
On sums of tensor and fusion multiplicities

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 J. Phys. A: Math. Theor. 44 295208

(http://iopscience.iop.org/1751-8121/44/29/295208)

Download details:

IP Address: 134.157.10.75

The article was downloaded on 24/06/2011 at 08:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/44/29
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 44 (2011) 295208 (26pp) doi:10.1088/1751-8113/44/29/295208

On sums of tensor and fusion multiplicities

Robert Coquereaux1 and Jean-Bernard Zuber2
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2 Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589 and Université Pierre
et Marie Curie-Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France

E-mail: jean-bernard.zuber@upmc.fr

Received 23 March 2011, in final form 31 May 2011
Published 23 June 2011
Online at stacks.iop.org/JPhysA/44/295208

Abstract
The total multiplicity in the decomposition into irreducibles of the tensor
product λ ⊗ μ of two irreducible representations of a simple Lie algebra
is invariant under conjugation of one of them:

∑
ν N ν

λμ = ∑
ν N ν

λ̄μ
. This

also applies to the fusion multiplicities of affine algebras in conformal WZW
theories. In that context, the statement is equivalent to a property of the modular
S-matrix, namely �(κ) := ∑

λ Sλκ = 0 if κ is a complex representation.
Curiously, this vanishing of �(κ) also holds when κ is a quaternionic
representation. We provide proofs of all these statements. These proofs rely on
a case-by-case analysis, maybe overlooking some hidden symmetry principle.
We also give various illustrations of these properties in the contexts of boundary
conformal field theories, integrable quantum field theories and topological field
theories.

PACS numbers: 02.20.Tw, 02.20.Qs, 11.25.Hf

1. Introduction

In the course of investigations of algebraic features of conformal theories, we have encountered
a seemingly unfamiliar property of the sums of the tensor product or the fusion multiplicities of
the irreducible representations of simple or affine Lie algebras, and an associated property of
the modular S-matrix in the affine algebra case. Let N ν

λμ be the multiplicity of the irreducible
representation (irrep) of the weight ν in the tensor product of those of weights λ and μ.
(Notations will be presented with more care in the following section.) It is a commonplace
to say that N ν

λμ = N ν̄
λ̄μ̄

and that N ν
λμ = N λ̄

ν̄μ , where λ̄ is the complex conjugate weight of λ,
and hence that

∑
ν N ν

λμ is invariant under the simultaneous conjugation of λ and μ. We claim
that the latter sum is also invariant under a single conjugation λ → λ̄ :

∑
ν N ν

λμ = ∑
ν N ν

λ̄μ

(theorem 1). This paper consists of variations on that theme.
The layout of the paper is as follows. The main results are presented in section 2 as

a sequence of four theorems. Theorem 1 deals with the above property for tensor product
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multiplicities and theorem 2 deals with the same property for fusion coefficients within affine
algebras. Theorems 3 and 4 assert that the sum �(κ) := ∑

λ Sλκ vanishes if κ is a complex
(theorem 3) or quaternionic (theorem 4) representation. Proofs of theorems 1, 2, 3 and 4 are
given in sections 3, 3, 4 and 5, respectively. A short discussion of cancellations of �(κ) that
may also occur when κ is real is given in section 7, and section 8 shows what may happen in
finite groups. Section 9 presents a few applications or illustrations of our properties in various
contexts, together with some final comments. The appendices gather lengthy details of our
proofs and some useful tables.

2. The main results

Let g be a finite-dimensional simple Lie algebra of rank n. Each of its finite-dimensional
irreducible representations (irreps) is labelled by a highest weight (h.w.) λ. By a small abuse
of notation, we refer to that representation as representation λ. Throughout this paper, we
shall denote [λ] the weight system of irrep λ. Let N ν

λμ denote the multiplicity of irrep
ν in the decomposition of the Kronecker product λ ⊗ μ. Let λ̄ denote the representation
conjugate to λ.

Theorem 1. For a given pair (λ, μ) of irreps of the simple Lie algebra g, the total multiplicity∑
ν N ν

λμ satisfies∑
ν

N ν
λμ =

∑
ν

N ν
λ̄μ

. (2.1)

Equivalently, since N ν
λμ = N λ̄

ν̄μ ,∑
λ

N ν
λμ =

∑
λ

N ν̄
λμ . (2.2)

Of course the theorem is non-trivial only in cases where g has complex representations, i.e.
g = An, Dn=2s+1 or E6. Although this looks like a classroom exercise in group theory, we
could not find either a reference in the literature or a simple and compact argument, and we
had to resort to a case-by-case analysis; see section 3 below. Note also that this property is
not a trivial consequence of the general representation theory of groups; in particular, it does
not hold in general in finite groups; see section 8 below for counter-examples based on finite
subgroups of SU(3).

Theorem 1 is also valid for the fusion multiplicities of the integrable representations
of affine Lie algebras taken at some level k. Such representations are the objects of a
fusion category with a finite number of simple objects that will just be called irreps, for
short. These simple objects (and the category itself) could also be built in terms of the
irreducible representations of quantum groups at roots of unity that have non-vanishing
quantum dimensions. One sometimes refers to this framework by saying that we consider the
fusion category defined by g at level k, but for definiteness, when needed, we shall use the
language of affine algebras, and denote ĝk the affine algebra of type g at the finite integer level
k. Then we have, using the notation N̂ ν

λμ for the fusion multiplicities, (for completeness, a
label k should be appended to this notation but will be omitted) the following.

Theorem 2. Equation (2.1) (or (2.2)) is valid for any pair (λ, μ) of irreps of the fusion
category defined by ĝk at level k:∑

ν

N̂ ν
λμ =

∑
ν

N̂ ν
λ̄μ

(2.3)
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λ

N̂ ν
λμ =

∑
λ

N̂ ν̄
λμ . (2.4)

Part of the proof given in section 3 can be used in that case, but the discussion needs
nevertheless to be extended, so the proof of theorem 2 is given in section 4. Note that the
theorem for simple algebras follows from that for affine algebras, provided that the level is
chosen large enough.

Now in that context of affine algebras, the multiplicities N̂ ν
λμ are given by the Verlinde

formula [1] in terms of the unitary modular S-matrix:

N̂ ν
λμ =

∑
κ

SλκSμκS
∗
νκ

S0κ

, (2.5)

where the weight 0 refers to the identity representation. We recall that the matrix S is
symmetric, Sλκ = Sκλ, and satisfies the following properties:

S† = S−1 = S3 = SC = CS, (2.6)

where C = S2 is the conjugation matrix Cλλ′ = δλ′λ̄, from which it follows that

Sλ̄κ = Sλκ̄ = S∗
λκ . (2.7)

Then we have the (apparently) stronger constraint on �(κ) := ∑
ν Sνκ .

Theorem 3. �(κ) :=∑
ν Sνκ = 0 if κ �= κ̄ .

That theorem 3 implies theorem 2 is readily seen:∑
ν

N̂ ν
λμ =

∑
κ

SλκSμκ

∑
ν S∗

νκ

S0κ

(theorem 3)=
∑
κ=κ̄

SλκSμκ

∑
ν S∗

νκ

S0κ

(1.7)=
∑

ν

∑
κ=κ̄

Sλ̄κSμκS
∗
νκ

S0κ

=
∑

ν

N̂ ν
λ̄μ

. (2.8)

As we shall see below (section 5), theorem 3 also follows from theorem 2, so the two statements
are in fact equivalent.

Theorem 3 states that
∑

ν Sνκ vanishes if κ is a complex representation, or equivalently
it may be non-zero only if κ is self-conjugate. As is well known, this covers two cases, real
representations and quaternionic, also known as pseudoreal, representations. We show in
section 6

Theorem 4. Let κ be an irrep of ĝk . If κ is of quaternionic type, the sum �(κ) = ∑
ν Sνκ

vanishes.

The sum
∑

ν Sνκ may thus be non-zero only if κ is a real representation. Actually this
sum can sometimes vanish, even for real representations, either because it is forced by some
automorphism of the Weyl alcove, or because of some accidental property of the representation
κ . We return to this question in section 7.

3. Sum of multiplicities (classical case). Proof of theorem 1

The proof will be given in two steps. We first prove it for λ, one of the fundamental
representations ωp, p = 1, . . . , n, and μ arbitrary; we then use the fact that any Nλ is a
polynomial in Nω1 , . . . , Nωn

.

Lemma 1. Theorem 1 holds for any fundamental weight λ = ωp.

3
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We recall a well-known method of the calculation of the multiplicities N ν
λμ for two given

h.w. λ and μ, often called the Racah–Speiser algorithm [2–4]. Here and below we write the
components of weights along the basis of fundamental weights (Dynkin labels). Let ρ stand
for the Weyl vector, i.e. the sum of all fundamental weights (or half the sum of positive roots)
of g. Consider the set of weights σ = λ′ + μ + ρ, where λ′ runs over the weight system [λ] of
the irrep of h.w. λ. Three cases may occur:

(i) if all Dynkin labels of σ are positive, λ′ + μ contributes to the sum over h.w. ν with a
multiplicity equal to the multiplicity of σ (i.e. of λ′);

(ii) if σ or any of its images under the Weyl group has a vanishing Dynkin label, i.e. if σ is
on the edge of a Weyl chamber, λ′ + μ does not contribute to the sum over ν;

(iii) if σ has negative (but no vanishing) Dynkin labels and is not of the type discussed in case
(ii), it may be mapped inside the fundamental Weyl chamber by a unique element w of
the Weyl group. The weight w[σ ] − ρ contributes with a multiplicity sign(w) to the sum
over ν.

This is summarized in the formula

N ν
λμ =

∑
λ′∈[λ]

∑
w∈W

w[λ′+μ+ρ]−ρ∈P+

sign(w) δν,w[λ′+μ+ρ]−ρ, (3.1)

in which P+ is the fundamental Weyl chamber (ν ∈ P+ ⇔ νi � 0 ∀i = 1, . . . , n).

Remarks.

(1) In practice, it may not always be immediately obvious to discover that a shifted weight σ

belongs to the edge of a Weyl chamber and therefore trivially contributes to the problem,
but one can easily discard at least those σ with one or several Dynkin labels equal to 0
since they obviously belong to the walls of the fundamental chamber. In any case, the
trivial σ ’s that would not be recognized as such will be mapped, at a later stage, to the
walls of the fundamental Weyl chamber, and they can be removed then. Note that in
formula (3.1) these cases of type (ii) automatically cancel out, as they contribute with two
Weyl elements of opposite signatures.

