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We show that the connection between certain integrable perturbations of N = 2 superconfor-
mal theories and graphs found by Lerche and Warner extends to a broader class. These
perturbations are such that the generators of the perturbed chiral ring may be diagonalized in an
orthonormal basis. This allows one to define a dual ring, whose generators are labelled by the
ground states of the theory and are encoded in a graph or set of graphs, that reproduce the
pattern of the ground states and interpolating solitons. All known perturbations of the ADE
potentials and some others are shown to satisfy this criterion. This suggests a test of integrability.

1. Introduction

N =2 superconformal theories have been under active investigation during
recent years. Of particular interest is to understand their perturbations by relevant
operators, that preserve the N =2 supersymmetry and make them massive field
theories, and among them, those that are integrable ([1], for a review and a list of
references see ref. [2]). Integrability seems to imply nice features on the pattern of
solitons that interpolate between the ground states of the theory.

Two years ago, Lerche and Warner have studied the perturbations of the N = 2
theories described by an ADE Landau—-Ginzburg potential [3,4] and perturbed by
the least relevant operator [5]. They made the intriguing observation that the
pattern of minima of the potential in field space then reproduces the shape of the
corresponding Dynkin diagram, and that the values of the polynomial representa-
tives of the chiral ring at the minima of the potential are proportional to the
various eigenvectors of the Cartan matrix. In the A-case, the chiral algebra
satisfied by these polynomials is nothing else than the Verlinde fusion algebra of
the corresponding SU(2) theory, whereas in the other D- or E-cases, its interpreta-
tion remained more elusive.
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In this paper, we want to point out that this feature extends to a much broader
class of integrable perturbations, that the association between the corresponding
ring (or algebra) and a graph is something that has already been encountered some
time ago in the slightly different context of relations between lattice integrable
models attached to graphs and conformal field theories [6] and that conversely this
connection might suggest a simple criterion of integrability. In sect. 2, we review
shortly some facts on N = 2 superconformal field theories, their perturbations and
the structure of their “chiral ring”. We focus on cases where the multiplication
matrices C; in a natural basis of the (perturbed) chiral ring are normal, ie.
commute with their adjoint [C;, C/1=0. This condition is equivalent to the
property of C; to be diagonalizable in an orthonormal basis *. More generally, we
assume that the matrices may be made normal after a change of basis that respects
the natural gradation of the problem (U(1) charge). This we call the normalizability
property. We then recall in sect. 3 some definitions of what we call a graph ring, of
its dual ring, and how in many cases a subring of it enables one to identify a
structure of blocks with nice modular properties. Applied to the ADE perturba-
tions mentionned above, it tells us how to group the polynomials into blocks in
one-to-one correspondence with the blocks of the corresponding SU(2) modular
invariant. A survey of the ADE cases (sect. 4) and of cases related to SU(N) (sect.
5) shows that the property of normalizability is quite restrictive and allows only
sparse solutions. Strangely, all the known integrable cases of ADE potentials are
normalizable, and the dual ring has integral coefficients that may thus be encoded
in a graph. In so far as the normal matrices are some natural generalization of the
fusion matrices, this connection between the property of normalizability and
integrability represents an extension of a conjecture of Gepner [7] that there is an
underlying conformal field theory behind each integrable deformation of N =2
theory. Moreover, this condition of normalizability enables us to identify some
plausible candidates to integrability. One of them has been checked to possess
indeed conserved quantities [8]. We speculate in sect. 6 on the issues raised in this
paper. Four appendices gather some technical material on the form of the
D-potential and free energy (Appendix A), on the exceptional cases (Appendices B
and D) and on SU(3) at level 2 (Appendix C).

2. Perturbations of N = 2 Landau-Ginzburg superconformal theories

Consider a N =2 superconformal theory that admits a description by a Lan-
dau-Ginzburg superpotential. The latter is a quasi-homogeneous polynomial in

* A simple proof of this fact is provided by the decomposition of C into its hermitian and antihermitian
parts, C= A +iB, A= A", B = BY; the commutation of C and C" translates into the commutation of
A and B that may thus be diagonalized simultaneously in an orthonormal basis.
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the superfields, Wy(x, y,...). The case of the “minimal” N =2 theories (with
¢ <3) is particularly striking since this superpotential is given by one of the
well-known ADE singularities [9], thus matching the classification of modular
invariants [3,4]. This description is substantiated by the comparison of the chiral
ring of the N = 2 theory with the local ring of the singularity. The former describes
the non-singular pointwise product of fields that satisfy the constraint 4 = 1q, with
h their conformal weight and g their U(1) charge, and the latter describes the
multiplication in the ring of polynomials mod 8, W,, o W, ....

The important question of the N =2 supersymmetry preserving perturbations
[10] may then be investigated using this potential description.

Let W(x,...,t.) be the perturbed potential in terms of the flat coordinates ¢,,
(see ref. [2] for a definition and references), let pfx,...,t)= —dW /¢, be the
corresponding basis of the (deformed) chiral ring with p,=1 and pg the unique
basis element with maximal U(1) charge. The structure constants of the ring

p;p;=C;fp, mod oW (2.1)

are functions of the coordinates ¢, and have been proved to satisfy two kinds of
constraints (in addition to the associativity and commutativity which are obvious
from that definition) [11], )

() the metric tensor defined as 7,; = C; j“ is independent of the ¢’s;

(i) C,/ satisty the integrability condition that enable one to write C,; =

0, C; (37 /01,001, )F(¢ ), where F(r.) is some function, the free energy of the
theory.
We should mention that Dubrovin has undertaken the classification of the solu-
tions to these constraints, independently of the existence of a potential and
polynomial representation of the chiral ring [12]. For more on these topics, see ref.
[13].

For any given perturbation, let us consider the chiral ring. Consider first for
simplicity the case where the potential depends on a single variable x. Let C; be
the matrix of structure constants encoding the multiplication by p (x) = x. We thus
have a representation of the chiral algebra by a set of polynomials in x and
according to an argument given for example in ref. [14], this implies that the
constraint W'(x) = 0 is the characteristic equation satisfied by Cy:

W'(x)=det(x1—-C)). (2.2)

In particular, if the perturbed potential W is a good “resolution” of the singular
Wy=x"*!/(n+ 1), namely if the zeros of W’ are distinct, then C, has distinct
eigenvalues and is diagonalizable. (An example of a non-diagonalizable case is
provided by W =x%/6 —x3; C, has a double eigenvalue at 0 and is not diagonaliz-
able. The singularity has not been resolved.)
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Suppose now that C, is “normalizable”. By definition, this means that a
diagonal * change of basis in the polynomial representation makes C; normal

C\f = ="M,/ (2.3)

with M, normal, hence diagonalizable in an orthonormal basis ¢"; in fact as all C;
commute, they are all made normal by the same change

p[pj
Cijk — —Mijk’

(2.4a)
Py

(M)} = TAPUP " (2.40)
a

and because of the symmetry i <> j, the condition p,=1 hence M,=1 and the
orthonormality of the #’s, one finds that the eigenvalues have the form A =
¥ /9 hence

Ou e
(Mi)jk: Z ll’(()) (25)
a a
Thus the eigenvalues of C,, i.e. the zeros of W', or the extrema of W, are
Vi
*a =Py (2.6)
a

The case where the potential involves more than one variable is easy to deal
with, but at one point less explicit. For definiteness we consider the case of two
variables but the extension to any larger number is straightforward. The assump-
tion that the theory is described by a potential W(x, y) amounts to saying that the
chiral ring is represented by polynomials in the variables x and y, i.e. that all the
matrices C; are polynomials in the matrices C;=1, C, and C,

xp(x,y)=C,/p(x,y) modadW,sW,
o (x,y)=C,/p(x,y) moddW,oW. (2.7)

* Our insistence on this diagonal change of basis is due to the fact that it must preserve the gradation
by the U(1) charge; when several fields have the same gradation, a wider set of redefinitions would be
conceivable; we have not studied this systematically.
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Thus for any extremum of the potential x,, y,, d,W(x,, y,) =9,W(x,, y,) =0
X, P X0y ¥o) = CelP(X45 Vo),
YaPi(Xas ¥o) = €10 (x4, ¥a) (2.8)

and hence x, is an eigenvalue of C, and y, one of C, for the same eigenvector. If
moreover C, and C, are normalizable, then all the C’s may be diagonalized in the
orthonormal basis (" according to eq. (24a) and as before,

v
a =px ‘/120) ’
(’b;y)
Ya =Py @ (2.9)

In contrast with the one-variable case, the reconstruction of W from C,, C, is not
obvious.

