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We present a systematic study of modular invariance of partition functions, relevant both for 
two-dimensional minimal conformal invariant theories and for string propagation on a SU(2) 
group manifold. We conjecture that all solutions are labelled by simply laced Lie algebras. 

1. Introduction 

The minimal  two-dimensional conformal invariant field theories [1] carry a set of 
representations of two Virasoro algebras of common central charge 

6 ( p  _ p , ) 2  
c = 1 , (1.1) 

pp' 

with (p ,  p ' )  a pair of coprime positive integers. Belavin, Polyakov and Zamo- 
lodchikov have shown that it is consistent to retain only a finite number of primary 
fields eph, ~, of conformal dimensions h and h chosen among the Kac values [2] 

with 

( r p _  sp , )2_  ( p _ p , ) 2  
hr, = = h p , _ r , p _ s ,  (1.2a) 

4pp' 

l ~ r ~ p ' - l ,  l ~ s ~ p - 1 .  (1.2b) 

An impor tant  subset of these minimal theories consists of the unitary c < 1 
conformal  theories, for which p and p '  must be consecutive integers: [p - p ' [  = 1 

[31. 
Cardy [4] has shown that putting such a conformal theory in a finite box with 

periodic boundary  conditions, i.e. on a toms, gives stringent constraints on its 
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operator content. These constraints arise from the requirement of modular invari- 
ance of the partition function which has the general form: 

z = (1.3) 

The conformal characters Xh(r) (including a prefactor e -2~irc/24) are explicit 
functions of ~', the modular ratio of the toms; J/'hh' =-~/'h'h are non-negative 
integers, arising from the decomposition of the representation of the Virasoro 
algebras carried by the space of states into irreducible representations. Some 
modular invariant partition functions have been constructed so far [5-7]. We 
analyse this problem more systematically. We present some results and conjectures 
towards a complete classification of minimal c < 1 conformal theories, summarized 
in table 3. 

Amazingly, this problem is mathematically related to a different physical situa- 
tion. Studying the propagation of a string on a group manifold, Gepner and Witten 
[8] have been led to study modular invariants sesquilinear in characters of an affine 
Lie algebra: 

Y'.~A/',,,XtX~, , (1.4) 

with again non-negative integers @/ ' .  In the case of A(x z) = ~u(2), Gepner [7] has put 
forward the relation between the two problems by constructing conformal modular 
invariants from the A(~ 1) ones. The connection between the two problems also 
underlies our analysis, based on arithmetical properties of the even integer N = 2pp'  
in the conformal case, N = 2(k + 2) in the case of A(11) representations of level k. 

Sect. 2 introduces the notations and clarifies the group theoretical setting. As the 
characters transform under a unitary projective representation of the finite group 
PSL(2, Z / 2 N Z ) ,  our problem is related to the decomposition of this representation 
into irreducible ones. Sect. 3 contains the discussion of the modular invariance of 
(1.3) and (1.4), when the positivity and integrality conditions on the JV"s are 
relaxed. A large class of solutions is obtained, associated with each factorization of 
½N or of its divisors of the form N / 2 a  2 into a product of two coprimes: see eq. 
(3.14) for a precise statement. We conjecture that this describes all modular in- 
variants of either problem, and we shall present the elements of proof we have 
obtained so far. The applications are discussed in sect. 4. Our conjecture justifies 
and completes Gepner's procedure, in so far as it establishes that a// conformal 
invariants are obtained from the A~ 1) ones. The integrality and positivity conditions 
on the coefficients JV" are then shown to reduce drastically the acceptable solutions. 
We have found only three classes of solutions for the A(~ 1) case. The first which exists 

1 __  for any value of ~ N - k  + 2 corresponds to the trivial diagonal invariant Elxt l  2 
while the second appears only for even k >/4. In addition, there are three excep- 
tional cases for k + 2 = 12, 18 and 30, which are the Coxeter numbers of the 
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exceptional Lie algebras E6, ET, and E 8. These two infinite series and three 
exceptional solutions are indeed in correspondence with the simply laced Lie 

algebras Ak+l,  Dk/2+ 2 and E6, E 7 and E 8. 
Correspondingly, the "positive" conformal modular invariants are labelled by a 

pair of such algebras, relative to the values p '  - 2 and p - 2 of level k. As p and p '  
must be coprimes, hence not simultaneously even, one of the two algebras at least 
must be an A algebra. For the unitary conformal theories (p '  = p  - 1 = m), we find 
two solutions for any value of m (m >i 5 for the second): they are the principal and 
complementary series discussed in ref. [5] and completed in refs. [6, 7]. In addition, 
there are six exceptional theories for m or m + 1 = 12, 18 and 30. The principal 
series may be denoted (Am_ 1, Am), the complementary one (m >/5) (A4p, D2p+2 ) if 
m = 4p + 1, (D2~+2, A4p+2 ) if m = 4p + 2, (A4p+2 , D2p+3 ) if m = 4p + 3, 
(D2p+a,A4p+4) if m = 4p + 4, and the exceptional ones (A10,E6) (m = 11), (E6,A12) 
(rn = 12), (A16, ET) (m = 17), (ET, A18 ) (m = 18), (A28,E8) (m = 29) and (E8,A30) 
(m = 30). That this list exhausts all possible modular invariant c < 1 unitary 
theories is our second conjecture. This conjecture is partially supported by a parallel 
work of Pasquier [9]. 

