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We show that the connectionbetweencertainintegrableperturbationsof N = 2 superconfor-
mal theories and graphs found by Lerche and Warner extends to a broader class. These
perturbationsaresuchthat thegeneratorsof theperturbedchiral ring maybediagonalizedin an
orthonormalbasis.This allows one to definea dual ring, whosegeneratorsare labelled by the
groundstatesof the theoryand are encodedin a graphor setof graphs,that reproducethe
patternof the ground statesand interpolatingsolitons. All known perturbationsof the ADE
potentialsandsomeothersareshownto satisfy thiscriterion. This suggestsa testof integrability.

1. Introduction

N = 2 superconformaltheories have been under active investigationduring

recentyears.Of particular interestis to understandtheir perturbationsby relevant
operators,that preservethe N = 2 supersymmetryand make them massivefield
theories,andamongthem, thosethat are integrable([1], for a review anda list of
referencesseeref. [2]). Integrabilityseemsto imply nice featureson the patternof
solitonsthat interpolatebetweenthe ground statesof the theory.

Two yearsago,LercheandWarnerhavestudiedthe perturbationsof the N = 2
theoriesdescribedby an ADE Landau—Ginzburgpotential [3,41and perturbedby

the least relevant operator [5]. They made the intriguing observationthat the
patternof minima of the potential in field spacethen reproducesthe shapeof the
correspondingDynkin diagram,andthat the valuesof the polynomial representa-
tives of the chiral ring at the minima of the potential are proportional to the
various eigenvectorsof the Cartan matrix. In the A-case, the chiral algebra
satisfiedby thesepolynomials is nothingelsethan the Verlinde fusion algebraof
thecorrespondingSU(2) theory,whereasin the otherD- or E-cases,its interpreta-
tion remainedmore elusive.
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In this paper,we want to point out that this featureextendsto a much broader
classof integrableperturbations,that the associationbetweenthe corresponding
ring (or algebra)anda graphis somethingthat hasalreadybeenencounteredsome
time ago in the slightly different context of relationsbetweenlattice integrable
modelsattachedto graphsandconformalfield theories[61andthat converselythis
connectionmight suggesta simple criterion of integrability. In sect. 2, we review
shortly somefactson N = 2 superconformalfield theories,their perturbationsand
the structureof their “chiral ring”. We focus on caseswhere the multiplication
matrices C1 in a natural basis of the (perturbed)chiral ring are normal, i.e.
commute with their adjoint [C1,C’i = 0. This condition is equivalent to the
propertyof C. to be diagonalizablein an orthonormalbasis~. More generally,we
assumethat the matricesmaybe madenormal after a changeof basisthat respects
the naturalgradationof the problem(U(1) charge).Thiswe call the normalizability
property.We thenrecall in sect.3 somedefinitionsof what we call a graph ring, of
its dual ring, and how in many cases a subring of it enablesone to identify a
structureof blocks with nice modular properties.Applied to the ADE perturba-
tions mentionnedabove,it tells us how to group the polynomials into blocks in
one-to-onecorrespondencewith the blocks of the correspondingSU(2) modular
invariant.A surveyof the ADE cases(sect.4) andof casesrelatedto SU(N)(sect.
5) shows that the propertyof normalizability is quite restrictiveand allows only
sparsesolutions. Strangely,all the known integrablecasesof ADE potentialsare
normalizable,andthe dual ring hasintegralcoefficientsthatmay thusbe encoded
in a graph.In so far asthe normalmatricesaresomenaturalgeneralizationof the
fusion matrices, this connectionbetween the property of normalizability and
integrability representsan extensionof a conjectureof Gepner[7] that thereis an
underlying conformal field theory behind each integrabledeformationof N = 2
theory. Moreover, this condition of normalizability enablesus to identify some
plausible candidatesto integrability. One of them has been checkedto possess

indeedconservedquantities[81.We speculatein sect.6 on theissuesraisedin this
paper. Four appendicesgather some technical material on the form of the
D-potentialandfree energy(AppendixA), on the exceptionalcases(AppendicesB
and D) andon SU(3) at level 2 (AppendixC).

2. Perturbationsof N = 2 Landau—Ginzburg superconformal theories

Consider a N = 2 superconformaltheory that admits a descriptionby a Lan-
dau—Ginzburgsuperpotential.The latter is a quasi-homogeneouspolynomial in

* A simpleproofof this fact is provided by the decompositionof C into its hermitianandantihermitian
parts,C = A + iB, A = At, B= B~thecommutationof C andCt translatesinto thecommutationof
A and B that may thusbediagonalizedsimultaneouslyin an orthonormalbasis.
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the superfields, W0(x, y,...). The case of the “minimal” N= 2 theories(with
c <3) is particularly striking since this superpotentialis given by one of the
well-known ADE singularities[9], thus matching the classificationof modular
invariants[3,4]. This descriptionis substantiatedby the comparisonof the chiral
ring of the N= 2 theorywith the local ring of the singularity.The former describes

the non-singularpointwiseproductof fields that satisfythe constrainth = ~q, with
h their conformal weight and q their U(1) charge, and the latter describesthe
multiplication in the ring of polynomialsmod0~W0,0~W0

The importantquestionof the N = 2 supersymmetrypreservingperturbations
[10]may then be investigatedusingthis potential description.

Let W(x,...,t.) be the perturbedpotential in terms of the flat coordinatest1,

(see ref. [2] for a definition and references),let p1(x, . . . , t.) = —0W/at1be the
correspondingbasis of the (deformed)chiral ring with Po= 1 and p0 the unique
basis elementwith maximal U(1) charge.The structureconstantsof the ring

pjpJ=CjJ’~pk mod OW (2.1)

are functionsof the coordinatest. and havebeenprovedto satisfy two kinds of
constraints(in addition to the associativityand commutativity which are obvious
from that definition) [11], -

(i) the metric tensordefinedas = C1~°is independentof the t’s;
(ii) C11

1’~ satisfy the integrability condition that enable one to write C
11k =

rlklClJ(0/OtlOtJOtk)F(t.), where F(t.) is some function, the free energy of the
theory.
We shouldmention that Dubrovin hasundertakenthe classificationof the solu-
tions to theseconstraints,independentlyof the existence of a potential and

polynomial representationof the chiral ring [12].For moreon thesetopics,seeref.
[13].

For any given perturbation,let us considerthe chiral ring. Considerfirst for
simplicity the casewhere the potential dependson a singlevariable x. Let C1 be
thematrix of structureconstantsencodingthemultiplication by p1(x)= x. Wethus
have a representationof the chiral algebra by a set of polynomials in x and
accordingto an argumentgiven for examplein ref. [141,this implies that the
constraintW’(x) = 0 is the characteristicequationsatisfiedby C1:

W’(x)=det(xl—C1). (2.2)

In particular, if the perturbedpotential W is a good “resolution” of the singular

W0 =x”~/(n + 1), namely if the zerosof W’ are distinct, then C1 has distinct
eigenvaluesand is diagonalizable.(An exampleof a non-diagonalizablecase is
providedby W=x

6/6 —x3 C
1 hasa doubleeigenvalueat 0 andis not diagonaliz-

able. The singularityhasnot beenresolved.)
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Supposenow that C1 is “normalizable”. By definition, this meansthat a
diagonal * changeof basis in the polynomial representationmakesC1 normal

C1~= ~±LM1J (2.3)p1

with M1 normal,hencediagonalizablein an orthonormalbasis ~/‘~ in fact as all C,
commute,they are all madenormalby the samechange

C1.’~= ~ (2.4a)
Pk

(p4~)k = (2.4b)

and becauseof the symmetry i -~j,the condition p0 = 1 hence M0 = 1 and the
orthonormality of the i~(i‘s, one finds that the eigenvalueshavethe form A~=

~,(i)/~(O) hence

a ~/O) . (2.5)

Thus the eigenvaluesof C1, i.e. the zerosof W’, or the extremaof W, are

~(1)
Xa=Pl~7~)• (2.6)

The casewhere the potential involves more than one variable is easyto deal
with, but at one point less explicit. For definitenesswe considerthe caseof two
variablesbut the extensionto any largernumberis straightforward.The assump-
tion that the theory is describedby apotentialW(x, y) amountsto sayingthat the

chiral ring is representedby polynomialsin the variables x and y, i.e. that all the
matricesC, arepolynomialsin the matricesC0 = 1, C~and C~

xp,(x, y) = C~/p1(x,y) mod 0MW, O~W,

yp,(x, y) = C~/p1(x,y) mod 0KW,0MW. (2.7)

* Our insistenceon this diagonalchangeof basis is due to the fact that it mustpreservethe gradation

by the U(1) charge;whenseveralfields have thesamegradation,a wider set of redefinitionswould be
conceivable;we havenot studied this systematically.
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Thus for any extremumof the potential Xa, Ya, OxW(Xa,Ya) = OYW(Xa, Ya) = 0

XaPi(Xa, Ya) = CxiPj(Xa, Ya),

yapj(xa, Ya) = CYIPJ(Xa, Ya) (2.8)

andhenceXa is aneigenvalueof C~and Ya oneof C5 for the sameeigenvector.If
moreoverC~andC5 arenormalizable,then all the C’s may be diagonalizedin the
orthonormalbasis ç1i~’)accordingto eq.(24a) andas before,

~(x)

Xa

~1(y)
YaPyT~j)~ (2.9)

In contrastwith the one-variablecase,the reconstructionof W from C~,C~is not
obvious.