The appearance of algebras of the form (2.5), generalizing the Verlinde formula
for fusion algebras is something that has already been encountered in association
with graphs. We shall devote the next section to recall some facts on what we call
graph algebras.

3. Graph algebras
3.1. THE TWO DUAL ALGEBRAS ATTACHED TO A GRAPH

We present here some concepts on rings (or algebras) attached to graphs [15,6].
Let us consider a graph defined by its adjacency matrix G, whose non-negative
entries G,;, count the number of edges connecting the vertex a to the vertex b.
The graph may possibly be oriented, and thus the matrix G be non-symmetric, but
we request it to be normal. (Here, G is real and thus G’ = G*%). Clearly any
symmetric matrix (hence any adjacency matrix of an unoriented graph) is normal.
Let us denote (" the components of the orthonormal eigenvectors, where the
index [ labels the eigenvector. Note that in general, / and a take an equal number
of values (equal to the size n of the G-matrix) but belong to different sets. For
convenience, we shall label the vertices @ by integers running from 0 to n — 1,
whereas [ will also for simplicity be taken as an integer taking in particular the
value 0 *. By convention, ! = 0 will denote the Perron—-Frobenius eigenvector. We

* We depart from our previous conventions of ref. [6], where both a and ! were taking values starting
from 1 rather than 0; this change is motivated by the mismatch with the degrees of polynomials or
other gradings (U(1) charges...) that are natural in the problem at hand.
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also assume that G,, possesses a “unit” vertex a, such that
(1) vi, w,ﬁ? #0. (3.1a)
(ii) 3! vertex f such that G, , =9, ;. (3.1b)

At the possible price of a relabelling of the vertices of the graph we shall take
a, = 0. The role of this unit vertex 0 is clear: the graph associated to G encodes
some sort of “fusion” by the vertex f, in the sense that we can write fX0=f,
fXa=G,b. In the particular case of ADE Dynkin diagrams, / is a Coxeter
exponent minus 1 taking n values between 0 and A — 2, with A the Coxeter
number. More generally, in a variety of cases related to a Lie algebra, it is more
natural to regard it as taking its values in a bounded domain of the weight lattice
of this Lie algebra [6]. The archetypical case is provided by the A, Dynkin
diagram, where the ¢, I, a=0,...,n— 1 are also the matrix elements of the
modular S-matrix for the SU(2),_, current algebra. This is readily seen on the
celebrated Verlinde formula [16] written as

— )
n—1 (//‘S )t//(m)(lf(p)*

EPVE

expressing the fusion coefficients in terms of ’s. The A Dynkin diagram has the
uncommon property of being self-dual in the sense that the two sets of a-indices
and [-labels may be identified: this is due to the symmetry of the § = ¢ matrix.
Now, the Verlinde formula suggests to form similar sums for the other D or E
Dynkin diagrams, or more generally for a generic graph with a normal adjacency
matrix. Then the two sets {a} and {/} are no longer equivalent and there are two
possible summations. The one carried out in (3.2), and the dual one

(3.2)

n—1 w(l)w(l)d,(l)*
. 3.3
120 — (3.3)

Contrary to the case of the A Dynkin diagram, the M’s are not in general integers.
In contrast, for the D and E Dynkin diagrams as well as a larger class of graphs
studied in ref. [6], the N’s are! Moreover, for a subset of these graphs — the A,
D..., and E¢¢ cases among the Dynkin diagrams — both M’s and N’s turn out to
be non-negative. We stress that these are empirical observations and that we know
no sufficient condition on the graph that ensures the integrality of the N’s. Note
that the matrices M, and N, defined, respectively, by

(MI) P = Mlm 4

(Na) " =N (34)
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satisfy an associative and commutative algebra
MM, =M, ’M,,
NN, = NN, (3.5)

and the orthonormality condition ensures that M, =1 and N, =1 are the units of
these algebras.

In writing (3.2) and (3.3), we have implicitly assumed that these summations
make sense, i.e. that no vanishing denominator occurs. Although the Perron-
Frobenius theorem tells us that the components of the eigenvector with the largest
eigenvalue are non-negative, it does not forbid the vanishing of some of these. We
do know cases where either one of the #§” or one of the ' vanishes. To avoid
the possibility of a vanishing ¢{”, we included the condition (i) (3.1a) in the
definition of the unit vertex 0 of the graph. Moreover, a sufficient condition to
avoid the vanishing of {”’s is to suppose that the graph is connected, i.e. there
exists a path a, =4, a,,...,a,=>b between any couple of vertices (a, b) of the
graph, G, , G, ,0,--- Gy o, 0.

We should also note that there are cases where the matrix G has degenerate
eigenvalues and there is a problem of choosing the appropriate combination of the
corresponding eigenvectors. Such is the case of the D,, Dynkin diagram: the
middle exponent 2/ — 1 is twice degenerate and the coefficients N,,° are integers
only for a specific choice of the eigenvectors y?'~2*; for [ even, this choice
involves complex combinations of the real eigenvectors, whence the relevance of
the complex conjugation in egs. (3.2)-(3.3).

Except in the simplest case of A-type, no physical interpretation of these
algebras, and in particular of the integral N's as some multiplicities is known (see
ref. [17], however).

3.2. SUBALGEBRAS AND MODULAR INVARIANCE

In this section, we review the connections between (some of) these graph
algebras and fusion algebras of rational conformal field theories. This is not in the
main stream of our paper, but we include it here to illustrate some cross relations
between these topics and to show that some of the considerations of ref. [5] may be
extended. Whenever all the M’s and N’s are non-negative (case referred as “type
I in the ref. [6]), one may find a subalgebra of the graph algebra (3.3), i.e. a stable
subset T of vertices of the graph, which encodes the fusion rules of the underlying
WZW theory. Namely, in the cases considered in ref. [6], each of the graphs forms
the target space for an integrable lattice model whose continuum limit is described
by a coset c.f.t. G,_, X G,/G, and is in correspondence with a modular invariant
of the relevant G, WZW theory. The [/ labels indexing the algebra M are in



P. Di Francesco et al. / Graph rings and integrable perturbations 607

correspondence with integrable weights of the G, WZW model at some fixed level
k. On the other hand the modular invariants of the WZW theories at a given level
can be of two forms: the “block-diagonal” ones formed by a sum of absolute
squares of sums of WZW characters y; (the so-called “extended” characters), and
the “twisted” ones, obtained by combining left and right blocks of the preceding
class in a non-diagonal way. Concentrating on the block-diagonal invariants (also
called type I in ref. [6]) *, we see that they are characterized by a partition I,,
I,,...,1, of the set of labels of representations which form the theory, the modular
invariant reading

2

z- %

i=1

ZX[

[e]1;

We found that the graph subalgebra coincided in all known cases with the fusion
rules for the primary states of the “extended” symmetry, whose characters are the
blocks

X1, = X X (3.6)

eI,

More precisely, from the data of the graph ring and of its subring associated with
the stable subset T of vertices, we can define the equivalence relation = on the
eigenvalue labels [19]

I=m iff ) gPypim*+0. (3.7)

aceT

The equivalence classes form the desired partition of the set of eigenvalue labels
into blocks 1,,...,1,. The latter are in one-to-one correspondence with the
elements of T, and we relabel them I,, a € T. The corresponding S-matrix of
modular transformation is given by

2
§b= , independenton [€1,. 3.8
a )1 72

(Zc € T| 'J/vgl) |2

Like any fusion algebra of a rational conformal field theory, the subalgebra with
fusion coefficients NS, a, b, ¢ €T is self-dual, due to the symmetry of S. The
dual M, can also be expressed in terms of the original dual algebra M,,” but in a
less straightforward way. In particular its one-dimensional representations have a

* This distinction between type I and non-type I graphs and/or modular invariants seems to have
multiple aspects, as testified by the existence or non-existence of a flat connection on the space of
paths on the graph [18]; see also the end of appendix A.
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TaBLE 1

A, D, E perturbations. Normalizable perturbations of the A, D, E potentials are displayed as follows.
First column: name of the potential; second column: name of the perturbation (list of the non-zero t’s);

third column: the dual ring of the normalized ring, through the graph of one of its generators (all the

cycles have to be understood as oriented anti-clockwise); fourth column: locus of the extrema of the
perturbed potential (x in the complex plane in the one variable case, x- and y-planes otherwise); fifth
column: values taken by the perturbed potential at the various extrema, in the complex plane (the links
correspond to the minimal solitons interpolating between the extrema); sixth column: a check-mark in

case of known integrability, a question-mark otherwise.

