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The purpose of this note is to present a problem of classification of graphs according to

their spectral properties. This problem is encountered in several issues of current interest

in mathematical physics. The graphs which appear are generalizations both of the simply

laced Dynkin diagrams (i.e. of ADE type) and of fusion graphs drawn on the weight

lattices of the sl(N) Lie algebras.

Cette note vise à présenter un problème de théorie des graphes d’intérêt dans plusieurs

domaines de physique mathématique contemporaine. Il s’agit de classifier des graphes

dont les matrices d’adjacence obéissent certaines conditions, en particulier de spectre. Les

graphes qui apparaissent généralisent d’une part les diagrammes de Dynkin ADE, d’autre

part les graphes de fusion, tracés sur les réseaux de poids des algèbres sl(N).
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This note aims at attracting the attention of graph theorists to a problem of clas-

sification of oriented graphs according to their spectral properties. This problem arises

in current problems of theoretical physics, and seems to have a number of interesting

implications. I now briefly describe the graphs and the context in which they appear.

I first introduce some group theoretic notations. Let Λ1, · · · , ΛN−1 be the fundamental

weights of sl(N) and let ρ denote their sum. The set of integrable weights of level k (shifted

by ρ) of the affine algebra ŝl(N)k is [1]

P
(k+N)
++ = {λ = λ1Λ1 + · · ·+λN−1ΛN−1|λi ∈ N , λi ≥ 1, λ1 + · · ·λN−1 ≤ k+N −1} . (1)

We shall also make use of the N (linearly dependent) vectors ei

e1 = Λ1, ei = Λi − Λi−1, i = 2, · · · , N − 1, en = −ΛN−1 , (2)

endowed with the scalar product

(ei, ej) = δij −
1

N
. (3)

Let G be a graph satisfying the following properties

i) G is connected.

ii) G is unoriented. To each vertex a is attached a Z/NZ grading τ(a) and the only

non-vanishing entries of the adjacency matrix G are between vertices with different

values of τ . One may thus split the matrix G into a sum of N − 1 matrices

G = G1 + G2 + · · ·+ GN−1 (4)

where Gp is the adjacency matrix describing the edges that connect vertices with τ

differing by p, namely

(Gp)ab 6= 0 only if τ(b) = τ(a) + p modN , (5)

(Gp)ab = (GN−p)ba i.e. tGp = GN−p . (6)

Accordingly, the graph may be regarded as the superposition of N − 1 (oriented and

non necessarily connected) graphs Gp with adjacency matrices Gp, p = 1, · · · , N − 1

on the same set of vertices.
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iii) There exists an involution a 7→ ā such that τ(ā) = −τ(a) and

Gab = Gb̄ā . (7)

iv) The matrices Gp commute among themselves

[Gp, Gq] = 0 p, q = 1, · · ·N − 1 ; (8)

the real matrices Gp are thus “normal”, i.e. they commute with their transposed and

are diagonalizable in a common orthonormal basis;

v) The common eigenvectors are labelled by integrable weights λ ∈ P(k+N)
++ for some level

k, and the corresponding eigenvalues of G1, G2, . . . , GN−1 are given by the following

formulae

γ
(λ)
1 =

N∑

i=1

exp−
2iπ

h
(ei, λ)

γ
(λ)
2 =

∑

1≤i<j≤N

exp−
2iπ

h
((ei + ej), λ)

...
...

...

γ
(λ)
N−1 =

∑

1≤i1<···iN−1≤N

exp−
2iπ

h
((ei1 + · · ·+ eiN−1

), λ)

(9)

where h = k + N . Some of these λ may occur with multiplicities larger than one.

Note that one has γ
(λ)
N−p =

(
γ

(λ)
p

)∗

as a consequence of
∑

ei = 0.

vi) The weight ρ = Λ1 + · · ·+ΛN−1 is among these λ, with multiplicity 1: it corresponds

to the eigenvector of largest eigenvalue, the so–called Perron–Frobenius eigenvector;

Problem: Classify all graphs satisfying conditions i)–vi).

These conditions are fulfilled by the “fusion” graphs of ŝl(N). Let us recall that

fusion is an associative and commutative multiplication defined on the set P
(k+N)
++ of eq.

(1), analogous to the tensor product of representations for finite dimensional algebras [2].

The fusion coefficients are the analogues of the multiplicities in the decomposition of tensor

products into irreducible representations, and hence are non negative integers which may

be used as entries of adjacency matrices of graphs. More precisely, we get a solution of the

previous problem as follows:

* the set of vertices is the set of weights P
(k+N)
++ , for some k;
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* τ is the natural grading of representations of sl(N), i.e. counts the number of boxes

of the Young tableau modulo N ;

* ā is the complex conjugate of the representation a;

* the matrix Gp, p = 1 · · · , N − 1, encodes the fusion by the representation of weight

Λp;

* finally the spectral properties follow from the formula of Verlinde [3], that expresses

the fusion coefficients in terms of the modular matrix written by Kac and Peterson

[4].