The appearanceof algebrasof the form (2.5), generalizingthe Verlinde formula
for fusion algebrasis somethingthat has alreadybeenencounteredin association
with graphs.We shalldevotethe next section to recall somefactson what we call
graphalgebras.

3. Graph algebras

3.1. THE TWO DUAL ALGEBRAS ATTACHED TO A GRAPH

We presentheresome conceptson rings (or algebras)attachedto graphs[15,6].
Let us considera graphdefined by its adjacencymatrix G, whosenon-negative
entriesGab count the numberof edgesconnectingthe vertex a to the vertex b.
Thegraphmay possiblybe oriented,andthusthematrix G benon-symmetric,but
we requestit to be normal. (Here, G is real and thus Gt = Gt). Clearly any

symmetricmatrix (henceany adjacencymatrix of an unorientedgraph)is normal.
Let us denote 1IJ~1) the componentsof the orthonormaleigenvectors,where the
index I labelsthe eigenvector.Note that in general,I and a takean equalnumber

of values(equalto the size n of the G-matrix) but belong to different sets.For
convenience,we shall label the vertices a by integers running from 0 to n — 1,
whereas1 will also for simplicity be takenas an integer taking in particular the
value 0 ~. By convention,1 = 0 will denotethe Perron—Frobeniuseigenvector.We

* We departfrom our previousconventionsof ref. [61,whereboth a and ! were taking valuesstarting

from 1 ratherthan 0; this changeis motivated by the mismatchwith the degreesof polynomialsor
othergradings(U(1) charges...)that are naturalin the problemathand.
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also assumethat Gab possessesa “unit” vertex a0 suchthat

(i) Vl, ~ ~ 0. (3.la)

(ii) 2! vertexf suchthat Gaoa=

6a,f~ (3.lb)

At the possibleprice of a relabellingof the vertices of the graphwe shall take
a

0 = 0. The role of this unit vertex 0 is clear: the graphassociatedto G encodes

some sort of “fusion” by the vertex f, in the sensethat we can write fx 0 = f,
f Xa = Gabb. In the particular case of ADE Dynkin diagrams,1 is a Coxeter

exponentminus 1 taking n values between0 and h — 2, with h the Coxeter
number.More generally,in a varietyof casesrelatedto a Lie algebra,it is more
naturalto regardit as taking its valuesin a boundeddomain of the weight lattice
of this Lie algebra [6]. The archetypical case is provided by the A~Dynkin
diagram,where the ~ 1, a = 0, . . . , n — 1 are also the matrix elementsof the
modular S-matrix for the SU(2)~~current algebra.This is readily seenon the
celebratedVerlinde formula [16] written as

n—i
Mim~= a=0 a a , (3.2)

expressingthe fusion coefficientsin termsof ~1s‘s. The A Dynkin diagramhasthe

uncommonpropertyof being self-dualin the sensethat the two setsof a-indices
and I-labels may be identified: this is due to the symmetry of the S = ~(, matrix.
Now, the Verlinde formula suggeststo form similar sumsfor the other D or E
Dynkin diagrams,or moregenerallyfor a genericgraphwith a normaladjacency
matrix. Then the two sets {a} and {l} are no longerequivalentand thereare two
possiblesummations.The onecarriedout in (3.2), andthe dualone

n—i
Nabc ~o a b c (3.3)

Contraryto thecaseof the A Dynkin diagram,the M’s arenot in generalintegers.
In contrast, for the D and E Dynkin diagramsas well as a largerclassof graphs
studiedin ref. [6], the N’s are! Moreover,for a subsetof thesegraphs— the A,
Deven and E68 casesamongthe Dynkin diagrams— both M’s and N’s turn out to
be non-negative.We stressthat theseareempirical observationsandthat we know
no sufficient condition on the graphthat ensuresthe integrality of the N’s. Note
that the matricesM1 and Na defined,respectively,by

(Mi)mP =Mim~,

(Na)bC=NabC, (3.4)
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satisfy an associativeandcommutativealgebra

MiMm =Mim~Mp,

NaNb=NabCNc (3.5)

andthe orthonormalityconditionensuresthat M0 = 1 and N0 = 1 are the units of

thesealgebras.
In writing (3.2) and (3.3), we have implicitly assumedthat thesesummations

make sense,i.e. that no vanishing denominatoroccurs. Although the Perron—
Frobeniustheoremtellsus that the componentsof the eigenvectorwith the largest

eigenvaluearenon-negative,it doesnot forbid thevanishingof someof these.We
do know caseswhereeither oneof the ~j~~1)or one of the ~I~~0)vanishes.To avoid
the possibility of a vanishing ~ we included the condition (i) (3.la) in the
definition of the unit vertex0 of the graph. Moreover, a sufficient condition to
avoid the vanishingof ~°~‘s is to supposethat the graphis connected,i.e. there
exists a path a1 = a, a2,.. ., a’,, = b betweenany coupleof vertices (a, b) of the
graph,GaaGaa. . . ~ * 0.

We shouldalso note that thereare caseswhere the matrix G hasdegenerate
eigenvaluesandthereis a problemof choosingthe appropriatecombinationof the
correspondingeigenvectors.Such is the case of the D21 Dynkin diagram: the
middleexponent2! — 1 is twice degenerateandthe coefficientsNab’~are integers
only for a specific choice of the eigenvectors~~j(2/2)±; for 1 even, this choice
involvescomplex combinationsof the realeigenvectors,whencethe relevanceof
the complexconjugationin eqs.(3.2)—(3.3).

Except in the simplest case of A-type, no physical interpretationof these
algebras,andin particular of the integral N’s as some multiplicities is known (see
ref. [171,however).

3.2. SUBALGEBRAS AND MODULAR INVARIANCE

In this section, we review the connectionsbetween (some of) thesegraph
algebrasandfusion algebrasof rationalconformal field theories.This is not in the
main streamof our paper,butwe include it hereto illustrate some crossrelations
betweenthesetopicsandto showthat someof the considerationsof ref. [5] maybe

extended.Wheneverall the M’s and N’s arenon-negative(casereferredas “type
I” in the ref. [61),onemay find a subalgebraof the graphalgebra(3.3), i.e. a stable
subsetT of verticesof the graph,which encodesthe fusionrules of the underlying
WZW theory. Namely, in the casesconsideredin ref. [61,eachof the graphsforms
thetargetspacefor an integrablelattice model whosecontinuumlimit is described
by a cosetc.f.t. Gkl X GI/Gk andis in correspondencewith a modular invariant
of the relevant Gk WZW theory. The 1 labels indexing the algebra M are in
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correspondencewith integrableweightsof the Gk WZW model at somefixed level
k. On the otherhandthemodular invariantsof the WZW theoriesat a givenlevel
can be of two forms: the “block-diagonal” onesformed by a sum of absolute

squaresof sumsof WZW charactersXi (the so-called“extended”characters),and
the “twisted” ones,obtainedby combiningleft and right blocks of the preceding

class in a non-diagonalway. Concentratingon the block-diagonalinvariants(also
called type I in ref. [6]) *, we see that they are characterizedby a partition I~,

I~of the setof labelsof representationswhich form the theory, themodular

invariant reading
P 2

z=~ EX1.
i1 tEl,

We found that the graphsubalgebracoincidedin all known caseswith the fusion
rules for the primary statesof the “extended”symmetry,whosecharactersare the
blocks

XI,, = Xi~ (3.6)
lEIk

More precisely,from the dataof the graphring andof its subring associatedwith
the stable subsetT of vertices,we can define the equivalencerelation on the

eigenvaluelabels[191

!—~m iff ~ ~J.,(l)~p(m)**o (3.7)
a ET

The equivalenceclassesform the desiredpartition of the set of eigenvaluelabels
into blocks I~,. . . , I,~,•The latter are in one-to-onecorrespondencewith the
elementsof T, and we relabel them ‘a’ a E T. The correspondingS-matrix of
modulartransformationis given by

~(t)

Sab = a 2 1/2’ independenton 1 E ‘b~ (3.8)

(~cET~’~)

Like any fusion algebraof a rational conformalfield theory, the subalgebrawith

fusion coefficients NabC, a, b, c e T is self-dual,due to the symmetryof S. The
dual MabC canalsobe expressedin termsof the original dual algebraMirn” but in a
less straightforwardway. In particular its one-dimensionalrepresentationshavea

* This distinction betweentype I and non-typeI graphs and/or modular invariantsseemsto have

multiple aspects,as testified by the existenceor non-existenceof a flat connectionon the spaceof
pathson the graph [181;seealso the endof appendixA.
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TABLE 1
A, D, Eperturbations.Normalizableperturbationsof theA, D, E potentialsare displayedasfollows.

First column:nameof the potential;secondcolumn: nameof the perturbation(list of thenon-zero
third column: thedualring of thenormalizedring, throughthegraphof oneof its generators(all the
cycleshaveto beunderstoodas orientedanti-clockwise);fourth column: locusof theextremaof the

perturbedpotential(x in thecomplexplanein theonevariablecase,x- and y-planesotherwise);fifth
column:valuestakenby the perturbedpotentialat thevarious extrema,in the complexplane(the links
correspondto theminimal solitonsinterpolatingbetweentheextrema);sixth column: a check-markin

caseof knownintegrability, a question-markotherwise.