An th-1 o—-o>0 -
ts
I~
ty
»~
\O/
n )’x
D It
n+3 2n >_.-—H )()()00( ..... % o o -
n-1 1 0 ;
X
n z
1 0 1
A XX
[ SRR DR X 9
X : %
Xx)(
1
D2n ta y
0 e XA -
L IR 4
ad X
2n-3
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TaBLE 1 (continued)

609

E T
6| tio 5 % X
A g
012 3 4 X x
t7 %
0
tq oo
te —o—o
t3
tyg
- 0
6 y: 1
: 2 x
E7 tis 6 1~
._._._I_._. 3x ...........................
x: X
012345 |7

simple realization in terms of the one-dimensional representations of M,,". The
latter are of the form

!
vs

0
v

gl 73

b=

(3.9)
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TasLE 1 (continued)

- 0
y? 1 x
7 H
Egta Ll
! o—o |
0123456 |7*% x
X 6

Lis \ /

(=]

tio
t18 *—0—0—0 x X

1 A E= LA
=00

and satisfy pipg =M, "p2, for any vertex a. The corresponding one-dimensional
representations of the self-dual subalgebra read

Sb

a

S0’

a

e = a,beT, (3.10)
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and one finds, using the various relations between the S’s and the s

1/2
e =Y | T @l T [v@F| 57, (3.11)

lel, LceT ceT

for any a, b€ T.

We should stress that all these considerations are empirical and based on a case
by case examination of all the type I cases pertaining to G = SU(2) or SU(3) (the
classification of modular invariants for the latter case has been completed in ref.
[20D.

Let us illustrate this on an example. We consider the E, diagram of table 1, and
the subalgebra of the graph algebra formed by the end-point vertices, T = {0, 4, 5}.
It is isomorphic to the fusion algebra of the Ising model, (known to be that of the
blocks of the E, theory), upon identification of 0 =1d, 4 =¢ and 5 = o, respec-
tively the identity, energy and spin conformal blocks of the Ising model. The
eigenvalues of the adjacency matrix [E¢],, are labelled by the Coxeter exponents
shifted by —1

I+1
B(l)=ZCOS 77'?, l=0, 37 4) 65 7’ 10

Applying eq. (3.7), we find the corresponding equivalence classes of the set of
exponents

IO={O’ 6}’ I4={4710}5 15:{3: 7}:
and the associated modular invariant
2 2 2
Ze,=Ixot xsl" +1xa+x10l x5+ x7["- (3.12)

Moreover we get the one-dimensional representations of the self dual subalgebra

1 1

o = 59 4 — po,
« T3y BT P

o pay b
a /—6 Dy 34 /—3 Dio>

52+ pa]. (3.13)
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3.3. CHEBISHEV RESOLUTION OF THE ADE SINGULARITIES

Let us show how the considerations of sect. 2 apply to the case considered by
Lerche and Warner, namely the perturbations of the ADE potentials by their least
relevant operator. In the A, case, the corresponding potential is nothing else than
the Chebishev polynomial of the first kind (7,(2 cos 8) =2 cos nf): W(x) =
(n+ 17T, (x); the basis of the chiral ring derived from the flat coordinates is
provided by the Chebishev polynomials of the second kind (Uf2 cos 8) =
sin(/ + 1)8/sin 8), p(x)=U,_(x), I=1,...,n, and the chiral algebra that they
satisfy is just the SU(2),_,_, fusion algebra. The potential W(x)=(n +
17T, (x) is the fusion potential that encodes these fusion rules [21,14].

The other cases D and E have also been discussed [5]. By inspection, one finds
that

(i) the corresponding matrices C, and C, can be made normal by a diagonal
redefinition of the basis;

(i) the dual algebra has among its generators the incidence matrix of the
Dynkin diagram, or equivalently the {" are the eigenvectors of the Cartan matrix
of the D or E Lie algebra and according to the discussion of sect. 2, p,(x,, y,) &
v/

(iii) the pattern of extrema of the potential in the x-y plane reproduces the
shape of the Dynkin diagram.

Then the previous discussion applies: in the “good” cases D,,.,, E; and Eg4, one
can find linear combinations of the polynomials p,(x, y) that generate a subring of
the chiral ring isomorphic to the fusion ring of the corresponding SU(2) modular
invariant. Let us illustrate this again on the case of E;. We start from the
deformed E, potential W given in ref. [11] and recalled for convenience in
appendix B. The polynomials p,(x, y, t)= —(3/9t,)W form a ring (modulo 4. W,
d,W) with structure constants derived from the free energy given in ref. [22]. The
potential W and the p’s are quasihomogeneous polynomials of x (of degree 4), y
(degree 3) and ¢, (degree 12 — ).

If only ¢,, =1, the coupling to the least relevant operator, is non-vanishing, the
polynomials p; reduce to po=1, p; =y, p,=x— 3t%, ps=y*>—tx+ i3, p;=xy
—+t2y and p,, =xy%— 2t%y? + 1t3x. After a change of scale

_ V3

Do =Dy> P3= 1‘37173,

V6 3V2

Dy = t—2P4, De= ";rpg,

6 6v3

pP7;= ;772‘P7, Pyp= _tg‘plo’
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the dimensionless p’s have structure constants given by the algebra dual to the one
generated by the E; Dynkin diagram, in the sense of sect. 3.1. In other words,

ﬁiﬁj =Mijkp~k~

To make contact with the fusion algebra of the underlying SU(2) model we finally
form linear combinations of the p’s according to eq. (3.13), and we find that the
polynomials II,, II, and II5 form a subring isomorphic to the fusion ring of the
theory (3.12).

The property of normalizability enjoyed by the chiral ring of the Chebishev
resolution of the ADE singularities has prompted us to systematically examine
what are the normalizable deformations of these cases. This will be our endeavour
in the next section.

4. Normalizable deformations of the ADE singularities

This section is a catalog of the normalizable deformations of the ADE poten-
tials by a single non-vanishing parameter ¢; (see sect. 6 for a discussion of this
restriction). Because the potential is a quasihomogeneous polynomial of the
variable(s) x (and possibly y) and of this parameter, ¢, may be rescaled to the
value 1. This will be assumed in the following.

41.A,

We first examine the A, deformed potential W{(x, ¢,,...,t,_;) of ref. [11]. The
matrix C, in that case reads

o 1 0
(., 0 1 0

c,=|f-2 G O 1T (4.1)
tl tn—2 tn—l 0

and the potential W is reconstructed from (2.2) by one quadrature. We assume
that only ¢,,, =¢ is non-vanishing. Then C; reads

0o 1 0 .. e 0
0 1 0 0
o 1 -
c, =19 , (4.2)
t 0 0
0
0 0 0
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where the diagonal of ¢’s starts in position (n — p, 1) on the matrix. We look for a
diagonal change of basis P = diag(p,,...,p,), such that C, =P~ 'C,P is normal.
The normality condition imposes constraints on the p’s, which are all expressed in
terms of o; = pfz. For all values of p, we get

o,_ Oy o,
5 . —. (4.3)
oy ) Opr1

According to the respective positions of p and in, we find for p > 1
G) p<in:

g; .0 .
=j— I<j<p+1
Oi+1 )
g; ! ,
=(p+1)— p+l2<jsn-p-1
i1 )
0 L1 .
=(n—-j)— n-p<j<sn-—1.
i1 )
(i) p > 3n:
g; .01 .
=Jj— l<jsn-p-1
Oi+1 )
g; o) .
=(n-p—-1)— n-p<j<p+1
j+1 )
g; 4! .
=(n—j)— pH2<j<n—1.
Oi+1 )
From (i) and (4.3) we get
Toup o oy
=—=p—,
Op—p+1 02 )

possible only if p = 1. Analogously, from (ii) and (4.3) we get

g, (23] (g%
== — —(n-p-1)—,
o-n—p+l o, 02

possible only if p =n — 2. This leaves us with the three cases
1D p=0: o, =t 2k D/=D0 =12 ..., n.
@ p=1: 0, =2Q¢)"Xk=D/=D =2 3 . n—1,
o=1 o=1t77
B p=n-2: g=t7% Y k=12, ,n
We conclude that the only normalizable cases with a single non-vanishing
t-parameter are the three cases ¢, # 0, £, # 0 and ¢, _; # 0. What is most striking is
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that these three cases have been identified as integrable deformations [23]: the
perturbation by the most relevant operator has long been recognized as integrable
([4,24-27]), the one by ¢, is discussed in refs. [1,24] while the case of ¢,_; is
treated in refs. [5,28].