(2) The irreps ν that appear in the decomposition into irreps of the tensor product λ ⊗ μ

are obtained (together with their multiplicities) from the non-trivial contributions (i) and
(iii). The same weight ν can sometimes be obtained from both (i) and (iii), possibly with
different signs. Its final multiplicity is the algebraic sum of its partial multiplicities.

(3) Note that, as a consequence of the above method, the sum over ν of multiplicities N ν
λμ

should be smaller than the dimensions of any of the two irreps λ and μ entering the tensor
product,

∑
N ν

λμ � inf(dim(λ), dim(μ)).

We shall now see that for all the complex fundamental representations of the A, D and E6

algebras (with one exception in E6, see below), we are in case (i) or (ii), and that for λ = ωp

or λ = ω̄p, the occurrences of (ii) are equinumerous, thus proving the lemma.
For each of the fundamental representations ωp of the An algebra (p = 1, . . . , n), for

the spinorial representations3ωn−1 and ωn of the Dn (n = 2s + 1) algebra, and for the 27-
dimensional fundamental representations ω1 and ω5 of E6, the Dynkin labels of the weights λ′

of the weight system of λ = ωp take the value 0 or ±1. Thus after addition of ρ (whose Dynkin
labels are all equal to 1), the Dynkin labels of σ = λ′ + ρ + μ are never negative and case (iii)
above never occurs. On the other hand, case (ii) occurs whenever some Dynkin label of μ

vanishes while the corresponding one in λ′ equals −1. It is easy to check by inspection that

3 Those are the only fundamental complex representations of the D2s+1 case.
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there is the same number of weights with −1 entries at given locations 1 � i1 < i2 < · · · iq � n

in the weight systems of any ωp and ω̄p. For a given μ, there is thus an equal number of
occurrences of cases of type (ii) for the fundamental weights ωp and ω̄p.

To complete the proof of lemma 1, we still have to consider the case of the complex, 351-
dimensional, representations ω2 and ω̄2 = ω4 of E6 (note that ω2 is also the antisymmetric
tensor square of ω1). This requires a particular analysis because the weight system of ω2 (or
of ω4) contains weights with Dynkin labels equal to −2, so that when the corresponding label
of μ vanishes, we are in the situation (iii). For the sake of clarity, this detailed discussion is
relegated to appendix A.1.

Lemma 2. Theorem 1 holds for any product of the fundamental representations.

In the following, it will be convenient to use an alternative notation for the multiplicities N ν
λμ

and to regard them as the (μ, ν) entry of the matrix Nλ. We have proved in lemma 1 that for
any p, ∑

ν

(
Nωp

) ν

μ
=

∑
ν

(
Nω̄p

) ν

μ
.

This, together with the commutativity of the N matrices, entails that for any monomial
Nωj1

· · ·Nωjq
,∑

ν

(
Nωj1

· · · Nωjq

) ν

μ
=

∑
ν ′

(
Nωj1

· · · Nωjq−1

) ν ′

μ

∑
ν

(
Nωjq

) ν

ν ′

(lemma 1)=
∑
ν ′

(
Nωj1

· · · Nωjq−1

) ν ′

μ

∑
ν

(
Nω̄jq

) ν

ν ′

=
∑

ν

(
Nω̄jq

Nωj1
· · ·Nωjq−1

) ν

μ
= · · ·

=
∑

ν

(
Nω̄j1

· · · Nω̄jq

) ν

μ
, (3.2)

which exhibits the product of the conjugate fundamental representations.
Now it is also well known [4, 5] that any irreducible representation may be obtained

from a suitable combination of the tensor products of the fundamentals. In other words, any
matrix Nλ is some polynomial (with integer coefficients)4 of the commuting Nω1 , . . . , Nωn

:
Nλ = Pλ(Nω1 , . . . , Nωn

) and Nλ̄ = Pλ(Nω̄1 , . . . , Nω̄n
). Thus the property proved above for

any monomial establishes the general statement and completes the proof.

4. Sum of multiplicities (affine/quantum case). Proof of theorem 2

4.1. Levels and automorphisms

Let P k
+ be the set of integrable weights of the affine algebra ĝ at a level k [6]. Each weight

of P k
+ is completely specified by a dominant weight λ of the underlying classical algebra g,

restricted by the condition K(λ) � k, where K is the linear form K(λ) := 〈λ, θ〉 and θ is the
highest root of g. We shall call level of a weight λ the integer K(λ). Therefore, a weight exists
in a representation of level k when its level is smaller than or equal to k. By another slight
abuse of notation, λ will denote both the weight of ĝ and the corresponding weight in g. We
refer to the subset of λ such that K(λ) = k as ‘the back wall’ (of the Weyl alcove P k

+ ). It is

4 A generalized Chebyshev polynomial [4].
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also convenient to introduce the additional Dynkin label λ0 = k − K(λ) of the affine weight
λ; clearly λ0 vanishes on the back wall.

Each of the algebras ĝ with complex representations, i.e. Ân, D̂2s+1 and Ê6, has the
following well-known properties:

• the set P k
+ of integrable weights at level k is invariant under the action of an automorphism

ζ ;
• there exists a ZN -grading τ on the weights of P k

+ : N = n + 1 for Ân, N = 4 for D̂2s+1

and N = 3 for Ê6;
• the modular S-matrix satisfies the relation [7]

Sζ(μ)κ = e2π iτ(κ)/NSμκ . (4.1)

The value of the level K(λ) may be calculated easily from the expansion
of the highest root θ in terms of simple roots (Coxeter–Kac labels): θ =
(1, 1, . . . , 1), (1, 2, 2, . . . , 2, 1, 1), (1, 2, 3, 2, 1, 2) for An,D2s+1, E6 respectively. The
expressions of K(λ), the automorphisms, the ZN -grading and the conjugates in the above
three algebras are gathered in appendix B. One can check in these expressions that the level
of a weight is invariant by conjugation: K(μ) = K(μ̄). Moreover, the automorphism ζ and
the complex conjugation satisfy the consistency relation

ζ(μ̄) = ζ−1(μ), (4.2)

and by iteration

ζ p(μ̄) = ζ−p(μ) ∀p. (4.3)

For the An algebra, one finds that K(ζ(μ)) = k−μn, K(ζ−1(μ)) = k−μ1 and more generally

K(ζ−p(μ)) = k − μp, (4.4)

while for the D2s+1 case,

K(ζ(μ)) = k −μ2s , K(ζ±2(μ)) = k −μ1, K(ζ−1(μ)) = k −μ2s+1, (4.5)

and for the E6 case

K(ζ(μ)) = k − μ5, K(ζ−1(μ)) = k − μ1. (4.6)

ζ is an automorphism of the fusion rules as a consequence of (2.5) and (4.1):

N̂
ζ(ν)

λζ(μ) =
∑

κ

SλκSζ(μ)κS
∗
ζ(ν)κ

S0κ

=
∑

κ

SλκSμκS
∗
νκ

S0κ

= N̂ ν
λμ . (4.7)

This implies that the sum of multiplicities satisfies∑
ν

N̂ ν
λμ =

∑
ν

N̂ ν
λζ(μ). (4.8)

4.2. Fusion coefficients

There are several alternative routes to determine the fusion coefficients. Let us quote three of
them. The first is the Verlinde formula (2.5), which relies on the knowledge of the modular
S-matrix.

Secondly, one may use an affine generalization of the Racah–Speiser algorithm described
in equation (3.1):

N̂ ν
λμ =

∑
λ′∈[λ]

∑
w∈Ŵ

w[λ′+μ+ρ]−ρ∈Pk
+

sign(w) δν,w[λ′+μ+ρ]−ρ. (4.9)

6
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The modification is twofold: the fundamental Weyl chamber P+ is replaced by P k
+ , the Weyl

alcove of level k; and now the sum runs over the elements of the affine Weyl group Ŵ , the
reflection s0 of which across the shifted back wall is the new generator. What is referred to as
the shifted back wall is the hyperplane of the equation K(λ) = k + h∨, and the reflection s0

acts according to s0[λ] = λ + (k + h∨ −K(λ)) 2θ
〈θ,θ〉 , where h∨ = 1 + 〈ρ, θ〉 is the dual Coxeter

number. Just like in section 3, weights λ′, which are such that λ′ + μ + ρ lies either on an
ordinary wall of the Weyl chamber or on the shifted back wall or on one of their images by
Ŵ , do not contribute to the sum.

Thirdly, the fusion coefficients N̂ ν
λμ and the ordinary multiplicities N ν

λμ occurring in the
‘horizontal’ algebra g are related by the Kac–Walton formula [8]:

∀ λ,μ, ν ∈ P k
+ N̂ ν

λμ =
∑
w∈Ŵ

w[ν+ρ]−ρ ∈P+

sign(w)N
w[ν+ρ]−ρ

λμ . (4.10)

As far as the proof of theorem 2 is concerned, the first method (Verlinde formula) does not
seem appropriate, unless some additional properties of that matrix (in fact our theorem 3)
are proved beforehand. On the other hand, repeating the method of section 3 with the affine
version of the Racah–Speiser algorithm leads in a straightforward way to a proof, as we shall
see in the next subsection. Using the results of section 3 on the sums of tensor product
multiplicities together with (4.10) and the automorphism ζ of section 4.1, there is another
tantalizing possibility, which however seems to be applicable only to a subset of cases. We
return to this point at the end of the next subsection.

4.3. Proof of theorem 2

As in section 3, we take λ to be the h.w. of one of the complex fundamentals of the affine
algebra ĝ with g = An, Dn=2s+1 or E6. Again, in the latter case, we treat the weights ω2 and
ω4 (their level is 2) separately. Each of the other cases (λ = ωp, p = 1, . . . , n, in An, ω2s or
ω2s+1 in Dn=2s+1, and ω1 or ω5 in E6) has a level K(ωp) = 1, and all the weights λ′ of the
representation λ have a level K(λ′) = ±1 or 0, as is readily checked in their expression.

