 
When h is not of the form (A.5), this number is the number of partitions of N, 
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hence 
q h - c / 2 4  

xh(q) = 1-i7=i(1 _ q , ) -  (A.7) 

When h is a zero of Kac determinant (i.e. of the form (A.5)), and if all the singular 
states form a single submodule Vhl, the irreducible character is simply: 

qh-c/24 qh~-c/24 

xh(q) = l_[~o( 1 _ q , )  (A.8) 

Finally, when there are two distinct submodules Vhl and Vh~,, the irreducible 
character reads: 

, ,  q h - c / 2 4  

x h ( q ) = ( qh _ qh~ _ qh~' + qh~ + qh2 . . . .  ) N~ (1 - q " ) "  (A.9) 

Let us first specialize to the case of representations of central charge 

6 (p  _p,)2 
¢ = a , ( A a 0 )  pp' 

with p and p '  two coprime integers. Then eq. (A.5) reads 

( p r - p ' s )  2 -  (p  _p,)2  
= ( A . 1 1 )  

4pp' 

If y is not integer, the representation of highest weight 

yZ (p_p , )2  
h = (A.12) 

4pp' 

is certainly irreducible, and its character is of the form (A.7), or equivalently: 

where 

and 

qyZ/2N 

x (q) - - ,  . ( q )  

N =  2pp', 

oo 

~(q)  = ql/24I-I (1 _ qn) 
1 

(A.13) 

(A.14) 

(A.15) 

is Dedekind's function. 
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On the other hand, consider values of h of the form (A.11). As already noticed in 
(A.6), there is some arbitrariness in (r, s). For any such pair of integers, define 

X = p r  - p ' s .  (A.16) 

Feigin and Fuchs [18] have shown that one is in the case (A.9) if r ~ 0 mod p'  and 
s 4:0 mod p, in the case (A.8) otherwise. 

Denoting r o and s o as two integers satisfying 

1 ~< r0~<p ' -  1 , 

1 <~s0~<p-1 ,  

we may distinguish the following cases: 

(i) 

(ii) 

( r , s )  = (kp' ,  p ) ,  k >t 1 integer, 

x = ( k -  1)pp', 

- -  1 z xh(q)=qX:/2U 1 qkpp' _~(q[(k-1)pp'l /2N qt(k+llpp'12/2N} 
~l(q) 

( r , s ) = ( r o + k p ' , p ) = ( p ' - r o ,  kp ) ,  k >~ 0 integer, 

X = ( r o  + ( k - 1 ) p ' ) p ,  

X h ( q )  = q x2/2N 

(iii) 

(iv) 

(A.17) 

(A.18a) 

(A.18b) 

1 -- qkp(p'-ro) 1 q[(k+l)pp,_rop12/2N}, ~l(q) = -~ (q[(k-1)pp'+pr°12/2N- 

(r ,  s) = (kp' ,  So), k >t 1 integer, 

h = (kp - So ) i f ,  (A.18C) 

X h ( q ) = q X 2 / 2 N l - - q k p ' s °  = !(qtkpp'-Fsol2/2N_q[kpp'+p'So?/2N},  

( r , s ) = ( r o + k p ' , s o )  , k >~ 0 integer, 

)~ = pr o - p'  s o + kpp' , 

= pr o + p's o + kpp' ,  (A.18d) 

Xh(q) = E ~l(q) n~Z 
n~[-k, -1] 

q(nN+h)2/2N q(nN+~)2/2N 
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[] o . o [] 

A A X N ~ Y  
o .  x o .  x 

O x x O x x 

/ x O x x O x x 

~ x  x O x x O x x 

, / 1 / ' / , / ' / , / / , / / , / / , / / , / / . / / . /  r 

Fig. 4. Conformal grid: plot of the independent degenerate representations (here for p ' =  3, p = 5). 
• ( r , s ) = ( k p ' , p ) ,  [] ( r , s ) = ( r o + k p ' , p ) ,  © ( r , s ) = ( k p ' , s o ) ,  × ( r , s ) = ( r o + k p ' , s o ) ,  with 1 ~<r0~< 

p ' -  1, 1 ~<s 0 ~ p -  1, k~> 0. 