2. Notations and group-theoretic considerations 

For the following discussion of conformal characters, it is convenient to trade the 
two indices (r, s) of eq. (1.2) for a single variable ?l 

)t = p r  - p ' s  (2.1) 

and to consider k as defined modulo N = 2pp ' .  All the ensuing expressions will 
indeed be periodic functions of h of period N; the reason why the intervals (1.2b) 
(with r = 0 and s = 0 added) only represent half a period will soon become clear. 
Since p and p '  are coprimes, two integers r o and s o exist such that 

r o p -  soP'= 1. (2.2) 

We introduce the number o~ o ~ Z / N Z  

It satisfies 

lo o = rop + SoP" mod N. (2.3) 

~0~ = 1 mod2N,  (2.4a) 

tOoX = p r  + p 's  mod N. (2.4b) 

(Beware of the mod condition on lOo2!) Hence, multiplication by lo o leaves un- 
changed the multiples of p, and changes sign of those of p'. Conversely, given 
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and O~oX m o d N ,  one obtains a pair ( r , s )  modulo a two-dimensional lattice 
generated by (p ,  p ' )  and ( p , - p ' ) .  The appearance of ~o 0 satisfying (2.4a) associ- 

1 ated with the factorization into two coprimes of 5N = pp' is a typical feature of this 
problem and will be encountered again in the following. In general, we introduce 
the abelian group G, for n an arbitrary even integer: 

G , =  (to, t o ~ Z / n Z ,  ~02=1 mod2n }. 

We now turn to the conformal characters. For ~- the modular ratio of the torus 
defined such that Im ~- > O, we need the Dedekind 71 function 

{ 21ri ~ o~ 
~/(~') = exp|  \ -~-- ~" | VI (1 - exp(2i~rn~')) (2.5) 

/ n = l  

and define the set of functions of ~': 

~,~__ ooexp( irr'r(nN + ~ )2 /N } 
= (2.6) 

Obviously K is even in ?~ and periodic of period N: 

K x = K x = K x +  N . (2.7) 

1 Hence eq. (2.6) defines a set of ~N + 1 independent functions. The conformal 
characters are then [10] 

X~,°n'(~ ") = Kx(~ ) - K,%x(T ) . (2.8) 

(Recall that the factor exp ( -  (2~ri/24)c~') has been included into Xx, as in eq. (1.3).) 
X~, °nf vanishes on all multiples of p and p' ,  satisfies 

X ~ o n f  __ )~co~f  = conf  . . . .  f (2.9) 
- -  X h  + N - -  - X t o o h  

and assumes ½ ( p -  1 ) ( p ' - 1 )  distinct, linearly independent values, which may be 
labelled by the values of ~, or (r, s) in a fundamental domain: 

B¢°nt: l <~ r <<.p'- l ,  l ~ < s ~ < p - 1 ,  sp' <~ rp. (2.10) 

We also consider the Kac-Peterson characters of the affine Lie algebra A(11) [11] 
for integrable representations (integer or half-integer spin l~< ½k) in their basic 
specialization multiplied by the factor exp(-(2~ri/24)caff'c ) = e x p ( - ( 2 r r i / 8 ) ( k /  
k + 2)~) (in short, affine characters). For level k and spin l, we use intentionally the 
same notation Xx by setting N = 2(k + 2) and ?t = 2l + 1 

1 ~ ( , N + h ) e x p [ i r r ' r ( n N + h ) : / N ]  
. = - o o  

(2.11) 
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It is an odd, periodic function of X 

x~ff=_ aft _ _xaff  (2.12) 
X ~ + N  -- 

1 and therefore it assumes i N  - 1 distinct and linearly independent values labelled by 
X in a fundamental domain 

Baff: 1 ~< X~< ½ N -  1. (2.13) 

Note  already the similarity of the properties (2.9)-(2.10), (2.12)-(2.13). 
The modular group /~ = PSL(2, Z) is the set of 2 × 2 matrices A with integral 

entries and unit determinant, with ___A identified. It acts on "r in the upper 
half-plane through 

• r ~ , r ' = - -  A =  a (2.14) 
c ' r + d  ' c " 

This action is then carried to functions of "r. In particular 

il( a'r + b I 
c ~ - ~  ] = eA( c'r + d ) l /z l l (  "r)' (2.15) 

where e A is a 24th root of unity. Using the freedom of sign of A, one can always 
choose c >/0 and d = 1 if c = 0, and 0 ~< arg(cr + d)  1/2 < ½~r. With this convention, 
eA is a well-defined ,r-independent phase. The modular group is generated by S 
and T 

1 
S: ,r --+ - - ,  T: ,r --+ ,r + 1. (2.16) 

,r 

Using (2.15) as well as Poisson formula, one finds for the conformal characters: 

- -  - ± Kx(,r) (2.17a) T: Kx(,r + 1) = exp 2ilr 2N 24 

1 N - 1  r X X ' l  
S: K x ( - ' r - 1 )  = v~- • e x p / 2 i ~ r ~ ; / K x ' ( ' r ) "  (2.17b) 

X ' = 0  k x'~ j 

Since 

X2 = (OjoX)2 rood 2N,  

7tTt' = (¢o0•)(OJoX') mod N,  

eq. (2.17) still holds with X~, °"r substituted for K x. 