We then follow the same steps as in section 2: for any weight μ ∈ P k
+ , hence with all its

Dynkin labels (including the affine label μ0) non-negative, and for any λ′ ∈ [λ = ωp], one
sees that σ = λ′ + μ + ρ has non-negative Dynkin labels σi , i = 1, . . . , n, and likewise

σ0 = k + h∨ − K(σ ) = (k − K(μ)) + (1 − K(λ′)) � 0. (4.11)

Hence no non-trivial w has to be applied to σ to bring it back (after subtraction of ρ) to P k
+ .

But some of these σ may lie on a wall and will not contribute to the sum in (4.9), and this
occurs whenever one or several of the Dynkin labels μi , i = 0, . . . , n, vanish. In view of
the discussion of section 3 for the finite case, it suffices to examine the situation when σ lies
on the shifted back wall, i.e. σ0 vanishes, and (4.11) says this occurs whenever μ lies on the
back wall of P k

+ and K(λ′) = +1. Since for any λ′ of level 1, its conjugate λ̄′ has also level 1,
the number of these occurrences is the same for λ = ωp and ω̄p, and like in the finite case of
section 3, this implies the equality

∑
ν N̂ ν

ωpμ = ∑
ν N̂ ν

ω̄pμ. The case of λ = ω2 or = ω4 for E6

has again to be treated separately and will be relegated to appendix A.3.
Once it has been established for λ, one of the fundamentals, theorem 2 then follows in

general from the fact that the fusion ring is polynomially generated by the fundamental fusion
matrices N̂ωp

[4].
An alternative route using the Kac–Walton formula (4.10) is also applicable to the An

case (and also to the D2s+1 case at an odd level k). The method stems from the observation
that when λ or μ are sufficiently off the back wall, so that all ν such that N ν

λμ �= 0 are

7
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themselves in P k
+ , only w = 1 contributes to the sum in (4.10) and N̂ ν

λμ does not differ from
N ν

λμ . Unfortunately the method does not seem to be of general validity, and we have thus to
rely on the more systematic proof given previously.

5. Proof of theorem 3

We want to show (theorem 3) that if κ �= κ̄ , then �(κ) = ∑
ν Sνκ = 0.

If κ �= κ̄ , there are two cases, either τ(κ) vanishes, or it does not. The proof splits then
naturally into two parts.

First observe that for any κ of non-vanishing τ ,
∑

λ Sλκ = 0. Indeed,∑
λ

Sλκ =
∑

λ

Sζ(λ)κ = e2π iτ(κ)/N
∑

λ

Sλκ . (5.1)

As we shall now see, if κ is such that
∑

λ Sλκ �= 0, then for any μ, we have Sμκ = Sμκ̄ , and
for κ �= κ , this leads to a contradiction. Therefore, if κ is such that

∑
λ Sλκ �= 0, then κ = κ .

Equivalently, if κ �= κ , then
∑

λ Sλκ = 0, even if τ(κ) vanishes.
Completing the proof therefore requires two small lemmas that we now discuss in detail.
Verlinde formula (2.5) implies

SλκSμκ =
∑

ν

N̂ ν
λμ SνκS0κ , (5.2)

and we have proved that
∑

λ N̂ ν
λμ = ∑

λ N̂ ν̄
λμ ; see (2.4). Therefore, for any κ ,(∑

λ

Sλκ

)
Sμκ =

∑
ν

(∑
λ

N̂ ν
λμ

)
SνκS0κ =

∑
ν

(∑
λ

N̂ ν̄
λμ

)
SνκS0κ

=
∑

ν

(∑
λ

N̂ ν
λμ

)
Sν̄κS0κ =

∑
ν

(∑
λ

N̂ ν
λμ

)
Sνκ̄S0κ (5.3)

=
∑

ν

(∑
λ

N̂ ν
λμ

)
Sνκ̄S0κ̄ =

∑
λ

Sλκ̄Sμκ̄ =
∑

λ

Sλ̄κSμκ̄ =
(∑

λ

Sλκ

)
Sμκ̄ ,

where we used the fact that S0κ̄ = S0κ is real (it is a quantum dimension up to a real factor
S00) and that summations over ν or ν̄ are equivalent. Therefore we have proved the following.

Lemma 3. For any κ such that
∑

λ Sλκ �= 0 (hence of vanishing τ ) and for any μ, we have

Sμκ = Sμκ̄ . (5.4)

To complete the proof, we have to show that this situation cannot occur for κ complex.

Lemma 4. For any complex κ , i.e. κ �= κ̄ , there exists a weight μ ∈ P k
+ such that

Sμκ �= (Sμκ)
∗ = Sμκ̄ . (5.5)

Note that this holds irrespective of whether τ(κ) vanishes or not.

Proof. For such a κ �= κ̄ , (the h.w. of a complex representation), the fusion matrices
N̂κ and N̂κ̄ are different, since (N̂κ)

κ
0 = 1, whereas (N̂κ̄ )

κ
0 = 0. But these two matrices

are diagonalized in the same basis through Verlinde’s formula, with eigenvalues Sκμ/S0μ,
respectively Sκ̄μ/S0μ. Thus there is at least one distinct pair of eigenvalues Sκμ �= Sκ̄μ. The
lemma is proved. �

Lemma 4, together with lemma 3 (5.4), implies that
∑

λ Sλκ �= 0 is only possible if κ = κ̄ ,
and this completes the proof of theorem 3.

8
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Comment

The previous discussion was needed to handle the general case where the representation κ

is complex, but let us remember that for those particular complex representations of non-
vanishing τ , the proof of the vanishing of

∑
λ Sλκ is immediate. In the case of An, such a

simplified proof can be given for instance if κ is a fundamental representation, and more
generally when

∑
j j κj �= 0 mod n + 1. In the case of E6, assuming κ complex, i.e.

κ1 �= κ5 or κ2 �= κ4, such a simplified proof can also be given for the complex fundamentals
(100000), (010000) and their conjugates (000010), (000100), and more generally when
2κ1 + κ2 + 2κ4 + κ5 = 1, 2 mod 3.

6. The case of quaternionic representations

6.1. The case of su(2)

For the ŝu(2)k algebra, the integrable weights are λ ∈ {0, 1, . . . , k}. Denote h = k + 2 for

brevity. Then Sλκ =
√

2
h

sin (λ+1)(κ+1)π

h
and√

h

2

k∑
λ=0

Sλκ = −cos π(κ+1)(2h−1)

2h
− cos π(κ+1)

2h

2 sin π(κ+1)

2h

= (1 − (−1)κ+1) cos π(κ+1)

2h

2 sin π(κ+1)

2h

,

which vanishes for κ odd, corresponding to quaternionic (half-integer spin) representations.
This result, obtained here in an explicit manner, will be recovered and generalized below for
all integrable weights corresponding to irreducible representations κ of quaternionic type.

6.2. A case-by-case study

In all cases we shall compare the results of appendix C describing representation types for
irreducible representations with the results gathered in appendix B, that allow us to calculate
the values of the ZN grading τ = τ(μ) for quaternionic representations. We shall see that for
all simple Lie groups and for quaternionic representations, the quantity τ (or at least one of the
possible τ ’s associated with an appropriate automorphism) does not vanish. Like in section 5,
we then consider the Sλκ matrix elements and note that the exponential factor appearing in (4.1)
or in (5.1) is not equal to 1 for such representations. This shows immediately that

∑
λ Sλκ = 0

if κ is of quaternionic type.

6.2.1. The case An ∼ su(n + 1). Quaternionic representations may only exist when
n + 1 = 2 mod 4. Their h.w. μ should have Dynkin labels that are symmetric with respect
to the middle point (the position labelled (n + 1)/2), and the middle Dynkin label should be
odd. Calculating the N-ality (grading) τ of these representations (here N = n + 1), we see
immediately that only the middle term (n + 1)/2 μ(n+1)/2 survives: being a product of two odd
factors, it is also odd and does not vanish modulo the even integer n + 1.

6.2.2. The case Bn ∼ so(2n+ 1). Irreps of Bn are quaternionic if and only if, simultaneously,
n = 1 or 2 modulo 4 and μn is odd. Note that among fundamental irreps, only the last one
(the spinorial) can be quaternionic. This result may be put in relation with Clifford algebra
considerations since, in terms of spin groups Spin(d) with d odd, quaternionic representations
appear when d is equal to 3 or 5 modulo 8. The Z2 grading τ (a ‘2-ality’ in this case) of a
quaternionic irrep never vanishes since μn is odd for such representations.

9
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6.2.3. The case Cn ∼ sp(2n). Convention: the last root (to the right) is long. Irreps are of
quaternionic type whenever μ1 + μ3 + μ5 + · · · + μm is odd (where m = n if n is odd and
m = n − 1 if n is even). But then, their Z2 grading τ is equal to 1, and the discussion goes as
before with the same conclusion.

6.2.4. The case Dn ∼ so(2n). Convention: the end points of the ‘fork’ of the Dynkin
diagram are to the right, in positions n − 1 and n. We assume n � 3. Remember that
D3 ∼ A3. The irreps are quaternionic if and only if, simultaneously, n = 2 mod 4 and μn−1

+ μn is odd. This implies that either μn−1 is odd or μn is odd, but not both.
It is not too difficult to prove that, in such a case, one of the two gradings τ ′ or τ ′′ associated

with the two generators ζ ′ and ζ ′′ of Z2 × Z2 will not vanish, but it is much simpler, and
actually immediate, to use the product of these two generators (see the table in appendix B),
with associated grading τ ′′′ since it gives directly τ ′′′(μ) = 2(μn−1 + μn) mod 4, so that
τ ′′′(μ) = 2 �= 0 for quaternionic representations.

6.2.5. The case E7. An irrep μ is of quaternionic type iff μ1 + μ3 + μ7 is odd (read our
convention for vertices of E7 at the end of appendix B). The centre is now Z2 and the associated
grading is τ(μ) = μ1 + μ3 + μ7 mod 2. We reach immediately the conclusion that τ does not
vanish for irreps of quaternionic type.

6.2.6. The cases Dodd,G2, F4, E6, E8. All the irreps of G2, F4, E8 are self-conjugate of real
type. Not all the irreps of E6 are self-conjugate, but all self-conjugate irreps are of real type.
The irreps of Dodd are real or complex according to the last two components of their h.w., but
they are never quaternionic.

Therefore, in the above cases, there is nothing else to discuss, as far as quaternionic irreps
are concerned.

This case-by-case study completes the proof of theorem 4.

