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Abstract

Three aspects of the SU(3) fusion coefficients are revisited: the generating polynomials of fusion coeffi-
cients are written explicitly; some curious identities generalizing the classical Freudenthal–de Vries formula 
are derived; and the properties of the fusion coefficients under conjugation of one of the factors, previously 
analyzed in the classical case, are extended to the affine algebra ŝu(3) at finite level.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The aim of this paper is threefold:

1) Write generating functions for SU(3) fusion matrices and coefficients.
2) Use them to get general formulae for dimensions of spaces of essential paths on fusion 

graphs and derive identities generalizing the classical Freudenthal–de Vries formula.
3) Compare multiplicities for λ ⊗ μ and λ ⊗ μ (provide a proof that was missing in our pa-

per [1]).

Along the way we discuss several other properties of fusion coefficients that do not seem to have 
been discussed elsewhere (for instance in section 6).
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But the purpose of this paper is also to make a modest homage to the memory of our dis-
tinguished colleague and great friend Raymond Stora. In scientific discussions Raymond was a 
listener second to none, with unsurpassable insight, critical sharpness and good humor. . . . We 
hope that he would have found entertaining the following mix of algebraic, geometric and group 
theoretical considerations, but surely, he would have stimulated us with witty comments and 
inspiring suggestions.

2. Notations

When dealing with ŝu(3)k , the su(3) affine algebra at level k, the highest weights (h.w.) will 
be restricted to the Weyl alcove of level k, i.e., all dominant weights of level ‖λ‖ := λ1 +λ2 ≤ k, 
thus

P(k) := {λ|λ1 ≥ 0 , λ2 ≥ 0 , λ1 + λ2 ≤ k} . (1)

Fusion matrices describe the multiplication, denoted λ � μ, and sometimes λ �k μ if needed, of 
the (k + 1)(k + 2)/2! simple objects (irreps) in the fusion category Ak(su(3)). They are denoted 
Nλ, with λ = (λ1, λ2) in the Weyl alcove, and satisfy the following conjugation property: NT

λ =
NT

(λ1,λ2)
= N(λ2,λ1) = Nλ̄, with λ̄ = (λ2, λ1).

In SU(3) or ŝu(3)k , there is a Z3 grading τ (“triality”) on irreps, stemming from the 
fact that this discrete group is the center of SU(3). We set for the two fundamental weights 
τ(N(1,0)) = 1, τ(N(0,1)) = 2 mod 3 and more generally

τ(λ) ≡ τ(N(λ1,λ2)) := λ1 + 2λ2 mod 3 . (2)

For tensor product or fusion, this triality is conserved (mod 3): Nν
λμ �= 0 only if

τ(λ) + τ(μ) − τ(ν) = 0 mod 3 . (3)

3. Generating functions of fusion matrices

Generating series giving SU(3) fusion coefficients have been discussed and obtained in [2,
3]. What we do here is to provide generating formulae for the fusion matrices themselves. This 
material is presumably known to many affinociados of fusion algebras, but has never appeared in 
print to the best of our knowledge, and we think it may be helpful to recall its essentials for the 
convenience of the reader.

In this section we write down formulae for the generating function of fusion matrices. As the 
finite set P(k) is closed under fusion, this generating function turns out to be a polynomial, see 
below (6). This property will be taken as granted in the following.

For reference and comparison, the same problem in the case of SU(2) is well known [4].
For the affine algebra ŝu(2)k , consider the matrices obtained by the (Chebyshev) recursion 

formula

Nλ+1 = G · Nλ − Nλ−1 λ ∈ Z , (4)

with N(0) = 1 and G = N(1), the latter being taken as the adjacency matrix of the Dynkin diagram 
Ak+1. Notice that this implies N(−1) = 0. The obtained sequence is periodic of period 2h with 
h = k + 2 (use Cayley–Hamilton for G); actually the Nλ matrices obey a Weyl group symmetry: 
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Nλ+2h = Nλ, Nλ+h = −Nh−2−λ. This infinite set of matrices1 can be obtained from the gener-
ating function 1

1−s G+s2 = ∑∞
λ=0 sλNλ. When 0 ≤ λ ≤ k (Weyl alcove), the Nλ matrices have 

non-negative integer entries and are the fusion matrices of the affine algebra ŝu(2)k . Introducing 
a term +sh P , where P = N(k) is an involution (P.P = 1), in the numerator of the previous 
generating function, has the effect of truncating the series stemming from the denominator to a 
finite polynomial, so that the generating function of fusion matrices at level k reads

X(s) =
k∑

λ=0

sλNλ = 1 + shP

1 − s G + s2
. (5)

3.1. SU(3): definition of X and recursion formulae

The generators of the ŝu(3)k fusion algebra are G = N(1,0) and GT = N(0,1), while again 
N(0,0) = 1. We define the generating polynomial

X(s, t) =
∑

λ=(λ1,λ2)∈P(k)

sλ1 tλ2N(λ1,λ2) . (6)

It satisfies the conjugation property

X(s, t)T = X(t, s) .

We then write the recursion formulae stemming from fusion by G or GT

G · N(λ1,λ2) = N(λ1+1,λ2) + N(λ1−1,λ2+1) + N(λ1,λ2−1)

where each of the three terms in the rhs is present only if respectively, λ1 ≤ k − 1, λ1 ≥ 1 and 
λ2 ≤ k − 1, λ2 ≥ 1. We have a similar expression for GT .N(λ1,λ2). We finally translate the latter 
formulae into identities on X

G · X(s, t) = 1

s
(X(s, t) − �2(t)) + s

t
(X(s, t) − �1(s)) + t (X(s, t) − �3(s, t))

where

�1(s) := X(s,0) , �2(t) := X(0, t) , �3(s, t) :=
∑

λ1+λ2=k

sλ1 tλ2N(λ1,λ2) , (7)

from which we obtain

(s2 + t + st2 − st G) · X(s, t) = s2�1(s) + t�2(t) + st2�3(s, t) (8)

and likewise, from the fusion with GT ,

(t2 + s + s2t − st GT ) · X(s, t) = s�1(s) + t2�2(t) + s2t�3(s, t) . (9)

Subtracting equ. (9) multiplied by t from equ. (8) multiplied by s, we eliminate the unwanted �3
and get

(s31 − s2tG + st2GT − t31) · X(s, t) = (s3 − st)�1(s) + (st − t3)�2(t) . (10)

1 In the non-affine case, the multiplicities for the decomposition of tensor product of irreps are encoded by matrices 
obtained by taking the large k limit of the Nλ matrices.
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Thus, if we can determine the boundary generating polynomials �1(s) = X(s, 0) and �2(t) =
X(0, t) we find

X(s, t) = (s3 − st)�1(s) + (st − t3)�2(t)

s31 − s2tG + st2GT − t31
(11)

Here the inverse of s31 − s2tG + st2GT − t31 may be understood in two alternative ways. 
Either as the actual matrix inverse, which exists for generic values2 of s and t ; calculating that 
inverse requires the use of a computer but leads, for each value of the level k, to an explicit expres-
sion. Or as a formal series in, say, t/s, which actually truncates to a finite degree polynomial. Tak-

ing for example s �= 0 in equ. (10), we write (s31 −s2tG +st2GT − t31) = s3(1 − t
s
G + t2

s2 GT −
t3

s3 1). The latter factor may then be inverted as a formal series3 (1 − t
s
G + t2

s2 GT − t3

s3 1)−1 =∑
�

(
t
s

)�
X� and equ. (11) reads X(s, t) = ∑

�

(
t
s

)�
X� · ((1 − t

s2 )X(s, 0) + ( t

s2 − t3

s3 )X(0, t)
)
. By 

consistency, this expression is such that the summation over � truncates to a finite order so as to 
make X(s, t) a polynomial in s and t of total degree k.

The two issues of determining the boundary terms will be addressed in the following subsec-
tions. Here, we just observe that because of the commutativity of the fusion algebra, we may then 
write the rational fraction in (11) without worrying about the order of terms.

3.2. Boundary generating polynomials

We may again write recursion formulae for the boundary generating polynomials �1(s) =
X(s, 0) and �2(t) = X(0, t)

G · �1(s) =
∑

0≤λ1≤k−1

sλ
1 N(λ1+1,0) +

∑
1≤λ1≤k

sλ
1 N(λ1−1,1) = 1

s
(�1(s) − 1) + L(s)

where L(s) := ∑k
λ1=1 sλ1N(λ1−1,1), and likewise

GT · �1(s) = s(�1(s) − N(k,0)s
k) + 1

s
L((s) .

Eliminating L(s) between these two relations yields

(1 − sG + s2GT − s31) · �1(s) = (1 − shN(k,0)) (12)

where for SU(3), h = k + 3.
Call P = N(k,0). This permutation matrix describes a rotation of angle 2π/3 around the center 

of the Weyl alcove, as

P · N(λ1λ2) = Nk−λ1−λ2,λ1 . (13)

2 For example, for s �= 0 and t small enough, the matrix is certainly invertible.
3 Explicitly, we may write 1/(1 − X ) = ∑

p Xp , here X = t
s G − t2

s2 GT + t3

s3 1, and we expand Xp in terms of 

multinomial coefficients, hence Xp = ∑
q,r≥0
q+r≤p

(−1)r
p!

q!r!(p−q−r)!
(

t
s

)q+2r+3(p−q−r)
Gq(GT )r ; identifying the term 

of degree � in t/s gives X� = ∑
p,q,r≥0

q+2r+3(p−q−r)=�

(−1)r
p!

q!r!(p−q−r)!
(

t
s

)q+2r+3(p−q−r)
Gq(GT )r , which may be re-

stricted to � ≤ k.
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In particular, for all λ : 0 ≤ λ ≤ k, we have P · N(λ,k−λ) = N(0,λ), and for λ = k we have 
N(0,k) = P 2. As P 3 = 1 we notice that {1, P, P 2} is isomorphic with the Z3 group. Note that 
this action is not related to the Z3 grading (“triality”) on irreps described in section 2.

Now, it is clear that the matrix (1 − sG + s2GT − s31) may be inverted as a formal series 
in s, thus giving the generating function �1(s) = X(s, 0)

�1(s) = X(s,0) = 1 − shP

1 − sG + s2GT − s31
. (14)

The effect of the numerator 1 − shP is to truncate these generating series to a polynomial of 
degree k. In a similar way, we have

�2(t) = X(0, t) = 1 − thP 2

1 − tGT + t2G − t31
, (15)

which satisfies �2(t) = (�1(t))
T as anticipated, but also, using (13),

�2(t) = tkP 2�1(
1

t
) . (16)

But we may also now determine the third boundary matrix, namely �3(s, t) defined in (7). 
From (13), it follows that

�3(s, t) =
∑

λ1+λ2=k

sλ1 tλ2N(λ1,λ2) =
∑

0≤λ2≤k

sk
( t

s

)λ2
P · N(λ2,0) = skP · X(

t

s
,0)

which, according to what we already know about X(s, 0) = �1(s), is indeed a polynomial in s
and t of total degree ≤ k.