A~tnI s

~ oTi ~

____ E~E~(I):
)~~t2n ~. - - .—. O—O

x
n-i 1 0

x

n_____ >cT i:• (JI) ?
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TABLE I (continued)

E6 ~10 —-~ir.----• ~“ ~ o.—o

01234 xx

: .....::....~.

x plane,y=x 2

• • • ~ L x,/”~~

• • • //~~H_~/~=-~°° °°

t3 I /x=1 ,~j ~4
t4 /~ /X=-i <~ ~

6 Y
E t16 2

7 4X X012345 5~

simple realization in terms of the one-dimensionalrepresentationsof Mirn”. The
latter areof the form

Pl=~) (3.9)
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TABLE 1 (continued)

E8 ~29 2

0 1 2 3 45 6 7~’~

~ ~

x plane, y=x
2

• • • • ~ ,~/x=l____ I ~° °°t
18 • • S S /~x~/~i

t10 ~//~ ~~/x=i 0 0

12 /~ L ~= ~ ~

t6 /~/x=i ~

and satisfy j3,~’j3,~,= Mim~P~,for any vertex a. The correspondingone-dimensional
representationsof the self-dualsubalgebraread

Sb
a,buT, (3.10)
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andone finds, usingthe variousrelationsbetweenthe S’s andthe I/i’s

i/2

~ ~ ~ ~0I2 fi
1’~, (3.11)

1EI,, cET cET

for any a, b E T.
We shouldstressthat all theseconsiderationsare empirical andbasedon a case

by caseexaminationof all the type I casespertainingto G = SU(2) or SU(3) (the
classificationof modularinvariantsfor the latter casehasbeencompletedin ref.

[20]).
Let us illustrate thison an example.WeconsidertheE6 diagramof table 1, and

the subalgebraof thegraphalgebraformedby the end-pointvertices,T = {0, 4, 5}.

It is isomorphicto the fusion algebraof the Ising model,(known to bethat of the
blocks of the E6 theory), upon identification of 0 Id, 4 e and 5 cr, respec-
tively the identity, energy and spin conformal blocks of the Ising model. The
eigenvaluesof the adjacencymatrix [E6lab are labelled by the Coxeterexponents
shifted by — 1

1+1
1=0,3,4,6,7,10.

Applying eq. (3.7), we find the correspondingequivalenceclassesof the set of
exponents

I~= (0, 6}, 14= (4,10), 15 = (3, 7),

andthe associatedmodular invariant

ZE,,=Ixo+X61
2+1x

4+x101
2+1X

3+X71
2. (3.12)

Moreover we get the one-dimensional representations of the self dual subalgebra

1 1
a

3~~P0 ~P6,

1 1
a ~

1
[j3~+j3~]. (3.13)

~I2(3+V~)
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3.3. CHEBISHEVRESOLUTION OF THE ADE SINGULARITIES

Let us show how the considerationsof sect. 2 apply to the caseconsideredby
LercheandWarner,namelythe perturbationsof the ADE potentialsby their least
relevantoperator.In the A~case,the correspondingpotential is nothingelsethan
the Chebishevpolynomial of the first kind (T,(2 cos 0) = 2 cos nO): W(x) =

(n + 1)~1,~1(x);the basisof the chiral ring derivedfrom the flat coordinatesis
provided by the Chebishev polynomials of the second kind (U1(2 cos 0) =

sin(l+ 1)0/sin0), p1(x)= U11(x), 1= 1,...,n, and the chiral algebrathat they
satisfy is just the SU(2)kfll fusion algebra. The potential W(x) = (n +

1)~T~~1(x)is the fusion potential that encodesthesefusion rules [21,141.
The other casesD andE havealsobeendiscussed[5]. By inspection,onefinds

that
(i) the correspondingmatricesC~and C~can be madenormal by a diagonal

redefinitionof the basis;
(ii) the dual algebra has among its generatorsthe incidence matrix of the

Dynkin diagram,or equivalentlythe I/i~are the eigenvectorsof the Cartanmatrix
of the D or E Lie algebraandaccordingto the discussionof sect.2, Pt(Xa, Ya) ~
/ (1) / / (0).
‘t’a / ‘Va

(iii) the pattern of extremaof the potential in the x—y planereproducesthe

shapeof the Dynkin diagram.
Thenthepreviousdiscussionapplies:in the “good” casesDeven,E6 andE8, one

canfind linearcombinationsof thepolynomialsp1(x, y) that generatea subring of
the chiral ring isomorphic to the fusion ring of the correspondingSU(2) modular
invariant. Let us illustrate this again on the case of E6. We start from the
deformed E6 potential W given in ref. [11] and recalled for conveniencein
appendixB. The polynomialsp,(x, y, t) = — (O/0t1)W form a ring (modulo O~W,
05W)with structureconstantsderivedfrom the free energygiven in ref. [221.The

potentialW andthe p’s arequasihomogeneouspolynomialsof x (of degree4), y
(degree3) and t, (degree12 — i).

If only t10 = t, the coupling to the least relevantoperator,is non-vanishing,the
polynomials p, reduceto p0 = 1, p3 =y, p4 =x — ~ p6 =y

2 — tx + kt3, ~
— t2y and ~10 ~ — ~t2y2 + ~t3x. After a changeof scale

p
0=p0, p3=~7~p3,

-~

p4=—~-p4, P6=-73--P6~

6 - 6~1i
P7~~7~P7~ Pio~7~Pio’
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the dimensionless~ ‘s havestructureconstantsgivenby the algebradualto the one
generatedby the E6 Dynkin diagram, in the senseof sect. 3.1. In otherwords,

= M~J”fi~.

To makecontactwith the fusion algebraof theunderlyingSU(2) model we finally
form linear combinationsof the j3 ‘s accordingto eq. (3.13), andwe find that the
polynomialsH~,114 and 115 form a subring isomorphic to the fusion ring of the
theory (3.12).

The propertyof normalizability enjoyedby the chiral ring of the Chebishev
resolutionof the ADE singularitieshas prompted us to systematicallyexamine
whatare the normalizabledeformationsof thesecases.This will be our endeavour

in the next section.

4. Normalizable deformations of the ADE singularities

This section is a catalogof the normalizabledeformationsof the ADE poten-
tials by a single non-vanishingparametert, (see sect. 6 for a discussionof this

restriction). Becausethe potential is a quasihomogeneouspolynomial of the
variable(s)x (and possibly y) and of this parameter,t, may be resealedto the
value 1. This will be assumedin the following.

4.1. A~

We first examinethe A~deformedpotentialW(x, t0,..., t,,_~)of ref. [111.The
matrix C~in that casereads

0 1 0
t~_~ 0 1 0

C1 = tn..2 tfl_1 •0 1 (4.1)

t•l ...~ t~_•2 ~ 0

andthe potential W is reconstructedfrom (2.2) by one quadrature.We assume

thatonly ~ = t is non-vanishing.ThenC~reads

0 1 0 ... ... 0
0 1 0 0

0 1

C1= 0 ... ... ... , (4.2)

t 0 ...

0 1

0... t 0 ... 0
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where the diagonalof t’s startsin position (n —p, 1) on thematrix. Welook for a
diagonalchangeof basis P=diag(p1,...,p~),such that C1 =P’C1P is normal.
The normalityconditionimposesconstraintson the p’s, which are all expressedin
termsof o~, = p,

2. For all valuesof p, we get

= ~ = = fl (43)

a_i U

2

According to the respectivepositionsof p and ~-n,we find for p ~ 1
(i) p < ~n:

ci-
1~j~p+1

~+I °2

~—=(p+1)~ p+2~j~n—p—1
02

ci-
~=(n—j)~ n—p~j~n—1.

02

(ii) p )

u cr1
1<j~n—p—1

~+I °2

~=(n—p—1)~ n—p~j~p+1
O~2

a:, 01
p+2~j<n—1.

~j+1

From (i) and(4.3) we get

a_n_P

0i a_i____ =

~n—p+i ~

2 °2

possibleonly if p = 1. Analogously,from (ii) and(4.3) we get

cr,,.~ ~
= — =(n —p—i)——,

~n—p±1 ~2 02

possibleonly if p = n — 2. This leavesuswith the threecases
(1) p = 0: °k = t

2~/~D, k = 1, 2,..., n.

(2) p = 1: 0k = 2(2t)21~~1~, k = 2, 3,.. .,n — 1,

011, Ufl’t2,

(3) p = n — 2: ~k = ~ k = 1, 2,. . . , n.

We conclude that the only normalizable caseswith a single non-vanishing
t-parameterare the threecasest~* 0, t

2 * 0 and tn_l * 0. What is moststriking is
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that thesethreecaseshavebeen identified as integrabledeformations[231:the
perturbationby themost relevantoperatorhaslongbeenrecognizedas integrable
([4,24—27]), the one by t

2 is discussedin refs. [1,241while the caseof t,,~ is
treatedin refs. [5,281.