7. The case of real representations

It may happen that �(κ) = ∑
λ Sλκ still vanishes for some representation μ of real type. This

can be the consequence of the existence of some non-trivial automorphism of the Weyl alcove
associated with a non-zero grading τ , but it can just be an accidental property of the chosen
representation. Note that there are no non-trivial automorphisms for F4, G2 and E8 anyway.

7.1. About the vanishing of �(κ), for κ real, implied by automorphisms with non-zero
associated grading

Using the tables of appendices B and C together, it is easy to see that, for real representations,
τ is always 0 for An,Cn,E6 and E7. Hence, in these cases, there is no constraint on the
representations μ of real type coming from the existence of automorphisms, and we therefore
expect that �(κ) will be generically non-vanishing.

For irreps of real type of Bn and Dn, we find non-trivial constraints.
Bn. If n = 0, 3 mod 4, then choosing the last component κn of κ to be odd, leads to a

non-trivial τ , so that the sum �(κ) vanishes. If n = 1, 2 mod 4, we do not find any constraint
on this sum for real representations (they are such that κn is even), but remember that this sum
vanishes when κn is odd since the representation is then quaternionic.

10
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Dn (here n can be even or odd). Take κ an irrep of real type (see table in appendix C), then
the sum �(κ) is zero as soon as one of the following three quantities 2

∑n−3
j=1,j odd κj + 2κn,

2
∑n−3

j=1,j odd κj + 2κn−1 or 2κn−1 + 2κn does not vanish modulo 4.

7.2. About accidental vanishing of �(κ), for κ real

Note first that the vanishing properties of �(κ) discussed so far are level independent, in the
sense that they will hold for all values of the level k, provided κ itself exists at the chosen
level (i.e. K(κ) � k). This is not so for the accidental vanishing cases that we discuss now.
For definiteness, let us call ‘accidental vanishing at level k’ a case where �(κ) = 0 although
this is not implied by any of the already known criteria; in particular, κ should be of real
type and the vanishing property should not be the consequence of the existence of already
discussed non-trivial automorphisms. The very nature of the problem implies that the best we
can do in this section is to mention our numerical observations. Such experiments rest on the
calculation of the modular S matrix, for various choices of the Lie algebra g and for relatively
small values of the level.

The only accidental vanishing properties that we observed occur in the cases F4 (we made
tests up to level 4) and G2 (we made tests up to level 12). We know that all representations of
these algebras are of real type and that their Dynkin diagrams do not have automorphisms. In
both cases, we noticed nevertheless several cancellations of �(κ) (only for even levels in the
case of G2). For G2, we found two cases at level 4, two cases at level 6, five cases at level 8,
six cases at level 10 and eleven cases at level 12. For F4, we found two cases at level 3 and
one case at level 4. These cancellations are level specific, but some of them have a tendency,
in some sense, to stabilize: indeed some representations κ make � vanish at some level but
not at higher levels, whereas other κ , that appear at some level and make � vanish, seem to
stay at higher level (shifted by +2 in the case of G2). Admittedly, we have no explanation at
the moment for these observations.

This level dependence of accidental vanishing cases should be contrasted with, for
example, a ‘simple’ case like E6 (that we tested up to level 4) where no accidental vanishing
appears. Here, at level 3, one finds 16 weights that make � vanish (among the 20 integrable
ones), but those 16 are still present among the 34 that make � vanish at level 4 (there are 42
integrable representations at that level). As shown in previous sections, these cancellations
are associated with the existence of complex irreps.

7.3. Remark

The type (complex, real or quaternionic) of irreps in the affine/quantum case ĝk at level k is
the same as the type obtained classically (i.e. k → ∞), for the irreps of the associated Lie
algebra g. The corresponding conditions on Dynkin labels can be found in articles or books on
representation theory of Lie groups [9, 10]. One can, however, take advantage of the finiteness
of the number of simple objects in the category defined by g at level k to obtain a closed formula
generalizing, to this context, the Frobenius–Schur indicator used in the theory of finite groups.
Such a formula, that we recall in appendix C.2 was proposed in [11], see also [12], although
we find it more handy to use another expression (also given in appendix C.2). One can, for
any chosen example, use this indicator to determine the representation type directly in terms
of the S and T matrices, without relying on the classification of representation types for Lie
algebras given in appendix C.
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2

Figure 1. The tensor product graph Nf for the subgroup �(1080).

(This figure is in colour only in the electronic version)

8. The case of finite groups

Is there an analogue of theorem 1 true for finite groups? Let G be a finite group. We label its
irreps Vi by an index i = 1, 2, . . . , r and its conjugacy classes Ca by a = 1, 2, . . . , r; ı̄ refers
to the complex conjugate irrep of i. Let N k

ij stand for the multiplicity of irrep k in i ⊗ j . Do
we have like in theorem 1∑

k

N k
ij

?=
∑

k

N k
ı̄j . (8.1)

We first observe that (8.1) is trivially true for the group Zn for which the j th representation is
z �→ zj , z is an nth root of 1, N k

ij = δi+j,k mod n and hence
∑

k N k
ij = 1 = ∑

k N k
ı̄j .

To probe (8.1), we have to consider less trivial groups possessing complex representations,
and it is natural to look at the subgroups of SU(3). Consider for example the subgroup of
SU(3) of order 1080, called L or �(3 × 360) in the nomenclatures5 of Yau–Yu [13] and
Fairbairn et al [14]. It has 17 conjugacy classes and 17 irreps, including one of dimension 3,
that we denote f , which is the restriction of the defining representation of SU(3). In figure 1,
we display the tensor product graph Nf, computed using the character table given in [15] (see
also [16]): its vertices i label the 17 irreps Vi, and there are N k

fj edges from j to k. A 2 has
been appended to the only (vertical) edge for which N k

fj = 2, all the others being equal to 1.
The graph has been drawn in such a way that complex conjugate representations are images
in a reflection through the horizontal axis. Then theorem 1, if true in that case, would imply
that the total number

∑
k N k

fj of outgoing edges from any vertex j equals that from vertex j̄ ;
or alternatively, that for an arbitrary vertex k, the number

∑
j N k

fj of incoming oriented edges

is equal to the number
∑

j N
j

f k of outgoing oriented edges.
It is clear in the figure that this is not true in general; see for example the two vertices in

the upper and lower middle positions.
On the other hand, we found that (8.1) holds true for most subgroups of SU(3) but fails

for some subgroups like F = �(3 × 72) or L = �(3 × 360). We could not find the criterion
of validity.

As the multiplicity N k
ij may be written as a sum over classes of characters

N k
ij =

∑
a

|Ca|
|G| χi(a)χj (a)χ∗

k (a), (8.2)

5 Warning: the groups �(n) associated with the groups �(3 × n) are subgroups of SU(3)/Z3 not of SU(3).
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whose analogy with (2.5) is manifest, it is natural to wonder if theorem 3 admits itself an
analogue, whenever (8.1) holds true. In other words, do we have∑

k

χk(a)
?= 0 if a �= ā, (8.3)

where ā labels the class of the conjugates6 of the elements of Ca. Just like in section 2, it is
clear that (8.3) implies (8.1), since χī(a) = χi(ā). Conversely, just like in section 5, we can
prove that (8.3) follows from (8.1). Thus, (8.3) fails for some of the subgroups of SU(3), such
as F = �(3 × 72) or L = �(3 × 360).

We conclude that the validity for finite groups of (the analogues of) theorems 1 and 3 is
not to be taken for granted in general.

Its validity for Lie groups and affine algebras might be an indication that the existence of
the Weyl group is an important ingredient, but this point should be clarified.

9. Applications and discussion

9.1. Nimreps and boundaries

The property of the fusion algebra encapsulated in theorems 2 and 3 has consequences on
representations of that algebra. Particularly interesting are the non-negative integer-valued
matrix representations7 (‘nimreps’) of the fusion algebra, namely matrices nλ with non-
negative entries (nλ)

b
a satisfying

nλnμ = N̂ ν
λμ nν . (9.1)

They describe the action λ a = ∑
b(nλ)

b
a b of the fusion ring on its modules, and they are

known to play a role in various physical or mathematical contexts. In particular, in boundary
conformal field theory (CFT), (nλ)

b
a gives the multiplicity of representation λ for the WZW

theory associated with the affine algebra ĝ, on an annulus with boundary conditions labelled
by a and b [17, 18]. The nimreps, also known as annular matrices (see for instance [19]), are
used, as well, in the context of topological field theories.

In general, these commuting normal matrices may be diagonalized in a common
orthonormalized basis ψ in the form

n b
λa =

∑
κ∈E

ψ(κ)
a ψ

(κ)∗
b

Sλκ

S0κ

(9.2)

with eigenvalues Sλκ

S0κ
of the same form as those of N̂λ, but labelled by a subset E of the h.w.

κ called exponents. The ψ’s enjoy conjugacy properties similar to those of the S matrix, in
particular

ψ
(κ)∗
b = ψ

(κ̄)
b . (9.3)

The subset of exponents is closed under conjugacy, so that the above equation implies
immediately (nλ̄)

b
a = (nλ)

a
b , i.e. nλ̄ = nT

λ . The matrices nλ may be regarded as adjacency
matrices of a collection of graphs, with vertices labelled by indices a, b, . . . referring to a
particular basis V ert of the chosen module.

Automorphisms ζ of the underlying affine Lie algebra at level k act both on the fusion
ring and on its associated modules. They are often called symmetries. For instance, the

6 Here G denotes a concrete subgroup of SU(3), and complex conjugation is well defined.
7 It may happen that some nimreps, dubbed ‘non-physical’, do not describe any boundary conformal field theory, or
in a categorial language, any ‘module-category’ for the chosen fusion category. Unless otherwise specified, we are
only interested in the physical ones.
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transformation λ �→ k − λ is a symmetry of the fusion ring of SU(2) at level k. It is enough
to know the action of the generator(s) described in appendix B. On the fusion ring, we have
ζ(λμ) = ζ(λ)μ = ζ(μ)λ, in particular ζ(λ) = ζ(1)λ, where 1 = (0, 0, . . . , 0) labels the
trivial representation of the Lie algebra. In terms of fusion matrices, the symmetry property
reads N̂

ζ(ν)

λζ(μ) = N̂ ν
λμ . On a module, the action is specified by setting ζ(a) = ζ(1) a for all

a ∈ V ert . One obtains immediately ζ(λa) = ζ(1) λ a = λ ζ(1)a = λζ(a). We denote by the
same symbol P the matrices describing multiplication by ζ(1) both in the fusion ring and in the
module, i.e. P = Nζ(1) or P = nζ(1). Obviously N̂ζ(λ) = N̂λ P and nζ(λ) = nλ P . Denoting by
the same symbol X the two matrices8 ∑

λ N̂λ and
∑

λ n̂λ, one obtains immediately XP = X

since the action of ζ is one to one.
A complex conjugation in the module is an involution9 a �→ ā such that λa = λ̄ā.