(2.18) 
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For the affine characters, one finds similar formulae: 

T: x ~ f f ( r + l ) = e x p  2i7r 2N ~ Xx(r) '  

- i  N-1 [ h~k' 1 
s: x~"(-<l)-  ~ -  ~ expl2i~-a;lxa,(, ). 

h'=0 t Iv  J 

(2.19a) 

(2.19b) 

All these transformations are of course compatible with the mod N periodicity in 
and the parity properties under X ~ - k .  The symmetries of Xx enable us to rewrite 
(2.17b) and (2.19b) with X, 2~' in the fundamental domain B (cf. eqs. (2.10), (2.13)) 

conf ~ 2 X [ r , , J ( - r - x )  = 2  E 
PPP l <~r' ~p" 1 

l <~s' @p-1  
s'p'  <~ r'p 

l]rs,+r,s+ 1 rrprr' [ rrp'ss" \ 
( - ~ )  sin P' s i n / - - 7 - - )  x~°'nfs'l(r)' 

(2.17c) 

2 ( IrXX' 
X~'~f(- ~"t) = k + 2  ~ sin ~-~--2)X~f/(r). 

l~<h'~<k+l 
(2.19c) 

Notice the presence of the factor - i  in (2.19b), in contrast with (2.17b), which 
guarantees that the square of S acting on characters is the identity. Indeed, the 
Fourier operator 

1 [ XX'I 
(,W) xx, = ~ -  exp [2i~r--~- J (2.20) 

has its fourth power equal to the identity, but its square 

( ~ 2 )  xx' = 8x',-x- (2.21) 

Therefore ~ 2  acting on even functions of )% or ( - i o n )  2 acting on odd ones are 
both equivalent to the identity. The presence of the phases exp(-  liar), exp(-  ¼i~r) 
in the T transformations ((2.17a) and (2.19a)) are also crucial to ensure the modular 
consistency (see Appendix A). 

For n an arbitrary integer, the kernel of the surjective map [12] PSL(2, Z) 
PSL(2, Z / n Z )  is called the modular group of level n and denoted Fn: 

1 --+ F, ---+ PSL(2, Z) --+ PSL(2, Z / n Z )  ~ 1. 

F. is therefore the invariant subgroup F of matrices 

1 + an fin ) (2.22) 
A = _+ 7n 1 + ~n " 
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One may prove that under any transformation of 1"2N, the functions K x and X~, °nf 
are only multiplied by a ~- and r-independent 24th root of unity 

A 
r + ~' ,  A ~ /'2N, Kx(r ,  ) = ~aKx(r) ,  ~24 = 1. (2.23) 

A similar result holds f o r  X~ ff with an 8th root of unity. To establish this result, it is 
not in general sufficient to verify that T 2N acts through a pure phase: indeed for 
n >/6, F, is not generated by elements conjugate to T" only [13]. The calculation is 
presented in appendix B. We conclude that the set of characters Xx with ~ in a 
fundamental domain B carries a unitary projective (i.e. up to a phase) representation 
of the finite group 

M2N -- PSL(2, Z / 2 N Z )  = r / r : . :  

N - 1  A 
A ~ M2N, r ~ r ' ,  Xx(¢') = • Uxx,(A)xx,(r),  (2.24) 

~'=o 

U( A )U( A') = e i~ .... U( AA') 

U(A)Ut (A)  = 1 f 
(2.25) 

To check that an hermitian form 

(2.26) 

is invariant under modular transformations, it is therefore necessary and sufficient 
to check invariance under MZN: 

./flU(A) = U( A ).A/', A ~ M2N. (2.27) 

This could be done with the help of Schur's lemma, decomposing the representation 
(2.24)-(2.25) into irreducible parts and taking .A/'cx c. 1 in each of them. As no 
general result on these decompositions is known to us, our forthcoming analysis 
may be regarded as a study of the commutant of this representation of M2N.  

Alternatively, for any arbitrary hermitian J ( ,  

1 
. / V = - -  ~_, U*(A).AgU(A) (2.28) 

[MzN[ A~M2u 

satisfies (2.27) and conversely any solution of (2.27) is of this form. Unfortunately, 
the order IM2N I of M2N grows fast [12] 

(1) 
IM,I = ½n 3 I-I 1 - (2.29) 

p prime 7 ' 
divisor of n 

and the use of this remark requires some ingenuity [7]. 
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3. The commutant 

Let  us first examine which linear t ransformat ions  C of the X's  may  commute  with 
T. F r o m  eqs. (2.17a)-(2.19a) we learn that  Cxx, ~ 0 only if 

~2 = ~,2 m o d 2 N .  (3.1) 

We  shall p rove  that  this implies the following proposi t ion:  
(1) X and  ~' have a c o m m o n  divisor a >1 1, such that  a 2 divides ½N, with 

N '  = N / a  2 even. 

(2) There  exists/~ defined modulo  N '  such that  #2 = 1 m o d 2 N '  and 

or equivalent ly  

- -  = ~ - -  m o d N ' ,  (3.2a) 

N 
~' = / ~  + ~ - -  m o d  N, ~ ~ Z/aZ.  (3.2b) 

0~ 

Converse ly  any  such ~' satisfies (3.1). 
Assume  ~ _+~' m o d N  since otherwise the proposi t ion  is obvious ( a = l ,  

/~ = _+ 1). Condi t ion  (3.1) amounts  to 

(X' - X )(X' + X) = 4pp'l.  

~' + ~, and ~' - ~ are bo th  even, and all the divisors of  ½N =pp '  must  appear  either 
i n 1  , I(X, X ) . L e t l  ½ ( X + ~ , ) = ~ r p ,  1 , 7 (~  + X) or in ~ - i N  = ~r~r', ~(X - X) = ~r'o, ( po  = l). 
Of  course ~r or ~r' could be  one. It  then follows that 

~=~rp-~r 'a ,  

X' = ~r0 + ~r'o, (3.3) 

very m u c h  like the original relation between X and ~ = ~o x,  except for the fact that  
¢r and  ~r' need not be coprimes. Let  a be their greatest  c o m m o n  divisor: 

a = (~r, ~r ') .  (3.4) 

1 Then  a divides bo th  X and ~' and a 2 divides 7N =pp' ,  proving the first point.  We 

set 

~r = a P ,  ~r' = a P ' ,  ( P ,  P ' )  = 1, 

N =  a2N ' ,  N '  = 2 P P ' .  (3.5) 

Repea t ing  the procedure  of sect. 2, we introduce R o and S O such that  RoP - SoP' 
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= 1, and define /L = RoP + SoP' (mod N') .  Given X / a  = pP - oP', it is easy to 
check that A' /a  = #~,/a mod N' ,  and that ~2= 1 m o d 2 N ' ,  i.e. that /t e GN, , the 
group defined in sect. 2. 