3.3. The X generating polynomial

We return to equ. (11), into which the expressions (14) and (15) for �1(s) and �2(t) may 
now be inserted. After some algebra, the result may be recast in the following form

X(s, t) = (1 − st)1

(1 − sG + s2GT − s31)(1 − tGT + t2G − t31)
(17)

+ sh(st − s3)P

(1 − sG + s2GT − s31)(s31 − s2tG + st2GT − t31)

+ th(st − t3)P 2

(1 − tGT + t2G − t31)(t31 − st2GT + s2tG − s31)
,

which is clearly symmetric under conjugation (interchange P and P 2, s and t , G and GT ).
Taking the level k, hence h, arbitrarily large in (17), i.e., dropping the last two terms and 

taking for G the (infinite size) adjacency matrix of the set of SU(3) dominant weights, gives

X∞(s, t) = (1 − st)1

(1 − sG + s2GT − s31)(1 − tGT + t2G − t31)
(18)

which is the generating function (now an infinite series !) for the tensor product of SU(3) irreps.
There are alternative, different looking, expressions for the generating polynomial X(s, t). 

Adding (rather than subtracting as we did in order to obtain equ. (11)) equ. (9) multiplied by t to 
equ. (8) multiplied by s gives
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(s3 + t3 + 2st + 2s2t2)1 − st (sG + tGT )) · X(s, t)

= (s3 + st)�1(s) + (t3 + st)�2(t) + 2s2t2�3(s, t) . (19)

There, X(s, t) appears as the inverse of the matrix (s3 + t3 + 2st + 2s2t2)1 − st (sG + tGT )

times the rhs, the solution of which being given by (17). Note that evaluated at s = t = 1, the 
former matrix reads K−1 = (61 − (G +GT )), generalizing to SU(3) what would be (21 −G) for 
ŝu(2)k , namely the Cartan matrix of the Ak+1 algebra, and the last relation reads X = K �, with 
X = X(1, 1) and where � = 2(�1 + �2 + �3) is the boundary matrix evaluated at s = t = 1.

4. Generalized Freudenthal–de Vries formulae and dimensions of spaces of paths

From a fusion algebra point of view, all Dynkin diagrams are manifestations of SU(2), as 
they can be introduced as graphs encoding the action of the fusion ring of the affine ŝu(2) on 
appropriate modules (nimreps). Strictly speaking this is only true for simply laced diagrams but 
there is a way to accommodate the non-ADE’s in the same common framework. From this point 
of view, the classical Freudenthal–de Vries formulae, that hold for all simple Lie groups, are also 
a manifestation of the underlying SU(2) theory. In turn, those formulae are related to the counting 
of a particular kind of paths on appropriate Dynkin diagrams. Moving from an underlying SU(2) 
to an underlying SU(3) framework leads to several intriguing formulae that we present in this 
section.

4.1. SU(2): dimensions of spaces of essential paths on Dynkin diagrams

Call A the Cartan matrix associated with some chosen Dynkin diagram of rank r (the number 
of vertices), and 〈 , 〉 the corresponding inner product in the space of roots. Call s the vector 
of scaling coefficients, with components defined as 〈α, α〉/2 where α runs in a basis of simple 
roots, the squared norm being 2 if α is a long root. Call also s the corresponding diagonal matrix. 
It is the identity matrix if the Dynkin diagram is simply laced (ADE cases). Call K = A−1s the 
quadratic form matrix (it gives the scalar products between fundamental weights). Call g the 
Coxeter number, g∨ the dual Coxeter number (they are equal for simply laced cases) and k =
g −2 the (SU(2)) level to be used below. Call ρ the Weyl vector (by definition its components are 
all equal to 1 on the basis of fundamental weights). Its squared norm is then 〈ρ, ρ〉 = ∑

a,b Kab

and it is given by the Freudenthal - de Vries formula : 〈ρ, ρ〉 = g∨(g + 1)r/12.
Call Fλ = (Fλ)a,b the r × r matrices defined by the SU(2) Chebyshev recurrence relation (4), 

with G = 2 − A. In a conformal field theory context, and for the ADE cases, they are called the 
“nimrep” matrices, (for non-negative integer valued matrix representation of the fusion algebra) 
and they describe boundary conditions.

Call X = ∑
λ Fλ, the path matrix, and u, with components4 ua = ∑

b(X
T )b,a = ∑

b(X)a,b

the height vector (as defined by Dynkin [5], see also ref. [4]). In this general setup it is also useful 
to define the vector v, with components5 va = ∑

b(X)b,a .
Given λ ∈ {0, 1, . . . , g −2} and two vertices a and b in the chosen Dynkin diagram, the vector 

space of dimension (Fλ)a,b is called the space of essential paths of length λ − 1 from the vertex 
a to the vertex b; for the purpose of the present paper we don’t need to explain how these spaces 
are realized in terms of actual paths – see [6]. With a slight terminological abuse (dimension 

4 These components are also equal to twice the components of the dual Weyl vector on the basis of simple coroots.
5 These components are also equal to twice the components of the Weyl vector on the basis of simple roots.
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versus cardinality) we may say that there are Xa,b essential paths (of any length) from a to b
and that the component vb of v gives the total number of essential paths (of arbitrary origin 
and length) reaching b. Then, dλ = ∑

a,b(Fλ)a,b gives the dimension of the space of essential 
paths of length λ, and dH = ∑

λ∈{0,1,...,g−2} dλ is the total dimension of the space of essential 
paths, but the reader should only take these two equalities as mere definitions for the integers dλ

and dH . Now, obviously, dH = ∑
a ua = ∑

a va = ∑
a,b Xa,b . It is also of interest to consider 

the integer dB = ∑
λ d2

λ that can be interpreted (at least in the ADE cases, since simply laced 
Dynkin diagrams classify module-categories over Ak(SU(2)), [7,8]) as the dimension of a weak 
Hopf algebra [9].

A last relation of interest, for us, relates the path matrix X to the quadratic form matrix K . It 
can be established as we did in the SU(3) case (see the end of section 3.3). For an arbitrary Dynkin 
diagram, it reads again: XT = Ks−1�, where � is the “boundary matrix” � = F0 + Fr−1.

If the diagram is simply laced then g∨ = g, s is the identity, and A, K , X are symmetric. 
For those cases the former relation reads X = K�, but F0 is the identity and a detailed analy-
sis of all cases shows that Fr−1 is a permutation matrix, so that 

∑
a,b Xab = 2 

∑
a,b Ka,b . The 

Freudenthal–de Vries formula then implies6,7

dH =
∑
a,b

Xa,b = 2
∑
a,b

Ka,b = g(g + 1)r/6 (ADE cases) . (20)

One may notice that the Freudenthal - de Vries formula (giving 〈ρ, ρ〉) and the expression giving 
the dimension dH of the space of essential paths only differ by a factor 2. In particular, if the 
diagram is Ar , which in particular encodes fusion by the fundamental representation in fusion 
categories of type Ak(SU(2)), then g = r + 1 = k + 2 and

dH = (k + 1)(k + 2)(k + 3)/6 (Ak+1 cases) . (21)

4.2. Generalization to SU(3)

The purpose of this section is to show how the above results generalize in the case of graphs 
(McKay graphs) describing fusion by the fundamental irreps in the case Ak(SU(3)). We will 
show that the following two formulae hold:∑

a,b

Ka,b = 1

2

(k + 1)(k + 2)

2

(k + 4)(k + 5)

60
(22)

dH =
∑
a,b

Xa,b = (k + 1)(k + 2)(k + 3)(k + 4)(k + 5)((k + 3)2 + 5)

1680
(23)

These formulae were already announced in [11] and [12] where one can find tables containing 
several other “characteristic numbers” describing the geometry of graphs related to fusion cate-
gories of type SU(2), i.e., simply laced Dynkin diagrams, and of type SU(3). However, for these 
two formulae, no proof was given. The one that we shall give below relies on a crucial property 
(a theorem that we recall below in sect. 5.1.1) that was actually obtained much later [13].

6 In the general case (non-necessarily ADE) one would obtain dH = 2 
∑

a,b A−1
a,b

.
7 This number also gives the dimension of the vector space underlying the Gelfand–Ponomarev preprojective algebra 

associated with the corresponding unoriented quiver [10].
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The sum dH of matrix elements of X, for SU(3) at level k, equal to the sum of all multiplicities 
for all possible fusion products up to level k, can again be interpreted as counting essential 
“paths” although the “length” is no longer a non-negative integer (i.e., an irrep of SU(2)) but a 
weight of SU(3) (i.e., a pair of non-negative integers) belonging to the Weyl alcove. The notion 
of path should therefore be generalized in a way that is appropriate, but we do not intend to enter 
this discussion and shall stay at the level of combinatorics.

4.3. Proof of the relation (23)

To ease the writing, we introduce, for an arbitrary square matrix M , the notation �M that 
denotes the sum of its matrix elements, thus �M = TrMU , where U is the square matrix of 
same dimensions that has all its coefficients equal to 1.

X(s, t) being the SU(3) generating functional introduced in section 3.1, we call X = X(1, 1). 
From the definition of U , we have dH = �X = Tr(XU). One important step of the proof is to 
show that Tr(G − GT )X(s, t)U = 0 for arbitrary values of s and t . This property is obvious for 
s = t as X(s, s) is symmetric, but in general we have only X(s, t)T = X(t, s).

Lemma 1. One has UX(s, t) = UX(t, s). There is no transpose sign here.

Proof. The matrix element (i, j) of UX(s, t), which is obviously independent of i is the sum of 
all matrix elements of the column j of X(s, t). The matrix element (i, j) of UX(t, s), is the sum 
of all matrix elements of the column j of X(t, s) = X(s, t)T . Since X(s, t)T = ∑

p,q NT
(p,q)s

ptq , 
the equality of these two matrix elements results from the Theorem 1 proved in [13] and recalled 
below.

Lemma 2. One has Tr(GT X(s, t)U) = Tr(GX(s, t)U).

Proof. Using the previous lemma, and the fact that G commutes with all fusion matrices, and 
therefore also with X(s, t), one gets: Tr(GT X(s, t)U) = Tr(UT X(s, t)T G) = Tr(UX(t, s)G) =
Tr(UX(s, t)G) = Tr(UGX(s, t)) = Tr(GX(s, t)U). In contrast, the trace of (GT − G)X(s, t)
has no reason to vanish.