If the basis V ert used to label the nimreps is stable as a set under transformations
a �→ ζ(a) and a �→ ā, the previous conditions read respectively n

ζ(b)

λζ(a) = n b
λa and

n b̄
λ̄ā

= n b
λ a for all λ, a, b. One can always define a matrix C with C2 = 1 such that

nλ̄ = C nλ C. From a given conjugation in a module, one can obtain another one by composing
it with a symmetry. Usually an involution a �→ ā is determined, up to symmetry, from the
known conjugacy properties of the set of exponents, but there may nevertheless remain an
ambiguity when some exponents have multiplicity higher than 1. The ambiguity in the
definition of C reflects a potential ambiguity in the definition of the diagonalizing ψ matrix
because C can be defined as ψT ψ . Note that the matrix ψ ψT gives the restriction of the
known conjugation matrix of the Lie algebra at level k to the corresponding set of exponents.

This discussion applies in particular to the nimreps of the ŝu(2) algebra, which are in
one-to-one correspondence with the ADE Dynkin diagrams (plus the ‘tadpole’ diagrams10

Tn = A2n/Z2). All irreps at a level k are self-conjugate, but there is a non-trivial involution P
on the An diagrams, that induces a non-trivial involution on the Dn=2s+1 and E6 diagrams. Here
a �→ ζ(a) is just the Z2 symmetry of the Dynkin diagram. For the Deven diagrams, the matrix
P is trivial, although we still have a non-trivial geometrical symmetry that exchanges the two
branches of the fork, i.e. a graph automorphism11. Note that the symmetries of a module
structure over the fusion ring, as defined in the text, give rise to automorphisms of fusion
graphs, but there may be more of the latter. In the case of nimreps of the ŝu(3) algebra, the
various diagrams exhibit several interesting geometrical symmetries, but besides the diagrams
of type A themselves, only the exceptional diagram with self-fusion at level 5 and the diagrams
of the conjugated Dstar family, when the level is not 0 modulo 3, admit a non-trivial matrix
P inherited from the Z3 symmetry of the corresponding fusion algebra. For all these cases,
X P = X and P is non-trivial.

In the case of the SU(2) WZW model, the equation X = XP means that the total number
of representations, i.e. of primary fields contributing to the annulus partition function, in the
presence of boundary conditions a and b is the same as with b.c. a and ζ(b). This extends
to the minimal c < 1 conformal field theories, that are constructed as cosets of the su(2)

theories. They are classified by a pair (Ah′−1,G) of Dynkin diagrams, where G is of ADE
type and of Coxeter number h. Their boundary conditions are classified by pairs (ρ, a) with
ρ = 1, . . . , h′ − 1 and a a vertex of G [17]. Take one of the cases G = A,Dodd, E6.
The multiplicity n

(ρ ′,b)

rs; (ρ,a) of the (r, s) primary field in the annulus partition function with
boundary conditions (ρ, a) on one side and (ρ ′, b) on the other is not invariant under the

8 These ‘path matrices’ X are discussed in section 9.4.
9 When conjugation in the fusion ring itself is trivial, there is no need to introduce this concept.
10 That actually describe non-physical nimreps.
11 Graph automorphisms are permutations π on the vertices of a graph such that for all pairs of vertices, (π(a), π(b))

is an edge iff (a, b) is an edge.
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symmetry b �→ ζ(b), but the total multiplicity
∑

s n
(ρ ′,b)

rs; (ρ,a) is, as one may check for
example in the explicit formulae of [20] in the case of E6.

In general, conjugacy properties of the ψ’s imply (or are implied by) conjugacy properties
of the n’s, but theorem 4 implies stronger properties for sums of the n’s. Following steps similar
to those in (2.8) in section 2 and making use of ψ

(κ)
b = ψ

(κ)

b̄
for real κ , one finds X = X C.

Indeed,∑
λ

nλ =
(∑

λ

nλ

)T

= C
∑

λ

nλ =
∑

λ

nλC ⇐⇒
∑

λ

n b
λa =

∑
λ

n b̄
λa . (9.4)

Like for S itself, we have observed, in many cases, intriguing sum rules concerning the matrix
ψ = (ψ(κ)

a ), involving summations either over the exponents or over the label a. We hope to
return to this analysis in a later work.

9.2. Integrable S-matrices

The nimreps of the previous section have appeared in a different context than that of the
S-matrices of integrable 2D field theories. In the study of affine Toda theories or of other
integrable 2D theories based on a simply laced algebra, Braden, Corrigan, Dorey and Sasaki
[21] were led to the expressions, proved or conjectured, of their scattering S-matrix. Typically
the particles of those theories are in one-to-one correspondence with the vertices of ADE-
Dynkin diagrams.

The Sab matrix describing the scattering of particles a and b is a function of the relative
rapidity θ = θa − θb and satisfies the constraints of

• unitarity Sab(θ)Sab(−θ) = I and
• crossing Sab(θ) = Sb ζ(a)(iπ − θ),

which imply that Sab is 2π i periodic. Its analytic structure may be investigated in the strip
0 � �m θ < π , from which the whole period may be recovered. One finds that in that
strip, it has poles at θ = ϑ� := � iπ

h
, with h the Coxeter number of the ADE diagram and

� = 1, . . . , h − 1. Quite amazingly [22, 23], the multiplicity of the pole at ϑ� turns out to be
n b

�−2 a + n b
� a , where by convention n−1 = nh−1 = 0.

In that context, identity (9.4), rewritten here as
∑

λ n b
λa = ∑

λ n a
λζ(b) because of the

symmetry of the n matrices in this case, expresses that the total number of poles of Sab and
Sζ(b)a are equal, in accordance with the crossing relation above12.

9.3. Sum rules for character polynomials

Call χ(λ) = χ(λ; t1, t2, . . . , tn) the classical character polynomial of the Lie group G,
associated with an irreducible representation defined by its h.w. λ. It encodes the weight
system of λ: each weight � ∈ [λ] occurring with multiplicity a in this weight system gives a
Laurent monomial a t

�1
1 t

�2
2 · · · t�n

n in χ(λ). Here (�1, �2, . . . , �n) are the Dynkin labels (that can
be positive or negative or zero) of �. Evaluation at level k of such a monomial on a weight μ is,
by definition, a exp[2iπ/(h∨ +k) 〈�1ω1 +�2ω2 + · · ·+�nωn, μ〉], where ωi are the fundamental
weights, and it is extended to arbitrary Laurent polynomials by linearity. The obtained value is
denoted by χ(λ)[μ]. Assuming that λ and μ are two irreducible representations of G existing
at level k, one obtains, from the Kac–Peterson formula, the following relation between the
matrix elements of S and the (classical) character polynomial:

Sλμ/S00 = dimq(μ) χ(λ)[μ + ρ]. (9.5)

12 We are very grateful to Patrick Dorey for refreshing our memory and for this nice observation.
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The quantum dimension of μ is obtained as

dimq(μ) = Sμ0/S00 = χ(μ)[ρ] = χ(μ; q2ρ1
, q2ρ2

, . . . , q2ρr

),

where (ρj ) are the components of the Weyl vector on the base of simple coroots (Kac labels),
and q = exp(iπ/(h∨ + k)). The previous relation for Sλμ looks asymmetrical, but since S is
symmetric, it implies

dimq(μ) χ(λ)[μ + ρ] = dimq(λ) χ(μ)[λ + ρ].

Now, every sum rule for S (theorems 3 or 4) leads immediately to a corresponding identity for
the classical character polynomial. Using the symmetry property of S, the quantum dimension
dimq(λ) can be factored out, and we obtain the following property:
Call X the Laurent polynomial X(t1, t2, . . . , tn) = ∑

μ with 〈θ,μ〉�k χ(μ), then X[λ+ρ] = 0 if λ

is of complex or quaternionic type.

Example. The character polynomials for the six irreps of su(3) at level 2, of h.w.
{(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)} and of classical dimensions {1, 3, 3, 6, 8, 6}, are
as follows:

1,
t2

t1
+ t1 +

1

t2
,

t1

t2
+

1

t1
+ t2,

t2
2

t12
+ t1

2 +
t1

t2
+

1

t1
+

1

t22
+ t2,

t1
2

t2
+

t2

t12
+

t1

t22
+

t2
2

t1
+ t1t2 +

1

t1t2
+ 2,

t1
2

t22
+

1

t12
+

t2

t1
+ t1 + t2

2 +
1

t2
.

The polynomial X(t1, t2) is

3 +
1

t12
+

2

t1
+ 2t1 + t1

2 +
1

t22
+

t1

t22
+

t1
2

t22
+

2

t2
+

1

t1t2
+

2t1

t2
+

t1
2

t2
+ 2t2

+
t2

t12
+

2t2

t1
+ t1t2 + t2

2 +
t2

2

t12
+

t2
2

t1
. (9.6)

Its evaluation on the six h.w., using q = exp(iπ/5), gives
{

3
2 (3 +

√
5), 0, 0, 0, 3

2 (3 − √
5), 0

}
.