In the conformal case, the proposition implies that if p and p '  are distinct 
primes, there are only four possibilities for )~2 = ~,2 mod 2N: 

P = p p ' ,  P '  = 1, 2~' = -~,  mod N,  

P = p ,  P '  = p ' ,  )~' = ~00)~ mod N,  

P = p ' ,  P '  = p ,  ~,' = - ~00~, mod N,  

P = I ,  P ' = p p ' ,  ~'=)~ m o d N .  (3.6) 

Likewise, in the affine case, if k + 2 is a prime, h = +)¢ mod N is the unique 
solution. In any of these cases Xx, = ---Xx- This means that the projective representa- 
tion U of M2N is irreducible on the Xx, and the invariants must be diagonal: 
.A/'xx, = cxSxx,. Invariance under S, the second generator of the modular group then 
implies that the coefficients c x are independent of 2~ and equal, for h in B. Then 
M/'= ]1 is the unique solution up a factor. 

In general, the proposition suggests to consider the action of the group G N on the 
X'S through 

£0 E G N  "-) (~2~o) ~,A, = ~X',*oX modN,  (3.7a) 

~2,of2o,, = 12~,~,. (3.7b) 

These matrices are symmetric (~o = ~o -1 m o d 2 N )  and commute with T and S 

1 1 
~"~ ~ __a,2~rih"X'/N = e2i~ohA'/N 
, . ,  

A" 

1 
1 e2,,iXX,,/N~ = ~ e  2i''°xx'/N (3.8) E . 

There is a subgroup H of such f2's which acts trivially on characters Xx, ~ ~ B. H is 
generated by I2_+ 1 in the affine case, by I2 +_1 and f2± ~,o in the conformal one. 
Therefore the commutant of the representation U contains at least the set of 
symmetric matrices: 

C--  • c,fl2,o, (3.9) 
~o ~ G N/H 

with co, arbitrary real numbers. There exists a correspondence between the group 
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and the center of the group M2N , i.e. the set of matrices _+(~ 0], a 2 =  1 G N \ o  a ] 
rood 2N. This correspondence is set up as follows: _+ ~ = _+ a mod N. (Recall that if 
a 2= 1 mod2N,  then (a + N) 2= 1 mod2N.) In any irreducible representation of 
M2u, the elements of the center must be represented by multiples of the identity. 
Indeed one finds that 

( ( a  Oa)mod2N, a2=lmod2N)=e~x,,,,x, Uxx, + 0 

where e is a ?t- and ?C-independent phase. 
Whenever ½N is square-free, i.e. when the only a such that a 2 divides ½N is 

a = 1, we have proven that the only invariants with integral coefficients (JV'xx, ~ Z) 
are of the form (3.9) (with c~ ~ Z). At the present stage our proof involves a study 
of the equation (JV'S)xx, - (SJV')xx, = 0 considered as a polynomial in the variable 
z = e 2i'/N. We refrain from presenting the proof here, however, as it seems difficult 
to extend to the general case. We also believe that the assumption that the ,A f ' s  are 
integers is not crucial. 

When ½N has non-trivial square divisors a 2, the proposition above suggests a 
larger commutant. For/~ ~ GN/,~2, introduce the matrix 

(I2(")) xx, = ~ 8x,,~x+,N/,, if a l~ and al~' 
~EZ/aZ 

= 0 otherwise. (3.10) 

Such a I2~ (~) commutes with T, as stated in the proposition. It also commutes with S, 
as one readily checks. The interpretation of these new matrices hence of new 
invariants is provided by the following connection between the characters relative to 
the values N and N/a 2= N'. Return to the definition (2.6) of Kx(r; N), making 
explicit the dependence on N. Let us pick a ~ in Z/(N/a)Z and compute the sum: 

a - 1  

E K.X+~N/.(r; N)= - -  
~ = 0  

1 ,,-1 [ i~rr ) ~-~ ~_~ (,N'a 2 a~ + ~aN' )  2 
, ( r )  t=0 ,=-o~exp~ ~a2a2 + 

1 . -  1 [ i~rr ) 
- ( , )  Y'. ~ e x p [ - ~ - 7 [ ( n a + ~ ) N ' + X l :  

~ = 0  n = - o o  

= KX(r; N ' ) .  (3.11) 

The result depends only on X mod N'. This relation carries over to the conf0rmal 
characters pertaining to N and N '  

a - 1  
coal z " N) X~,°~(~; N ' ) ,  (3.12) XaX+~N/al  'r, = 

~ = 0  
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provided that o~ o ~ Z / N Z  projects out on a non-trivial ~) in Z / N ' Z ,  i.e. o:~ 4= __ 1. 
The triviality of to~) occurs whenever p (or p ' )  is a square and p (or p ')  divides a 2. 
In such a case, the sum (3.12) vanishes by eq. (2.9). If to~)4: _+ 1, any invariant at 
level N '  gives rise to an invariant at level N by (3.12). In the affine case, we find 
similarly 

~t--1 

E'A.~+~N/a['t';aff ' N) = e~X~ff(,; N ' )  . (3.13) 
f=0 

is 
To summarize, it is conjectured that the most general form of modular invariants 

"A/'xx ' =  E E C~ (~) y'- 3x',~x+~N/~- (3.14) 
a: a2i~N I*~GN/,,2 I~Za/Z 
alh, al)¢ 

We know for sure that this is true for ½N square free and we intend to present 
details in a future publication. 