Thereare severalthings that canbe done on thesenormalizablecases:
(a) From the diagonalizationof the matrix C~= p~M~in an orthonormalbasis,

we can construct the dual algebraNabC. In all thesecases,it exists (becauseall
~t) * 0) and it leadsto non-negativeintegers!Eachof thesecan be regardedas
the adjacencymatrix of a (possiblydisconnected)graph.

(b) We can also determinethe extremaof the potential W(x, t), i.e. both the
location of the extremaXa (on the real line or in the complexplane)andthevalue
of W at this Xa. We find that the location of the Xa follows the patternof vertices
of oneof the graphsof the dual algebra,call it Nfb; consequently,it seemsnatural
to link the extremaXa by edgesof the graphof J~.As for the extremalvaluesof

W, they are such that for two extrema Xa and Xb linked as just explained,

I W(Xa) — W(xb) takes only onevalue 4W I. The interpretation[1] is that the
link existsbetweenthe ground statesa and b of the potentialif andonly if thereis
a “fundamental” soliton interpolating betweenthem, andthe massof this soliton
is just given by 4W . Thesefeaturesare apparenton the graphstabulatedin
table i. We commentbriefly the results.

(i) Forthe perturbationby t,,_~,the Chebishevresolution discussedbefore,the
extremalieatXa=

2 cos ir(a + i)/(n + 1), a =0,...,n— 1, andthevalueofWat
thesepoints is W’,~,= 2(— 1)a~i/(n + 1). The graphencodingC~as well as oneof
its dual is the A~Dynkin diagram.

(ii) For the perturbationby x2, W=x”~/(n + i) — ~x2, one finds extremaat

= 0 and Xa = exp(2i~(a— 1)/(n — i)), a = 1,. . . , n — 1; they form a centered
(n — 1)-gonin the complexplane, like the correspondingvaluesof W: 0,[(n —

2(n + i)] exp(4i~(a— 1)/(n — 1)). The graphof the dual Niab hasthe daisyshape
depictedin the third column of table 1.

(iii) For the perturbationby x, the results are similar, with a non-centered
oriented polygon:Xa = exp(2i~a/(n— i)), Wa = [—n/(n + 1)1 exp(2i~ra/(n— 1)),
a = 0, . . . , n — 1. On table i, only the graphassociatedwith N~ has beendrawn,
but theother N’s would connectotherpairsof groundstates,correspondingto the
other,non-fundamental,solitons.

4.2. D~~
2

It may be useful to first recall that the D~+ 2 perturbed potential may be
obtainedfrom the A2~+~oneby anorbifold procedure.We devoteappendixA to
a review of this constructionand of variouspropertiesof the D-potential andfree
energy,including a curious positivity propertyof the coefficientsof F for Deven.
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The bottom line is that the Dn±
2potential involves a new variable y, and after

insertingan extradeformationparameterT coupledto y, it reads

WD2(x, y; t0, t2,.. ., t~, r) = WA2 ,(x’ = ~, t0, 0~t2~..., t2n) + ~ + T~

2(n+i) (4.4)

The free energyF of the D-models may also be determinedfairly explicitly in
termsof the A one.Onefinds that

FD(to, t2,...,t2~,T) =FA2 ,(t0, 0, t2,...,t2n) — ~ (4.5)

wherethe expressionof cP is given in appendixA.
From the orbifold connectionbetweenthe Dn+2 andthe A2n+i cases,it seems

reasonableto expectthe perturbationsby the leastrelevantandthe most relevant

operator to be (i) integrable,(ii) normalizable;the former observationhasbeen
made in refs. [24,291,for the most relevant(and n even),and in ref. [5], for the
least relevant;as for normalizability, it is readily checkedfor thesetwo perturba-
tions andonealso finds that the perturbationby T is normalizable.The proofgoes
as follows.

The matrix encodingthe multiplication by pi(X) is given by

000
(C1)J = ~— ~— ~ —

0

C~= A —T (4.6)

T 0 ... ~t2n

where A is an (n + 1) x (n + 1) matrix, which can be expressedin terms of the
matrix C~encodingmultiplication by x in the A2~~1model. The relation is as
follows:

= (~fl21
23— ~ i = 0 n. (4.7)

Looking at specific perturbationswe now get:
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(i): r-perturbation:The matrix C~simplifies dramaticallyandis

0 1 0 ... 0
00 1 0 ... 0

C~= ~ ... . (4.8)
o ... 0 1 0
0 0 0 —T

T ... 0 0

We seethat this is a cycle and it is clearly normalizable.
(ii): t.-perturbation.The matrix C1 hasthe following form:

0

A . (4.9)

0 .. . t2n

Obviously if in this case A is normalizable, the same property holds for C~,
thereforethe normalizablecasesin A2n±iwith todd = 0 will also be in this case.It
is likely that theseare the only normalizableperturbationswith a single non-
vanishing t,, althoughwe haveno completeproof. There is, however,the possibil-
ity to mix the two operatorsof samedegree,andfor D6, for example,one finds
that the operatorscoupledto tn ±i’r arenormalizable(seebelow sect.5.2).

We thusdiscussin turn the perturbations
(i) by t2n. This is the Chebishevperturbationdiscussedin refs. [5,28]. The

minimain the x—y planebuild up the shapeof the Dynkin diagram,while W takes

only two values. It is still true that the locationsof the extremaare relatedto the
eigenvectorsof the adjacencymatrix of the Dynkin diagramD~±2 as in (2.9). If we

wantto reconstructthe whole Maj~ dual algebra,however,we haveto distinguish
the casesof evenandodd n. For evenn, one choosesfor thevertex0 the endof
the longest leg of the diagram, since all the components~/i~ are non-vanishing
(after somejudiciouschoice of linear combinationsof the eigenvectorspertaining
to the sameeigenvalue).For n odd, in contrast,onehasto takeratherthe endof a
short leg to have a well-defined expressionand then the NabC~5are not all
non-negative,as recalledin sect.3.1.

(ii) by T. The potential W=Xtz~/2(fl+ 1) + ~y
2 —y has minima at Xa a

exp 2i~a/(n+ 2), a = 0,..., n — 1 and takes there the values W,, ax;i (the
overall factors or phaseshavebeendiscardedin table 1). The multiplication by x
yieldsa matrix of cyclic permutation,andthe dual N

1 hasthe sameform: in table
1, the links of the graphshouldbeoriented.The integrabilityof that caseis, to the
bestof our knowledge,notestablished.

(iii) by t2. The potential W= [x”~/2(n + 1)] + ~2 —x has minima at Xa =

2i/nexp2i~a/n, Ya° for a=0,1,...,n—1 and x=0, y=±V~,and the
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valuesof the potentialare W(Xa, ya) = —(n21/’~/n+ 1) exp(2i~a/n),W(0, ±v’~)
= 0. For evenn, the ring generatorsare normal in thebasis

x””2 ±wy
1 x x2 x~~~~’2_i Xnz~’2~ Xn_i x”—l

, , ,._., , ~/~— , ,..., ,

for any w suchthat w4 = 1. The dual-algebrageneratoris a cyclic permutationof n

verticestogetherwith the exchangeof the two remainingones.For n odd, the ring
generatorsare normal in the basis 1, x,...,x”~, x” —1, y. The dual ring cannot
be constructed,dueto a failure of condition(3.la). For evenn, the perturbation
hasbeenarguedto be integrable,as the most relevantone[29].

4.3. E,,

The only normalizableperturbationswith a singlenon-vanishingt, are:
(i) by t

10. This is the Chebishevperturbation,with the extremaof the potential

at eithery = 0, x = ±1/2V~,W= T i/36V~,or x = 1 ± 1/2V~,y = e~’i±

(~= ± 1), W= R i/36~Ii. The matrix N1 is the adjacencymatrix of the Dynkin
diagram.

(ii) by t7. This is an interestingcasewhere the perturbationcouples the two
variables x and y: W= ~x

3+ ~y4—xy. The extremaoccur either at x
0 =y0 = 0,

W0 = 0 or at x = exp[6i~(a — 1)/SI, y = exp[2i~(a— 1)/SI, Wa =

— ~ exp[—2iir(a — 1)/SI, a = 1,.. .,5. The dual N5 is the adjacencymatrix of a
daisygraph(like in the caseof A6 perturbedby t2).

(iii) by t4, t6. In this case and the next, we allow two different t’s to be
non-vanishing, in apparentcontradiction to our previous assumption.This is
becausethe two variables x and y are in fact uncoupled,andwe aredealingwith
the tensorproduct of a A2 x

3-potential perturbedby x and a A
3 y

4-potential
perturbedby y2. As before the perturbationparameterst

4, t6 may be absorbed

into a redefinition of x and y andwe choosethem equalto 1. The extremalie at
x = 0, 1 and y = 0, ± v~,W= ± ~ andtwice ±~.

(iv) by t3, t4. The extremaareat x = ± 1, y = exp(2iair/3),a = 0, 1, 2 with W

takingsix valuesin the plane.
Theintegrabilityof the caset10 hasbeendiscussedin refs. [5,281.It would bequite
interestingto find a conservedquantityor anyotherevidenceof integrability in the
caseof the t7 perturbation.

4.4. E7

The expressionof the perturbedpotentialandfree energymaybe found in ref.