The previous lemma implies:

Tr((sG − tGT )X(s, t)U = (s − t)Tr(GX(s, t)U) and

Tr((sG + tGT )X(s, t)U = (s + t)Tr(GX(s, t)U)

Multiplying both equations (19) and (11) on both sides by U , using the previous lemma, calling 
�X(s, t) = Tr(X(s, t)U), ��1(s) = Tr(�1(s)U), �(GX(s, t)) = Tr(G.X(s, t)U), and taking 
the trace gives:

(s3 + t3 + 2st + 2s2t2)�X(s, t) − st (s + t)�(GX(s, t))

= (s3 + st)��1(s) + (t3 + st)tk��1(1/t) + 2s2t2sk��1(t/s)

((s3 − t3)�X(s, t) − st (s − t)�(GX(s, t)) = (s3 − st)��1(s) − (t3 − st)tk��1(1/t)

(24)

where we have used the fact that in that calculation P can be replaced by 1 since P · U =
U · P = U , so Tr(P 2�1(1/t)U) = Tr(�1(1/t)U) and Tr(P�1(t/s)) = Tr(�1(t/s)U). As it is 
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easy enough to determine separately the value of ��1(s) (see below), the above (24) is a system 
of two linear equations for the two unknown �X(s, t) and �(GX(s, t)). One finds:

�X(s, t) = (
��1(s)(1 − s)s + ��1(t/s)s

(k+1)t (s − t) + ��1(1/t)(t (k+1))(t − 1)
)

/((−1 + s)(s − t)(−1 + t))

�(GX(s, t)) = (
��1(s)(1 − s3) + ��1(1/t)tk(−1 + t3) + ��1(t/s)s

k(s3 − t3)
)

/((−1 + s)(s − t)(−1 + t)) . (*)

It is known, and in any case it is easy to show, that the sum of matrix elements of N(p,0) is a 
product of two triangular numbers: (k + 2 −p)(k + 1 −p)(1 +p)(2 +p)/4. The common value 
of ��1 = ��1(1) and ��i = Tr(�i[1].U) for i = 1, 2, 3 is obtained by summing the previous 
quantity along an edge: ��1 = Tr(�1(1).U) = ∑k

p=0 (k+2 −p)(k+1 −p)(1 +p)(2 +p)/4 =(
k+5

5

)
. Unfortunately, this last equality is of little help since one cannot solve the previous system 

(24) while setting s = t = 1. So, we plug the value of the polynomial ��1(s) = ∑k
p=0 (k + 2 −

p)(k + 1 − p)(1 + p)(2 + p)/4 sp in the above solutions (*) for �X(s, t) and �(GX(s, t)), 
and calculate the first term of their Taylor series around s = t = 1. Calling X = X(1, 1) and 
GX = GX(1, 1) one finally gets:

�X = ((k + 1)(k + 2)(k + 3)(k + 4)(k + 5)((k + 3)2 + 5))/1680

�(GX) = (k + 6)!/(k − 1)!/560

hence the result (23).
As a side result, we also obtain the value of ��. Indeed,

Tr(6K�U −GK�.U −GT K�U) = Tr((61−G−GT )K�U) = Tr[(AK�U) = Tr(�U)

Evaluating the sum 6�X − �(GX) − �(GT X) using the two previous formulae gives immedi-
ately

�� = (k + 1)(k + 2)(k + 3)(k + 4)(k + 5)/20 . (25)

4.4. Proof of the relation (22)

Let M be an element of the matrix algebra generated by the commuting family of the fusion 
matrices Fλ. By Verlinde formula [4], all these elements (in particular X, A, K , �, . . .) are diag-
onalized by the (symmetric) modular matrix S. We call �M the diagonal matrix of eigenvalues 
of M , i.e., �M = SMS−1.

Lemma 3. The element (i, j) of SUS−1 vanishes whenever i and j do not both label real repre-
sentations.

Proof. By definition of U , the element (i, j) of SUS−1 is equal to 
∑

x Six

∑
y S−1

yj but 

S−1 = S3 = CS, where C is the conjugation matrix, so that this element is 
∑

x Six

∑
y Syj = 

(
∑

x Six)(
∑

y Sjy). Because of theorem 3 of ref. [13], the sum 
∑

x Six vanishes if x is not of real 
type, hence the result. In the present case of SU(3), real irreps have highest weight {μ, μ}, with 
μ ∈ {0, · · · , �k/2�}.

The S-matrix elements for those real irreps read [14,4]
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S{λ1,λ2},{μ,μ} = const.
(

sin
2π(μ + 1)(λ1 + λ2 + 2)

k + 3
− sin

2π(μ + 1)(λ1 + 1)

k + 3

− sin
2π(μ + 1)(λ2 + 1)

k + 3

)
where the (λ, μ)-independent constant is of no concern to us. A straightforward but tedious 
calculation leads then to the corresponding eigenvalue of �1

μ(�1) =
∑

0≤λ1≤k

S{λ1,0},{μ,μ}
S{0,0},{μ,μ}

= (k + 3)

4 sin2(π(μ + 1)/(k + 3))
= 2(k + 3)

6 − 2(1 + 2 cos(2π(μ + 1)/(k + 3)))

Since P acts as a permutation, and P 3 = 1, we get immediately the corresponding eigenvalue of 
� = 2(�1 + �2 + �3) = 2(1 + P + P 2)�1, namely μ(�) = 6 μ(�1).

By the same token, the corresponding eigenvalue of A = 6 − (G + GT ) is

μ(A) = 6 − 2
S{1,0},{μ,μ}
S{0,0},{μ,μ}

= 6 − 2(1 + 2 cos(2π(μ + 1)/(k + 3)))

and we conclude that the “real” eigenvalues of K = A−1 are proportional to those of �

12(k + 3)μ(K) = μ(�) = 12(k + 3) × 1

6 − 2(1 + 2 cos( 2π(μ+1)
k+3 ))

.

By Lemma 3, in the calculation of SA�US−1 = �A��SUS−1, only real irreps contribute 
and we have found that SAS−1S�S−1SUS−1 = 12(k + 3) ×SUS−1, i.e., �U = 12(k + 3)KU . 
It follows that �K = 1

12(k+3)
��, thus establishing (22).

Note that in the SU(2) case, i.e., for Dynkin diagrams, we have seen that the proportionality 
factor �X/�K was just equal to 2. Equations (22) and (23) illustrates a non-trivial effect of 
the boundary terms in this SU(3) situation since the proportionality factor is now a k-dependent 
polynomial.

4.5. The non-diagonal cases

Notice that formula (22), using h = k + 3 (generalized Coxeter number, sometimes called 
“altitude”), and r , the number of irreps (also the number of vertices of the corresponding fusion 
graph), can be expressed as �K = �?

K , with as above �K = ∑
a,b Ka,b and

�?
K = 1

2
r

(h + 1)(h + 2)

60
(26)

Written this way, the r.h.s. of equ. (26), thought as a putative generalisation of Freudenthal–De 
Vries formula, works for the Ak series, as it was proved above, and also for8 E5, a module 
at level 5 associated with a non-diagonal invariant (r = 12, h = 5 + 3 = 8, �K = �?

K = 9). 
Unfortunately it does not work for other exceptional cases like E9 (r = 12, h = 9 + 3 = 12, 

8 The notations that we use in this paragraph to denote these exceptional nimreps with self-fusion use the level k as a 
subscript, they differ from those used in [15] where the cases E5, E9, E21 are respectively called E(8) , E(12) , E(24) .
1
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�K = 410/23, whereas �?
K = 91/5), or like E21 (r = 24, h = 21 + 3 = 24, �K = 138, whereas 

�?
K = 130). It does not work for the Dk=3s series either: using r = ((k + 1)(k + 2)/2 − 1)/3 + 3, 

h = k+3, one finds, for the first terms k = 3, 6, 9, . . . , �K = 11/4,10507/963,64265/2024, . . .

whereas �?
K = 14/5,11,637/20, . . . . Those values are numerically very close but we did not 

find a universal formula working in all cases. Something should be understood there.
Formulae generalizing equ. (23) and giving dH for modules associated with the non-diagonal 

SU(3) invariants have been proposed (without proof) in [11,12].

5. Multiplicity properties for fusion products: from λ ⊗ μ to λ ⊗ μ

5.1. Known results

5.1.1. Known results about multiplicities
The multiplicity of the trivial representation in the decomposition into irreducibles of a ten-

sor product (resp. the fusion product) of three irreducible representations of a group (resp. an 
affine Lie algebra) is invariant under an arbitrary permutation of the three factors. This property, 
sometimes called Frobenius reciprocity, is well known. Assuming that the notion of conjugation 
is defined in the case under study, the multiplicity stays also constant if we conjugate simultane-
ously the three factors.

Invariance of the multiplicity of λ ⊗ λ′ ⊗ λ′′ → 1 under the above transformations implies, 
for example, that this integer is also equal to the multiplicity of λ ⊗λ′ → λ′′, of λ ⊗ λ′ → λ′′, of 
λ′′ ⊗ λ → λ′, of λ′′ ⊗ λ′ → λ, etc.

These properties implies that the total multiplicity in the decomposition into irreducibles of 
the product λ ⊗ μ of two irreducible representations is trivially invariant if we conjugate both of 
them.

The following theorem was recently proven [13].

Theorem 1. The total multiplicity in the decomposition into irreducibles of the tensor product of 
two irreducible representations of a simple9 Lie algebra stays constant if we conjugate only one 
of them. At a given level, this property also holds for the fusion multiplicities of affine algebras.

Another sum rule, which is much easier to prove (see for instance [1], section 1.1), using for 
instance Verlinde formula or its finite group analog, and which holds at least for finite groups, 
semi-simple Lie groups and affine algebras, states that the sum of squares of multiplicities is 
the same for λ ⊗ μ and λ ⊗ μ. There are no such properties, in general, for higher powers of 
multiplicities.

Very recently, cf [1], it was further shown that

Theorem 2. In the special case of SU(3), the lists of multiplicities, in the tensor products λ ⊗ μ

and λ ⊗ μ, are identical up to permutations.

This does not hold in general for other Lie algebras. It was conjectured that the same property 
should hold for the fusion product of representations of the affine algebra of su(3) at finite levels, 
but this stronger result, that we shall call property P in the following, was not proven in the 
quoted paper.

9 The simplicity requirement can be lifted, see [16].
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Theorem 3 (property P). At any finite level k and for any integrable highest weights λ and μ of 
ŝu(3)k , the lists of multiplicities Nν

λμ and Nν′
λμ̄ are identical up to permutations.

The purpose of the present section is to discuss and prove this property.
A trivial corollary of Theorem 3 is

Corollary 1. At any finite level k and for any integrable highest weights λ and μ of ŝu(3)k , the 
number of distinct irreps ν, resp. ν′, appearing in λ �k μ, resp λ �k μ̄ is the same.

