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The question of boundary conditions in conformal field theories is discussed, in

the light of recent progress. Solving the consistency condition known as Cardy

equation is shown to amount to the algebraic problem of finding integer valued

representations of the fusion algebra. Graphs encode these boundary conditions

in a natural way, but are also relevant in several aspects of physics “in the bulk”.

Quantum algebras attached to these graphs contain information on structure con-

stants of the operator algebra, on the Boltzmann weights of the corresponding

integrable lattice models etc. Thus Boundary Conformal Field Theory offers a

new perspective on several old problems.

0. Introduction

The study of boundary conditions in conformal field theories (CFT) and in the

related integrable models has been experiencing a renewal of interest over the

last three or four years. This has been caused by its relevance in string and

brane theory on the one hand, and in various problems of condensed matter

on the other: see [1] for an introduction and references to the first subject, and

[2] for the second. As a result, there has been a blossoming of papers studying

the possible boundary conditions, the boundary fields and their couplings in

the framework of CFT (see [3] for a fairly extensive bibliography as of mid

99); a systematic discussion of boundary conditions preserving the integrabil-

ity, both in lattice models [4] and in (classical or quantum) field theories [5];

and an investigation of what happens to a critical system in the presence of

boundary perturbations, its renormalisation group flows etc [6]. At the same

time, new and unexpected connections with “pure” mathematics –operator

algebras, quantum symmetries– have also been revealed.

The purpose of these lectures is of course not to present exhaustively all

these interesting developments, but just to offer a pedagogical (and maybe

somewhat biaised) introduction to their simplest aspects and to some of the

recent progress. After briefly recalling basic facts on CFT, their chiral con-

stituents and how they are assembled into physically sensible theories, I turn

to the discussion of boundary conditions. I show how solving the consistency
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condition known as Cardy equation amounts to the algebraic problem of find-

ing non negative integer valued matrix representations of the fusion algebra.

These matrices are the adjacency matrices of graphs, which thus encode the

boundary conditions in a natural way (sect. 2). The study of the operator

algebra of boundary fields exposes new algebraic features attached to these

graphs (sect. 3). The latter also contain information on Boltzmann weights of

associated lattice integrable models, as I mention briefly in the last section.

1. A lightning review of CFT

This section is devoted to a fast summary of concepts and notations in rational

conformal field theories (RCFT).

1.1. Chiral data of RCFT

A rational conformal field theory is defined in terms of a certain number of

data. The first set of data specifies the properties of each chiral half, i.e.

of the holomorphic or of the antiholomorphic sector of the theory. One is

given a certain chiral algebra, A: it may be the Virasoro algebra Vir itself,

with its generators Ln, n ∈ Z, or equivalently the energy-momentum tensor

T (z) =
∑

n∈Z
z−n−2Ln. It may also be one of the extensions of Vir: supercon-

formal algebra, current algebra, W -algebra etc. One is also given a finite set

I of irreducible representation spaces (modules) {Vi}i∈I of A. Each of these

representations of A is also a representation (reducible or irreducible) of Vir,

with a central charge c and with a conformal weight (the lowest eigenvalue of

L0) denoted hi. Let’s recall for future use that c also specifies the coefficient

of the anomalous term in the transformation of the energy-momentum tensor

T (z) under an analytic change of coordinate z 7→ ζ(z)

T̃ (ζ) =
(∂z
∂ζ

)2

T (z) +
c

12
{z, ζ} (1.1)

where {z, ζ} denotes the schwarzian derivative

{z, ζ} =

∂3z
∂ζ3

∂z
∂ζ

−
3

2

(
∂2z
∂ζ2

∂z
∂ζ

)2

. (1.2)