4. Partition functions 

The results of the previous sections will be now used to classify and study the 
various invariants 

Z x =  E Xx(~)*Jl/'xx'Xx'(z), (4.1) 
X , X ' ~ B  

with aV'xx, given in (3.14). 
As for the affine modular invariants, eq. (3.14) gives immediately the general form 

of the invariant. There are as many independent terms in eq. (3.14) as there are 
choices of a and/* with the exception already encountered at the end of sect. 3. If 
½N is a square, taking a = v~N produces a vanishing contribution when contracted 

n r i 1 with a character. If ½N= I-Ii=lPi is the decomposition of ~N into prime factors, 
the number of relevant factorizations of ½N and of its divisors N/2a 2 into two 
coprimes is: 

, ( ½ u )  = 1 + - 8 , ( 4 . 2 )  

with ~ = 1 iff ½N is a square. We conclude that the number of independent affine 
modular invariants is ~ (k  + 2). The function ~k(m) is displayed in table 1 and a 
generating function is given by 

E 
m = l  rnS  

()  ~ i  ~2 s _ 

from which it is seen that on the average ~k(m) grows as ½1n m. 
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TABLE 1 

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
~b(m) 0 1 1 1 1 2 1 2 1 2 1 3 1 2 2 2 
q ~ ( m ) ~ ( m  + 1) 0 1 1 1 2 2 2 2 2 2 3 3 2 4 4 2 

m 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
~k(m) 1 3 1 3 2 2 1 4 1 2 2 3 1 4 1 3 
~ ( m ) q J ( m  + 1) 3 3 3 6 2 2 4 4 2 4 6 3 4 4 3 6 

To see better the structure of the invariants in the conformal case, we first undo 
what has been done in sect. 2 and reexpress the content of (3.14) in terms of the 
original pair of indices r, s. Let us show that JV'xx, = ~r~s ' r,,, factorizes as a tensor 
product  of similar expressions pertaining to the indices r, r' and s, s': 

~/~s, r' , ' = E E E E E E 
a 1 /~l EG2p'/a 2 ~IEZ//al z a 2 t l ,2EG2p/a 2 ~2EZ/IX2 ~ 

al[r,  r '  ~21S~ S t 

X C ('~' "2)8 8 /~1, P'2 r ' , p ' r + 2 p " ~ l / a l  s ' ,~ t2s+2pf ;2 /a2  

= E E C(~I'~2)'A/'(R)'A/'(s) (4.3) ~1,~2 -" rr '  - ss '  " 
Otl ]3.10t2~ 2 

Consider a pair (X,)t ') such that 0/divides both ;t and X', and 

X' X 2 pp' 
- - = / ~ -  mod 0/z , 
0/ 0/ 

(4.4) 

with/z ~ G2pp,/a2. Let X = p r - p ' s  and ~' = p r ' - p ' s ' .  As p and p '  are coprimes, 
a = a la  2 with a~ a divisor of p ' ,  a~ a divisor of p. Then 0/1 divides also r and r ' ,  0/2 
divides s and s' ,  and if/~1 =/z mod(2p'/0/~) and ~t 2 =/~ mod(2p/0/~) condition 

(4.4) reads: 
p r'  - tXl r p '  s t - -  ~t2S 2pp'  

0 mod (4.5) 2 2 " 
0/2 0/1 0/I 0/2 0/10/2 

Taking this condition mod 2, mod(p' /0/~)  and rood(p/o/2) leads to 

r ' -  I~lr p '  2p '  

0/2 = ta~  f m o d  , 
0/1 

s '  - /~2s p 2p 
u--~ mod-~2 2 , 

0/2 012 
(4.6) 

where t and u may take the values 0 or 1 but satisfy 

tot 2 - ua 1 = 0 mod 2. (4.7) 
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Finally, eq. (4.6) may be recast as 

p '  2p '  
r' = II~lr + t - -  + ~ 1 - - ,  

2p 
s'  =/~2 s +  u p + ~ 2 - - ,  (4.8) 0/2 0/2 

where t, u = 0,1 satisfy (4.7), ~1 e ][/0/1][, ~2 ~ Z/0/2Z- 
Conversely, given (r, s, r ' ,  s ' )  satisfying eq. (4.7)-(4.8) we may reconstruct X = pr 

-p ' s ,  X ' = p r ' - p ' s '  and t~=rop#l--Sop'tL2 where r 0 and s o are the Bezout 
multipliers of p and p '  (cf. eq. (2.2)). One verifies that/~ belongs to G2pp,/a2 and X 
and X' satisfy (4.4). Finally, t and u may be set equal to zero; the other choices do 
not  give new invariants, thanks to the periodicity and symmetry properties of the 
characters. 

The form (4.3) is convenient to count and tabulate the independent invariants, as 
they are just obtained by tensor products of the p '  and p contributions. Moreover 
this justifies the procedure followed by Gepner to generate conformal invariants 
f rom A(11) invariants. Namely, this proves (assuming the correctness of the conjec- 
ture of sect. 3) that all conformal invariants for the (p ' ,  p )  theory may be obtained 
by tensor products of affine invariants pertaining to the levels k = p -  2 and 
k '  = p '  - 2. It implies that the number of independent invariants is qJ(p)q~(p'). The 
values of q~(m)~(m + 1) relevant for the unitary series are displayed in table 1. 