There are several things that can be done on these normalizable cases:

(a) From the diagonalization of the matrix C, = p, M, in an orthonormal basis,
we can construct the dual algebra N,,°. In all these cases, it exists (because all
#§P # 0) and it leads to non-negative integers! Each of these can be regarded as
the adjacency matrix of a (possibly disconnected) graph.

(b) We can also determine the extrema of the potential W(x, t), i.e. both the
location of the extrema x, (on the real line or in the complex plane) and the value
of W at this x,. We find that the location of the x, follows the pattern of vertices
of one of the graphs of the dual algebra, call it N, consequently, it seems natural
to link the extrema x, by edges of the graph of N;. As for the extremal values of
W, they are such that for two extrema x, and x, linked as just explained,
| W(x,)— W(x,)!| takes only one value | AW |. The interpretation [1] is that the
link exists between the ground states a and b of the potential if and only if there is
a “fundamental” soliton interpolating between them, and the mass of this soliton
is just given by | AW |. These features are apparent on the graphs tabulated in
table 1. We comment briefly the results.

(i) For the perturbation by ¢,_,, the Chebishev resolution discussed before, the
extrema lie at x, =2 cos m(a +1)/(n+1),a=0,...,n — 1, and the value of W at
these points is W, = 2(—1)**! /(n + 1). The graph encoding C, as well as one of
its dual is the A, Dynkin diagram.

(i) For the perturbation by x?, W=x"*!/(n+ 1) — x2, one finds extrema at
xo=0 and x,=expQim(a—1)/(n—1)), a=1,...,n—1; they form a centered
(n — 1)-gon in the complex plane, like the corresponding values of W: 0,[(n — 1)/
2(n + 1] exp(4im(a — 1)/ (n — 1)). The graph of the dual N, ,’ has the daisy shape
depicted in the third column of table 1.

(iii) For the perturbation by x, the results are similar, with a non-centered
oriented polygon: x, = expQima/(n — D), W,=[—n/(n+ D] expQima/(n — 1)),
a=0,...,n—1. On table 1, only the graph associated with N, has been drawn,
but the other N’s would connect other pairs of ground states, corresponding to the
other, non-fundamental, solitons.

42.D,.,

It may be useful to first recall that the D,,, perturbed potential may be
obtained from the A, one by an orbifold procedure. We devote appendix A to
a review of this construction and of various properties of the D-potential and free
energy, including a curious positivity property of the coefficients of F for D

even”
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The bottom line is that the D, , potential involves a new variable y, and after
inserting an extra deformation parameter 7 coupled to v, it reads

Wo, (X, ¥ tos tayenislyy, T) = WA2n+1(x’ =Vx, t,, 0, t2,...,12n) +ixy?+ 7Ty

xn+1

='2(n—+1)—+.... (44)

The free energy F of the D-models may also be determined fairly explicitly in
terms of the A one. One finds that

Fp (tosta,eeistay, TV =Fa, (20,0, 15,...,15,) = 372D(ty,.. . t,), (4.5)

where the expression of @ is given in appendix A.

From the orbifold connection between the D, ., and the A,,, ; cases, it seems
reasonable to expect the perturbations by the least relevant and the most relevant
operator to be (i) integrable, (ii) normalizable; the former observation has been
made in refs. [24,29], for the most relevant (and n even), and in ref. [5], for the
least relevant; as for normalizability, it is readily checked for these two perturba-
tions and one also finds that the perturbation by 7 is normalizable. The proof goes
as follows.

The matrix encoding the multiplication by p,(x) is given by

; d d 9 - ik
(Cni= bt—za_pE(FAzm_fT ‘D(t~))"7 "
0
A :
Clz _'T 5 (46)
T 0 .. —f,

where A4 is an (n + 1) X (n + 1) matrix, which can be expressed in terms of the
matrix C, encoding multiplication by x in the A,,,, model. The relation is as
follows:

(A)/ = (C}),Y —1,,8,, i=0,....n. (4.7)

Looking at specific perturbations we now get:
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(i): r-perturbation: The matrix C; simplifies dramatically and is

0 1 0 0
0 0 1 0 0
c, =" T . . (4.8)
0o ... 0 1 0
0 0 0 -7
T 0 0

We see that this is a cycle and it is clearly normalizable.
(i): ¢;-perturbation. The matrix C, has the following form:

0
C, = A N (4.9)
0 ... —t,,

Obviously if in this case A is normalizable, the same property holds for C,,
therefore the normalizable cases in A, , with ¢,44 = 0 will also be in this case. It
is likely that these are the only normalizable perturbations with a single non-
vanishing ¢;, although we have no complete proof. There is, however, the possibil-
ity to mix the two operators of same degree, and for D, for example, one finds
that the operators coupled to ¢, + it are normalizable (see below sect. 5.2).

We thus discuss in turn the perturbations

(i) by t,,. This is the Chebishev perturbation discussed in refs. [5,28]. The
minima in the x—y plane build up the shape of the Dynkin diagram, while W takes
only two values. It is still true that the locations of the extrema are related to the
eigenvectors of the adjacency matrix of the Dynkin diagram D, , as in (2.9). If we
want to reconstruct the whole M,,¢ dual algebra, however, we have to distinguish
the cases of even and odd n. For even n, one chooses for the vertex 0 the end of
the longest leg of the diagram, since all the components §” are non-vanishing
(after some judicious choice of linear combinations of the eigenvectors pertaining
to the same eigenvalue). For n odd, in contrast, one has to take rather the end of a
short leg to have a well-defined expression and then the N, s are not all
non-negative, as recalled in sect. 3.1.

(i) by 7. The potential W=x"*!/2(n+ 1) + 3xy?>—y has minima at x,
exp 2ima/(n+2), a=0,...,n—1 and takes there the values W, ax]! (the
overall factors or phases have been discarded in table 1). The multiplication by x
yields a matrix of cyclic permutation, and the dual N, has the same form: in table
1, the links of the graph should be oriented. The integrability of that case is, to the
best of our knowledge, not established.

(iii) by 7,. The potential W=[x"*'!/2(n + D} + 2xy?> —x has minima at x, =
2" exp 2imwa/n, y,=0 for a=0,1,...,n—1 and x=0, y=+V2, and the
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values of the potential are W(x,, y,) = —(n2'/"/n + 1) expQimwa/n), W(0, + v2)
= (. For even nu, the ring generators are normal in the basis

xn/Ziwy
1, x, xz,...,x"/z_l,T, X

241 -1
n/rl o xm T xn =1,

for any w such that w* = 1. The dual-algebra generator is a cyclic permutation of n
vertices together with the exchange of the two remaining ones. For n odd, the ring
generators are normal in the basis 1, x,...,x"~!, x® — 1, y. The dual ring cannot
be constructed, due to a failure of condition (3.1a). For even n, the perturbation
has been argued to be integrable, as the most relevant one [29].

43. Eg

The only normalizable perturbations with a single non-vanishing ¢, are:

(i) by t,o. This is the Chebishev perturbation, with the extrema of the potential
ateither y=0,x= +1/2V3, W= F1/36/3,0orx=1+1/2V3,y=¢y1 £ 1/V3,
(e = +1), W= F1/36V3. The matrix N, is the adjacency matrix of the Dynkin
diagram.

