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Abstract We review some recent results on properties of tensor product and fusion
coefficients under complex conjugation of one of the factors. Some of these results
have been proven, some others are conjectures awaiting a proof, one of them involving
hitherto unnoticed observations on ordinary representation theory of finite simple
groups of Lie type.
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1 Notations and results

1.1 Notations

In the following λ, μ, etc. label either finite dimensional irreps of a simple Lie algebra
g or of the corresponding simply connected compact Lie group G; or (for the sake of
comparison) irreps of a finite group �; or integrable irreps of an affine algebra ĝk at a
finite integral level k.

Following a standard abuse of notations, for the Lie groups and algebras, λ denotes
both the highest weight of the representation and the representation itself.
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N ν
λμ denotes, respectively, the coefficients of decomposition of the tensor product

λ ⊗ μ into inequivalent irreps ν (Littlewood–Richardson coefficients) of G or �; or
the coefficients of decomposition of the fusion product denoted λ � μ into irreps ν of
ĝk .

It is often convenient to regard this set of coefficients as elements of (possibly
infinite) matrices; thus,

N ν
λμ = (Nλ)

ν
μ. (1)

These coefficients satisfy the sum rule

dimλ dimμ =
∑

ν

N ν
λμ dimν (2)

where dimα denotes the dimension, resp. the quantum dimension, of the irrep α of
G, g or �, resp. of ĝ. When λ refers to a representation of complex type, we denote
by λ̄ the (equivalence class of its) complex conjugate. Recall that among the simple
Lie algebras, only those of type Ar , any r, r > 1; Dr , r odd; E6 admit complex
representations.

For a given pair (λ, μ), consider the moments of the N ’s

mr :=
∑

ν

(N ν
λμ)r r ∈ N.

In particular, m0 counts the number of distinct (i.e., non equivalent) ν’s appearing in
the decomposition of λ ⊗ μ, resp. λ � μ.

For non-real λ and μ, we want to compare mr and m̄r := ∑

ν(N
ν
λμ̄)r .

Call P the property that the multisets {N ν
λμ} and {N ν′

λμ̄} are identical. Since for
given λ and μ these multisets are finite, there is an equivalence

mr = m̄r ∀r ∈ N ⇔ P. (3)

1.2 A list of results and open questions

We start with a fairly obvious statement

Proposition 1 [3] For any Lie group, any finite group or any affine Lie algebra,
m2 = m̄2, i.e.,

∑

ν(N
ν
λμ)2 = ∑

ν′(N ν′
λμ̄)2.

See below the (easy) proof in Sect. 1.3. Much more surprising is the following.

Proposition 2 [1] For any simple Lie algebra, or any affine simple Lie algebra, m1 =
m̄1, i.e.,

∑

ν N ν
λμ = ∑

ν′ N ν′
λμ̄. This is not generally true for finite groups �. This is

not generally true for quantum doubles of finite groups either [2].

Problem 1 For a given finite group �, find a criterion on (�, λ, μ) for Proposition 2
to hold.
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Table 1 � means that the property is true and proven; X that it is not true in general and there are
counterexamples; �? that the property has been checked in many cases (see text) but that a general proof
is still missing

SU (3) or
su(3) or
ŝu(3)

SU (4) or
su(4) or
ŝu(4)

G or g other
simple Lie group
or Lie algebra

ĝ other
affine Lie
algebra

� finite simple
group of Lie
type

� other
finite
group

m2 = m̄2 � � � � � �
m1 = m̄1 � � � � � ? X

m0 = m̄0 � � ? X X X X

mr = m̄r ∀r ⇔ P � X X X X X

Proposition 3 [3] For the Lie group SU (3), mr = m̄r for all r , i.e., we have property
P. Moreover, we know a (non-canonical and non-unique) piece-wise linear bijection
(ν, α) ↔ (ν′, α′), where α is a multiplicity index running over N ν

λμ values. This
property P is not true in general for higher rank SU(N) nor for other Lie groups.

Proposition 4 [3] For the affine algebra ŝu(3) at finite level k, mr = m̄r for all r ,
i.e., we have property P. This is not true in general for higher rank ŝu(N ) or other
affine algebras.

This is, however, satisfied by low-level representations.

Problem 2 For each ĝk , find a criterion on (λ, μ, k) for Proposition 4 to hold.

Also missing in ŝu(3) is a general mapping ν ↔ ν′ compatible with the level.
Although we found one in a few particular cases, a general expression is still missing.

Problem 3 For each level in ŝu(3)k , find a piece-wise linear bijection ν ↔ ν′.

A weaker property than property P, which follows from it, is that m0 = m̄0.