Knowing that all conformal modular invariants are obtained from the A(11) ones, 
let us concentrate on the latter. We write their explicit form in the physically 
relevant cases, namely -¥'xx, non-negative integers, and .A/'11 = 1. (unicity of the 
vacuum state). To the best of our knowledge, the following list is exhaustive. 

For  any value of ½N -- k + 2 

-A/'xx' = ~xx' (4.9) 

is always a solution, corresponding to the trivial factorization k + 2 = (k + 2)-1.  
Suppose now that k is of the form k = 40. The number /L associated with the 
factorization k + 2 = 2. (20 + 1) is /~ = 4p + 1 = k + 1 so that the relation X' = #~ 
rood N splits into two sectors 

h (and ~') odd: X' = k + 2 - X, 

X (and X') even: X '  = - X .  

As the affine characters are odd functions of X, this means: 

( --~X',X 
"W'xx' = +~x,,k+2-x 

if X even 

if X odd " 
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Adding the trivial solution ~/ '= 1 gives 

= (Sx,,x + 8x,,k+2_x) if 2  ̀and 2 '̀ are odd (4.10) 
k = 0 mod 4: ~/'xx, = 0 otherwise 

If k is of the form k = 40 - 2 one may take a = 2 and the number # associated with 
the trivial factorization ( k +  2 ) /42=  O • 1 is /L= 2 0 - 1  = ½k. One discards the 
possibility p = 1, k = 2 which corresponds to the forbidden case a = kvCk~ 2. Then 
for O > 1: 

o/~XX,=3X,,k+2_X--~X,,X iff 2`, 2 '̀ are even 

= 0 otherwise. 

Adding again the trivial solution yields: 

3x,,x if 2`, 2,' odd 

k = 2 m o d 4 :  JV'xx,= \3x, k+2_x if 2`,2`'even. (4.11) 

[0 otherwise 

The corresponding modular invariants are the SO(3)-invariants of ref. [7]. They also 
lead to the complementary series of conformal modular invariants of refs. [5, 6] (see 
below). 

To these two infinite series of invariants, we add three more exceptional ones, 
constructed by using eq. (3.14) 

k + 2 = 1 2  

q- (~.4 q- ~8)(~x,4 "}- ~ '8)  -Jr (~5  q- ~M1)(~x,5 -}- ~h,11) , (4.12) 

k + 2 = 1 8  

Xx~, = (Sx, + ~x17)(~,1 + ~,17) + (~x5 + ~ x . ) ( ~ , 5  + ~'~3) 

q'- (~,~7 q'- ~M1)(~X'7 -t- ~X'll) + ~h9(~)~'9 "1- ~X'3 "+" ~h'15) + (~X3 -}- ~XlS) ~X'9 ' 

(4.13) 

k + 2 = 3 0  

nt" (~X7 q- ~M3 "q- ~M7 q- ~.23)(~X'7 + ~'13 "~- ~X'17 + ~X'23) " (4.14) 

The first two had already been discovered [15, 6, 7]. 
After inspection of all invariants generated by eq. (3.14) up to k + 2 = 100, we 

conjecture that the previous list ((4.9)-(4.14) and table 2) exhausts the set of positive 
integral invariants, satisfying ,A/'11 = 1. This conjecture is supported and embellished 
by the observation that there is a connection between these invariants and the 
simply-laced simple Lie algebras An, Dn, E6, E 7 and E 8. Indeed the values of 
the labels X = 2 '̀ taken by the diagonal terms in eqs. (4.9)-(4.14) coincide with the 
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TABLE 2 
List of known partition functions in terms of A(11) characters 

459 

K + I  

k>~l ~ [Xx] 2 Ak+ 1 
X = I  

4 9 + 1  2p 1 

k=ap, p>~l ~ Ixxl2+2122o+112+ ~ (XxX~o+2_x+c.c.) D2o+2 
X odd = 1 X odd = 1 
h~2p+l 

2 p -  1 

Ixx + x4o+2 x[2 + 2]Xzp+xl 2 
~, o d d = l  

4 p -  1 2 0 -  2 

k = 4 p - 2 ,  p>>2 Y'~ Ixx12+lx2o12+ ]~ (xxx%_x+c.c.) D2o+x 
h odd = 1 h even = 2 

k + 2 = 1 2  ]XI+XT[2+  [XaAr X812 q - IX5 +Xxl[ z E 6 

k + 2 = 18 [X1 q- X17 [2 q_ [X5 q- X1312 q- IX7 q- Xl l  [ 2 q- [X912 E7 

+[(x3 + x,5)x~ + c.c.] 

k + 2 = 30  IX1 q- Xl l  -}- X19 -}- X29[ 2 q- ]X7 -- X13 q- XI7 q- X2312 E8 

exponents (or Betti numbers) of these algebras, including their multiplicities. Recall 
that these exponents give the degrees (minus 1) of a system of independent 
generators of the ring of invariant polynomials in these algebras [14]. In eq. (4.9), X 
takes all values 1 ~< X ~ k + 1, corresponding to the exponents of Ak+ a. In (4.10), for 
k = 4p the diagonal terms have X = ~' = 1,3 . . . . .  4p + 1, exponents of Dzp+2 , with 
the middle value X = ~' = 2p + 1 appearing twice as it should, whereas for k + 2 = 4p 
the values of X = ~' run over the exponents 1 ,3 , . . .  ,4p - 1 and 20 of D20+l.  Finally 
the values X = ~ ' = 1 , 4 , 5 , 7 , 8 , 1 1 ,  X = ~ ' = 1 , 5 , 7 , 9 , 1 1 , 1 3 , 1 7  and X = X ' =  
1,7,11,13, 17,19,23,29 appearing in eqs. (4.12)-(4.14) are respectively the expo- 
nents of E6, E 7 and E8*. This relation between the modular invariant sesquilinear 
forms in the characters of the A(~ 1) Kac-Moody algebra and the simply laced Lie 
algebras seems at present rather mysterious. In particular, one would like to 
understand the group theoretical meaning of the off-diagonal terms. 