(ii) by #,. This is an interesting case where the perturbation couples the two
variables x and y: W= 1x* + 1y* —xy. The extrema occur either at x,=y,=0,
Wy=0 or at x = expl6im(a — 1)/5], y = explRin(a — 1)/5], W, =
— & expl—2im(a — 1)/5], a=1,...,5. The dual N; is the adjacency matrix of a
daisy graph (like in the case of A, perturbed by 7,).

(iii) by t,, ts. In this case and the next, we allow two different ¢’s to be
non-vanishing, in apparent contradiction to our previous assumption. This is
because the two variables x and y are in fact uncoupled, and we are dealing with
the tensor product of a A, x>*-potential perturbed by x and a A, y“potential
perturbed by y2. As before the perturbation parameters t,, t, may be absorbed
into a redefinition of x and y and we choose them equal to 1. The extrema lie at
x=0,1and y=0, +v2, W=+  and twice + 3.

(iv) by 15, t,. The extrema are at x = +1, y = exp(2iaw/3), a =0, 1, 2 with W
taking six values in the plane.

The integrability of the case t;, has been discussed in refs. [5,28]. It would be quite
interesting to find a conserved quantity or any other evidence of integrability in the
case of the ¢, perturbation.

44.E,

The expression of the perturbed potential and free energy may be found in ref.
[22] (with a little misprint corrected in our appendix B) *. The only normalizable
perturbations by a single non-vanishing flat coordinate are

* We are grateful to A. Klemm for a communication on this subject.
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(i) by t,5. This Chebishev resolution, already discussed in ref. [5], leads to a
dual algebra that involves signs but is well defined. The generator N, is the
adjacency matrix of the E, Dynkin diagram. The extrema of W take place at
points that also reproduce that diagram, (see table 1) and W takes only two values
(with the conventions of ref. [22]), W= +(2 x 31°)~! (4 times +, 3 times — ).

(ii) by t,o: The potential W = 3x* + xy® —xy has extrema that lie in the x and y
complex planes, making the picture more difficult to read. Also, all the ¢, have
some vanishing component, making the N algebra ill-defined. Accordingly, there is
no corresponding entry in table 1. The integrability of that case is not known.

45. Eq

The parametrization of the perturbed potential by flat coordinates may be
found in ref. [22]. The normalizable cases are perturbations by

(i) by t,4: Extrema are at y, =1+ 1/VI5WWP /O, x, =y, — + + 24P /4O,
where @12 are the three eigenvectors of the E, adjacency matrix pertaining to
the eigenvalues 2 cos = (1, 7, 11). The corresponding critical values of W take
only two values, W= +1/20250V5 . Once again, the extrema display nicely in the
x-y plane the shape of the Eg Dynkin diagram. The adjacency matrix of the latter
is reproduced by the N, matrix.

(i) by t,4: The extrema lie at the origin, with W, = 0 and at the seventh roots of
unity, x, =expQim(a—1/7), y,=x2, W,= —Lx2, a=1,...,7. These extrema
and the resulting N, graph are again like in the case of Ay perturbed by ¢,.

(i) by ¢4, 110

(iv) by 1,5, tig;

(V) by 2,4, te: these last three cases corresponds to decoupled cases A, ® Ag.
Their extrema and graphs are thus obtained as tensor products of the A-cases
discussed above.

5. Non-ADE cases

5.1. THE SU(N) CASES

The study of effective Landau-Ginzburg theories beyond the ADE potentials
becomes more delicate. The main difficulty is the appearance of modules in the
singularities, i.e. dimensionless parameters decorating the potentials. The simplest
example of a module is provided by the Py singularity of ref [9], with a potential

3 +y3+ 2%+ axyz,

where the dimensionless parameter a is the module of the singularity [30].
However, Gepner [21] found some geometrical potentials for the fusion rings of
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the SU(N) WZW theories at level k, best expressed through their generating
function

Y "W (X, Xy Xnog)

m=0
2 3 N-1,N-1 N.n
= —log(1 —nx; + 12, = Pxy+ ...+ (=) Ny + (=1)7Y). (5.0)
The fusion ring is then the polynomial ring Clx,,...,xy_;1/{0,, W), with

m =k + N. The ring basis corresponding to the integrable weights of SU(N),,
(A, Ay_1) A; >0, XA, < k is formed by generalized Chebishev polynomials. It
was argued that this is just a particular perturbation of the chiral ring of an N =2
Landau-Ginzburg theory of N — 1 superfields @,,...,®,_,, with a quasi-homoge-
neous potential w¢"¥), generated by

T tmwiM(Py,..., By ) = —log(1—tD, +12®,— ... +(—~ 1)V "tV 1, ).

mz=0

(5.2)

There is now a bulk of evidence [3,4,27,31,32] that these Landau-Ginzburg
theories describe the N = 2 superconformal Kazama—Suzuki models [33] based on
the cosets (SU(N), X SO(2(N — 1)), /(SU(N — 1), ,; X U(1)). The potential w{),
is a quasi-homogeneous function of degree k + N, if we assign the degree j to the
field @,. The “Chebishev” perturbation reproducing the fusion ring of SU(N), is
therefore a perturbation by the degree k operator corresponding to the weight
(k, 0,...,0) (see table 1, where ¢, , =, is denoted by ¢#,). The task of computing
flat coordinates for generic perturbations of these potentials w’ is formidable.
However, it was carried out in one special case, corresponding to SU(3), [22]. The
appearance of modules, i.e. of coupling parameters with negative or zero dimen-
sion is clear from inspection of the possible degrees of operators in a generic
perturbed theory. Let %,  , (®P,...,Py_,) denote the ring basis element
(generalized Chebishev polynomial) with weight (A,,..., Ay_ ). It behaves like

%, ., AN_1(<D1,...,<15N_1)=¢’1‘1¢§‘2...¢,’\‘/‘L—f+...,

hence its degree is A; +2A,+ ... +(N — DA, _,, and can go up to (N — Dk: it
can become larger than the degree of the attached potential, £ + N, as soon as
k =2 for N> 3, or k >3 for N = 3. Hence the perturbations by such operators will
have zero- (marginal operators) or negative- (irrelevant operators) dimension
coupling constants to preserve the quasi-homogeneity of the perturbed potential.
In all cases, these will enable one to construct dimensionless couplings, whence
modules. This explains also how the cases SU(3), and SU(3), avoid the problem,
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being just part of the A, D, E classification of singularities without modules (resp.
A, and Dg, see next subsection for a detailed study), as well as SU(N), (A ).

Although the complete expression for perturbed potentials is not known, we can
consider some special perturbations which are relevant enough to avoid the
problem of modules, such as the “Chebishev” perturbation for instance. In the
remainder of this section we will concentrate on the SU(3) case at levels k > 3.
The generating function for the potentials w{®) , is easily recognized as a special
form of the SU(2) Chebishev potential generating function, i.e.

Y mwd(x, y) = L "y wD(x/Vy ),

mz=0 mz0

where w?(x)=T,(x)/m, T, the Chebishev polynomial of the first kind. This
enables us to study the most relevant perturbations of the conformal theory, by the
operators Z, o =x+ ..., %, =x2—y+..., %y, =y + ..., with respective degrees
1, 2, 2, and for which the perturbed potentials read

w2 T2/VY )

X w=y -T_tl’ox,
T(x/Vy

y: w=yn/2_(_n—¢—)_t0’1y’
T

x%—y: w=)’"/2—n(x’:\/;) —t0(x* = ).