Strangely, whereas for SU(4) or ŝu(4)k Theorem 3 is invalid (for a counter-example, see [1]), 
Corollary 1 seems to hold.

Conjecture 1. At any finite level k and for any integrable weights λ and μ of ŝu(4)k , the number 
of distinct irreps ν, resp. ν′, appearing in λ �k μ, resp λ �k μ̄ is the same.

Of that we have no proof, only some evidence from the computation of all fusion products up 
to level 15.

In contrast, this property does not hold in general for higher SU(N ) or ŝu(N)k . For example, in 
ŝu(5)5, and for λ = (1, 1, 1, 0), μ = (1, 1, 0, 1), the line μ of the matrix Nλ has 21 non-vanishing 
entries, whereas the line μ̄ has 22.

5.1.2. A short summary on couplings, intertwiners, thresholds, and pictographs
In the case of groups or Lie algebras, intertwiners, thought of as equivariant linear maps from 

a tensor product of three representations to the scalars, are “3J-operators” that, when evaluated 
on a triple of vectors, become 3J symbols (Clebsh–Gordan coefficients). We shall sometimes 
refer to a particular space of intertwiners, associated to a particular term ν in the decomposition 
into irreducibles of λ ⊗ μ as a “branching”, and denote it by λ ⊗ μ → ν (and indeed, in the 
case of a group G, it also corresponds to a branching from G × G to its diagonal subgroup G). 
The multiplicity of ν in λ ⊗ μ is also the dimension d of the associated space of intertwiners. 
From the point of view of representation theory, all the irreps ν that appear on the rhs of the 
decomposition of λ ⊗μ are equivalent; nevertheless, it is convenient to consider each of them as 
a different “coupling” of the chosen representations (this is actually what is done in conformal 
field theory where such a multiplicity d is interpreted as the number of distinct couplings of the 
associated primary fields). In the same way combinatorial models typically associate to a space 
of intertwiners of dimension d , and therefore to a given triple or irreducible representations, a 
set of d combinatorial and graphical objects, that we call generically pictographs: the reader 
may look at [1] for a discussion of three kinds of pictographs (KT-honeycombs, BZ-triangles, 
O-blades), in the framework of the Lie group SU(3). Finally, let us mention that the choice of a 
basis in a space of intertwiners allows one to decompose a coupling along so-called elementary 
couplings [17] (equivalently, decompose pictographs along fundamental pictographs, see again 
[1] and sect. 6.2 of the present paper).

As in the first part, we denote an irreducible representation of a Lie algebra, or the integrable 
irrep of the corresponding affine algebra at level k (which may not exist if k is too small) by 
its associated highest weight, and therefore by the same symbol. Multiplicities Nν

λμ, also called 
Littlewood-Richardson coefficients, or fusion coefficients in the present context of affine Lie 
algebras, are the matrix elements of the fusion matrices considered in the first section but here 
we have to make the level explicit in the notation and call N(k) ν

λμ the multiplicity at level k and 
keep the notation Nν

λμ for the classical multiplicity (infinite level). Beginning with k = 0 and 
letting k increase, it is usually so that the three irreps λ, μ, ν start to exist at possibly distinct 
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levels; then, even if the three irreps exist at level k, it may be that N(k) ν
λμ is still 0, or has a 

value smaller than the classical one (i.e., of infinite level). For instance, one has {1, 1} ⊗{0, 2} =
{0, 2} ⊕ {1, 0} ⊕ {1, 3} ⊕ {2, 1}, but at level k = 2, although the irrep {0, 2} exists, it does not 
appear in the fusion product, which is {1, 1} �2 {0, 2} = {1, 0}; the other irreps {2, 1}, {0, 2} and 
{1, 3} appear respectively in the fusion product �k at levels k = 3, 3, 4.

Definition. A triple (λ, μ; ν) is called admissible, or classically admissible, if Nν
λμ �= 0; it is 

called admissible at level k if N(k) ν
λμ �= 0.

The following results can be gathered from [17].
The threshold level (or threshold, for short) kmin

0 of a triple (or of a branching λ ⊗ μ → ν) is 

the smallest value of k for which the fusion coefficient N(k) ν
λμ is non-zero. It is known that, for 

any given triple of irreps, the fusion coefficient is an increasing function of the level, and that 
it becomes equal to its classical value Nν

λμ when k reaches a value kmax
0 , then it stays constant. 

The integers kmin
0 and kmax

0 are functions of λ, μ and ν, but for given λ and μ one calls kmin the 
infimum of the kmin

0 over the set ν, and kmax the supremum of the kmax
0 over the set ν.

In terms of couplings (or pictographs), the discussion goes as follows: for fixed λ, μ and ν
and a given k, we have a set of N(k) ν

λμ distinct couplings; these couplings still exist when the 

level becomes k + 1, but new couplings may appear, since N(k+1)ν
λμ ≥ N

(k) ν
λμ . The sets I (k) of 

couplings are therefore ordered by inclusion: I (k) ⊂ I (k + 1). The threshold k0(i) of a coupling
i is, by definition, the smallest value of k at which it appears: the coupling i belongs to the set 
I (k0(i)) but it does not belong to the set I (k0(i) − 1).

The threshold kmin
0 of a triple (or of a branching) is therefore equal to the value of k for which 

the first associated couplings appear (such couplings have a threshold equal to kmin
0 ). Conversely 

the value kmax
0 of a branching is equal to the value of k above which no new couplings appear.

We have I (kmin
0 ) ⊂ I (kmin

0 + 1) ⊂ I (kmin
0 + 2) ⊂ . . . I (k) ⊂ . . . ⊂ I (kmax

0 ). The set I (k) has 

cardinality N(k) ν
λμ , and the largest set I (kmax

0 ) can be considered as classical since it contains all 
the couplings.

From now on, we consider the special case of SU(3). In all cases, as we saw, for any given 
triple of irreps, the fusion coefficient is equal to 0 when k < kmin

0 , equal to the constant Nν
λμ

when k ≥ kmax
0 , and is an increasing function of k when kmin

0 ≤ k ≤ kmax
0 . In the special case 

of the affine algebra su(3), the multiplicity of the branching λ ⊗ μ → ν is a piecewise affine 
function of k, first equal to 0, then it starts to increase with k, taking values respectively equal 
to 1, 2, 3, . . . , Nν

λμ for successive values of k = kmin
0 , kmin

0 + 1, . . . , kmax
0 . Then it stays constant. 

At level k the multiplicity (the number of couplings) is therefore k − kmin
0 + 1: one new coupling 

appears for every value of k between kmin
0 and kmax

0 .
Adapting the results of [17] to our own notations10 (see also [4] and the discussion at the end 

of our section 5.1.3), we have11

10 When discussing general couplings λ ⊗ μ → ν, it happens that most formulae are more simply expressed in terms of 
λ, μ, and ν, than in terms of λ, μ and ν, because of Frobenius reciprocity. Admittedly, we should have chosen notations 
where the roles of ν and ν are exchanged. However we shall not do that, in order to be consistent with the choices made 
in the companion paper [1].
11 In order to be interpreted as a minimal or maximal threshold, the argument (λ, μ; ν) appearing in eqs. (27), (28), 
should refer to a classically admissible triple, although the rhs of these two equations make sense for arbitrary arguments. 
We hope that there should be no confusion.



132 R. Coquereaux, J.-B. Zuber / Nuclear Physics B 912 (2016) 119–150
kmin
0 (λ,μ;ν)

= max
(
λ1 + λ2,

λ1 − λ2 + μ1 + 2μ2 + 2ν1 + ν2

3
,

−λ1 + λ2 + 2μ1 + μ2 + ν1 + 2ν2

3
,

μ1 + μ2,
2λ1 + λ2 − μ1 + μ2 + ν1 + 2ν2

3
,

λ1 + 2λ2 + μ1 − μ2 + 2ν1 + ν2

3
,

ν1 + ν2,
λ1 + 2λ2 + μ1 + 2μ2 − ν1 + ν2

3
,

2λ1 + λ2 + 2μ1 + μ2 + ν1 − ν2

3

)
(27)

kmax
0 (λ,μ;ν)

= min
(2λ1 + λ2 + 2μ1 + μ2 + ν1 + 2ν2

3
,
λ1 + 2λ2 + μ1 + 2μ2 + 2ν1 + ν2

3

)
(28)

and

kmin = max(λ1 + λ2,μ1 + μ2) (29)

kmax = λ1 + λ2 + μ1 + μ2

The threshold k0(i) of a given coupling (i) can be read from one of its associated pictographs. 
Using BZ-triangles for example, this level is obtained12 as follows: k0(i) is the maximum of 
λ1 + λ2 + α, μ1 + μ2 + β, ν1 + λ2 + γ , where α, β, γ are the values of the vertices respectively 
opposite to the three sides λ, μ, ν. Using O-blades, they are the values (c, e, a) of the internal 
edges opposite to the three sides in Fig. 10. The same integers can also be easily read from the 
SU(3)-honeycombs, since they are dual to O-blades (see Fig. 17 of [1]). The translation in terms 
of KT-honeycombs (which are actually GL(3)-honeycombs) or in terms of the hive model can 
be done by using methods explained in [1]. We shall illustrate the above considerations on one 
example, at the end of the next section.