[221(with a little misprint correctedin our appendixB) ~. The only normalizable
perturbationsby a singlenon-vanishingflat coordinateare

* We are gratefulto A. Klemm for a communicationon this subject.
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(i) by t~
6.This Chebishevresolution,alreadydiscussedin ref. [SI, leadsto a

dual algebra that involves signs but is well defined. The generatorN1 is the
adjacencymatrix of the E7 Dynkin diagram. The extremaof W take place at

pointsthat also reproducethat diagram,(seetable 1) andW takesonly two values
(with the conventionsof ref. [22]), W= ±(2x 310)_i (4 times+, 3 times—).

(ii) by t10: The potentialW = ~x
3+ xy3 — xy hasextremathat lie in the x and y

complexplanes,making the picture more difficult to read.Also, all the I/’a have
somevanishingcomponent,making the N algebraill-defined. Accordingly, thereis

no correspondingentry in table 1. The integrabilityof that caseis not known.

4.5. E
8

The parametrizationof the perturbed potential by flat coordinatesmay be
found in ref. [221.The normalizablecasesareperturbationsby

(i) by t28: Extremaare at y~,= 1 + (1/ ~)I/~(
1)/I/i~0~Xa = Ya — ~ +

where ~,(O,i,2) are the threeeigenvectorsof the E
8 adjacencymatrix pertainingto

the eigenvalues2 cos ~ (1, 7, 11). The correspondingcritical valuesof W take
only two values,W= ± 1/20 250v~. Once again,the extremadisplaynicely in the
x—y planethe shapeof the E8 Dynkin diagram.The adjacencymatrix of the latter
is reproducedby the N1 matrix.

(ii) by t16: The extremalie at the origin, with W0 = 0 andat the seventhrootsof
unity, xa = exp(2iir(a — 1)/7), Ya =x~,W~,= — -14x~,a = 1,... ,7. Theseextrema
andthe resulting N7 graphareagainlike in the caseof A8 perturbedby t2.

(iii) by t18, z’10

(iv) by t12, t10
(v) by t10, t6: theselast threecasescorrespondsto decoupledcasesA4 ® A6.

Their extrema and graphsare thus obtained as tensor productsof the A-cases
discussedabove.

5. Non-ABE cases

5.1. THE SU(N) CASES

The studyof effective Landau—Ginzburgtheoriesbeyondthe ADE potentials
becomesmore delicate.The main difficulty is the appearanceof modules in the
singularities,i.e. dimensionlessparametersdecoratingthe potentials.The simplest
exampleof a module is provided by the P8 singularityof ref [91,with a potential

x
3 + y3 + z3 + axyz,

where the dimensionlessparametera is the module of the singularity [301.
However, Gepner[211found some geometricalpotentialsfor the fusion rings of
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the SU(N) WZW theoriesat level k, best expressedthrough their generating
function

~ ~ X2,...,XN_1)

m~0

= —log(1 — tx
1 + t

2x
2 — t

3x
3 + ... +( — 1)N_itN_ixN_i + (_l)NtN). (5.1)

The fusion ring is then the polynomial ring C[x1, . . . , xN_l]/ {0~1W,~),with

m =k +N. The ring basis correspondingto the integrableweights of SU(N)k,
(Ar,.. .,AN_i), A, ~ 0, )A~~ k is formedby generalizedChebishevpolynomials.It
wasarguedthat this is just a particularperturbationof the chiral ring of an N = 2

Landau—Ginzburgtheoryof N — 1 superfields~ ~N- 1’ with aquasi-homoge-
neouspotential ~ generatedby

~ tmW )(~1,...,PN_1) = —log(i — t’1i1 + t
21

2— ...

m~0

(5.2)

There is now a bulk of evidence [3,4,27,31,321that theseLandau—Ginzburg
theoriesdescribethe N = 2 superconformalKazama—Suzukimodels[33] basedon

the cosets(SU(N)k x SO(2(N—i))1/(SU(N — 1)k±i x U(1)). The potential w~f~7~

is a quasi-homogeneousfunction of degreek + N, if we assignthe degreejtothe

field ~ The “Chebishev”perturbationreproducingthe fusion ring of SU( N) k is
thereforea perturbationby the degreek operator correspondingto the weight
(k, 0,.. . , 0) (see table 1, where tko ~ is denotedby tk). The task of computing
flat coordinatesfor genericperturbationsof thesepotentialsw,~f’~’is formidable.
However, it wascarriedout in one specialcase,correspondingto SU(3)3 [221.The
appearanceof modules,i.e. of coupling parameterswith negativeor zerodimen-
sion is clear from inspection of the possibledegreesof operatorsin a generic

perturbed theory. Let ~, ~ . . . ~N—l) denote the ring basis element
(generalizedChebishevpolynomial)with weight (A1,.. . , AN_~).It behaveslike

Ith th \ = ~AithA2 thAN_I +
A1 AN_l~ 1’”~’ N—li i 2 . . N—i

henceits degreeis A1+2A2+ ... +(N— l)AN_i, and can go up to (N— 1)k: it
can become larger than the degreeof the attachedpotential, k + N, as soonas
k ~ 2 for N> 3, or k ~ 3 for N = 3. Hencetheperturbationsby suchoperatorswill
have zero- (marginal operators)or negative- (irrelevant operators)dimension

coupling constantsto preservethe quasi-homogeneityof the perturbedpotential.
In all cases,thesewill enableone to constructdimensionlesscouplings,whence
modules.This explainsalso how the casesSU(3)~and SU(3)2 avoid the problem,
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beingjust part of the A, D, E classificationof singularitieswithout modules(resp.
A3 andD6, seenext subsectionfor a detailedstudy), as well asSU(N)1(AN).

Although thecompleteexpressionfor perturbedpotentialsis not known,we can
consider some special perturbationswhich are relevant enough to avoid the
problem of modules, such as the “Chebishev” perturbationfor instance.In the
remainderof this sectionwe will concentrateon the SU(3) caseat levels k ~ 3.

The generatingfunction for the potentialsw~3 is easily recognizedas a special

form of the SU(2) Chebishevpotentialgeneratingfunction, i.e.

~ t~~(x, y) = ~ tmym/2w~)(x/~/~),
m~’0 m~0

where w~(x)= Tm(x)/m, Tm the Chebishevpolynomial of the first kind. This
enablesus to studythe most relevantperturbationsof the conformal theory, by the
operators~ =~ + ~ ~‘2,O x

2 —y + ~ ~‘o,i y + . . .,with respectivedegrees
1, 2, 2, andfor which the perturbedpotentialsread

2w=y /
n

2y: w=yn/ n

x2—y: W=yn/2~~) —t
20(x

2—y).

For theseperturbations,we worked out the perturbedring and found that only

= x and ~ = y were normalizable,togetherwith theChebishevperturbation
by ?/ko. On the otherhand,we computedthe extremaof the potential,and found
striking similarities betweenthe dual of the normalizedring andthe positionsof
the extremaandvaluestakenby the potentialat those.The resultsarecollected in
pictorial form on table 2. To commentbriefly, the “Chebishev” perturbationby
tn _3 leadsto a set of extremain the x-plane inside a three-cusphypocycloid,a
deformedversionof the Weyl chamberof level n — 3. The potential takes three
possiblevaluesaccordingto the triality of the groundstate,on the vertices of an
equilateraltriangle. The perturbationby t

1 coupledto x leadsto two possible
picturesdependingon the parity of n, becauseof parity propertiesof Chebishev
polynomials.For n even,the extremain the x-planelie at the verticesof ~(n — 2)

concentric regular (n — 1)-gons. For n odd, they are on 4(n — 3) concentric

(n — 1)-gonswhile the origin is ~(n — 1) timesdegenerate(the latter degeneracyis
lifted by the y-coordinate). In either case,the dual generatorsreproducethese
features.Finally, anothercasethat may be discussedeasily is the t~perturbation
by y (seetable2).



622 P. Di Francescoet a!. / Graph rings and integrab!eperturbations

TABLE 2

Normalizableperturbationsof the diagonal d~”~’
3~seriesof the Kazama—SuzukicosetsSU(3)k ><

SO(4),/(SU(2)k÷lxU(1)). Thecolumnsare organizedason table1. The first perturbationt,, = t~_

3

tk,0, - - ~ is the“Chebishev”one, thecorrespondingthird column displaystheweightdiagramof SU(
3)k

(generalizationof the A Dynkin diagram) and should be understoodas oriented in order for each
elementarytriangleto be itself orientedanti-clockwise.The othercyclesof thethird column haveto be

understoodasorientedanti-clockwise.

: IIIII~°
0 x plane, y= x

~ :I:x~>~

x plane, y= ~ _________________ —

x plane, y= x, x.tO,
x=O, y~o,wnla=l ____________ —

sameasti ~:~~I :~Q~
yplane
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Note again that, like in the SU(2) case,the valuestaken by the perturbed
potential in the complexplanecan be all linked in a connectedgraphwith only
straight segmentsof the samelength, correspondingto the mass of the unique
minimal soliton interpolatingbetweenthe nearest-neighbouringvacua.