For these perturbations, we worked out the perturbed ring and found that only
%,,=x and %, , =y were normalizable, together with the Chebishev perturbation
by %, . On the other hand, we computed the extrema of the potential, and found
striking similarities between the dual of the normalized ring and the positions of
the extrema and values taken by the potential at those. The results are collected in
pictorial form on table 2. To comment briefly, the “Chebishev’ perturbation by
t,_5 leads to a set of extrema in the x-plane inside a three-cusp hypocycloid, a
deformed version of the Weyl chamber of level n — 3. The potential takes three
possible values according to the triality of the ground state, on the vertices of an
equilateral triangle. The perturbation by #, coupled to x leads to two possible
pictures depending on the parity of n, because of parity properties of Chebishev
polynomials. For n even, the extrema in the x-plane lie at the vertices of 3(n — 2)
concentric regular (n — 1)-gons. For n odd, they are on 3(n —3) concentric
(n — 1)-gons while the origin is 3(n — 1) times degenerate (the latter degeneracy is
lifted by the y-coordinate). In either case, the dual generators reproduce these
features. Finally, another case that may be discussed easily is the #; perturbation
by y (see table 2).
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TABLE 2
Normalizable perturbations of the diagonal .7 *=**3 series of the Kazama-Suzuki cosets SU(3), x
SO(4), /(SUQ2), ., X U(1)). The columns are organized as on table 1. The first perturbation ¢, =¢, ;=
tro....0 is the “Chebishev” one, the corresponding third column displays the weight diagram of SU@3),
(generalization of the A Dynkin diagram) and should be understood as oriented in order for each
elementary triangle to be itself oriented anti-clockwise. The other cycles of the third column have to be
understood as oriented anti-clockwise.

n
A( ) tn.3 :&\\
l N
! RS
E o» >
0
t
neven
V
0 T~
t
nodd
0
)/
x plane, y=X, x=0,
x=0, y=0 , @™12=1]
t Rl
X X
t
same as t] « ¥ ?
y plane
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Note again that, like in the SU(2) case, the values taken by the perturbed
potential in the complex plane can be all linked in a connected graph with only
straight segments of the same length, corresponding to the mass of the unique
minimal soliton interpolating between the nearest-neighbouring vacua.

Beyond the SU(3) case, it might be possible to investigate some (relevant
enough) perturbations in the general SU(N), based on the following natural
conjecture. Rearranging the SU(2) type-A perturbed potentials of ref. [11], one can
derive the following generating function:

Y umW(x, 7y, 73,...) = —log(1 —ux +ulr, tutry+.),  (5.3)

mz0

where for a given level k=m —2, we retain only the couplings r,=t¢,, 7;=
ty_1s+-+sTrsr2 = to- The Chebishev potentials are obtained by taking 7, =1, and
7, =0 for p>2. Based on the Chebishev and (1, 0,...,0) perturbation cases, we
conjecture that this can serve also as a generating function for certain perturba-
tions of the SU(N) potentials, by substituting in (5.3) x=x,, 7,=x,, 73=
—X3,...,Tn_y =(— DV~ 1x,_,, and identifying the remaining couplings as pertur-
bations (1, =t;, y_, oo couples to the %, . y_, o o Operator).

.....

5.2. FAKE NON-ADE CASES

Let us return to the few SU(N) cases which avoid the appearance of modules.
SU(N), case. It is easy to see that the general perturbed potential takes the
form

N-1
WAN(xg o xyo) = WX Xy o) = X 8;%, = Sp.
i=1

Working out the perturbed ring, we find that it is isomorphic to the perturbed ring
of the SU(2),_, A, theory for some special coordinates s;, the identification of
the basis elements being x;=(0,...,0, 1, 0,...,00 > ())=x’ (if the 1 is in jth
position in the SU(N), weight).

SU(3), case. As mentioned in the previous section, the perturbed potential, of
degree 5, involves only couplings of positive dimensions 1, 2, 3, 3, 4, 5, to operators
with respective dimensions 4, 3, 2, 2, 1, 0 (see appendix C for the complete
expression.). The latter match exactly those of the D, model of SU(2) at level 8. It
is actually straightforward to find the isomorphism between the corresponding
perturbed rings. It involves a change of basis of the ring, preserving the initial
grading (hence allowing for rotations in the two-dimensional space of dimension-
two ring elements); accordingly the parameters ¢, f,,, ¢, ¢o, are proportional
to the Dy parameters ¢, ¢,, ¢, tg, whereas t,,, ¢, are proportional to ¢, + i . In
this sense, SU(3), is within the A, D, E classification.
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It is then an easy matter to examine what are the normalizable perturbations of
that case, involving only one non-zero flat coordinate in the SU(3) language. One
finds that the solutions are ¢, ,# 0, or ¢,, # 0, or ,,+ 0 or ¢, # 0, thus excluding
t;- The first two are just particular cases of the discussion above, the f,,
perturbation is the “Chebishev” one leading to the SU(3), fusion potential, and
to, is the least relevant perturbation. The first and the last have been already
found in the discussion of Dg. The perturbation by ¢,, that gives a chiral ring
isomorphic to the fusion ring of SU(3), is also known to be integrable [26]. Only
the ¢y, perturbation had not previously been recognized as integrable. In a recent
calculation to first order, it has been checked that this perturbation admits indeed
a spin-three conserved quantity [8].

6. Discussion

In this paper, we have explored a special class of perturbations of N=2
superconformal theories, in which the basis of the chiral ring is made of what we
called normalizable matrices. We showed that this property is fairly restrictive, and
that for the ADE potentials, it allows only a finite and small number of perturba-
tions, if we insist on perturbations in which only one flat coordinate is non-vanishing .
We have then shown that this normalizability property leads naturally to the
consideration of the algebra dual to the original chiral one; except in a few cases,
this dual algebra is well defined and admits a basis made of matrices with
non-negative entries (type I) or in which at least one matrix has this property
(non-type I). In all those cases, such a matrix may be regarded as the adjacency
matrix of a graph. The surprising empirical fact, that generalizes an observation by
Lerche and Warner, is that this graph resembles the pattern of the extrema of the
potential in coordinate space. This implies that there is a natural action of the dual
algebra on these extrema, namely on the ground states of the theory. Finally, a last
empirical observation is that there seems to be a connection between the integra-
bility of the theory and this normalizability condition: more precisely, ail the
known integrable perturbations of N = 2 theories with an ADE Landau-Ginzburg
potential and a few others have been found among the normalizable perturbations.
It is tempting to conjecture that there is an identity between the two classes. In
other words, normalizability could be a criterion of integrability.

We now want to discuss this and related questions raised by the previous
findings.

(i) What is the meaning of the normalizability condition? This condition has
been introduced on a technical ground, namely to allow the diagonalization of the
chiral ring in an orthogonal basis and the construction of the dual ring. Clearly a
more physical interpretation would be desirable. Let us point out that this
condition is stronger than the condition that the singularity has been fully resolved
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(in a physical language, that all the degeneracy of the extrema has been lifted, and
the theory describes only massive excitations). Indeed, the normalizability condi-
tion implies that the coordinates of the extrema are expressible in terms of the
eigenvectors according to (2.9); the independence of the latter implies the non-de-
generacy of the former. Conversely, it is casy to see that the perturbation by
t,=t+ 0 of the A4 potential, viz. W = 1x” — tx* + ¢*x is a full resolution of the x’
singularity, but by the theorem of sect. 4.1, the matrix C; of (4.2) is not normaliz-
able.

(ii) What is the good justification of keeping only a single ¢ # 0? Certainly the
introduction of a single non-zero parameter ¢;, hence of a single perturbing
operator, is the simplest and most natural thing to do. The situation is confused,
however, by the existence of some normalizable cases involving several non-vanish-
ing parameters ¢, presumably non-integrable. For example, all the matrices of the
chiral ring of the perturbed A , theory are normalizable for arbitrary ¢, and ¢,. It is
very unlikely that all these perturbations are integrable! Yet another example is
provided by a class of fusion potentials. Whenever a potential is known to be the
fusion potential of a rational conformal field theory, it certainly satisfies the
normalizability condition in a suitable basis. Such is the case of the A, potential
perturbed by ¢, =1 and ¢, = 2. In ref. [14], it has been showed that this potential
W = 1x7 — x* — x provides a one-variable representation of the fusion ring SU(3),.
Although the matrix C; of (4.2) that encodes the multiplication by x in the
ordinary basis 1, x, x2, x> — 1, x* —2x, x>— 3x? of the A case is not normaliz-
able, after a change of basis to the basis

1, x3(x° = 3x?%), 3(5x2=x°), 3(x° = 1), 3(x*—3x)

it reads

0
[

(6.1)

OCOO~ROCO
O OO O
—_—o o o= O
oo O
OO R = OO
[ R e N e B e )

and is normal. Clearly then the M and N algebras are isomorphic (we are in a
fusion case, hence self-dual). It is amusing to see again that the location of extrema
in the x-plane reproduces the pattern of the integrable weights of SU(3),.
However, it is doubtful that this corresponds to an integrable perturbation of the
A theory. Note that this instance illustrates the possibility of attaching several
consistent gradings to the chiral rings of a given potential.