For N = 2 the problem involves symmetric adjacency matrices, hence non-oriented

graphs, with two-colourable vertices, a trivial involution and a spectrum of eigenvalues of

the form 2 cos πℓ
h

, hence between −2 and +2. This is a well known problem, whose solution

is provided by the simply laced Dynkin diagrams of ADE type [5]. In this case, the values

of ℓ are the Coxeter exponents, and h is the Coxeter number of the ADE algebra.

For N = 3, the two matrices G1 and G2 are transposed of one another and it is thus

sufficient to draw the graph G1. A certain number of graphs have been found satisfying

conditions i)–vi), as in Fig. 1 and [6], but already in this case, a complete classification is

still missing.

, ,

,

. . .

. . .

A=

D=

E = . . .

Fig. 1: Some of the graphs G1 for N = 3. (Not all orientations of edges
have been shown on the last one; the missing ones are obtained by rotations
of 2πp

6 .)

3



Indications on related issues

The classification problem first arose in two distinct but related problems, the classification

of two-dimensional conformal field theories based on sl(N) on the one hand, and the

construction and classification of integrable lattice models on the other. In the first context,

one deals with the characters χ
λ
(q) of the ŝl(N) affine algebra [4] that are labelled by

weights in (1), and one wants to classify all modular invariant sesquilinear forms in these

characters
∑

Nλλ̄χ
λ
(q)χλ̄(q̄) with non negative integer coefficients Nλλ̄ and Nρρ = 1. One

proves in the simplest case of ŝl(2) [7], and one suspects in the more general case of N > 2,

that this problem is tightly connected with the search of graphs satisfying conditions i)–

vi). Typically the diagonal terms of the sesquilinear form are generalized “exponents”,

i.e. those weights λ that index the spectrum of one of the graphs. The second context

has to do with the construction of integrable lattice models (solutions to the Yang-Baxter

equation), again based on sl(N). There the degrees of freedom, or “heights”, attached to

the lattice sites, are vertices of a graph, whose adjacency matrix G1 specifies which pairs

of heights may occur on neighbouring sites [8]. In other words, the configurations that one

reads along a line drawn on the lattice are paths on the graph G1. Moreover the Boltzmann

weights of the model are constructed out of representations of the Hecke algebra on the

space of paths on the graph G1. It is again known for N = 2 and believed for N > 2 that a

necessary condition for the construction of a solution of the Yang-Baxter in such a model

is that the graph fulfills conditions i)–vi).

In both problems, however, these conditions were not stringent enough and some

graphs found in [6] had to be rejected.

Note also the recent work of Ocneanu who has made use of these graphs to construct

invariants of three-manifolds, à la Turaev-Viro [9].

One other context in which these graphs have been encountered is the construction

of so-called N = 2 superconformal field theories and/or topological field theories in two

dimensions (see [10] for a review). Once more, families of such theories are known to

be based on the algebra sl(N). In some cases, a connection is made with the theory of

singularities [11], and the generalized Dynkin diagram of the singularity plays a central

role. For example, for N = 2, the so-called simple singularities [12], known to be classified

by the ADE Dynkin diagrams, are the relevant ones. For N > 2, the connection with

singularity theory is less systematic and misses some instances. In all cases, however, it

has been argued by Cecotti and Vafa [13] that if one perturbs these quantum field theories

in a way that breaks conformal invariance but preserves the N = 2 supersymmetry, they
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develop a set of degenerate ground states; it is then appropriate to consider the graphs

that describe the pattern of solitons interpolating between these ground states. It seems

that the graphs discussed in this note are the graphs of solitons pertaining to a specific

perturbation, namely the “less relevant” one.

Finally from a yet different standpoint, Dubrovin has been studying the so-called

topological (or cohomological) field theories, that are known to be related to the foregoing

N = 2 theories by a “twisting” procedure. He showed that the constitutive equations

of these theories in genus zero, the so-called Witten-Dijkgraaf-Verlinde-Verlinde equations

[14], may be rephrased in a geometric language: there appear two flat metrics on the space

of moduli of the theories, and the differential system that connects the two systems of flat

coordinates has a monodromy group generated by reflections [15]. In the simplest cases

associated with N = 2 theories, this group is a finite Coxeter group (encompassing the ADE

cases). On the other hand, it has been shown recently that each of the graphs discussed

above may be regarded as encoding the geometry of a root system, thereby generalizing the

common interpretation of Dynkin diagrams, and thus allows the construction of a group

generated by the reflections in the hyperplanes orthogonal to these roots [16]. There is

some evidence that for those theories that are based on sl(N) these reflection groups are

explicit realizations of the monodromy groups of Dubrovin [17].

For a short review of these topics and a list of references, see for example [16].

Thus for the purpose of classifications of conformal field theories, lattice integrable

height models, invariants of three-manifolds, N = 2 superconformal field theories, and

topological field theories, all based on the algebra sl(N), it would be very useful to have a

systematic way to classify the graphs satisfying the above properties.
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