9.4. On the path matrix X and its spectral properties

We use fusion matrices defined as N̂λ = (N̂ ν
λμ ). Using the standard equalities N̂ ν

λμ = N̂ ν
μλ ,

N̂ ν
λμ = N̂ ν

λμ
, N̂ ν

λμ = N̂
μ

λν
, and the conjugation matrix C introduced in section 2, with

components Cμν = δμν , we have N̂λ = CN̂λC. Define the matrix X = ∑
λ N̂λ, dubbed ‘path

matrix’, for reasons explained below. From the corresponding property for N̂λ one obtains
immediately X = CXC. The sum rule described by theorem 1 tells us that we can actually
drop one of the two conjugation matrices in this equation. In other words, the equation
X = CX = CX holds. More generally, for any chosen module (nimrep) over the fusion
algebra, one can define a path matrix X = ∑

λ nλ that enjoys similar properties.
There exist several interpretations of fusion coefficients (more generally of coefficients of

nimreps) in terms of combinatorial constructions associated with fusion graphs: essential paths
[24] (or generalizations of the latter), admissible triangles [25] (generalized), preprojective
algebras or quivers [26], and they can also be used to define interesting weak Hopf algebras
[27–29]. The translation of the sum rules involving the fusion coefficients (or those of the
nimreps) into these different languages and points of view is left as an exercise to the reader.
In the first combinatorial interpretation, the sum

∑
νρ N̂ ρ

μν (or
∑

ab n b
μa for the nimreps) gives

the dimension of the space of essential paths with fixed length μ, and the matrix elements Xνρ

(or Xab for the nimreps) gives the dimension of the space of essential paths of arbitrary length,
but with fixed origin and extremity. This explains the name ‘path matrix’ given to X.
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It is sometimes useful to consider, instead of S, the fusion character table χ = (χμν) with
χμν = Sμν/S0ν . The columns of that matrix are made of eigenvectors common to all fusion
matrices (the first column giving the quantum dimensions of irreps), and the line labelled μ

gives the corresponding eigenvalues for the fusion matrices Nμ (the first line being 1 . . . 1).
The matrix χ , in contradistinction to S, is not symmetric. Theorems 3 and 4 imply

∑
μ χμν = 0

whenever ν is complex or quaternionic.

(1) As all the N̂μ are diagonal in the same basis provided by the column vectors S[ν] of S with
eigenvalues Sμν/S0ν , see (2.5), their sum X has in the same basis the eigenvalues

∑
μ χμν .

The only possible non-zero eigenvalues of the path matrix X therefore correspond to the
irreps of real type. Example (continuation of (9.6)): The Lie algebra su(3) at level 2
has six irreps, two of them being of real type (those of h.w. (0, 0) and (1, 1)), the sixth-
degree characteristic polynomial of the corresponding path matrix X has therefore only
two non-vanishing roots.

(2) From Verlinde formula it is easy to show that
∑

μ′ χμμ′ χνμ′ = Tr(N̂μN̂ν). In particular,

Tr(N̂μ) = ∑
ν χμν . This sum over the eigenvalues of a fusion matrix is automatically an

integer.
Warning: the numbers

∑
μ χμν obtained previously as eigenvalues of X are usually not

integers.
(3) From the relation (9.5) between the S matrix and the classical character polynomials, we

obtain

χμν = χ(μ)[ν + ρ].

Using the final result of section 9.3, the eigenvalues of the path matrix X, in particular its
0 eigenvalues, can be obtained from the evaluation of the Laurent polynomial (also called
X there, on purpose), on the irreps that exist at the chosen level.

Example (continuation). The path matrix of su(3) at level 2 is easily found to be⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 2 2 1 2 1
1 2 2 1 2 1
1 1 1 1 1 1
1 2 2 1 2 1
1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

One can check that its non-zero eigenvalues are the two non-zero values obtained at the
end of section 9.3.

(4) Call s1 = ∑
μ dimq(μ) and s2 = ∑

μ dimq(μ)2. In section 2 we defined �(μ) =∑
λ Sλμ = dimq(μ) S00

∑
λ χλμ. Using the standard result s2 = 1/S2

00, one finds
�(μ) = dimq(μ) (

∑
λ χλμ)/

√
s2. Since dimq(λ) = χλ0, we obtain in particular

�(0) = s1/
√

s2.
Example (continuation). For an irrep λ = (λ1, λ2) of su(3), we can use the
standard formula dimq(λ) = (λ1 + 1)q (λ2 + 1)q (λ1 + λ2 + 2)q/12

q2q , where nq =
(qn − q−n)/(q − q−1). By summing quantum dimensions (or their squares) over the
Weyl alcove of level 2, we recover s1 = 3

2 (3 +
√

5), that we have already obtained as
the evaluation of the Laurent polynomial X(t1, t2) on the 0 weight, or as one of the two
non-zero eigenvalues of the path matrix X, and calculate s2 = 3

2 (5 +
√

5). One finds

�(0) =
√

3 + 6√
5
.
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9.5. Final comments

Admittedly our proofs of theorems 1–4 lack conciseness and more direct and conceptual proofs
would be highly desirable. For example, it is natural to wonder if there is a direct proof of
theorems 3 and 4, based on Galois arguments or some other hidden symmetry of the S matrix.
If so, the proofs of theorems 2 (first through Verlinde formula) and 1 (then through the large k
limit) would follow.

Another tantalizing option would be to use Steinberg formula. Steinberg formula for tensor
multiplicities reads N ν

λμ = ∑
v,w∈W sign(vw)P(v ·λ + w ·μ− ν), where v ·λ = v[λ + ρ] −ρ

is the Weyl shifted action, and P is the Kostant partition function, which gives the number
of ways one can represent a weight as an integral non-negative combination of positive roots.
The h.w. of the conjugate of an irrep is the negative of the lowest weight of that irrep. The
lowest weight is obtained from the h.w. by the action of the longest element13 w0 of the Weyl
group. In other words, λ = −w0[λ]. Our sum rule for tensor multiplicities therefore leads
to various identities involving P and w0. Conversely, a direct proof of such identities would
provide a shorter derivation of theorem 1.
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Appendix A. The case of E6

A.1. Sums of multiplicities for tensor products ω2,4 ⊗ μ of E6

The detailed discussion of the tensor product of a representation of h.w. μ by one of the
fundamental representations ω2 or ω4 of E6 offers a good illustration of the three cases (i), (ii),
(iii) presented in section 3, and is anyway a mandatory step for the completion of our proof
of theorem 1. The aim of this appendix is to show how the cardinalities of the two classes (i)
and (iii) and the total multiplicity may be proved to be the same for ω2 and ω4.

For a given μ, and λ′ one of the weights of the weight system [ω2], we denote as before
σ = λ′ + μ + ρ.

Call φ�0 the number of weights σ (counted with multiplicity) that have non-negative
Dynkin labels. Those weights need not be Weyl reflected in the Racah–Speiser algorithm.
Some of them, however, may lie on a wall of the fundamental Weyl chamber. Call φ0

+ the
number of the latter. Class (i) of weights with only positive Dynkin labels has thus cardinality
φ = φ�0 − φ0

+.
If one of the labels of σ is negative, we shall show below that a single Weyl reflection brings

it back to the fundamental Weyl chamber, including its walls. Call ψ�0 the cardinality of that
class, and ψ0

− the number of the reflected weights that lie on a wall of the fundamental Weyl
chamber. The class (iii) of weights that contribute with a minus sign to the total multiplicity
has cardinality ψ = ψ�0 − ψ0

−.
The total multiplicity is finally

∑
ν N ν

ω2μ
= φ − ψ = φ�0 − ψ�0 − φ0

+ + ψ0
−. Note that

φ�0 + ψ�0 = φ + (φ0
+ + ψ0

−) + ψ = 351, the dimension of the ω2 and ω4 representations.

13 In all cases but Aeven, w0 = ch/2, where c is a bipartite Coxeter element.
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All these numbers depend on the weight μ. What we want to prove is that for a given μ,∑
ν N ν

ω
2
μ = ∑

ν N ν
ω

4
μ. In fact, we shall establish that the numbers φ, ψ are the same for ω2

and ω4.
• Let us first examine the ψ�0 weights σ that have a negative Dynkin label. As the

weights λ′ of the [ω2] or [ω4] systems have their labels equal to 0,±1,±2, and at most one
label equal to −2, σi = λ′

i + μi + ρi = λ′
i + μi + 1 � −1; for a given σ , at most one Dynkin

label σj equals −1, and this requires λ′
j = −2 and μj = 0. Conversely for each j such

that μj = 0, there are as many λ′ fulfilling the above condition as there are weights λ′ with
λ′

j = −2. Both in the [ω2] and [ω4] systems, this number is 15. Thus, ψ�0 = 15 × the
number of vanishing labels μj = 0 of μ.

We claim that any such σ with σj = −1 may be brought back to the fundamental
Weyl chamber by a single Weyl reflection. To prove this point, take σ = ∑

i σiωi with
all σi � 0 for i �= j and σj = −1. Then take the reflection sj in the plane orthogonal
to αj : sj [ωi] = ωi − δijαj = ωi − δij

∑
j ′ Cjj ′ωj ′ , with C the Cartan matrix; hence,

sj [ωj ] = −ωj +
∑

j ′≈j ωj ′ , with the last sum running over the neighbours j ′ of j on the
E6 Dynkin diagram. This gives (as σj = −1)

sj [σ ] =
∑
i �=j

σiωi + ωj −
∑
j ′≈j

ωj ′

= ωj +
∑
j ′≈j

(σj ′ − 1)ωj ′ +
∑

i �=j, i≈/j
σiωi. (A.1)

By inspection, one checks that if some λ′ of [ω2] or [ω4] has λ′
j = −2, all the λ′

j ′ for j ′ ≈ j are
non-negative; thus, σj ′ − 1 = λ′

j ′ + μj ′ + ρj ′ − 1 � 0 for j ′ ≈ j , and for the other i �= j, i ≈/ j

(neither j nor one of its neighbours), σi = λ′
i + μi + ρi � −1 + 0 + 1 = 0, so that all labels of

wj [σ ] in (A.1) are non-negative.
• Among these ψ�0 weights sj [σ ] that have been reflected, ψ0

− have a vanishing Dynkin
label. According to (A.1), this may happen only (a) if λ′

j ′ = 0 (and μj ′ = 0) for some j ′ ≈ j ,
or (b) if λ′

i = −1, i �= j, i ≈/ j (and μi = 0). By inspection, one checks that for any node
j = 1, . . . , 6, there exist three weights λ′ in [ω2] or in [ω4] such that λ′

j = −2 and λ′
j ′ = −1

for each j ′ ‘neighbour’ of j , thus three cases of type (a) per neighbour; likewise one checks
that there are four λ′ ∈ [ω2] or λ′ ∈ [ω4] satisfying condition (b) for each pair of (j, i) such
that μj = μi = 0. Note that the fulfilment of these conditions is independent of the value of
the non-vanishing labels of μ. There are, however, configurations where conditions (a) and/or
(b) are satisfied for the two pairs (j, j ′) or (j, i), see an example below, and this depends on
the detailed location of the vanishing labels of μ. We thus found it more expedient to write
a MathematicaTM code to enumerate the 62 = 26 − 2 configurations of vanishing labels of
μ �= 0, and for each of them, to count the number of λ′ in [ω2] or [ω4] that contribute to ψ0

−.
As expected, we found the same numbers for [ω2] and [ω4]. We conclude that for a given μ,
the number ψ of weights contributing negatively to the total multiplicity is the same for [ω2]
and [ω4].