Another example is provided by the Sp(2), case. The potentials for the Sp(N),
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fusion algebra have been worked out [34,35]. We choose to present now the case of
N =k =2, due to its relation to the SU(3), case. The potential reads

W=13x>—x3 +xy>+xy —x.

Comparing with the SU(3), general perturbations of appendix C, we find that this
is a special perturbation by %, , =xy + ... and %, , = x simultaneously,, correspond-
ingtot,;=—1and ¢, ,= 1, the other ¢’s being zero. As the fusion ring of a WZW
model, this point is normalizable, but corresponds again to a perturbation mixing
two directions. In this case too, the integrability of the N =2 theory described by
this potential has not been established, to the best of our knowledge.

(i) It seems therefore that a refined version of our conjecture should be: the
normalizability of a perturbation by a single flat coordinate is equivalent to
integrability.

(ii) Although we have used the language of potentials and polynomial represen-
tation, it must be clear that the issue of normalizability depends only on the
structure constants and may therefore also be addressed in cases where no
potential is available. We hope to return to such instances in a near future.

(iii) What may be the origin of such an alleged connection between integrability
and normalizability? The form of the C, matrix in the simplest cases (see (4.2))
suggests a possible connection with generalized Toda theories and /or hamiltonian
reduction. This too will be left to future investigation.

(iv) What is the physical meaning of the graph and/or of the dual algebra? The
existence of the dual ring, with a basis labelled in the same way as the ground
states, means that one may define a ring structure on these ground states. What is
the meaning of this ring? The whole discussion has some features reminiscent of a
recent discussion by Cecotti and Vafa [36]. These authors have been able to relate
the counting of solitons (weighted by their fermionic number) interpolating be-
tween pairs of ground states with the intersection numbers of homology cycles of
the (perturbed) potential. Their discussion, contrary to ours, is not limited to the
integrable or normalizable perturbations. With this additional assumption, we are
able to obtain quite explicit formulac and new results on the pattern of ground
states. It would be quite interesting to understand if our results have any bearing
on that more general and systematic approach.

(v) Is there a conformal field theory associated with the integrable cases, in the
sense that there is a subring of the chiral ring isomorphic to the fusion ring of that
conformal theory as in the Chebishev cases? In all the other ADE cases that we
have encountered, there was always a cyclic Z,, subring. In that sense, one may say
that there was an underlying SU(N), conformal theory, but it is not clear what is
gained from that.

Special thanks are due to Nick Warner for his indefatigable patience in
explaining us the beauties and intricacies of N =2 theories. Also, we have
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benefited from discussions with D. Gepner, C. Itzykson, W. Lerche, D.
Nemeschansky and N. Sochen, F. Lesage is supported by a Canadian NSERC 67
scholarship.

Appendix A
THE D, ., POTENTIAL AND FREE ENERGY

The heuristic idea to connect the D, ,, and the A,, ,, is to take an orbifold of
the latter. We follow here a route slightly different from ref. [11]. Suppose that
only the t.., parameters are non-vanishing in the A,, ., potential W,(x’', ¢.),
which is thus an even function of x’, W(x’, t)=V(x'% t). We imagine that this
potential is used as an action, i.e. in an exponentiated form as a weight in integrals.

<f>=fdx' exp(—Wa(x', £))f(x"). (A.1)

If one restricts oneself to even functions of x’, f(x’) = F(x'?), one may perform
the x'? > x change of variables, and up to irrelevant factors and discarding all
problems of convergence

d
) = [exp(~V(x)F(x)

= fdx dy exp(—V(x) — 3¥%x)F(x). (A2)

The orbifold D, , , potential is thus identified as the term in the exponential; the
jacobian of the transformation has forced us to introduce a new variable y, and
after inserting an extra deformation parameter 7 coupled to y, the D, , potential
reads

WDHZ(x, Vitg, bysevisty,, T) =W,

Azpti

(x'= Vx, t,, 0, Lyserlyy) + 22y + 7y
n+1

X

=2(T+_T)+.... (A3)

It is a quasihomogeneous polynomial of x (degree 2), y (degree n) and the t’s. The
free energy F of these D-models may also be determined explicitly in terms of the
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A-one. Expressing the multiplication of the polynomials p(x, ¢) and p,=y in
terms of that of the p§P(x’, ¢.) modulo 8, W, 3,W, one finds that

Fp (tostaseeistay, T) =Fy (10,0, t5,...,15,) = 372 P(t4,...,15,). (A4)

We recall that expressions for F, or its partial derivatives with respect to the ¢’s
have been given in refs. [11,37]; the function @ is a polynomial in ¢,...,¢,, thatis
determined by its partial derivatives: —d/dt;® is the coefficient of p,_; in the
expansion of 2V'(x). Using the relation W, (x')=p,,,(x') and recursion
formulae between the p’s, one finds

J ;o
~ob= T (-1 Tt (A5)
i r=0,j,>0 p=1
r+Xlj,=i

As a side remark, we want to comment the positivity properties of the coeffi-
cients of the resulting F. While all the monomials of F, have positive coefficients,
at first sight the monomials of the polynomial @ seem to have either sign. We have
checked in the cases D, and Dy, and it is very likely to be true for general D, ,, n
even, that one may rewrite F with positive signs only in terms of ¢y, ¢,,...,¢,_,,
tyis-estay and t = @(tn +i"/2717), This is of interest in view of our earlier
observation that the chiral ring is a generalization of the M algebra associated with
the graph, and that the latter has non-negative structure constants only for D_., .
It tells us the change of basis to be performed to deal with an algebra with positive
structure constants. In contrast for the Dy, cases, the signs in F are irreducible.
One can see that the same positivity properties of the coefficients of F holds for
the A, E¢ and Eg cases [22], but not for E,. Thus this is one more manifestation
of the type I-non-type I distinction alluded to above.

Appendix B
THE PERTURBED POTENTIALS OF THE Eg; 4 CASES
The E, potential reads
W=3x>+ 3y —ti g0y’ — txy — (5 — 3ti0) ¥’
- (ilitfo —telp t t4)x - (t3 - t7t120)y

1 3 1 2 1,2 1,2
—glelin T 2lalio T 3t7t + 3l6 — Lp. (B.1)
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The E, potential is
W=3x>+xy> —tgx%y — (t;,— 24‘7t136)x2 —(t+ 16— %t12t16)xy
—tgy?— (t6— 5tes + 2itiatie — wliotis — 3latie — %tfz)x
(ta— Tt iatts + sitiotis + 12t — 3leis — %tlotu)y
fo+ Tisosstis — Tassliztss + silstis T wliatis — stiotialis + 5tatis
— §tgtiatie ¥ Sthtie — Bl + 3etin + 3lglyo- (B.2)

Finally, the E¢ potential reads

W(x, y,t)

1.3, 1.5 3 2 3 2
=3X7+ 3V 85XV — S XY 818V —S16XY — SV — 810X — S6Y — S, (B.3)
where

., 3, _ 103,15, 421, 11 14, 9 _ 29, .8 _ 43,2 7
So =1ty —lls— a0l T ss0fxnin T a5tisls ~ 55l16f2s — a5i22l2s

7, 46 4 4, ,5 .5 4 1,33 1,23 1 2
tistialag + stigtag t Ftislanlag t 3tanlig T 3tiglig T 3list st

1 2 1,2 43 6 1 2
+3tigloalag — tiplnlag — histas — 30f18t22 — 3lisln — faliss

_ 82,12 107, 8 _ T, ,6 4 12, .5 | 1,2 ,4 4, .3
Se=1s+ 7533 — 30 lantogs — 30lislas T S fislas T 3tntag — 3l1285

2 2 1,3 2
+ 24585t — tiotas — 21682t — 383 — Ligs
11

. 110 2, 46 43, 4 _ 1, ,3 o 1,2.2 _ _
S10=1t10" a5t~ Bintnt Stigls — 3tislis T 2tnln — tial —tigln,

_, _ 28,0 . 2B, .5 . .3 3, .2 3.2

S12= Ut~ Tl t Tyt —ligln — 3tisln — 3tnlxn,
= 9.7 2 3 _

S16 = te T 15t — Flaatig — 2f15ts,
_ 6,6 _ 2

S13=1tg + 5t — 21515,

.4
Sy =1ty — 21,

Sag = Iog-

(B4)
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Appendix C
THE SU(3), POTENTIAL AND FREE ENERGY
The SU(3), perturbed potential is parametrized as follows:
W(x,, x5, )= [%xf —x?x2+x1x§]
— t X5 — 1 X%y = (Bt + 1) X7 — (t01 —ty— ey — tntoz)xz
(- 3titer +tagley + 3t + t10) %
+ 2027t — 0te2” — taot1y — oo

The polynomials p{x,, x,, t)= —0W/dt, form a basis of the chiral ring with
structure constants derived from the free energy

F =3t tey + togtiotyy + %too(fzo2 + 1012) + 30107 (o + tor) — 3107tk
+5t10 e ~ tiotaotarfor = 3tio(Lao + tor )t + 3tio(tag + Loy iyt d?
+ 5ttty + 5(830 + 150 t0s” — 3taotor(ta0 + Loy 1y + 3 (0% + tagtor + 1511ty
+a0(t20” + 801)t02° — Ttaotortister’ + §(20 + to) t* — 3 (ko + ) 11007
+ 5t + o)t 0t — St e T stn ey’ — 2 00+ St e+ Temter
and the only non-vanishing »,; = n,; are given by
TNooyo2) = Moy = 1
Noyz0y = No1yo1y = 1.