Beyond the SU(3) case, it might be possibleto investigatesome (relevant
enough)perturbationsin the general SU(N), based on the following natural
conjecture.Rearrangingthe SU(2) type-Aperturbedpotentialsof ref. [11], onecan
derive the following generatingfunction:

~ umW,~2)(x,T
2,r3,...)= —log(1—ux+u

2T
2+u

3i-
3+...), (5.3)

m~0

where for a given level k = m — 2, we retain only the couplings T2 = tk, T3 =

tk_1,. . . , Tk±2 = t0. The Chebishevpotentialsare obtainedby taking T2 = 1, and
Tp = 0 for p> 2. Basedon the Chebishevand(1, 0, . . . , 0) perturbationcases,we
conjecturethat this can serve also as a generatingfunction for certain perturba-
tions of the SU(N) potentials,by substituting in (5.3) x ~ T2 ~x2, T3

TN_i (~iY’
1x~_~, andidentifying the remainingcouplingsaspertur-

bations(T~= tk±N_p, ~ ~couplesto the ~4±N—p, 0 0 operator).

5.2. FAKE NON-ADE CASES

Let usreturnto the few SU(N) caseswhich avoid the appearanceof modules.
SU(N)

1 case. It is easyto see that the generalperturbedpotential takesthe
form

N-i

\_ (N)~ V —N±1’.. 1’~~~’ N—i) — N+i’. i’ ‘ N—i) ~ j j O~
j=l

Working out the perturbedring, we find that it is isomorphicto the perturbedring

of the SU(
2)N..i AN theory for some specialcoordinatess~,the identification of

the basis elementsbeing x
3~(0,...,0,1, 0,...,0)—s(j)~x

3(if the 1 is in jth

position in the SU(N)
1 weight).

SU(3)2 case. As mentionedin the previoussection,the perturbedpotential, of
degree5, involvesonly couplingsof positivedimensions1, 2, 3, 3, 4, 5, to operators
with respectivedimensions4, 3, 2, 2, 1, 0 (see appendixC for the complete
expression.).The lattermatchexactlythoseof the D6 model of SU(2) at level 8. It
is actually straightforwardto find the isomorphismbetweenthe corresponding

perturbedrings. It involves a changeof basis of the ring, preservingthe initial
grading(henceallowing for rotationsin the two-dimensionalspaceof dimension-
two ring elements);accordinglythe parameterst0,0, t1,o, t~,1,t02 areproportional
to theD6 parameterst0, t2, t6, t8, whereast20, t0~areproportionalto t4 ±1T4. In
this sense,SU(3)2 is within the A, D, E classification.
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It is thenaneasymatterto examinewhat are the normalizableperturbationsof
that case,involving only onenon-zeroflat coordinatein the SU(3) language.One
finds that the solutionsare t

10 * 0, or t01 * 0, or t20 * 0 or t02* 0, thusexcluding
t11. The first two are just particular cases of the discussion above, the t20
perturbationis the “Chebishev” one leadingto the SU(3)2 fusion potential, and

p0,2 is the least relevantperturbation.The first and the last havebeen already
found in the discussionof D6. The perturbationby t2,0 that gives a chiral ring
isomorphic to the fusion ring of SU(3)2 is also known to be integrable[261.Only
the t01 perturbationhadnot previouslybeenrecognizedas integrable.In a recent
calculationto first order,it hasbeencheckedthat this perturbationadmitsindeed
a spin-threeconservedquantity[8].

6. Discussion

In this paper, we have explored a special class of perturbationsof N = 2

superconformaltheories,in which the basisof the chiral ring is madeof what we
callednormalizablematrices.We showedthat thispropertyis fairly restrictive,and
that for the ADE potentials,it allows only a finite andsmall numberof perturba-
tions, if we insist on perturbationsin which only onefiat coordinateis non-vanishing.

We have then shown that this normalizability property leads naturally to the
considerationof the algebradual to the original chiral one;except in a few cases,
this dual algebra is well defined and admits a basis made of matriceswith
non-negativeentries (type I) or in which at least one matrix has this property
(non-type I). In all thosecases,such a matrix may be regardedas the adjacency

matrix of a graph.The surprisingempiricalfact, that generalizesan observationby
LercheandWarner, is that this graphresemblesthe patternof the extremaof the

potential in coordinatespace.This implies that thereis anaturalactionof the dual
algebraon theseextrema,namelyon the groundstatesof the theory. Finally, a last
empiricalobservationis that thereseemsto be a connectionbetweenthe integra-
bility of the theory and this normalizability condition: more precisely, all the
known integrableperturbationsof N = 2 theorieswith an ADE Landau—Ginzburg
potentialanda few othershavebeenfound amongthenormalizableperturbations.
It is temptingto conjecturethat thereis an identity betweenthe two classes.In
other words,normalizability could be a criterion of integrability.

We now want to discussthis and related questionsraised by the previous
findings.

(i) What is the meaningof the normalizability condition? This condition has

beenintroducedon a technicalground,namely to allow the diagonalizationof the
chiral ring in an orthogonalbasisand the constructionof the dual ring. Clearly a
more physical interpretationwould be desirable.Let us point out that this
condition is stronger than the conditionthat the singularityhasbeenfully resolved
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(in a physical language,that all the degeneracyof the extremahasbeenlifted, and
the theorydescribesonly massiveexcitations).Indeed,the normalizability condi-
tion implies that the coordinatesof the extremaare expressiblein terms of the

eigenvectorsaccordingto (2.9); the independenceof the latter implies thenon-de-
generacyof the former. Conversely, it is easyto seethat the perturbationby

= t #0 of the A6 potential,viz. W= 4x
7 — tx4 + t2x is a full resolution of the x7

singularity,but by the theoremof sect. 4.1, the matrix C~of (4.2) is not normaliz-
able.

(ii) What is the good justification of keepingonly a single t * 0? Certainly the

introduction of a single non-zeroparameter t
1, hence of a single perturbing

operator,is the simplestandmost natural thing to do. The situationis confused,

however,by the existenceof somenormalizablecasesinvolving severalnon-vanish-
ing parameterst., presumablynon-integrable.For example,all the matricesof the
chiral ring of the perturbedA3 theoryarenormalizablefor arbitrary t1 and t2. It is

very unlikely that all theseperturbationsare integrable!Yet anotherexampleis
providedby a classof fusion potentials.Whenevera potential is known to be the
fusion potential of a rational conformal field theory, it certainly satisfies the
normalizability condition in a suitable basis.Such is the caseof the A6 potential
perturbedby t4 = 1 and t1 = 2. In ref. [14], it hasbeenshowedthat this potential
W= — — x providesa one-variablerepresentationof the fusion ring SU(3)2.
Although the matrix C1 of (4.2) that encodesthe multiplication by x in the
ordinarybasis 1, x, x

2, x3 — 1, x4 — 2x, x5 — 3x2 of the A
6 caseis not normaliz-

able, after a changeof basisto the basis

1, x~(x
5— 3x2), +(5x2—x5), ~(x3 —1), ~(x4 — 3x)

it reads

010000
001100

C1= (6.1)

010001

001000

and is normal. Clearly then the M and N algebrasare isomorphic (we are in a
fusion case,henceself-dual).It is amusingto seeagainthat thelocation of extrema
in the x-plane reproducesthe pattern of the integrableweights of SU(3)

2.

However, it is doubtful that this correspondsto an integrableperturbationof the
A6 theory. Note that this instanceillustrates the possibility of attachingseveral
consistentgradingsto the chiral rings of a given potential.

Anotherexampleis providedby the Sp(2)2case.The potentialsfor the Sp(N)k
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fusion algebrahavebeenworkedout [34,35].We chooseto presentnow the caseof
N = k = 2, dueto its relationto the SU(3)2 case.The potential reads

W= +x
5 —x3y+xy2 +xy —x.

Comparingwith the SU(3)
2 generalperturbationsof appendixC, we find that this

is a specialperturbationby ~ = xy + . . . and ~ = x simultaneously,correspond-
ing to t~1= — 1 and t10 = ~, the other f’s beingzero.As the fusion ring of a WZW
model, this point is normalizable,but correspondsagainto a perturbationmixing
two directions.In this casetoo, the integrabilityof the N = 2 theorydescribedby
this potentialhasnot beenestablished,to the bestof our knowledge.

(i) It seemsthereforethat a refinedversion of our conjectureshould be: the

normalizability of a perturbation by a single flat coordinate is equivalent to
integrability.

(ii) Althoughwe haveusedthe languageof potentialsandpolynomial represen-
tation, it must be clear that the issue of normalizability dependsonly on the
structure constantsand may therefore also be addressedin caseswhere no
potentialis available.We hopeto return to such instancesin a nearfuture.

(iii) Whatmaybe theorigin of suchan allegedconnectionbetweenintegrability
and normalizability? The form of the C1 matrix in the simplestcases(see (4.2))
suggestsa possibleconnectionwith generalizedTodatheoriesand/or hamiltonian
reduction.This too will be left to future investigation.

(iv) What is the physicalmeaningof the graphand/orof the dualalgebra?The

existenceof the dual ring, with a basis labelled in the sameway as the ground
states,meansthat onemay definea ring structureon thesegroundstates.What is
the meaningof this ring? The whole discussionhassomefeaturesreminiscentof a
recentdiscussionby Cecotti andVafa [36]. Theseauthorshavebeenableto relate
the counting of solitons (weighted by their fermionic number)interpolating be-
tweenpairsof ground stateswith the intersectionnumbersof homology cyclesof

the (perturbed)potential. Their discussion,contraryto ours, is not limited to the
integrableor normalizableperturbations.With this additional assumption,we are
able to obtain quite explicit formulae and new resultson the patternof ground
states.It would be quite interestingto understandif our resultshaveany bearing
on that more generaland systematicapproach.