• We finally turn our attention to those weights that need not be reflected. Their number
φ�0 = 351 − ψ�0 is the same for [ω2] and [ω4]. It remains to count the number of weights
φ0

+ that lie on one of the walls of the fundamental Weyl chamber. There too, it is easy to
see that there is only a finite number of cases to consider. Indeed, if σ has all its labels
non-negative, σj = 0 occurs if λ′

j = −2 and μj = 1, or if σj = −1 and μj = 0. There are∑6
�=1

(6
�

)
2� − 1 = 727 choices for the labels of μ equal to 0 or 1, and one may write a code

to check that for each of them, the number of λ′ leading to a σ on a wall is the same for [ω2]
and [ω4].

19



J. Phys. A: Math. Theor. 44 (2011) 295208 R Coquereaux and J-B Zuber

We conclude that φ = φ�0 − φ0
+ is the same for [ω2] and [ω4], and so is

∑
ν N ν

ω2/4μ
=

φ − ψ , thus completing the proof of our assertion and of lemma 1.

A.2. An explicit example

Let us illustrate the previous considerations on an explicit example. Take the weight
μ = (1, 0, 0, 0, 2, 0). In the tensor product with ω2, there are φ�0 = 351 − 4 × 15 = 291
weights σ = λ′ + μ + ρ that have non-negative labels and thus belong to the fundamental
chamber, and among them, φ = 38 weights that do not belong to its walls. The corresponding
weights λ′ + μ give the following contribution to the tensor product:

5(0, 0, 0, 0, 2, 0) + 5(0, 0, 0, 0, 2, 1) + (0, 0, 0, 1, 0, 0) + (0, 0, 0, 1, 0, 1) + (0, 0, 1, 0, 2, 0)

+ 5(0, 1, 0, 0, 1, 0) + (0, 1, 0, 0, 1, 1) + (1, 0, 0, 0, 0, 1) + 5(1, 0, 0, 0, 3, 0)

+ 5(1, 0, 0, 1, 1, 0) + (1, 0, 1, 0, 0, 0) + (1, 1, 0, 0, 2, 0)

+ 5(2, 0, 0, 0, 1, 0) + (2, 0, 0, 0, 1, 1)

Among the ψ�0 = 15 × 4 = 60 weights σ that could lead to a situation of type (iii), 39 lie
on a wall; this 39 comes about in the following way: there are 3 + 3 × 3 + 3 + 3 = 18 cases of
type (a) in the discussion above, coming from a λ′

j = −2 on node j = 2, 3, 4, 6, respectively,
and λ′

j ′ = 0 on a node j ′ ≈ j with j ′ ∈ {2, 3, 4, 6}; and there are 4 × 6 − 3 cases of type (b),
with 4 cases for each pair (j, i) of non neighbours taken in {2, 3, 4, 6}, but there is a double
counting of three weights that fulfil (b) for two such pairs, for example, (0,−1, 2,−1, 1,−2).
One thus finds 18 + 24 − 3 = 39 weights on a wall, and there are only ψ = 60 − 39 = 21
weights that have no vanishing Dynkin label after reflection. For all these weights σ , w[σ ]−ρ

therefore gives a negative contribution to the tensor product, namely

4(0, 0, 0, 0, 2, 0) + 3(0, 0, 0, 0, 2, 1) + 3(0, 1, 0, 0, 1, 0)

+ 4(1, 0, 0, 0, 3, 0) + 3(1, 0, 0, 1, 1, 0) + 4(2, 0, 0, 0, 1, 0).

Subtracting the second contribution from the first, one obtains the final result

ω2 ⊗ μ = (0, 0, 0, 0, 2, 0) + 2(0, 0, 0, 0, 2, 1) + (0, 0, 0, 1, 0, 0) + (0, 0, 0, 1, 0, 1)

+ (0, 0, 1, 0, 2, 0) + 2(0, 1, 0, 0, 1, 0) + (0, 1, 0, 0, 1, 1) + (1, 0, 0, 0, 0, 1)

+ (1, 0, 0, 0, 3, 0) + 2(1, 0, 0, 1, 1, 0) + (1, 0, 1, 0, 0, 0) + (1, 1, 0, 0, 2, 0)

+ (2, 0, 0, 0, 1, 0) + (2, 0, 0, 0, 1, 1) .

The total multiplicity is therefore φ − ψ = 38 − 21 = 17.
If we now perform the same analysis for the tensor product ω4 ⊗ μ with the same

μ = (1, 0, 0, 0, 2, 0), we again obtain a positive contribution of 38 terms from the weights
belonging to the fundamental chamber, and a negative contribution of 21, from the reflected
weights, so that the total multiplicity, 17, is the same. It may be noted that the obtained weights
for ω2 ⊗ μ and ω4 ⊗ μ are quite different, both for the two contributions and for their sum.
The final decomposition of ω4 ⊗ μ reads as follows:

ω4 ⊗ μ = (0, 0, 0, 0, 3, 0) + (0, 0, 0, 0, 3, 1) + 2(0, 0, 0, 1, 1, 0) + (0, 0, 0, 1, 1, 1)

+ (0, 0, 1, 0, 0, 0) + 2(0, 1, 0, 0, 2, 0) + (0, 1, 0, 1, 0, 0) + (1, 0, 0, 0, 1, 0)

+ 2(1, 0, 0, 0, 1, 1) + (1, 0, 0, 1, 2, 0) + (1, 0, 1, 0, 1, 0) + (1, 1, 0, 0, 0, 0)

+ (2, 0, 0, 0, 2, 0) + (2, 0, 0, 1, 0, 0)
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A.3. Sums of fusion coefficients in Ê6

Let us now see how the presence of the back wall affects the previous counting. We have
to examine what happens to the weights σ = λ′ + μ + ρ that are either on or ‘beyond’ the
shifted back wall, i.e. have σ0 � 0, and we have to see under which condition some reflected
weight may lie on a wall (and hence not contribute to the multiplicity, according to the affine
Racah–Speiser algorithm).

(1) First consider any weight σ that undergoes a reflection as in appendix A.1. We prove that
sj [σ ] lies within the shifted principal alcove K(sj [σ ]) � k + h∨, including its back wall.
Here and in the following, j takes values in {1, 2, 3, 4, 5, 6}.

As in the previous section, we take σ with some σj = −1. By inspection, the weights
λ′ that have λ′

j = −2 have level K(λ′) � 1; hence, K(σ ) = K(λ′) + K(μ) + K(ρ) �
1 + k + (h∨ − 1) = k + h∨, and for sj [σ ] = σ − 〈αj , σ 〉αj = σ − σjαj = σ + αj ,
K(sj [σ ]) = K(σ ) + K(αj ). The levels of the simple roots αj of E6 are (0, 0, 0, 0, 0, 1)

for j = 1, . . . , 6. The previous inequality gives K(sj [σ ]) � k + h∨ for j = 1, . . . , 5,
while s6, with the root α6 of level 1, looks more problematic. Fortunately, one checks by
inspection that all λ′ with their sixth Dynkin label equal to −2 have a level less or equal
to 0 (reducing the previous bound by one unit), and thus we also have K(s6[σ ]) � k + h∨.

(2) We then turn to the cases where σ is within the fundamental chamber but ‘beyond’ the
shifted back wall, i.e. has σ0 < 0. Since

σ0 = k + h∨ − K(σ ) = (k − K(μ)) + (1 − K(λ′)), (A.2)

where the first bracket is non-negative, σ0 < 0 occurs only for K(λ′) = 2 and K(μ) = k.
Such a σ is brought back into the first (shifted) alcove by a single (affine) Weyl reflection:
s0(σ ) = σ − θ whose level is indeed K(s0(σ )) = k + h∨ + 1 − K(θ) = k + h∨ − 1;
s0[σ ] − ρ has level equal to k and lies on the back wall of P k

+ . Now it is clear that the
number of λ′ of level equal to 2 is the same in the two (conjugate) weight systems [ω2]
and [ω4].

(3) Finally we have to study the cases where the unreflected weight σ or the reflected s[σ ]
lies on a wall of the alcove. We leave aside the cases where the weight σ or sj [σ ] lies on
one of the ordinary walls of the Weyl chamber, that have been examined in the previous
subsection, and we focus on the cases where s0[σ ] is on one of the ordinary walls, or
where σ or sj [σ ] is on the back wall.

In fact it is not difficult to show

• that the number of unreflected σ or reflected sj [σ ] lying on the back wall of the
fundamental alcove is the same for [ω2] and [ω4];

• that the number of reflected s0[σ ] lying on one or several ordinary walls of the fundamental
chamber is the same for [ω2] and [ω4].

This is proved as follows.

• As shown by (A.2), σ ∈ P+ is on the (shifted) back wall, i.e. σ0 = 0, iff μ is itself on the
back wall (K(μ) = k) and λ′ is of level 1. It is clear that for such a μ, the number of such
λ′ is the same in [ω2] and [ω4].

• Consider the cases where σ has been reflected into sj [σ ] which lies on the back wall of
P k+h∨

+ . From the computation above, K(sj [σ ]) = K(σ )+K(αj ) = K(σ )+ δj6 which may
be equal to k + h∨ only if K(σ ) = k and K(λ′) = 1 − δj6. Now it is an easy matter to
check that the number of λ′ such that λ′

j = −2 and K(λ′) = 1 − δj6 is the same in [ω2]
and [ω4].
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• Finally we return to the cases examined in (b) above, where σ has to be reflected across the
back wall, but assume now that s0[σ ] is on an ordinary wall of the fundamental chamber.
As seen above, s0[σ ] = σ − θ and θ = (0, 0, 0, 0, 0, 1) in the basis of fundamental
weights; thus, (s0[σ ])j = σj − δj6 which may vanish only for j = 6 and σ6 = 1 (we
have assumed that σ was not on an ordinary wall, otherwise it would have dropped out
in section A.1, hence σj > 0). It is clear that for any given μ, the number of λ′ such that
λ′

6 = −μ6 is the same in [ω2] and [ω4].