Proposition 5 [3] For the affine algebra ŝu(3) at finite level k, m0 = m̄0. This seems
to be also true for ŝu(4), but this is not true in general for higher rank ŝu(N ), N ≥ 5,
or other affine algebras.

This is, however, satisfied by low-level representations.

Problem 4 For each ĝk , find a criterion on (λ, μ, k) for Proposition 5 to hold.

These results on the equality of various mk and m̄k are summarized in Table 1.

1.3 Comments, remarks, examples and counterexamples

• The equality m2 = m̄2 is the easiest to interpret and to prove. More explicitly it
asserts that

∑

ν

(N ν
λμ)2 =

∑

ν′
(N ν′

λμ̄)2 . (4)
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Fig. 1 Graphical representation
of m2 = m̄2. Each λμν vertex
carries the multiplicity Nν

λμ, and

likewise for λμ̄ν′ on the right.
Sums over ν, respectively, ν′ are
equal µ µ

µ µ

Proof The number of invariants N 0
λμλ̄μ̄

in λ ⊗ μ ⊗ λ̄ ⊗ μ̄ may be written as

N 0
λμλ̄μ̄

(i)=
∑

ν,ν′
N ν

λμN
ν′
λ̄μ̄

N 0
νν′

(ii)=
∑

ν,ν′
N ν

λμN
ν′
λ̄μ̄

δν′ν̄
(iii)=

∑

ν

N ν
λμN

ν̄

λ̄μ̄
=

∑

ν

(N ν
λμ)2

(iv)= N 0
λμ̄λ̄μ

=
∑

ν

N ν
λμ̄N

ν̄

λ̄μ
=

∑

ν

(N ν
λμ̄)2 (5)

where we have made use of (i) associativity of the tensor or fusion product, (ii) N 0
νν′ =

δν′ν̄ , (iii) invariance under conjugation N ν̄

λ̄μ̄
= N ν

λμ, and (iv) commutativity N 0
λμλ̄μ̄

=
N 0

λμ̄λ̄μ
.

Graphically, thismaybe represented as inFig. 1. In physical terms, and in the context
of particle physics, it expresses the fact that the numbers of independent amplitudes
in the “s channel” λ ⊗ μ → λ ⊗ μ and in the “crossed u channel” λ ⊗ μ̄ → λ ⊗ μ̄

are the same.

• In contrast, the equality m1 = m̄1 is neither natural nor general. While it is valid
for all simple Lie algebras, either finite dimensional or affine, (see the discussion
and elements of proofs in the next section), it is known not to be true for general
finite groups. Counterexamples are provided by some finite subgroups of SU (3),
see below in Sect. 1.5, and also [1], and the detailed discussion in [2].

• Even more elusive and exceptional is the equality m0 = m̄0, which happens to
be true in SU (3) or for the affine algebra ŝu(3), as a particular case of the more
general property P that they satisfy. Curiously we have found evidence (but no
proof yet) that it also holds true for SU (4) and ŝu(4) (this was tested in ŝu(4)k up
to level k = 15), but it fails in general for higher rank SU (N ) or ŝu(N ).

• Finally the equality mr = m̄r for all r , or equivalently property P, is satisfied in
SU (3) [3] and in ŝu(3) at all levels [4].

Example 1 In SU (3), for the ten-dimensional representations,

(2, 1) ⊗ (2, 1) = 1(4, 2) + 1(5, 0) + 1(2, 3) + 2(3, 1) + 1(0, 4) + 2(1, 2)

+1(2, 0) + 1(0, 1)

(2, 1) ⊗ (1, 2) = 1(3, 3) + 1(4, 1) + 1(1, 4) + 2(2, 2) + 1(3, 0) + 1(0, 3)

+2(1, 1) + 1(0, 0) (6)
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on which we do observe all the above properties: m2 = m̄2 = 14, m1 = m̄1 = 10,
m0 = m̄0 = 8 and the multisets of multiplicities are both {1, 1, 1, 1, 1, 1, 2, 2}, or in
short, {1622} (where we note the number n of occurrences of multiplicity m by mn).

Example 2 In SU (4), with λ = μ = (1, 2, 2), we find for the multiplicities N ν
λμ

the multiset {117283948516373} while for those for λ ⊗ μ̄ it is {1162123643586381},
whence m2 = m̄2 = 538, m1 = m̄1 = 136, m0 = m̄0 = 49 but the multisets are
clearly different.

Example 3 In SU (5), for λ = (1, 1, 1, 0),μ = (1, 1, 0, 1), we find that the list of N ν
λμ

reads {112263343}while that of N ν′
λμ̄ reads {115233443}.We check thatm2 = m̄2 = 111

and m1 = m̄1 = 45 but m0 = 24 
= m̄0 = 25.