5.1.3. Formulae for multiplicities
Explicit formulae for SU(3) multiplicities have been known for quite a while, the first known 

reference going back to [20], in 1965 (see also [1] and references therein). For the affine case, 
they were obtained in [17]. Assuming that the triplet (λ, μ; ν) is admissible, we have

N
(k) ν
λμ

=

⎧⎪⎨⎪⎩
0 if k < kmin

0 (λ,μ;ν)

k − kmin
0 (λ,μ;ν) + 1 if kmin

0 (λ,μ;ν) ≤ k ≤ kmax
0 (λ,μ;ν)

kmax
0 (λ,μ;ν) − kmin

0 (λ,μ;ν) + 1 = Nν
λμ if k ≥ kmax

0 (λ,μ;ν)

(30)

This expression entails a recursion formula on fusion coefficients under a shift of all h.w. by ρ =
(1, 1), the Weyl vector, and of k by 3. Assume that λ, μ, ν are h.w. vectors such that λ − ρ, μ −
ρ, ν − ρ are also integrable h.w. at level k − 3, i.e., , λi, μi, νi ≥ 1, i = 1, 2, and λ1 + λ2 ≤ k + 1
etc. Then13 kmin

0 (λ −ρ, μ −ρ; ν−ρ) = kmin
0 (λ, μ; ν) −2, whereas kmax

0 (λ −ρ, μ −ρ; ν−ρ) =
kmax

0 (λ, μ; ν) − 3, thus according to (30), if k ≥ 3

12 This property was proven, in terms of BZ-triangles, by [18,19], see also [17].
13 More generally, for all integers u, v, one shows using eq. (27) that kmin

0 (λ + (u, v), μ + (u, v); ν + (v, u)) =
kmin

0 (λ, μ; ν) + (u + v), and using eq. (28), that kmax
0 (λ + (u, v), μ + (u, v), ν + (v, u)) − kmax

0 (λ, μ, ν) = (u + 2v), 
(resp (2u + v)), if λ1 + μ1 + ν2 ≥ λ2 + μ2 + ν1 and u ≥ v, (resp if λ1 + μ1 + ν2 ≤ λ2 + μ2 + ν1 and u ≤ v).
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N
(k−3)ν−ρ
λ−ρ μ−ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

if k − 3 < kmin
0 (λ − ρ,μ − ρ;ν − ρ) = kmin

0 (λ,μ; ν) − 2

(k − 3) − (kmin
0 (λ,μ;ν) − 2) + 1

if kmin
0 (λ,μ;ν) − 2 ≤ k − 3 ≤ kmax

0 (λ,μ;ν) − 3

(kmax
0 (λ,μ;ν) − 3) − (kmin

0 (λ,μ;ν) − 2) + 1

if k − 3 ≥ kmax
0 (λ,μ;ν) − 3

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

if k < kmin
0 (λ,μ; ν) + 1

k − kmin
0 (λ,μ;ν) = N

(k) ν
λμ − 1

if kmin
0 (λ,μ;ν) + 1 ≤ k ≤ kmax

0 (λ,μ;ν)

kmax
0 (λ,μ;ν) − kmin

0 (λ,μ;ν) = Nν
λμ − 1

if k ≥ kmax
0 (λ,μ;ν)

In other words

N
(k−3)ν−ρ
λ−ρ μ−ρ =

{
N

(k) ν
λμ − 1 if k ≥ max(kmin

0 (λ,μ;ν),3)

0 if k ≤ kmin
0 (λ,μ;ν) or k < 3

. (31)

We will make use of this relation in our proof of property P.

5.1.4. A simple algorithm
In order to simply determine the multiplicity of the branching λ ⊗ μ → ν, or equivalently 

of λ ⊗ μ ⊗ ν → 1, at level k, one may proceed as follows, see also [21]. We use the following 
notations, and drop the label k for classical multiplicities:

mk = multk(λ,μ;ν) = multk(λ ⊗ μ ⊗ ν) = N
(k) ν
λμ

Classical case. Call S1 = λ1 + μ1 + ν1, S2 = λ2 + μ2 + ν2. If S1 − S2 is not a multiple of 
3, the multiplicity vanishes [17]. Assuming S1 > S2, we define three new irreps λ′ = (λ1 −
x, λ2), μ′ = (μ1 − x, μ2), ν′ = (ν1 − x, ν2) where x = (S1 − S2)/3. Then14 mult (λ ⊗ μ ⊗ ν) =
mult (λ′ ⊗ μ′ ⊗ ν′) and the new sums S′

1 and S′
2 are both equal to S = min(S1, S2). If S1 < S2

one shifts the second components by x instead. Define � = S − ∑
i λ

′
i , m = S − ∑

i μ
′
i , n =

S − ∑
i ν

′
i and consider the tableau of order 3 with lines (λ′

1, μ
′
1, ν

′
1), (λ

′
2, μ

′
2, ν

′
2) and (�, m, n). 

By construction, this tableau is a semimagic square of order 3 with magic constant S; it is not 
necessarily magic because the sums along the diagonals do not add to S in general. The classical 
multiplicity m is equal to c + 1 where c is the minimum of the entries of the tableau; indeed, by 
construction, c = kmax

0 − kmin
0 .

Affine case. Start from k = 0 and let k increase: the irrep ν appears for the first time, with 
multiplicity mk = 1, in the tensor product λ ⊗μ when k reaches15 the threshold kmin

0 = S +x −c. 
The multiplicity then increases with the level, each time by one unit, so mk = k − kmin

0 + 1, until 

14 Indeed, from eq. (27) and footnote 13, for an arbitrary integer x, we have kmin
0 (λ − (x, 0), μ − (x, 0); ν − (0, x)) −

kmin
0 (λ, μ; ν) = −x; moreover, if S1 ≥ S2, from eq. (28) and for the particular value x = (S1 −S2)/3, we have kmax

0 (λ −
(x, 0), μ − (x, 0); ν − (0, x)) − kmax

0 (λ, μ; ν) = −x.
15 Remember that kmin(λ, μ) = infν kmin(λ, μ, ν) and that kmax(λ, μ) = supν kmax(λ, μ, ν).
0 0
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k reaches the value kmax
0 = S + x = kmin

0 + (m − 1) for which the multiplicity becomes equal to 
the classical one, m. It then stays constant when k increases beyond kmax

0 .
Warning. We have mult (λ ⊗ μ ⊗ ν) = mult (λ′ ⊗ μ′ ⊗ ν′) when the level is infinite (classical 

case), but their thresholds kmin
0 are distinct: it is S +x − c for the first but S − c for the next since 

x vanishes in the latter case.
Example: let us determine m = mult ((9, 5), (6, 2); (8, 6)) = mult ((9, 5) ⊗ (6, 2) ⊗ (6, 8)). 

We have S1 = 21, S2 = 15, so S = 15 and x = (21 − 15)/3 = 2. Then16 m = mult ((7, 5) ⊗
(4, 2) ⊗ (4, 8)) and (�, m, n) = (3, 9, 3), the associated semimagic square being 

7 4 4
5 2 8
3 9 3

. Therefore 

c = 2 and m = 3. The irrep (8, 6) appears with multiplicity 1 in (9, 5) ⊗ (6, 2) when k reaches 
the threshold value kmin

0 = S + x − c = 15 + 2 − 2 = 15. Therefore m15 = 1, m16 = 2, m17 = 3, 
then it stays constant.

5.1.5. One example

(9,5) ⊗ (6,2)

= {(6,1)14, (7,2)14,15, (5,3)14, (8,3)14,15,16, (6,4)14,15, (4,5)14, (7,5)14,15,16,

(5,6)14,15, (3,7)14, (6,7)14,15,16, (4,8)14, (2,9)14, (5,9)14,15,16, (3,10)14,15,

(9,1)15,16, (10,2)15,16,17, (9,4)15,16,17, (8,6)15,16,17, (4,8)15, (7,8)15,16,17,

(4,11)15,16, (1,11)14, (8,0)15, (2,12)15, (11,0)16, (12,1)16,17, (11,3)16,17,18,

(10,5)16,17,18, (9,7)16,17,18, (6,10)16,17, (3,13)16, (14,0)17, (13,2)17,18,

(12,4)17,18,19, (11,6)17,18,19, (8,9)17,18, (5,12)17, (15,1)18, (14,3)18,19,

(13,5)18,19,20, (10,8)18,19, (7,11)18, (16,2)19, (15,4)19,20, (12,7)19,20,

(9,10)19, (17,3)20, (14,6)20,21, (11,9)20, (16,5)21, (13,8)21, (15,7)22}
The subindices refer to the levels at which the branching rule occurs. Let us consider the branch-
ing to (8, 6) that we already analyzed in the previous subsection. The term (8, 6)15,16,17, for 
instance, means that the first coupling associated with the branching (9, 5) ⊗ (6, 2) → (8, 6)

appears at level 15 (so the multiplicity is 1), another at level 16 (the multiplicity is 2), and 
a last one at level 17 (the multiplicity is 3). The tensor (i.e., classical) multiplicity of this 
branching is 3. Note that kmin

0 ((9, 5), (6, 2), (8, 6)) = 15, kmax
0 ((9, 5), (6, 2), (8, 6)) = 17 but 

kmin((9, 5), (6, 2)) = 14 and kmax((9, 5), (6, 2)) = 22. The three couplings are illustrated by 
their respective pictographs, using O-blades and KT-honeycombs,17 on Figs. 1, 2. Notice that the 
threshold k(i)

0 , i = 1, 2, 3, for each of these couplings can be read from the pictures, as explained 
previously. The associated BZ-triangles can be immediately obtained from the correspondence 
explicited on Fig. 16 of [1].

Another way of displaying the results is given on Fig. 3. Rather than giving the irreps ν
obtained in the fusion of (9, 5) and (6, 2), together with the level at which they appear, we 
display, for each level, the couplings that show up at that level. The highest weight of a particular 
irrep therefore appears several times on the figure (for instance (8, 6) appears on the three lines 
labeled by k = 15, 16, 17).

16 The thresholds of ((9, 5), (6, 2); (8, 6)) and ((7, 5), (4, 2); (8, 4)) are distinct: 15 for the first and 13 for the next.
17 These are GL(3) honeycombs, one could prefer to draw instead the corresponding SU(3) honeycombs, where the 
lengths of all edges are non-negative, see [1].
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Fig. 1. The three couplings of (9,5) ⊗ (6,2) → (8,6) using the O-blade model.

Fig. 2. The three couplings of (9,5) ⊗ (6,2) → (8,6) using the KT-honeycomb model.

What we did for the fusion product (9, 5) ⊗ (6, 2) can be repeated for (9, 5) ⊗ (2, 6). We leave 
this as an exercise for the reader. Fig. 4, that should be compared with Fig. 3, summarizes the 
results.

As it was announced, the two lists of multiplicities at the classical level are the same, up to 
permutations (we find 21, 16 and 3 irreps with respective multiplicities 1, 2, 3, and therefore a 
total multiplicity equal to 95), something that we already knew from [1], but they are also equal 
for all values of the level. In the next section, we turn to a proof of this property.