The vanishing or negative contribution of these reflected weights to the sum of fusion
coefficients is thus the same for ω2 and ω4, and we may finally conclude that∑

ν

N̂ ν
ω2μ

=
∑

ν

N̂ ν
ω4μ

,

thus completing the proof of theorem 2 for the Ê6 algebra.

A.4. An explicit example (continuation)

The reader can illustrate the above discussion with the following example. As in appendix A.2,
we choose the irrep with h.w. μ = (1, 0, 0, 0, 2, 0) that exists at levels k � 3.

At level k = 3, i.e. q15 = −1,

ω2 ⊗ μ = (0, 0, 0, 0, 2, 0) + (0, 0, 0, 1, 0, 0) + (0, 1, 0, 0, 1, 0) + (1, 0, 0, 0, 0, 1),

the quantum dimensions of the rhs are 1
2 (5 +

√
5), 1

2 (5 + 3
√

5), 1
2 (5 + 3

√
5), 1

2 (5 + 3
√

5), and

ω4 ⊗ μ = (0, 0, 0, 1, 1, 0) + (0, 0, 1, 0, 0, 0) + (1, 0, 0, 0, 1, 0) + (1, 1, 0, 0, 0, 0);
quantum dimensions of the rhs are 2 +

√
5, 3

2 (1 +
√

5), 3
2 (3 +

√
5), 2 +

√
5.

The total dimension is
(

1
2 (5 + 3

√
5)

) × (
1
2 (5 +

√
5)

) = 5(2 +
√

5) in both cases, as it
should.

The total multiplicity is 4 in both cases.
At level k = 4, i.e. q16 = −1,

ω2 ⊗ μ = (0, 0, 0, 0, 2, 0) + (0, 0, 0, 0, 4, 2) + (0, 0, 0, 1, 0, 0) + (0, 0, 0, 1, 0, 1)

+ (0, 2, 0, 0, 2, 0) + (1, 0, 0, 0, 0, 1) + (1, 0, 0, 0, 3, 0) + (2, 0, 0, 2, 2, 0)

+ (1, 0, 1, 0, 0, 0) + (2, 0, 0, 0, 1, 0)

ω4 ⊗ μ = (0, 0, 0, 0, 3, 0) + (0, 0, 0, 2, 2, 0) + (0, 0, 1, 0, 0, 0) + (0, 2, 0, 0, 4, 0)

+ (0, 1, 0, 1, 0, 0) + (1, 0, 0, 0, 1, 0)

+ (2, 0, 0, 0, 2, 2) + (1, 1, 0, 0, 0, 0) + (2, 0, 0, 0, 2, 0) + (2, 0, 0, 1, 0, 0)

The reader can check that both rhs have the total quantum dimension (3 + 2
√

2 +
√

2 − √
2 +

3
√

2 +
√

2) × (4 + 3
√

2 + 2
√

2 − √
2 + 4

√
2 +

√
2) = 52 + 37

√
2 + 4

√
338 + 239

√
2.

The total multiplicity is 10 in both cases.

Appendix B. Automorphisms of affine algebras

We first describe these automorphisms for the algebras Ân, D̂n=2s+1 and Ê6 which are used in
section 5 for the proof of the vanishing of

∑
λ Sλκ when κ is complex. We then describe them

for the algebras B̂n, Ĉn, D̂n=2s and Ê7 which are used in section 6 that deals with the case
where κ is quaternionic. There are no non-trivial automorphisms for F̂4, Ĝ2 and Ê8. These
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automorphisms reflecting the geometrical symmetries of the corresponding extended Dynkin
diagrams are parametrized by the centre of the chosen Lie group, or equivalently by the classes
of P/Q where P is the weight lattice and Q is the root lattice. If ζ is an automorphism of
the Weyl alcove, we have Sζ(λ)κ = exp( 2π iτ(κ)

N
)Sλ,κ , where τ is the corresponding character of

the centre, and N (sometimes called the connection index), the order of the centre, is given by
the determinant of the Cartan matrix. Automorphisms of affine algebras are explicitly listed
in [4] but the values of τ , the corresponding character of the centre, are not given there. The
value of τ was calculated from the equality

exp

[
2π iτ(κ)

N

]
= exp[−2π i〈κ, f 〉], (B.1)

where 〈 , 〉 is the canonical bilinear symmetric form of the root space, and where f is an
appropriate fundamental weight given as follows. Use the basic representation f = ω1 for An,
Bn, E6, E7 and f = ωn for Cn. Use f = ωn (one of the two spinorial irreps), f = ωn−1 (the
other spinorial) and f = ω1, respectively, for the three generators ζ ′, ζ ′′ and ζ ′′′ of the centre
Z2 × Z2 of Dn=2s , each generator being equal to the product of the other two; finally, f = ωn

(one of the two spinorial irreps) for the given generator of Dn=2s+1.

ĝk Centre of g K(λ), generator(s), grading and conjugate

K(λ) = ∑n

i=1 λi λ0 = k − K(λ)

Ân Zn+1 ζ(λ) = (λ0, λ1, λ2, . . . , λn−1)

τ (λ) = ∑n

i=1 iλi mod n + 1
λ = (λ1, . . . , λn) ↔ λ̄ = (λn, . . . , λ1)

K(λ) = λ1 + 2
∑n−2

j=2 λj + λn−1 + λn λ0 = k − K(λ)

ζ(λ) = (λn, λn−2, λn−3, . . . , λ1, λ0)

D̂n=2s+1 Z4 τ(λ) = 2
n−2∑
j=1,
j odd

λj + λn−1 + 3λn mod 4 if n = 1 mod 4

τ(λ) = 2
n−2∑
j=1,
j odd

λj + 3λn−1 + λn mod 4 if n = 3 mod 4

λ = (λ1, . . . , λ2s , λ2s+1) ↔ λ̄ = (λ1, . . . , λ2s+1, λ2s )

K(λ) = λ1 + 2λ2 + 3λ3 + 2λ4 + λ5 + 2λ6 λ0 = k − K(λ)

Ê6 Z3 ζ(λ) = (λ0, λ6, λ3, λ2, λ1, λ4)

τ (λ) = 2λ1 + λ2 + 2λ4 + λ5 mod 3
λ = (λ1, λ2, λ3, λ4, λ5, λ6) ↔ λ̄ = (λ5, λ4, λ3, λ2, λ1, λ6)

B̂n Z2 ζ(λ) = (k − λ1 − 2
∑n−1

i=2 λi − λn, λ2, λ3, . . . , λn)

τ (λ) = λn mod 2

Ĉn Z2 ζ(λ) = (λn−1, λn−2, . . . , λ2, λ1, k − ∑n

i=1 λi)

τ (λ) = ∑
j odd λj mod 2
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D̂n=2s Z2 × Z2 ζ ′(λ) = (λn−1, λn−2, . . . , λ2, λ1, k − λ1 − 2
∑n−2

i=2 λi − λn−1 − λn)

τ ′(λ) = 2
∑n−3

j=1,j odd λj + 2λn mod 4

ζ ′′(λ) = (λn, λn−2, . . . , λ2, k − λ1 − 2
∑n−2

i=2 λi − λn−1 − λn, λ1)

τ ′′(λ) = 2
∑n−3

j=1,j odd λj + 2λn−1 mod 4

ζ ′′′(λ) = (k − λ1 − 2
∑n−2

i=2 λi − λn−1 − λn, λ2, λ3, . . . , λn−2, λn, λn−1)

τ ′′′(λ) = 2λn−1 + 2λn mod 4

Ê7 Z2 ζ(λ) = (k − λ1 − 2λ2 − 3λ3 − 4λ4 − 3λ5 − 2λ6 − 2λ7)

τ (λ) = λ1 + λ3 + λ7 mod 2

Conventions: Bn has n − 1 long simple roots, and the last root αn is short. Cn has n − 1
short simple roots, and the last root αn is long. For E7, the root α7, at the extremity of the short
branch is above the fourth vertex, counted from the left (this is not the convention of [4]).

Appendix C. Types of representations for complex Lie groups and Lie algebras

C.1. A collection of known results

The following results are well known, see for instance [9, 10, 30], and are gathered here for
the convenience of the reader.

g Complex Self-conjugate
Real Quaternionic

An n = 1 mod 4 μj �= μn+1−j μj = μn+1−j

μ(n+1)/2 even μ(n+1)/2 odd

n �= 1 mod 4 μj �= μn+1−j μj = μn+1−j

always never
Bn n = 0, 3 mod 4 never always

always never

n = 1, 2 mod 4 never always
μn even μn odd

Cn never always
μ1 + μ3 + · · · + μm even μ1 + μ3 + · · · + μm odd

m = n if n is odd and m = n − 1 if n is even
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Dn n = 0 mod 4 never always
always never

n = 2 mod 4 never always
μn−1 + μn even μn−1 + μn odd

n = 1, 3 mod 4 μn−1 �= μn μn−1 = μn

always never
E6 μ1 �= μ5 or μ2 �= μ4 μ1 = μ5 and μ2 = μ4

always never

E7 never always
μ1 + μ3 + μ7 even μ1 + μ3 + μ7 odd

E8 never always
always never

G2 never always
always never

F4 never always
always never

C.2. Fusion and the Frobenius–Schur indicator

According to [11], see also [12], the second indicator Iμ of Frobenius–Schur, whose value is
1, 0 or −1, according to the type (real, complex or quaternionic) of the representation μ of g,
can be obtained as

Iμ =
∑
νσ

S0σ N̂ σ
μν S0ν

ι(σ )2

ι(ν)2
,

where ι(ν) = exp(2iπh(ν)) and h(ν) = 〈ν, ν + 2ρ〉/(〈θ, θ〉(k + h∨)) is the conformal weight
of ν.

It is not too difficult to show that ι(ν) = Tνν ψ , where ψ = exp(2iπc/24),
c = dim(g) k/(k + h∨) is the central charge, and T is the modular matrix that obeys, together
with S, the usual relations (ST )3 = S4 = 1. Using the fusion matrix N̂μ, the previous relation
between ι and T, the fact that S is symmetric, T is diagonal, S−1 = S C and that C0p = δ0p,
we recast the formula giving the indicator as follows:

Iμ = (S−1T T N̂μ T −1T −1S)00.

This last expression can be used to check easily the type of representations discussed in the
text.
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