Example 4 In SO(10) (Lie algebra D5), with λ = μ = (1, 1, 0, 1, 0), the two mul-
tisets are, respectively, {117210334856637282121} and {11521138475263718292101}
from which we check that m2 = m̄2 = 840, m1 = m̄1 = 168, m0 = m̄0 = 52
while the two multisets are manifestly different.

Example 5 In SO(10) (Lie algebra D5), with λ = μ = (1, 1, 1, 1, 0), we find m1 =
m̄1 = 4456 and m2 = m̄2 = 184,216 but m0 = 240 and m̄0 = 243, hence a
counterexample to the property of Proposition 5.

Example 6 In E6, likewise, wemayfind pairs ofλ, μwhich violate Propositions 4 and
5. Take λ = μ = (1, 1, 0, 0, 0; 1); μ̄ = (0, 0, 0, 1, 1; 1);1 we find m1 = m̄1 = 947,
m2 = m̄2 = 14,163 but m0 = 119, m̄0 = 123. (Incidentally, the reducible represen-
tation encoded by λ ⊗ μ in that case has dimension 63,631,071,504 = 252,2522.)

1.4 Related properties of the modular S-matrix

In the case of an affine algebra ĝk , it is well known that the fusion coefficients are
given by Verlinde formula [5]

N ν
λμ =

∑

κ

Sλκ Sμκ S∗
νκ

S0κ
. (7)

Proposition 6 [1]For the affine algebra ĝk at finite level k,	(κ) := ∑

ν Sκν vanishes
if the irrep κ is either of complex or of quaternionic type.

For κ complex, κ 
= κ̄ , this implies immediately Proposition 2, since, using the fact
that Sμκ̄ = Sμ̄κ = S∗

μκ ,

∑

ν

N ν
λμ =

∑

κ

Sλκ Sμκ

∑

ν S
∗
νκ

S0κ
=

∑

ν,κ=κ̄

Sλκ Sμκ S∗
νκ

S0κ
=

∑

ν,κ=κ̄

Sλκ Sμ̄κ S∗
νκ

S0κ
=

∑

ν

N ν
λμ̄.

(8)

1 We use the common convention that the component of the vertex located on the short branch of the
Dynkin diagram is written at the end.
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2

Fig. 2 Tensor product graph for the subgroup 	(3 × 360) of SU (3). The middle vertical edge carries a
multiplicity 2

But conversely, as shown in [1] by a fairly simple argument, Proposition 2 implies that
	(κ) = 0 if κ 
= κ̄ .

The fact that the sum	(κ) also vanishes for κ , a representation of quaternionic type,
though of no direct relevance for the present discussion, is also a curious observation
and was proved in [1] as the result of a case by case analysis.

1.5 The case of finite groups

Finite groups (admitting complex representations) do not generally satisfy Proposition
2. Consider for example the finite subgroup � = 	(3×360) of SU (3) [6,7]. A simple
way to show that the equality of m1 and m̄1 is not satisfied is to draw the oriented
graphwhose vertices are the irreps of� andwhose adjacencymatrix is thematrix N ν

f μ,
where f denotes one of the three-dimensional irreducible representations, see Fig. 2.
In there, pairs of complex conjugate representations are images under a reflection
through the horizontal axis. The sum

∑

ν N ν
f μ counts the number of oriented edges

exiting vertex μ. It is clear that the sums relative to μ associated with the outmost
upper and lower vertices are different.

Ultimately,we found among subgroups of SU (3) the following counterexamples [1]
to Proposition 2:	(3×72),	(3×360), and the subgroups of the type F3m = Zm�Z3,
where m should be a prime of the type 6p + 1.

Could the validity of Proposition 2 be related to the modularity of the tensor (or
fusion) category, which holds true for Lie groups and affine algebras, but not generally
for finite groups? In [2], we explored that possibility by constructing the Drinfeld
doubles of subgroups of SU (2) and SU (3). While tensor product in Drinfeld doubles
is known to be modular, we found again many counterexamples to Proposition 2, in
particular for the double of the same group	(3×360). We conclude that the property
encapsulated in Proposition 2 is not a modular property but rather seems to be a Lie
theory property. See below in Sect. 2 a remark on the role of the Weyl group in the
proof.

The validity of Proposition 2 is not directly related, either, to the simplicity of
the group considered; indeed, the Mathieu groups M11, M12, M21 M22, M23, M24
are simple finite groups, but Proposition 2 is only valid for M12 and M21 (the latter,
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although simple, does not appear in the list of sporadic simple groups because it is
isomorphic with PSL(3, 4)).