By convention, the label i = 1 denotes the identity representation (for which

h1 = 0). Finally, we denote by Vi∗ the complex conjugate representation of Vi;

the identity representation is self-conjugate, 1∗ = 1.
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Each of these representations is graded for the action of the Virasoro gen-

erator L0 : all the eigenvalues of L0 differ from the lowest one, hi, by a non

negative integer 1, and the eigenspace of eigenvalue hi +p has a certain dimen-

sion #
(i)
p . It is natural to introduce the “character” of the representation Vi,

which is, up to a prefactor, the generating function of these dimensions

χi(q) = tr qL0−
c
24 = qhi−

c
24

∞∑

p=0

#(i)
p qp . (1.3)

The simplest example is given by the integrable representations of the affine (current)

algebra ŝl(2). For an integer value of the central charge of the affine algebra (or level) k, the

Virasoro central charge is c = 3k/(k+2), and there is a finite set of integrable representations,

labelled by an integer j: 1 ≤ j ≤ k + 1, whose conformal weights are hj = (j2 − 1)/4(k + 2).

In that case, the conjugation is trivial: Vj = Vj∗ . For the representation (j, k), the character

reads

χj(q) =
1

η3(q)

∞∑

p=−∞

(2(k + 2)p + j) q
(2(k+2)p+j)2

4(k+2) , (1.4)

where η(q) = q
1
24
∏∞

1
(1−qn) is the Dedekind function. Such characters are called “special-

ized characters” since they count states according to their L0 grading only. Non-specialized

characters can be introduced, which are sensitive to the Cartan algebra generator J0

χj(q, u) = tr qL0−
c
24 e2πiuJ0 . (1.5)

The expressions of non-specialized characters and/or for higher rank algebras may be found

in [7].

Another example is provided by the minimal c < 1 theories. They are parametrized by a

pair of coprime integers p and p′, and the central charge takes the values c = 1−6(p−p′)2/pp′.

The irreducible representations of Vir are labelled by a pair of integers (r, s), 1 ≤ r ≤ p′− 1,

1 ≤ s ≤ p−1, modulo the identification (r, s) ≡ (p′− r, p− s). Their conformal weights read

h(r,s) = h(p′−r,p−s) =
(rp − sp′)2 − (p − p′)2

4pp′
. (1.6)

Again the conjugation acts trivially. The character of this irreducible representation reads,

with the notations λ := (rp − sp′), λ′ := (rp + sp′)

χ(r,s)(q) =
1

η(q)

∑

n∈Z

(
q

(2npp′+λ)2

4pp′ − q
(2npp′+λ′)2

4pp′

)
. (1.7)

1 This is strictly true only for algebras, whose generators are integrally graded.

In a superconformal algebra, or in a parafermionic algebra, the grading would be

fractional.
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Modular transformations

In the previous expressions, q is a dummy variable. If, however, q is regarded

as a complex variable of modulus less than one and written as q = exp 2iπτ ,

with τ a complex number of positive imaginary part, one may prove that the

sum converges and has remarkable modular properties. Under a PSL(2,Z)

transformation of τ :

τ 7→
a+ bτ

c+ dτ
, a, b, c, d ∈ Z, ad− bc = 1 ,

the set of functions χi transforms linearly, and in fact supports a unitary

representation of (the double cover of) PSL(2,Z). In particular there exists

a unitary matrix S implementing the transformation τ 7→ −1/τ . If q̃ :=

exp− 2iπ
τ , there exists a unitary |I| × |I| matrix S such that

χi(q) =
∑

j∈I

Sijχj(q̃) . (1.8)

Moreover the matrix S satisfies ST = S, S† = S−1, (Sij)
∗ = Si∗j = Sij∗ ,

S2 = C = the conjugation matrix defined by Cij = δij∗ , S4 = I. 2

For the c < 1 minimal representations,

I = {(r, s) ≡ (p′ − r, p − s) ; 1 ≤ r ≤ p′ − 1, 1 ≤ s ≤ p − 1}

and the S matrix reads

S(r,s),(r′s′) =

√
8

pp′
(−1)(r+s)(r

′
+s

′
) sin πrr′

p − p′

p′
sinπss′

p − p′

p
(1.9)

For the ŝl(2) affine algebra, at level k, for which I = {1, 2, · · · , k + 1}, one finds

Sjj′ =

√
2

k + 2
sin

πjj′

k + 2
, j, j′ ∈ I . (1.10)

For non-specialised characters, the transformation reads:

χi(q, u) = eikπu
2
/τ
∑

j∈I

Sijχj(q̃, u/τ) . (1.11)

2 The fact that S2 = C rather than S2 = I as expected from the transformation

τ 7→ −1/τ signals that we are dealing with a representation of a double covering of

the modular group.
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The expression for more general affine algebras may be found in [7].