In order to produce the positive invariants in the conformal case, we simply need 
to combine the previous results. For a minimal theory with central charge c = 
c(p, p') (cf. eq. (1.1)) we need a pair of affine invariants of levels k = p  - 2 and 
k '  = p '  - 2. Since p and p '  must be coprimes, they cannot be both even, and this 
forces at least one of ,A/'R or JV "s in eq. (4.3) to be ,A/'= 1. (algebra A). This leads 
to a classification in two infinite series and three pairs of exceptional invariants, 
which we call respectively the principal (or A-A),  the complementary (A-D)  and 
the exceptional (A-E)  series (see table 3). In the unitary series, we have p '  = m - 1, 
p = m  or p ' = m ,  p = m - 1 ,  m>/3,  and the exceptional values are m =  

* This observation has been first made in the k + 2 = 12 theory by Kac [15]. 
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TABLE 3 
List of  k n o w n  partit ion funct ions  in terms of  c o n f o r m a l  characters  

p ' = 4 p + 2  
p > l  

p ' - I  p - 1  

E E Ix,,I 
r = l  s= l  

p - 1  40+1 

r ~ 2 0 + l  

, a _  P -  1 
P 

s= l  
p - 1  

 '=12 E 
s= l  
p - 1  

p ' = 1 8  ½ E 
s= l  

p '  = 30 
p - 1  

1 

s= l  

2p-  1 } 

* c.c,) E (X,,Xr,,-, + 
r odd = 1 

4 ~ 1  2 0 2 } 

[Xrs]2 + [X2p.s 12+ E (XrsX~ . . . . .  4-£.¢.) 
~, rodd = 1 ,even = 1 

(I Xls + X7s 12 + [X4s + Xgs [2 + I XSs + Xlls 12 } 

(IXls + Xt7s[ 2 + IXss + X13sl 2 + IX7s + Xlls[ 2 + Ix9sl 2 

+ [ (x~ + x , ~ ) x ~  + c.c.] ) 

(IXls + Xlls + Xl9s q- X29s I 2 + IX7, + Xl3s q- •17s + X23s [ 2 } 

( A #  1 ,Ap_ 1) 

(D2p+ 2 ,Ap l)  

(D2p+ 1,Ap 1) 

(E6,Ap 1) 

(E7,Ap 1) 

(Es, Ap_  1) 

T h e  uni tary  series corresponds  to p '  = m + I,  p = m or p = m + 1, p '  = m,  m = 3 , 4 , . . . .  

11,12 ,17 ,18 ,29 ,30 .  In the expressions of table 3, the summation over s may be 
rewritten as 

p - 1  

x E = E ,  
S=1 S p's < pr 

using X,s = Xp, , .p-s and the symmetry under r - - + p '  - r of all the summands. 
In the non-unitary theories, i.e. for IP - P ' [  > 1, the table of conformal weights 

(1.2) always contains at least one negative value, namely h,o,s ° with r o and s o 
satisfying (1.2b) and (2.2) [5,16]. It turns out that all the partition functions of table 
3 contain the scalar operator of dimensions h = h = h,0~0. This is obvious in the 
(A, A) case, where all scalar operators contribute to Z. In the other cases, assuming 
for example p' to be even, r 0 is odd and coprime to p' .  In the (D, A) cases, which 
involves all operators with r = r' odd, as well as in the (E,A) cases, where all odd 
values of r coprime to p '  appear in the diagonal terms, [Xr0,0l 2 shows up. We 
conclude that the presence of negative dimension operators is an unavoidable 
feature of m i n i m a l  non-unitary theories. 

One is left with the question of finding concrete realizations and interpretations 
for all these invariants. In the affine case, this has already been discussed in refs. 
[8, 7]. In the conformal case, the unitary models corresponding to the (A, A) series 
are the Ising model and its RSOS generalizations [17], whereas (A4,D4)  and 
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(D4, A6) describe the 3-state critical and tricritical Potts models. (Is there a role of 
the A 2 and A 3 Lie algebras in the Ising case?) In the unitary case, the other theories 
have not yet been totally identified, although there is some current work of Pasquier 
[9] who constructs integrable models based upon simply laced Lie algebras. Accord- 
ing to Pasquier, one expects the discrete symmetry of these theories to be at most 
the symmetry group of their Dynkin diagram. We have verified that the conformal 
theories m = 11 and m = 12 associated with the E 6 algebra do have a Z 2 symmetry. 
According to [18,19, 6], this amounts to showing the existence of partition functions 
with Z 2 twisted boundary conditions. These frustrated partition functions read, for 
example for m = 11, with the notations of refs. [18, 6]: 

9 

Z l , o  -~" E ( (Xr l  q-Xr7)(Xr5q-Xr11) * q-c'c''st- IXra+ Xr812}, 
r odd=l 

Z O , I =  E I X r l  d- Xr712-~- IXr5 "~- ~(rlll 2 -  IXr4 "[- Xr812" 

On the latter expression, one reads [19] that the operators with s, g = 1, 7, 5,11 are 
even under the Z 2 transformation while those with s ---- g = 4, 8 are odd. 