We also considered those Chevalley groups that admit complex representations—
otherwise Proposition 2 would be trivially verified. For small values of n ≥ 1 and
q (a power of a prime) we looked at examples from the families An(q) = SL(n +
1, q), Bn(q) = O(2n + 1, q), Cn(q) = Sp(2n, q), Dn(q) = 
+(2n, q), G2(q),
and also from the families called 2An(q) = SU (n+ 1, q), 2Bn(q) = Sz(q) (Suzuki),
2Dn(q) = 
−(2n, q), 2G2(q) (Ree), 3D4(q), with the notations used inMAGMA[8].
We could not explicitly study examples from the families F4(q), E6(q), E7(q), E8(q),
or 2F4(q) (Ree), 2E6(q), because of the size of their character table. The largest simple
group of Lie type that we considered (and obeying Proposition 2) was G2(5), with
5,859,000,000 elements, 44 conjugacy classes (or irreps), andonly four complex irreps.
Altogether we tested about 70 Chevalley groups, 33 of them being simple, and 37 had
complex irreps, so that testing the sum rule (Proposition 2) for them was meaningful.
Among those 37 groups with complex irreps, 21 were simple and the sum rule was
obeyed by all of them; among the 37 − 21 = 16 non-simple groups with complex
irreps, we found four cases for which the sum rule fails. In all cases where this sum rule
failed for a non-simple Chevalley group, it turned out to hold for the corresponding
projective group (a simple quotient of the latter): for instance the rule fails for the
non-simple group A2(7) = SL(3, 7) but it holds for the simple group PSL(3, 7) (and
also holds for the non-isomorphic simple group 2A2(7) = SU (3, 7) = PSU (3, 7)).
Although the obtained results may not be statistically significant they seem to indicate
that Proposition 2 is valid for simple groups of Lie type. We did not try to prove this
property but if it happens to be true, one may expect, for finite groups of Lie type, that
the Weyl group could play a role in the proof, like in the case of simple Lie groups
(see below).

2 A sketch of proofs

The proof of Proposition 1 has been given above. We shall content ourselves with
sketches of proofs for the other propositions.

The proof of Proposition 2 may be split into two steps.

Lemma 1 Proposition 2 holds for λ = ωp, a fundamental weight.

Lemma 2 Proposition 2 holds for any product of the fundamental representations.

Proof The first lemma was established for the Ar , Dr odd, E6 simple Lie algebras
(the others do not have complex irreps) making use of the Racah–Speiser formula, or
of its affine extension. The latter expresses the tensor coefficient N ν

λμ as a weighted
sum over suitable elements of the (classical or affine) Weyl group, see [1] for details.
Restricting λ to be a fundamental weight makes the discussion amenable to a fairly
simple analysis of a finite number of cases.

The second lemma follows simply from the associativity and commutativity of the
tensor or fusion product, using the outcome of Lemma 1:
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∑

ν

(

Nωp

) ν

μ
=

∑

ν

(

Nω̄p

) ν

μ
.

This, together with the commutativity of the N matrices, entails that for any monomial
Nω j1

· · · Nω jq

∑

ν

(

Nω j1
· · · Nω jq

) ν

μ
=

∑

ν′

(

Nω j1
· · · Nω jq−1

) ν′

μ

∑

ν

(

Nω jq

) ν

ν′

(Lemma 1)=
∑

ν′

(

Nω j1
· · · Nω jq−1

) ν′

μ

∑

ν

(

Nω̄ jq

) ν

ν′

=
∑

ν

(

Nω̄ jq
Nω j1

· · · Nω jq−1

) ν

μ
= · · ·

=
∑

ν

(

Nω̄ j1
· · · Nω̄ jq

) ν

μ
(9)

This completes the proof of the two lemmas. As any Nλ is a polynomial in the com-
muting Nωp , p = 1, . . . , r , Nλ = Pλ(Nω1 , . . . , Nωr ) and Nλ̄ = Pλ(Nω̄1 , . . . , Nω̄r ),
this also establishes Proposition 2. �

The salient feature of this approach is the crucial role played by the (classical or
affine) Weyl group.

Propositions 3 and 4, which deal with the explicit case of the classical or affine
su(3) algebra, have been established through a detailed and laborious analysis which
will not be repeated here. We only mention that a variety of graphical representations
of the determination of the N ν

λμ coefficients has been used. We refer the reader to [3]
and [4] for details.

3 Conclusion

In this letter, we have reviewed some recent results on conjugation properties of tensor
product (or fusion) multiplicities. Although quite simple to state, it appears that these
results were not previously known, and that some are fairly difficult to prove. In
particular, we feel that our proofs of Propositions 2, 3 and 4 lack elegance and may
miss some essential concept. Hopefully, some inspired reader will come with new
insights into these matters.
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