Note that F is symmetric under the interchange ¢,, & ¢,,.
Upon restriction to f4, =1,y =1t;; =135, =0, t,5= —1, t,; =0, the potential re-
duces to

_ 1.5 3 2 2
W=zsx]{—xix,+x,x5+x7~Xx,
and the polynomials to

Pow=1, Pip=xy,

.2 _
Py =X1 =X, Do =X2,

= -1 =x2_
P =X1X; o Pop =X — Xy,

that are the polynomials that represent the fusion ring of SU(3),.
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There is a simple change of variables that maps these expressions to those
pertaining to Dg. Let

xy=a(x—ty), xy,=y+za*(x*—3xt,+31] - t3),
tp=—aty,  ty= —a’ty,

ty= —3a’t,—ar,  ty = —3a’t,+ar,

t =2t Ly =2at,

with a* = —4. Then Wy, (X1, X3, Lggs -5 L00) = Wp (X, ¥, Ly, ..., 1o).

Appendix D
THE FREE ENERGIES OF THE E¢ ;4 CASES

1. The E, free energy. The free energy reads
_ 1 a3, 1,28 1,2,7 4 A, 42,5 o 1,2,5 o 1, ,2,4
F=samstio t swt7tiot 2tstio T zatel7tio T solatio T 2atatstio
1,2,4 , 1,43 , 1 3,1, 2,3 , 1,2,2,2 , 1 2
t2atitio T aalatio b oglstelstio T slatstio T atst7tio + 315l4t 7810

1, .3 1 2 1.4 1,2 1,3 1,2
t5lalytig t 3lalsttig t atstio T 285 6t10 T 5liti0 T 38510

Fglets + I+ Sat2t + totat, + tot,t + St2t,.

2. The E, free energy

_ 1 19 12 13 12,01 _ 13 .10 1 2 .9
F_ 1001094543576t16 + 55269864t12t16 + 5196312t10t16 1417176t12t16 + 157464t10t12t16

1 2.9 1 2,8 ) 8 7 47 1 7
+ 7361961816 — s2amslsli2816 T Toaoreliot12tie T TSagat 12016 T Tarlsl 10t 128 16

1,3 .7 1 2.7 7 3.6 1 6 _ 1 .2, .6
t+ sastiolic t 1020626 Lie — szasstioliztie T sorelel 10t 12816 — Tomlal 12816

1 2 46 1., .35 1,2 .,2 .5 1 5 1, 2,5 4 1 ,2,5
— seslsliolis t o7alsti2tis T vatioti2tie — wselelalizlic T szlaliotis T si0t4t1s
7.5 .4 5 3.4 5 2 .4 5 .3 4 1 4
— iieealialis T 30i6leli2tis — walstiolintie T semtiofizlis T Tealalsli2lis

1,2, ,4 1, .2 .4, 1 4 1,34 25 4.3
+amlstialie T aslatiols T 1eatelstiofie — mslalic T se32t10f 12416

L, ;3,3 , 1,2,2.3 1, 4,2 3,1 3 1,4 ,3
—awslalintie T salaliztis 1 Teatstioliatic T 5itatel12tic T msli0t 16
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— 3alalgtiolis + satetiolis — Tlstiatis = st iolintis + 36ttt atis
+ Tlelgliatie + Telotiot 12t 6 — Telatiltialis — T5latiatie T Tlalel 10t i
+ 15lalgtls — Tgtetstis + matatis — Taleliatie T Tisti0tint1s
+34tiothtis — slalstintis + stetitis — glelstiotintis + 23t
+25t6tiotis + 1atitiotis + statiotis + Talstatis T 515tis
+ 31316 = arstioti + Tttty + Teleliol i — Fa
— T5lsliol s — slalsl iz + taetiofis T 3talstiofiz + §251i0tia + 3t6t5tn,

1 3 1.3 1 2 1.2 1 2
tiolaly + glatio — st T lolelfio — 2lols — 304t T 51416

3. The E; free energy. The function F has the following simple expression:
F = 51t 5918 + 5ttty + 3tiglyglte + 5ti6te + to(Ents + tigtig + 115t 16)
+t16(516t18tgs + 3tiglptis + %ﬁzs)ts + a5t ity tile + sat1at 2 asts
+ 15t 10l 22t ots + %1126(%’28 + gty )t + t16(ﬁt%2t§8 + %tgz)ts
+glntiglogle T T2t natls + §liglntls T §liatistisls T 2112ttt
+3ti0tietisls T shistntagls T 3liolnlagls T 3l itals + Liatiglynts

1 3 1 .2 .23
tlolints t 2as7eazs000t 128 T F70as0000 22128

+13,(To0tas + 3055 2058 + st T Towltantis + satntis)
+1128(T53;Wtég + 30t ta8 T maatoats + %tgztgs) + w5500 16128
+t1st§2(8“1%@t5g + 1es0l 258 + wgol 3t T ottt %tgztzs)
+ %tletzzz(mt;g + gr0tatas + 30t ntos + wintg + %tgz)

+ t16t18t22(5‘4}0—0t%g + Taonloatag + astntis + %tgztgs)

+ étfs(%oﬁtig + 20l 18838 + Tolaatog + 15t + %otlzstzs)

+ %tlzstzz(ﬁtég + aolaatss + 3ptaatog + 15_2t32t28)

1,27 1 .13, 1 9 4 1,2 .5 4 2,3
+7t12(8775t28+mt22t28+§t22t28+§t22t28)
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+tiatigty( 7700058 + wlatss T tithatss T §152)
+otistn(oota8 t ast2als + 5t5t3s)
+ 5136t 1a(Tam0t 28 T T5taaths + 30tistos + §l0atas T Listaatas)
+15o(7omts + wtistss + s1natas T stots + 2t16t22)
+ 1ot 6(s0ot 22028 + ot 5 + Ftaatas)
+ t12t22(8100t29 + wolptis + 12t22t28)
+ t16(2700t28 + setales + 2tislas + 25t ielas + it + %t18t22)
+ t12t16t18(lT}0t38 + glntog + 3tigt + 5t5ts)
+ tlotlzs(;ﬁtgs + §tiglag + %tzzztzs) + tlotgz(m%tgs + sl ntls + 30t5ts)
+ %tlatlzs(%tzztgs + 515 t5 + tiglyti + %tgz)
+ tlotlztzz(g%tgs + glntg + %tgz) + twtls(%tzzztgs + %tgztgs)
+ %’fztls(%tgs + 3pt3g + tigtag) + twtlzs(ﬁlotgs + gtntig + 3t iglg + st16)

L, ,2( 7, 6 1 4242 42 2 1,6 .1, 2 41
+ 3t ptig(astntss +intis + Stigtn) +tiatis(a5t3s + 3ttt 3tis)

1,5 1, 3 2 1 4,1, .2
+ tlotlz(tm(iﬁtzs +ipty) + 5ttt t18t22t28) + 0t 16501t ntag + 2t18t%)

21 4 1 2 1 1,2 1,2 1.3
+t12t16(1t22t28+5’18t28+€t16t28+5t22)+it0t28+§t12t22-
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