Our final comment concerns the compatibility of these new A~ 1) and conformal 
theories with the "fusion rules" of conformal algebra [1,8]. For the two infinite 
series and the first two exceptional theories, this has been checked by Gepner. The 
same holds for the k = 28 or m = 29 or 30 theories. 

It may be appropriate as a conclusion to quote Arnold [20]. "The  relations 
between all the A, D, E classifications are used for the simultaneous study of all 
simple objects regardless of the fact that many of them [ . . .  ] remain an unexplained 
manifestation of the mysterious unity of the Universe". 

It is a pleasure to thank Vincent Pasquier for explaining us his work and for 
making us realize the importance of Dynkin diagrams in that construction. It is in 
the course of these discussions and in collaboration with him that our second 
conjecture was born. We are also indebted to V. Kac for communicating to us his 
results on the m = 11 modular invariants prior to publication. One of us (A.C.) 
acknowledges the Angelo Della Riccia foundation for partial support. 

Appendix A 

The functions X c°~f and X ~ff have modular transformations under S and T of the 
form: 

rXx(r  ) = x x ( r + l ) = e i ~ ° r e x p  2 i ~ r ~  X x ( r ) ,  

1 E  exp(2i~r~-~)Xx,(r), (A.I)  = = 
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with % and q0 r well defined phases in each case (compare eqs. (2.17), (2.19)). Let us 
examine in general what are the consistency conditions on these phases so that (A.1) 
defines an action of the modular group on these functions. The transformations S 
and T acting on r satisfy 

S 2= ( S T )  3 = 1, (A.2) 

hence the same condition must be satisfied by their action on the X'S- It is easy to 
calculate: 

1 (X~(~+X') ) 
S:xx(r)  = N ~kl,~k, N e 2i~ps-  Y'~ exp 2i~r Xx,(r) 

= e 2 i ~ s x _ x ( r  ) , (A.3) 

1 [ 2i~r 
(ST)axx(7) =e3i(~s+cPr)N3/2 E exp~-~--~-(ZXX a + X 2 + 22~1~ 2 + X 2 

kx,x~,x' 

1 / 2i~r 
=e3i(~ps+CPr)-~ ~-~, exp t --~--)~ 1( )~ -- X')) 

Xl,k 

1 [2i~r + X,)2) Xx,(r) 

= G e3i(~s+~T}xa(r ) . 

G stands for the Gauss sum 

1 E exp( 2i~r )x2 ] 
G = ~ -  a~Z/NZ 2N ] 

= f~-~ (1 + i ) =  exP(¼i~r), 

which holds for even N. Eqs. (A.2), (A.3) and (A.4) imply 

qo s = 0 or ~r on even functions, 

Cps = _+ ½~r on odd functions, 

q0r= ~ ( 8 j  - 1)rr - q0s, 

1 ~ exp 2i~r ~-~ 
VI2 I ~  X~TC/2NT¢ 

+2x2a' + 

(A.4) 

j = 0 , 1 o r 2 .  
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t o  X c ° n f ,  X aft are thus two realizations out of these twelve 

X conf.  • qo =o, ( j = o ) ,  

xaff: q0 S = - -  ½i~r, q~r = - ¼or ( j  = 2). 

Appendix B 

We want to study the 
belonging to the subgroup FEN of level 2N: 

action on the K-function of modular transformations 

1 + 2 a N  2fiN ) (B.1) 
A ~ F2N, A = _+ 2,/N 1 + 28N " 

1 2 exp[2 i r r{½t(n+3)  + ( n + ½ ) ( ~ ' - ½ ) } ]  

The theta function: 

6)(~'; t) = ~,~ 

enjoys the following two properties: 

VlX, V ~ Z :  6 ) ( ~ + t z t + v ; t ) = ( - 1 ) " + % x p ( - 2 i l r ( l # 2 t + t ~ ) ) 6 ) ( ~ ; t ) ,  

V A ~ F :  6) =e c t+d_l /2exp i~rc .... 6)(~;t)  
ct + d ' ct + ct + d 

where e A is the same phase that occurred in (2.15) [21]. Defining 

t=  N~, 

2~= 1 + r ( 2 X -  N ) ,  

we have the relation for K x introduced in (2.6) 

r i~rr ] 
r/(~') Kx ( , )  = exp [ - ~  (2X - N)  2 6)(~'; t ) .  

We apply formula (B.3b) for a particular element .4 ~ F of the form 

~ =  (1 + 2ctN 2fiN 2 ) 
23, 1 + 26N ' 

(B.2) 

acting on t as 

(B.3a) 

(B.3b) 

(B.4) 

(B.5) 

(B.6) 

,g (1 + 2 a N ) t  + 2fiN z 
t ~ t ' =  (B.7) 

27t + (1 + 28N) 
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Using the relation t = N,r, this means that on r acts A of eq. (B.1), according to 

A ( I + 2 a N ) r + 2 ~ N  
r ~ ¢ ' =  . (B.8) 

23,Nr + (1 + 2~N) 

From (B.4), the corresponding ~' reads: 

~" = ½ + z ' ( )~ -  1N) .  (B.9) 

The unimodularity of the matrix A ensures that two integers/~ and u may be found 
such that 

2•t + (1 + 26N) N(/xr'  + u). (B.10) 

One may then compute Kx(r '  ) using (2.15) and (B.3) and one obtains after some 
calculation 

(l + 2aN)'r + 2flN) e 3- 
Kx 2~N-~--~-+-~--N ) = -~A exp( i~r'l/2) Kx ( r ) " (B.11) 

Modular transformations of F2N change K x and X~ °nf by a ~- and r-independent 
phase which is a 24th root of unity. A similar calculation for the affine characters 
yields an analogous result with a 8th root of unity: 

(B.12) 
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