(v) Is therea conformal field theoryassociatedwith the integrablecases,in the
sensethat thereis a subringof the chiral ring isomorphic to the fusion ring of that
conformal theory as in the Chebishevcases?In all the otherADE casesthat we
haveencountered,therewasalwaysa cyclic ~N subring.In that sense,onemay say
that therewas anunderlying SU(N)1conformaltheory, but it is not clearwhat is
gainedfrom that.

Special thanks are due to Nick Warner for his indefatigable patience in
explaining us the beauties and intricacies of N = 2 theories. Also, we have



P. Di Francescoet a!. / Graph rings and integrableperturbations 627

benefited from discussions with D. Gepner, C. Itzykson, W. Lerche, D.
NemeschanskyandN. Sochen,F. Lesageis supportedby a CanadianNSERC 67
scholarship.

AppendixA

THE D~~
2POTENTIAL AND FREE ENERGY

The heuristicidea to connectthe D~±2 andthe A 2n + I is to takeanorbifold of
the latter. We follow here a route slightly different from ref. [11]. Supposethat

only the teven parametersare non-vanishing in the A2~~1potential WA(x’, t.),
which is thusan evenfunction of x’, WA(x’, t.) = V(x’

2, t.). We imaginethat this

potential is usedas an action, i.e. in an exponentiatedform as a weight in integrals.

(f) = fdx’ exp(-~(x’, t.))f(x’). (A.1)

If one restrictsoneselfto evenfunctions of x’, f(x’) = F(x’2), one may perform
the x’2 —~x changeof variables,and up to irrelevant factors and discardingall
problemsof convergence

dx
(f) = f -~

7==-exp(—V(x))F(x)

= fdx dy exp(—V(x) — ~y
2x)F(x). (A.2)

The orbifold D~±2 potential is thusidentified as the term in the exponential;the
jacobianof the transformationhasforced us to introducea new variable y, and
after insertingan extradeformationparameterT coupledto y, the Dn±2potential
reads

WD(x, y;t
0, t2~•~~~t2n,T) = l4~2 ,(x’= ~, t0, 0, t2,...,t2~)+

= +.... (A.3)
2(n + 1)

It is a quasihomogeneouspolynomial of x (degree2), y (degreen) andthe t’s. The
free energyF of theseD-modelsmay also bedeterminedexplicitly in termsof the
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A-one. Expressingthe multiplication of the polynomials p,(x, t.) and p,ç =y in
termsof that of the p~(x’, t.) modulo0KW, 0~,W,onefinds that

FD(to, t
2~. . . , t2n, T) = FA2 1(t0, 0, t2~..., t2n) — ~ t2n). (A.4)

We recall that expressionsfor FA or its partial derivativeswith respectto the t’s
havebeengiven in refs. [11,371;the function c1 is a polynomial in t0,..., t2n that is
determinedby its partial derivatives: —0/0t1c1 is the coefficient of Pnj in the
expansionof 2V’(x). Using the relation WA’2(x’) P2n+iC~’)and recursion
formulaebetweenthe p’s, one finds

— —‘1 = ~ (~1)’~fl t2n_2j. (A.5)
~ P

1

r+Ej~=i

As a side remark,we want to commentthe positivity propertiesof the coeffi-
cientsof the resultingF. While all the monomialsof FA havepositivecoefficients,
at first sight themonomialsof the polynomial J. seemto haveeithersign. We have
checkedin the casesD

4 andD6, andit is very likely to be true for generalDn+2, n
even, that onemay rewrite F with positive signsonly in terms of t0, t2,..., tn_2,

tn+2~~ ‘~2n’ and t ~= \/~(tn ±jn/
2_i~). This is of interest in view of our earlier

observationthat the chiral ring is a generalizationof the M algebraassociatedwith
the graph, andthat the latter hasnon-negativestructureconstantsonly for Deven.

It tellsus thechangeof basisto be performedto dealwith an algebrawith positive
structureconstants.In contrastfor the DOdd cases,the signsin F are irreducible.
One canseethat the samepositivity propertiesof the coefficientsof F holdsfor
theA~,E

6 andE8 cases[22], butnot for E7. Thus this is onemore manifestation

of the type I—non-typeI distinctionalluded to above.

Appendix B

THEPERTURBEDPOTENTIALS OFTHE E678 CASES

The E6 potential reads

W= ~x
3+ ~y4 — t~

0xy

2 — t
7xy — (t6 —

— (~t~— t6t10 + t4)x — (t3 — t7t~)y

1 3 1 2 12 12
— T ‘ 217L10 2’6 — ‘0
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The E7 potential is

W= 4x
3 +xy3 — t

16x
2y— (t~

2— ~yt~6)x
2— (t

10 + ~t~6 — ~t~2t16)xy

2 / 16 5 3 5 2 i 52
— t8y — 1,~t6— 729t1~+ 27t12t16 — 15t~Jt16— ~t8t~6 — ~t~2 x

/ 1 4 1 3 12 i 1 \
— ~ — T~~’l2~i6+ ~iOi’i6 + ~t~t16 ~t6t~ 3tj~jt~2))’

+ i — —‘--- t
6 + -~-t ‘I + ~ ~ — ~ t2 + ‘t ~2— tfj ii8O98~’i6

1455~1216 81 i3~’i6 27 l2~i6 9~’iO 12 i6 9 4 16

4 12 43 2 1 B2
— 4t8t12ti6+ 9t~t1~— 27t12+ ~t6t~2 + ~t8t10.

Finally, the E8 potential reads

W(x, y, t.)

= ~x + ~y — S28xy — s22xy — s~8y— 516xY — s12~
2— s~ox— s

6y — s0, (B.3)

where

— 3 103 i5 42i U 14 9 29 8 43 2 7
— t0 — t28t6— ~t28 + 450t22t~+ 45t18t~8— ~jt~6t~8 — ~22~’28

7 6 4 5 5 4 133 i23 i 2+ ~t~2t28 + yt1~t28+ ~t16t~t~8 + 5.t~2t~8+ ~t1~t~8+ ~t~6t18t~8

1 2 12 43 6 i 2+ 2t18t22t~— t10t22t28— ~i6~’28 — — ~t16t~2— t12t18~

— 8212 i07 8 7 6 12 5 724 4 3
— ~6 + — 30 ~22~28 — 30ti8~’28+ 5t16t28+ ~t2~t28—

2 2 ‘~ i3 2+ .~.t18t~t28— t10t28 — — ~22 —

—t flt10 2~ ~6 + 3~ ~4 i~ t
3 + it2 t2 t t t t~10 iO 45 28 i5 22 28 2 18 28 2 16 28 2 22 28 i2 28 i8 22’

— 28 9 23 5 3 3 2 3 2
~12 — — 151’28 +

3t2~t~— t~8t28— ~t16t28—

— i9 7 2 3 .~

~16 — ~ + — —

— ‘~ 2
5i818 5

—S
22 — t22 —

(B.4)
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Appendix C

THE SU(3)
2 POTENTIAL AND FREE ENERGY

The SU(3)2 perturbedpotential is parametrizedasfollows:

W(x~,x2, t.) = [4x~—x?x2+xixfl

— t02x2— t11x1x2 — (t11t02 + t20)x~— (t01 — t20 — t02
3 — t

11t02)x2

— (— ~t11t02 + ~2O~O2+ +

2 3 5+ ~O2 t/J~— 0~O2 t2/Jt]1 — too.

The polynomials p,(x~,x2, t.) = —0W/at, form a basis of the chiral ring with
structureconstantsderivedfrom the free energy

F= ~t00
2t~

2+ t00t~0t1,+ ~t00(t2~
2+ t

01
2) + ~t

10
2(t

20+ t01) —

1 2 3 1 ~ \ 2 i j \ 2
6

1i0 ~O2 — ~lO~

2O~Oi~O2 — 2

110Y20 ~ T ~t
10’.l20

toi)’1i1o2

+ ~t~
0t11

3t
02+ ~(t~0 + t~~)t02

2— ~t
20t01(t20+ t01)t11 + ~(t20

2+ t
20t01 + t~1)t11

2t
02

2 t
2~ 5_i_~ ~ t t ~+-~-/ +t ~ ~ ~ ~ 220’,~ 20 ‘ Oi)’o2 2 20 01 11 02 8’.’20 01)hll 4’. 20 01) ii 02

if \ 24 3 5 ~ ~ ~ 5-i-’ 2t7 _.±._ 11
+ 8’.~’2O + t

01)t11 t02 — 40tJ1 t02 8tfl t02 24t~j~O2 56~11 02 + 3960~02

andthe only non-vanishingi~ = ~, aregiven by
7l(00X02) = 71(tOXli) = 1,

fl(20y2o) = ?l(olXOl) = 1.

Note that F is symmetricunderthe interchanget
20 ~ t01.