5.2. From λ ⊗ μ to λ ⊗ μ: proof of property P using Wesslén polygons

5.2.1. New inequalities and the convex polygonal domain
Recall from [22,1] the inequalities satisfied by ν = (ν1, ν2), ν1, ν2 ≥ 0, in the intertwiner 

λ ⊗ μ → ν

max(2μ1 + μ2 − λ1 − 2λ2,2λ1 + λ2 − μ1 − 2μ2, λ2 − λ1 + μ2 − μ1)

≤ 2ν1 + ν2 ≤ 2λ1 + λ2 + 2μ1 + μ2 (32)

max(λ1 + 2λ2 − 2μ1 − μ2,μ1 + 2μ2 − 2λ1 − λ2, λ1 − λ2 + μ1 − μ2)

≤ ν1 + 2ν2 ≤ λ1 + 2λ2 + μ1 + 2μ2 (33)

max(μ1 − μ2 − 2λ1 − λ2, λ1 − λ2 − 2μ1 − μ2)

≤ ν1 − ν2 ≤ min(λ1 − λ2 + μ1 + 2μ2, λ1 + 2λ2 + μ1 − μ2) (34)

and from [17] the additional “BMW” ones satisfied in the fusion product λ �k μ → ν at level k

ν1 + ν2 ≤ k (35)

2ν1 + ν2 ≤ min(3k − λ1 + λ2 − μ1 − 2μ2, 3k − λ1 − 2λ2 − μ1 + μ2) (36)

ν1 + 2ν2 ≤ min(3k − 2λ1 − λ2 + μ1 − μ2, 3k + λ1 − λ2 − 2μ1 − μ2) (37)

−3k + λ1 + 2λ2 + μ1 + 2μ2 ≤ ν1 − ν2 ≤ 3k − 2λ1 − λ2 − 2μ1 − μ2 (38)
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Fig. 3. Thresholds for intertwiners (9, 5) ⊗ (6, 2) → (ν1, ν2). Each line (levels kmin = 14 to kmax = 22) lists those irreps 
ν (components given vertically) for which the multiplicity increases at the chosen level, i.e., for which a new coupling 
appears. The total number of new couplings at a given level is also given on the left. Same irreps for which there is a 
multiplicity increase are connected by arrows. The number of arrows with the same color gives the upj of sect. 5.2.3: at 
level k = 18, i.e., p = k − kmin + 1 = 5 there are 5 irreps that are not hit by any arrowhead (u50 = 5), 4 hit by a blue 
arrow (u51 = 4), and (u52 = 3) hit by a red arrow, the total multiplicity increasing of 5 + 4 + 3 = 12. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of this article.)

which are simple consequences of k ≥ kmin
0 (λ, μ; ν) with the explicit expression given 

in (27). Using standard symmetries of fusion coefficients, we may always assume that λ1 ≥
max(λ2, μ1, μ2). Then note that the second inequality (37) follows from the first since μ1 ≤ λ1. 
As discussed above, the issue of finite level is relevant only in the range kmin ≤ k ≤ kmax , with 
kmin and kmax given in (29). Below kmin, one of the weights λ or μ is not integrable, above kmax

we are in the classical, “k = ∞”, regime.



R. Coquereaux, J.-B. Zuber / Nuclear Physics B 912 (2016) 119–150 137
Fig. 4. Thresholds for intertwiners (9,5) ⊗ (2,6) → (ν′
1, ν′

2).

For a given k ≥ kmin the set of inequalities (32)–(38) defines in the ν-plane a convex polyg-
onal domain. For k ≥ kmax this domain stabilizes to its “classical” shape defined by the only 
Wesslén’s inequalities (32)–(34), with vertices Vi defined on Fig. 5. In particular the “highest 
highest weight” is H = V1 = (λ1 + μ1, λ2 + μ2), while the “lowest highest weight” h = V5 is 
given below in (39). For kmin ≤ k < kmax , we refer to the polygonal domain as the truncated 
Wesslén’s domain.

By the same type of recursive arguments as in sect. 5.1.3 and eq. (31), we may also find the 
polygons that bound the domain of multiplicity 2. By (30), they are obtained by imposing that 
k = 1 + kmin

0 (λ, μ; ν), and result in inequalities of the form (35)–(38) in which k is substituted 
for k − 1. But the transformation k → k − 3, λ → λ − ρ, μ → μ − ρ, ν → ν − ρ in (35)–(38)) 
has the same effect. We conclude that the set of ν of level k and multiplicity N(k) ν = 2 is the 
λμ
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Fig. 5. The oriented sides of a tensor polygon (with the assumption that λ1 ≥ max(λ2, μ1, μ2)). (We have used orthogo-
nal coordinate axes, although it would be more correct to have them at a π/3 angle.) The violet, green, blue and red lines 
represent respectively the inequalities (35), (36), (37) and (38). As k decreases from kmax they start cutting the classical 
domain, hence restricting the allowed values of ν. (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.)

translate by ρ of the set of ν′ of level k − 3 and multiplicity N(k−3) ν′
λ−ρ μ−ρ = 1. It would seem that 

this argument requires the λi, μi, νi to be ≥ 1 in order for λ − ρ, μ − ρ, ν − ρ to be integrable 
weights, and k − 3 ≥ 0. In fact as the recursion relation is used for quadruplets (λ, μ, ν; k) for 
which N(k) ν

λμ = 2, these conditions are automatically enforced.
The recursion extends to higher values of the multiplicity, see below sect. 5.2.3.
A useful remark is that the point V5 (the “lowest highest weight”) always satisfies the BMW 

inequalities for any value of kmin ≤ k ≤ kmax and thus always belongs to the truncated Wesslén’s 
domain.

Proof : a tedious case by case verification using

V5 =

⎧⎪⎨⎪⎩
(μ1 + μ2 − λ1 − λ2, λ1 − μ2) if 0 ≤ λ1 − μ2 ≤ μ1 − λ2

(λ1 + λ2 − μ1 − μ2,μ1 − λ2) if 0 ≤ μ1 − λ2 ≤ λ1 − μ2

(λ1 − μ2, λ2 − μ1) if μ1 − λ2 < 0 .

(39)

Intuitively, V5 “far away” from the colored lines of Fig. 5.
In contrast all the other vertices of the original (“classical”) tensor polygon may be removed 

in some cases and for some value of k.

5.2.2. The truncated Wesslén’s domain for kmin ≤ k < kmax

As k is incremented from kmin by one unit, new points ν appear until k = kmax , the new 
points having multiplicity 1, see [17]. The points ν organize themselves in a pattern of polygons 
included into one another with the multiplicity increasing from 1 on the outside polygon18 to 
a k-dependent maximum inside. At a given point ν inside one of the polygons, the multiplicity 
increases as k grows, until k reaches the value kmax

0 (λ, μ; ν).
This is illustrated on Table 1 for our favorite examples of (9, 5) � (6, 2) and (9, 5) � (2, 6).

18 When k = kmin all the inner points have multiplicity 1 too.
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Conversely as k is decremented from kmax by one unit, the inequality (35), and possibly the 
other inequalities, start to exclude points from Wesslén’s domain. It is clear from Fig. 5 that 
inequalities (36), (37), (38)L, (38)R , are satisfied by all points of Wesslén’s domain if they are 

Table 1
Truncated Wesslén domains in ν for the branchings (9, 5) � (6, 2) (left column) and (9, 5) � (2, 6) (right column), for 
increasing k. The solid polygon is the classical tensor polygon, drawn here in oblique axes. The dot-dashed line is the 
level line ν1 + ν2 = k. Points of multiplicity 1, 2 and 3 are displayed respectively in blue, orange and green. The upj of 
the last column are defined below in sect. 5.2.3 and can be read from the pattern of arrows in Fig. 3.

k = 14 u00 = 15

k = 15 u10 = 8 u11 = 9

k = 16 u20 = 7 u21 = 6 u22 = 4

k = 17 u30 = 6 u31 = 5 u32 = 4

(continued on next page)
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Table 1 (continued)

k = 18 u40 = 5 u41 = 4 u42 = 3

k = 19 u50 = 4 u51 = 3 u52 = 2

k = 20 u60 = 3 u61 = 2 u62 = 1

k = 21 u70 = 2 u71 = 1 u72 = 0

k = 22 u80 = 1 u81 = 0 u82 = 0
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satisfied respectively at points V1 = (λ1 + μ1, λ2 + μ2), V8 = (λ1 − μ1, λ2 + μ1 + μ2) and 
V2 = (λ1 + μ1 + min(λ2, μ2), λ2 + μ2 − 2 min(λ2, μ2)). Thus

(36) is satisfied if k ≥ λ1 + μ1 + max(λ2,μ2) (40)

(37) is satisfied if k ≥ λ1 + λ2 + μ2 (41)

(38)L is satisfied if k ≥ λ2 + μ1 + μ2 (42)

(38)R is satisfied if k ≥ λ1 + μ1 + min(λ2,μ2) . (43)

This introduces several successive boundary values of the level, as k decreases from kmax .

5.2.3. Proof of property P
As the level k is decreased from kmin + p to k = kmin + p − 1, there are upj terms in the 

decomposition of λ � μ that have their multiplicity decreased from j + 1 to j , for j = 0, . . . , p. 
In this section, we first give an explicit expression for up0, then use the recursion formula (31)
to extend it to all upj . We then observe that these expressions of upj are invariant under μ → μ̄. 
Since we know from [1] that property P is satisfied for k ≥ kmax , and since decrementing k
preserves it, it follows that it is satisfied for all k, qed.

Computing the up0. As level k is decreased from kmin +p to kmin +p − 1, there are up0 terms 
that are excluded from the truncated Wesslén domain because they violate one of the inequalities. 
According to [17], they lie on the boundary of the truncated Wesslén domain of level k. Which 
inequality is relevant for a given k depends on the relative values of k, λ1, λ2, μ1 and μ2. Recall 
that by convention, we have λ1 ≥ max(λ2, μ1, μ2).

By a tedious analysis of all possibilities that is not be reproduced here, we have found the 
following expression for up0, p = k − kmin

up0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

if k > kmax

kmax − k + 1

if max(λ1 + max(μ1,μ2), k
min + 1) ≤ k ≤ kmax = λ1 + λ2 + μ1 + μ2

λ2 + min(μ1,μ2) + 1

if kmin + 1 ≤ λ1 + max(μ1,μ2) and

max(λ1 + min(μ1,μ2), k
min + 1) ≤ k ≤ λ1 + max(μ1,μ2)

k − λ1 + λ2 + 1

if kmin + 1 ≤ λ1 + min(μ1,μ2) and kmin + 1 ≤ k ≤ λ1 + min(μ1,μ2)

· · ·
if k = kmin

0

if k < kmin

(44)

Note the “continuity” at the boundary values λ1 + max(μ1, μ2) and λ1 + min(μ1, μ2) of k.
Note also that this formula does not yet determine the value of up0 for the lowest value 0 of 

p (viz k = kmin), i.e., the number of points of multiplicity 1 at level kmin. The latter, however, is 
determined from the “classical” expression given by Mandel’tsveig [20] and denoted σ(λ, μ; 1)
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in [1] for the total number of ν of multiplicity 1 (at levels higher than or equal to kmax), and from 
the successive up0:

u00 = σ(λ,μ;1) −
kmax−kmin∑

p=1

up0 . (45)

We observe that, as anticipated, the resulting expression for up0 is invariant under μ1 ↔ μ2.