It  is easy to see that these four cases exhaust all the values of the Kac table (A.11), 

thanks to the symmetries (A.6) (see fig. 4). The latter case includes of course the 

minimal  characters X ro, So [19, 20]. Some of these formulas had already appeared [5]. 
For  any value of the central charge c < 1 which is not of the form (A.10), the 

coefficient x in (A.4) is irrational. Then if h is of the form (A.5), r and s are unique 

(up to a sign) and the character X~ reads: 

q[( X + l ) r -  xs]2 /4x(  x + l) _ _  q[(x + l)r + xs]2 /4x(  x + l) 

Xh = , / (q)  (A.19) 

Next, we turn to the case c = 1. This may be regarded as the x ~ oo limit of the 
previous formulae, and accordingly, the only degenerate representations occur for 

h = ¼n 2 , n ~ N ,  (A.20) 

where n is related to the labels r, s of eq. (A.5) by n = I r - s  I. The degeneracy 
occurs at level inf( r ,  s) = n + 1 and the corresponding character reads: 

an2~4__ q(n+ 2)2 /4  

x h ( q )  = ~/(q) (A.21) 

For  completeness, we briefly discuss the case 1 < c < 25. The parameter  x in (A.4) 
has then a non-vanishing imaginary part. This gives rise in general to complex 
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values of  the Kac zeros. The only real zeros h = h,s occur for r = s and are then 

negative: 

h,,  r = ~4(1 -- c ) ( r  z -- 1) ~< 0, (A.22) 

and the corresponding character is 

qhr. , -c /24(1--qr:  ) 

Xr, r = I-[(1 - q") 

_ l Iqr2(1_c)/24 - qr2(25_c)/24 ] (A.23) 
~(q) 

It is convenient to invert these equations for c ~< 1 and express (]//17)q h-c/24 a s  a 

function of  characters. This is trivial whenever h is not a zero of  Kac determinant. 
When it is, one may check in all cases (A.18), (A.19), (A.21), that (1/rl)q h-(c-1)/24 
may  always be written as a (finite or infinite) sum of characters, with positive integer 
coefficients. For c < 1, x rational, the results are as follows ( N  = 2pp'): 

1 q(nN)2/EN= o¢ 
n ~ O  -- E X(2k+l)p',p, (A.24a) 

k=n 

r 2 o~ 
n>~O _q(nN+pp) /2N= E X2(k+l)p',p, (A.24b) 

1"~ k=n 

n > O  ! q  (nN-p's°)z/2N~- ~ X2kp,,So + X(2k+l)p,,p_So , (A.24c) 
k~n 

1 oo 
n >10 --q (nN+p's°)2/2N ~--- E X(2k+l)p',p-s o "1- X2(k+l)p',s o , (A.24d) 

*1 k=n 

n>0  ! q  (nN-pr°)2/2N= E X(2k+l)p'-ro,p + X(2k+l,p'+ro,p (A.24e) 
T] k=n 

1 
n>~O --q (nN+pr°)z/2N= E X(2k+l)p'+ro,p + X(2k+3)p'-ro, p , (A.24f) 

'11 k~n 

n>~O 
1 __q(nN-pro+p'so)Z/2N = • 

X(2k+l)p,+ro,Soq- X(2k+l)p,_ro,s o 
k=n 

-{- X(2k+ l)p,+ro,p_So + X(2k+ l)p,-ro,p-So , (A.2ag) 

n > 0  
1 __q(nN-pro-p'So)2/2N = 

oo 

E X2kp,+ro,So +X2kp'-ro,s  o 
k=n 

-1- X(2k+l)p,+ro,V_So q- X(2k+l)p, ro,p_so. (A.24h) 
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It is important  to remember that in these expressions, r 0 and s o satisfy (A.17). In 
particular, notice that equation (A.24f) is not obtained from (A.24e) by changing r 0 

into - r  o. Changing (r  o, So) into ( p ' - r  o, p -  So), however, is a licit operation. For 
c < 1, x irrational, eq. (A.20) is easy to invert, because irrationality of x prevents 
h + rs from being a zero of the Kac determinant: 

q [(x+ 1)r-xs]2/4x(x+ 1) 

- -  = X([ (x+l ) r_xs l2_ l ) /4x (x+l )  -~- X([(x+l)r+xs]~ l ) / 4 x ( x + l ) .  ~A.23) 
71 

Finally, for c = 1, inversion of (2.22) yields: 

qn2/4  oo 

- - =  E X(n+ 2m)2/.4 " (A.26) 
~/ rn=0 
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