Upon restriction to t00 = t10 = t~1= t02 = 0, t~= — 1, t01 = 0, the potential re-
ducesto

W= ~ —x~x2-l-x1x2 +X1 —X2

andthe polynomialsto

Poo= 1, Pio =x1,

P20 x1 —x2, p01 =x2,

p11=x1x2—1, p02=x~—x1,

that are the polynomials that representthe fusion ring of SU(3)2.
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There is a simple changeof variables that maps theseexpressionsto those

pertainingto D6. Let

= a(x — t4), x2 =y + ~a
2(x2 — 3xt

4 + 3t~—

t02 = —at~, t10 = —a
2t

3,

= — ~a
3t

2 — aT, t01 = — ~a
3t

2 + ar,

= 2t~, t02 = 2at0

with a
4 = —4. Then WSU(

3)(Xi, x2, t02,...,t00) = WD~x,y, t4, . . . , ta).

Appendix D

THEFREEENERGIES OFTHE E678 CASES

1. The E6 free energy. The free energyreads

E’ 1 13 1 2 8 + 1 2~.7 + i~~2 ~ + 1 24
— l8S32s~lO+ 57o~7~iO252~6 10 24 6 7~10+ 60 4 10

~ + ~~)_ ~ + 1 ~ ~ ~

3 + 1~ 2 ~ + + ‘t t t+ 24

3~10 24~7~rn6~3 6 7 10 6 4~’6~iO 4 6 7 10 2 3 4 7 iO

1 3 i 2 14 12 .1.3 12
+ ~ + 2~4~6~7~lO+ i2~6~iO+ 2~3~6~10 + 6~4~10+ ~t~t~Q

+ ~t6t7
4 + ~t

4
2t

7
2+ ~t

3t~t7 + t0t3t7 + t0t4t6 + 1t3t4.

2. The E7 free energy

F — ~

19 + 1 13 + 1 t2 t~— 1 ~3 ~i0 + ~ ~2 ~9— 1001094543576 16 55269864

12t1f, 5196312 10 i6 i4i7176 i2 i6 i57464~IO 12 16

+ 1 1 ~ + 1 ~ ~8 + ~ ~4 ~
7 + 1 ~ ~ ~236196 8 16 52488 8 12 16 104976 10 12 16 157464 12 16 8748 8 iO 12 16

1 3 i 2 7 — 7 3 6 + 1 — 1 2 6
+ S2488~’iO 16 + iO2O6~’fi~t6 ~ 29l6l’6~’iO’i2 i6 29i6~’8~i2~i6

— ~ t2 t6 + ~1~t t3 t5 —~—t2t2 t5 — t5 + —‘--t t2 t5 +
5832 8 10 16 972 8 12 16 + 972 10 12 i6 486~’6~8~’i2 i6 972 6 iO i6 810 4 16

~ t5 t4 + ~ t t3 t4 ~ t t t2 t4 ~ ~ t t4 + ~ t11664 12 16 2916 6 12 16 972 8 10 12 16+

5832~~012 16 162 4 8 12 16

+ ~j__t2t ~

4 + 1 2 4 + I — 1 ~ ~+ _~_~_~4 3324 6 12 i6 648~4~iO~6~ i6

464~8~lfj 5832 lO~l2~’i6

— ._i_ 3 3 .1.. 2 2 3 1 2 3 1 3 1 4 3+ 54~8~l2~i6+ 62~8~iO~l2~16+ ~ + 486~1O~16
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3 12 3 ..i_ 42 1232 i 22
—

54t4t8t10t16 + S4~’6~lO~i6 — 72~8~l2~i6— ~iO~i2~i6 +

1 22 1 2 2 12 2 12 2 i 2
+ fgt6t8t12t16+ jgt6t~0t~2t16— ~gt8t10t12t~6 — jgt4t12t16 + ~fgt4t6t10t16

1 22 12 2 16 1 4 1 3+ jgt4t8tio — ~jgt6t8t16+ ~g~t12t16— ~gt6t12t16+ ~jgt8t1oti2t16

132 1 2 122 1 23+ ~t1otl2ti6 — ~t4t8tl2tlo + ~t6ti2ti6 ~t6t8tioti2tl6 + ~tsti2ti6

1 3 122 12 1 13+ ~t6t10t1~j + T~8~lO~l6 + ~t4t10t~6 + 3t4t6t8t16+ 9t6t16

12 1 5 1 4 1 3 223+ ~t0t16 — ~1~t10t12+ ~5t4t~2+ ~gt6t~0t~2— T~t8tl2

1 22 1 2 14 1 1.2 1 2
— ~5t8t~(Jti2 — ot4tbl’i2 + iO8~’iO~’i2+ 3~’4~’8~’iO~’l2+ 6~’6~’iO~’i2+

i 3 13 1 2 12 i 2
+t0t4t12 + ~gt4t10— jgt8t10+ t0t6t10 — ~t0t8 — ~t4t8 + ~t4t6

3. The E8 free energy. The function F has the following simple expression:

F—i
72 1 32 1 2 i 2 /— ~)~t28t6 T 1t22t28t6 y 2~l8~28~6~ 2

1i616 tO’.12216 1i01i8 ‘121i6

/1 6 1 2 i2\ 1 6 1 25+ 2~’i8~’22~’28 +
2t18)t6+ ~t12t22t28t6 + ~t~8t22t~8t6

+ + ). 2 ~ ~ + ~ ~ + ~ I_i_ 2 ~ + 1~3~l6~lO~’22~’28~’62ti6!~2ot28 22t28) 6 i6~,i2~22~28 6 22) 6

1 4 143 12 3 1 3 1 22
+ 6t12tUt28t6 + 7~t22t28t6 + 1t18t22t28t6 + 6ti2t16t28t6 + 2~’i2~’2~’28~6

1 2 1 3 1 2 12
+ 2t~0t1~t28t6+ 6t18t22t28t6+ 2t10t22t28t6+ 2t12t28t6+ t12t18t22t6

1 ~ + 1
+t10t~2t6+ 245764l25OOO~l28 27945000 22 28

+ 3 / i i9 + ~ tis + ~ t
11 + ~ thi + ~l~t4t330375 22 28 10800 22 28 1080 22 28 54 22 28

+ 2 / 1 i9 + ~ ~-i + ~ ~7 + 1~?~t4t3 ~ + —~—-—t2ti7360 180 22 28 72 22 28) 459000 i6 28

2/1 17 7 i3 7729 735 14+ I62OOI’22~28 +
6480t~t~+ 90t22t28+ 18t22t28

1 2 / 1 16 13 12 1 2 8 + ~ ~ + 2
+ 2l’i6~22t,4O5OO~28+ 8100t22t28+ 30~22~28 45 22

/ 1 14 11 10 7 2 6 11 3 2+ t16t18t221 491Jt28 + ~~t22t28 + l3~22~28+ ~~22~28

13/1 13 1 7 725 3 32
+ ~t18i 646t28 + ~jt18t28 + i0t22t28 + ~22~28+ 1ii~’l8~’28

+1.2 /113+1 9+±2 ~2t16t22~5490t28 6O~22~28 30~22~28 u~22~28

12/1 13 1 9 i2 5 23
+ 2t12~5775t28+ ~~‘22~28 + ~~22~28+



P. Di Francescoeta!. / Graphringsand integrableperturbations 633

f 1 12 + 1 8 + ~ ~4 +
1~3

~ ~~
22~28 i8 22 28 6 22

i_i_
11+-~-t t7 +~t2t3

+ ~ 45 22 28 9 22 28

12 1111 ~ ~ 5+~t2t3-~-ttt+
2tl6tl8 5~yJt~~+ 15t22t28 2O~18~’28 6 22 28 18 22 28

2/1 11 1 5 123 1 ~+ t10~j~t28+ 20t18t28+ ~~22~28+ ~t~çjt~~+ ~ 16 22

11 ~+ ~ 28 180 22 28 3 22 28

3 / 11 10 + ~ ~6 + i~2+ ~12~22~8100~29 270 22 28 12 22 28

3(1 10 7 6 1 4 1 3 122 1
+ tl6t,:l-~o~t28+ ~t22t28 + ~t18t28 + ~t16t28 + 4t22t28+ 3t18t22

119 1 5 1 3 32
+ t12t16t18~~-jg~t28+ ~t22t28 + ~t18t28 + ~t22t28

2(1 ~ ~ 2 ~+ ~ ~-2—~ ~5+ t10t18~360t28 6~’l8~’28 2t22t28) ~1Ø~22~ 1620 28 360 22 28 30 22 28

1 2(1 8 224 2 23
+ ~t16t18l~~t22t28 + 3t22t28+ t18t22t28+ 3t22

(18 1 4 12\ /127 133+ ti0ti2t22~~~t28+ ~t22t28 + ~t22) + t10t~\45 2228 + 6~22~28

12 (17 2 ~
21’t7+’tt3+itt +~t+ ~t

12t18~,~t28 + ~t22t28 + t1~t28)+ ~10~16I,~~ 28 6 22 28 2 18 28 6 16

1 2(7 6 22 2 \ 2 (l6j_l 2 1+ ~t12t18~~t22t28 + t22t28+ 3t1~t22)+ t12t16~45t28 2~’22~’28+ 2~18

+ t10t12(t16(~t~8+ t22t28) + ~t12t~8 + t18t22t~8)+ t10t16(~t18t22t~8+ ~t18t~2)

2 (1 4 _ 1 2 1 1 2 ‘~ ~ +
1~3

T t

12t16i~t22~28 2~l8~28‘ ~i6~28 T ‘ 2 0 28 3 12~22
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