Computing the upj . Computing the variation of the number of points of multiplicity j + 1 ≥
2 as k decreases by one unit may look more difficult. Fortunately, the recursive argument of 
sect. 5.2.1 comes to the rescue. For k ≥ 4, the number of ν (with νi ≥ 1) in λ � μ that are 
“downgraded” from multiplicity j > 1 to multiplicity j − 1 as k → k − 1 equals the number of 
ν ′ in (λ − ρ) � (μ − ρ) that are downgraded from multiplicity j − 1 to multiplicity j − 2 as the 
level goes from k − 3 to k − 4. Whence an expression of up1 in terms of up−1 0: indeed, under a 
shift of λ and μ by −ρ and of k to k − 3, one has kmax → kmax − 4 and kmin → kmin − 2, see 
eq. (29), thus p = k − kmin → p − 1)19

up1(λ,μ) = up−1,0(λ − ρ,μ − ρ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

if k − 3 > kmax − 4

(kmax − 4) − (k − 3) + 1

if λ1 + max(μ1,μ2) − 2 ≤ k − 3 ≤ kmax − 4

λ2 + min(μ1,μ2) − 2 + 1

if λ1 + min(μ1,μ2) − 2 ≤ k − 3 ≤ λ1 + max(μ1,μ2) − 2

k − λ1 + λ2 − 3 + 1

if kmin − 2 + 1 ≤ k − 3 ≤ λ1 + min(μ1,μ2) − 2

· · ·
if k − 3 = kmin − 2

0

if k − 3 < kmin − 2

or in other words

up1(λ,μ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if k > kmax − 1

kmax − k if λ1 + max(μ1,μ2) + 1 ≤ k ≤ kmax − 1

λ2 + min(μ1,μ2) − 1 if λ1 + min(μ1,μ2) + 1 ≤ k ≤ λ1 + max(μ1,μ2) + 1

k − λ1 + λ2 − 2 if kmin + 2 ≤ k ≤ λ1 + min(μ1,μ2) + 1

· · · if k = kmin + 1

0 if k < kmin + 1

(46)

19 In order not to clutter the following equations with conditions involving kmin (like in eq. (44)) we read the con-

secutive lines as “if clauses” from top to bottom, assuming that they should be used only if kmin obeys appropriate 
inequalities. . . .
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and more generally

upj (λ,μ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if k > kmax − j

kmax − k − j + 1 if λ1 + max(μ1,μ2) + j ≤ k ≤ kmax − j

λ2 + min(μ1,μ2) − 2j + 1 if λ1 + min(μ1,μ2) + j ≤ k ≤ λ1+max(μ1,μ2)+j

k − λ1 + λ2 − 3j + 1 if kmin + j + 1 ≤ k ≤ λ1 + min(μ1,μ2) + j − 1

· · · if k = kmin + j

0 if k < kmin + j

(47)

Again the missing value of upp may be derived from Mandel’tsveig’s formula (see [20,1]) giving 
σ(λ, μ; j + 1), the “classical” number of ν’s of multiplicity j + 1:

upp = σ(λ,μ; j + 1) −
kmax−kmin∑

p=j+1

upj .

We observe that this expression of upj is again invariant under μ ↔ μ̄. As explained at the 
beginning of this section, this completes the proof of property P.

6. Miscellanea

6.1. From λ ⊗ μ to λ ⊗ μ : other approaches

Admittedly the previous proof of property P, with its brute force calculation of the number 
of points at a given level, lacks elegance and simplicity. We thus attempted to explore other 
approaches. . . Although unsuccessful, as far as leading to another proof of the above property, 
some of these investigations lead to other results that may have a separate interest, we gather 
them here.

6.1.1. Proof of property P in some particular cases (elementary approach)
In addition to the “linear sum rule” proved in [13] (equality of the total multiplicities for 

λ ⊗ μ and λ ⊗ μ at each level), we recall from sect. 5.1.1 the existence of a “quadratic sum 
rule”: the sum of squares of multiplicities are also the same at each level. These two sum rules 
put constraints on the two lists of multiplicities.

As in section 5.2.3, and for j = 0, . . . , p, we call upj (resp vpj ) the number of terms in the 
decomposition of λ ⊗μ (resp λ ⊗ μ) that have their multiplicity increased from j to j + 1 when 
the level is increased from kmin+p−1 to kmin+p. Keeping track of the increase in multiplicities 
at each level, the reader will have no difficulty to show that the two sum rules imply:

p∑
j=0

upj =
p∑

j=0

vpj and
p∑

j=0

((j + 1)2 − j2)upj =
p∑

j=0

((j + 1)2 − j2)vpj .

The general result obtained in sect. 5.2.3, namely that upj = vpj for all p and all j , cannot 
be deduced from the two sum rules recalled above. However this equality can be immediately 
obtained at levels k = kmin, k = kmin + 1, and k ≥ kmax . Indeed, when k = kmin + 1 i.e., p =
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1, the two previous equations read, equivalently, u10 − v10 = −(u11 − v11) and u10 − v10 =
−3(u11 − v11), which implies u10 = v10 and u11 = v11. When k = kmin (multiplicities are all 
equal to 1) and when k ≥ kmax (multiplicities have their classical values), the result is obvious 
since it is just a way to re-express already known results.

The approach described in the present section provides therefore an elementary proof of prop-
erty P when k = kmin, kmin + 1, and k = kmax . By the same token, it also gives a proof for all 
values of k if the highest weights λ and μ are such that kmax − kmin = 0, 1 or 2.

6.1.2. Using automorphisms
The group of automorphisms of the affine version of the A2 Dynkin diagram is Z3. Let 

(λ1, λ2) be the components of a weight λ on the basis of fundamental weights. If the level is 
k one introduces an affine component λ0 = k − (λ1 + λ2) and consider the affine weight λ̂ with 
components (λ0, λ1, λ2). The generator ζ of Z3 acts on affine weights as follows: ζ(λ0, λ1, λ2) =
(λ2, λ0, λ1). Obviously, ζ 3 = 1. Existence of automorphisms a, b imply N(k) abν

aλ, bμ = N
(k) ν
λ,μ . In the 

present case, a and b can taken as ζ, ζ 2 or 1 and it is understood that automorphisms act on the 
affine extension of the weights λ, μ, ν, although their affine component (their first component) 
is usually dropped from the notation: in other words ζ(λ1, λ2) = (λ0, λ1), ζ 2(λ1, λ2) = (λ2, λ0), 
etc.

We consider a given branching λ ⊗ μ → ν. The affine weights at level k are λ̂ = (k −
(λ1 + λ2), λ1, λ2), μ̂ = (k − (μ1 + μ2), μ1, μ2), ν̂ = (k − (ν1 + ν2), ν1, ν2). Let us choose the 
level k in such a way that k − (μ1 + μ2) = μ1, so we take k = 2μ1 + μ2. Notice that μ̂ =
(μ1, μ1, μ2), therefore ζ 2(μ1, μ1, μ2) = (μ1, μ2, μ1). Using automorphisms a = 1, b = ζ 2, one 

has N(k) ζ 2ν

λ, ζ 2μ
= N

(k) ν
λ,μ , i.e.,

k = 2μ1 + μ2, N
(k) (ν2,2μ1+μ2−(ν1+ν2))

(λ1,λ2), (μ2,μ1)
= N

(k) (ν1,ν2)
(λ1,λ2),(μ1,μ2)

. (48)

In order for the components of the weights (including the affine component) to stay non-negative, 
one needs to assume 2μ1 + μ2 ≥ λ1 + λ2 and 2μ1 + μ2 ≥ ν1 + ν2.

In the same way, assuming 2μ2 +μ1 ≥ λ1 +λ2 and 2μ2 +μ1 ≥ ν1 +ν2, one chooses the level 
k in such a way that k − (μ1 + μ2) = μ2, so k = 2μ2 + μ1. With μ̂ = (μ2, μ1, μ2), we have 
ζ(μ2, μ1, μ2) = (μ2, μ2, μ1). Using automorphisms a = 1, b = ζ , one gets N(k) ζν

λ, ζμ = N
(k) ν
λ,μ , 

explicitly:

k = 2μ2 + μ1, N
(k) (2μ2+μ1−(ν1+ν2),ν1)

(λ1,λ2), (μ2,μ1)
= N

(k) (ν1,ν2)
(λ1,λ2),(μ1,μ2)

(49)

It is clear that the two above transformations are inverse of one another.
We now use mult (λ, μ; ν) = mult (μ, λ; ν) and mult (μ, λ; ν′) = mult (μ, λ; ν′) =

mult (λ, μ; ν′).
Assuming 2λ2 + λ1 ≥ μ1 + μ2 and 2λ2 + λ1 ≥ ν1 + ν2, one obtains in the same way

k = 2λ2 + λ1, N
(k) (ν1,2λ2+λ1−(ν1+ν2))
(λ1,λ2), (μ2,μ1)

= N
(k) (ν1,ν2)
(λ1,λ2),(μ1,μ2)

(50)

And, assuming 2λ1 + λ2 ≥ μ1 + μ2 and 2λ1 + λ2 ≥ ν1 + ν2

k = 2λ1 + λ2, N
(k) (2λ1+λ2−(ν1+ν2),ν2)
(λ1,λ2), (μ2,μ1)

= N
(k) (ν1,ν2)
(λ1,λ2),(μ1,μ2)

(51)

For illustration, we apply eq. (48) to our former example λ = (9, 5), μ = (6, 2). One checks that 
the chosen automorphism applied to the list of weights ν appearing on the line20 k = 2μ1 +μ2 =

20 this is also equal to kmin(λ, μ), but it is an accident.
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14 of Fig. 3 gives, up to reordering, the line k = 14 of Fig. 4. In the same way, the equality of 
multiplicities for the appropriate triples also holds if we use eq. (51) (now, k has to be chosen as 
2λ2 + λ1 = 19).

Although giving non-trivial results for particular values of the level, we do not see how to 
generalize this approach to handle the general case.

6.1.3. Using a piece-wise linear map in the space of weights
In reference [1] several proofs of property P in the classical case, i.e., for tensor products, 

were given. One of them was based on the construction of an involutive piece-wise linear map T
from the set of admissible couplings (or of their corresponding pictographs) associated with the 
various branchings λ ⊗μ → ν to the set of couplings associated with the branchings λ ⊗μ → ν′. 
The two weights λ, μ being fixed, this particular transformation T : (ν, α) �→ (ν′, α′), with α
denoting some coupling (or some pictograph) for the triple λ, μ, ν, cannot be used in the present 
situation where we deal with fusion product at level k because it does not respect the thresholds: 
in order to prove property P for fusion products, one should exhibit a bijective piecewise-linear 
transformation T such that the couplings defined by ν, α and ν′, α′ have the same threshold.

Taking into account the specificities of SU(3), in particular the fact that the multiplicities of a 
given branching increase by one unit when the level k runs from kmin

0 to kmax
0 , it is enough to look 

for an invertible map T that is compatible with these two values of the level. In other words, if 
T is a one-to-one map from the set of admissible triples (λ, μ, ν) to the set of admissible triples 
(λ, μ, ν′) and is such that kmin

0 (λ, μ, ν) = kmin
0 (λ, μ, ν′) and kmax

0 (λ, μ, ν) = kmax
0 (λ, μ, ν′), the 

theorem is proved.
Unfortunately, many particular cases have to be considered, and the discussion leading to a 

definition of such a piece-wise linear map seems to be as complicated as the one leading to the 
proof of property P in sect. 5.2.3.

6.1.4. Using the matrix polynomial X(s, t) to prove property P (a failed attempt)
The property P can be rephrased as follows: for given weights λ and μ and level k, the 

multisets21 {Nν
λμ} and {Nν′

λμ̄} are identical and we may use the conjugation properties of the 
fusion coefficients

Nν′
λμ̄ = Nν̄′

λ̄μ
= N

μ

λν̄′

to write this statement in equivalent forms. Thus {Nν
λμ} = {Nμ

λν̄′ } means that

For an arbitrary ŝu(3)k fusion matrix Nλ, the content of any row μ is the same (up to a 
permutation that in general depends on the choice of the label μ) as that of the column μ of the 
same matrix.

Equality of the multisets {Nν
λμ} = {Nν′

λ̄μ
} implies that our generating function X(s, t) satisfies 

the following property that we call P :

P : For any row label μ and for any monomial sλ1 tλ2 appearing22 along the row μ, the monomial 
sλ2 tλ1 also appears the same total number of times along the same row μ.

21 i.e., sets with multiplicities, or lists, up to order. As we work with a fixed level k in this section, we drop this index 
from the notation used for fusion matrices.
22 i.e., appearing in the decomposition into monomials of any matrix element (polynomials) of the row μ.
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Can one derive this result directly from properties of the generating functions? The reader will 
have no difficulty to prove the following lemmas L1–L5:

L1 The matrix elements of the fusion matrices of type N(λ1,0) are either 0 or 1.
L2 The number of non-zero elements, in the row μ (arbitrary) of the fusion matrix N(λ1,0), 

is equal to the number of non-zero elements in the same row μ of the fusion matrix N(0,λ1), or, 
equivalently, in the column μ of the same matrix N(λ1,0).

L3 The matrix elements of the fusion matrices of type N(λ1,k−λ1) ( i.e., those belonging to the 
third edge of the Weyl alcove) are either 0 or 1.

L4 For every choice of an irrep μ, the number of non-zero elements in the row μ of the 
matrix N(λ1,k−λ1) is equal to the number of non-zero elements in the same row μ of the matrix 
N(k−λ1,λ1) or equivalently, in the column μ of the same matrix N(λ1,k−λ1).

L5 Every row of the boundary matrix polynomial23 �(s, t) containing some monomial sλ1 tλ2

(in a matrix element) also contains the monomial sλ2 tλ1 the same number of times. Equivalently, 
�(s, t) satisfies property P .

It is also clear that the polynomial A(s, t) = [(s3 + t3 + 2st + 2s2t2)1 − st (sG + tGT )]
satisfies the same property P . If we could assert that this property is preserved by matrix multipli-
cation and inversion, we would conclude that K(s, t) = A−1(s, t) and X(s, t) = K(s, t).�(s, t)
also satisfy the same property, thus establishing property P , which is equivalent to P. Unfor-
tunately, this is not the case in general and we could not prove property P in this way. It is 
nevertheless interesting to see how this property is translated when read in terms of generating 
functions: this justifies the inclusion of the above discussion in the present paper.

6.2. An application of O-blades: a new relation between fusion coefficients

Proposition. The transformation defined by eq. (52) is involutive, and, for arbitrary levels k, one 
has:

N
(k) ν
λ μ = N

(k) ν′
λ′ μ′

A generic O-blade for SU(3) is displayed in Fig. 6(a).
It contains nine edges m12, m23, m13, n12, n23, n13, l12, l23, l13, labeled with non-negative in-

tegers.

It has a single inner vertex, and obeys one single constraint: the three pairs of opposite “an-
gles” defined by the lines intersecting at the inner vertex should be equal, the value of an angle 
being defined as the sum of its sides. The three weights appearing in the branching rule λ, μ → ν

follow each other as indicated in Fig. 6. Their components, in terms of edges, read (“integer 
conservation at the external vertices”):

λ1 = m13 + n12 μ1 = n13 + l12 ν1 = m13 + l23

λ2 = m23 + n13 μ2 = n23 + l13 ν2 = m12 + l13 .

The reader will have no difficulty to re-express the “Wesslén inequalities” (32)–(34) as positivity 
constraints for the nine edges (“blades”) of the O-blades. As in [1] (see this reference for a 
more complete discussion), we call fundamental pictographs (here fundamental O-blades) the 
combinatorial models associated with intertwiners of the type f1 ⊗ f2 ⊗ f3 → 1 where the fi ’s 

23 �(s, t) is defined as the rhs of eq. (19).
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Fig. 6. (a): A generic O-blade for SU(3) and its nine internal edges. (b): Its seven components (a, b, c, d, e, f ; g) along 
the left fundamental basis.

Fig. 7. Fundamental O-blades for SU(3).

denote either a fundamental representation or the trivial one. The dimension of the corresponding 
spaces of intertwiners being equal to 0 or 1, there is only one such pictograph or none. For SU(3), 
we have six fundamental O-blades obtained by permuting the factors of f ⊗ f ∗ ⊗ 1 where f
is the three-dimensional vector representation (of highest weight (1, 0)), and we have two other 
fundamental O-blades respectively associated with the cubes of (1, 0) and of (0, 1); the last two 
(resp. the first six) are called “primitive fundamental” (resp. “non-primitive fundamental ”) in 
[1]. The eight fundamental O-blades are given in Fig. 7 – edges carrying a “1” label have been 
thickened. Obviously, O-blades, thought of as characteristic functions associated with their set 
of edges, can be added or multiplied by scalars (they may be called virtual whenever some inner 
edges carry values that do not belong to the set of non-negative integers. One could think that this 
family of eight fundamental pictographs can be chosen as a basis in the space of characteristic 
functions, but this is not so because they are not independent: there is also one relation which is 
displayed in Fig. 8. The two primitive fundamental O-blades appear as Y-shapes (forks) with a 
horizontal tail to the left or to the right of the inner vertex; the relation displayed in Fig. 8 exhibits 
two ways of making a star out of its components. Notice that the space of pictographs comes with 
a distinguished generating family – those that are fundamental – but not with a distinguished 
basis. Up to permutations, we may consider two interesting particular basis, each contains seven 
fundamental intertwiners: the six non-primitive ones, and a last one chosen among the two that 
are primitive.

Choosing the “left” basis (i.e., the last basis element being Y-shaped, with a horizontal tail to 
the left of the inner vertex), we see in Fig. 9(a) or in Fig. 6(b) how an arbitrary O-blade o can 
be defined as a superposition of its seven components and write24 oL = (a, b, c, d, e, f, g). The 
associated weights are λ1 = b + e +g, λ2 = a +f, μ1 = a + d +g, μ2 = b + c, ν1 = d + e, ν2 =
c + f + g.

Call � the linear map that leaves invariant the six non-primitive O-blades, and permutes the 
two that are Y-shaped. Under this map, an arbitrary element o (see Fig. 9(a)) becomes �(o) (see 
Fig. 9(b)), which, using the relation between fundamental O-blades displayed in Fig. 8, can be 

24 One can easily show that the component g coincides with the parameter x = (S1 − S2)/3 of section 5.1.3.
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Fig. 8. The SU(3) intertwiner relation in terms of O-blades.

Fig. 9. (a) Decomposition of an O-blade along the left fundamental basis, (b): its image par � , and (c): its decomposition 
along the same basis using the SU(3) intertwiner relation.

expanded on the left basis as in Fig. 9(c). We have therefore25 �(o)L = (a, b+g, c, d +g, e, f +
g, −g), with associated weights λ′, μ′, ν′ and λ′

1 = e + b, λ′
2 = a + f + g, μ1 = a + d, μ2 =

b + g + c, ν1 = f + g + e, ν2 = f + c. The linear map � , defined on the space of couplings, 
induces a transformation (λ, μ; ν) → (λ′, μ′; ν′) on branchings, that we also call � , with

λ′
1 =1

3
(2λ1 + λ2 − μ1 + μ2 + ν1 − ν2)

μ′
1 =1

3
(−λ1 + λ2 + 2μ1 + μ2 + ν1 − ν2)

ν′
1 =1

3
(λ1 − λ2 + μ1 − μ2 + 2ν1 + ν2)

λ′
2 =1

3
(λ1 + 2λ2 + μ1 − μ2 − ν1 + ν2)

μ′
2 =1

3
(λ1 − λ2 + μ1 + 2μ2 − ν1 + ν2)

ν′
2 =1

3
(−λ1 + λ2 − μ1 + μ2 + ν1 + 2ν2)

(52)

The nine internal edges and the three highest weights associated with �(o) are displayed in 
Fig. 10(b). From its geometrical definition (permutation of left and right forks), it is already clear 
that � is an involution, but this can also be checked from the equations given previously. In 
particular � is injective, both for branchings and for O-blades (or couplings). This implies that 
if a given branching has classical multiplicity m, and can therefore be associated with m distinct 
O-blades describing its corresponding couplings, its image by � is automatically admissible and 
will have the same multiplicity, the O-blades describing the couplings of the latter being obtained 
as the image by � of the O-blades of the former.

We now show that an O-blade o (characterizing a coupling), and its image �(o) have the same 
threshold. In terms of components of highest weights and internal edges, we know (see Fig. 6(a)) 
that k0(o) = max(λ1 + λ2 + l13, μ1 + μ2 + m13, ν1 + ν2 + n13), or, equivalently, in terms of the 

25 One should notice that positivity of edges of a (non-virtual) O-blade implies positivity of its components along the
first six intertwiners, those that we called non-primitive fundamental, but not along the last one (the left fork).
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Fig. 10. Permuting forks: an O-blade o and its image �(o).

(left) fundamental components oL = (a, b, c, d, e, f, g) of o, that k0(o) = max(a + b + c + e +
f + g, a + c + d + e + f + g, a + b + c + d + e + g). Using �(o)L = (a, b + g, c, d + g, e, f +
g, −g), one finds immediately k(�(o)) = k0(o). In particular this also implies that branchings 
exchanged by � have the same minimal threshold, so that this transformation also holds in the 
affine case and that it is compatible with the levels.

Example. �((9, 5), (6, 2); (10, 5)) = ((8, 6), (5, 3); (11, 4)). In both cases, multiplicity and 
threshold are the same: mult ((9, 5), (6, 2); (10, 5)) = mult ((8, 6), (5, 3); (11, 4)) = 3 and 
kmin

0 = 16.

Remark. It is easy to see that the map � is compatible with the transposition of the first two 
arguments and with the six Frobenius transformations.
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