One notes that the S matrix of the minimal case (1.9) is “almost” the tensor product of

two matrices of the form (1.10), at two different levels k = p−2 and k′ = p′−2. This would

be true for |p− p′| = 1 and if one could omit the identification (r, s) ≡ (p′− r, p− s). This is

of course not a coincidence but reflects the “coset construction” of c < 1 representations of

Vir out of the affine algebra ŝl(2) [8]. We shall encounter below again this fact that minimal

cases are “almost” the tensor products of the ŝl(2) ones.

Fusion Algebra

Another concept of crucial importance for our discussion is that of fusion al-

gebra. Fusion is an associative and commutative operation among representa-

tions of chiral algebras of RCFTs, inherited from the operator product algebra

of Quantum Field Theory. It looks similar to the usual tensor product of rep-

resentations, but contrary to the latter, it is consistent with the finiteness of

the set I and it preserves the central elements (instead of adding them). I shall

refer to the literature [7,9] for a systematic discussion of this concept, and just

introduce a notation ⋆ to denote it and distinguish it from the tensor product.

It is natural to decompose the fusion of two representations of a chiral alge-

bra on the irreducible representations, thus defining multiplicities, or “fusion

coefficients”

Vi ⋆ Vj = ⊕k Nij
k Vk, Nij

k ∈ N . (1.12)

There is a remarkable formula, due to Verlinde [10], expressing these mul-

tiplicities in terms of the unitary matrix S:

Nij
k =

∑

ℓ∈I

Siℓ Sjℓ (Skℓ)
∗

S1ℓ
. (1.13)

Chiral Vertex Operators

The field theoretic description of chiral halves of CFT (or “chiral cft”) makes

use of “chiral vertex operators” (CVO): φk
ij(z) is a z-dependent intertwiner

from Vi ⋆ Vj to Vk and may be diagrammatically depicted as

i
j

z,t

k
. In

fact, there are as many as Nij
k such independent intertwiners and the notation

φk
ij;t(z) and the diagram have to be supplemented by a multiplicity label t ∈

{1, 2, · · · ,Nij
k}. CVO may be composed (“fused”) as φm

il (z1)φ
l
jk(z2) and there

is a matrix Flp

[
i
m

j
k

]u t

t1 t2
expressing that there are two distinct but equivalent

ways of intertwining Vi⋆Vj⋆Vk and Vm :
2z u

l

i

2z

j

t 1 2 zt1

m

i
jp

12z

m kk
Flp

t

. The
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matrix F satisfies orthonormality and completeness conditions, and moreover,

a quintic (“pentagon”) identity expressing the consistency (the associativity)

in the fusion of three CVOs. There is also the operation of braiding and

the matrix Blp

[
i
m

j
k

]
(ǫ) which relates φm

il (z1)φ
l
jk(z2) and φm

jp (z2)φ
p
ik(z1) , ǫ =

sign (ℑmz12), see [11] for a systematic discussion.

Notice finally that the matrix S admits an extension, denoted S(j), such

that S(1) = S. The matrix S(p) gives the modular transformation of 1-point

conformal block 〈φi
pi〉τ on the torus. See [11] for the explicit expression of S(p)

in the simplest cases.

The data c (or k, etc), {Vi, hi}i∈I , S(p)ij , Nij
k, F

[
i
k

j
l

]
and B

[
i
k

j
l

]
(±)

form what may be called the “chiral data” of the RCFT. They are the basic

ingredients in the construction of physical theories. The consistency of the

latter imposes however that adequate conditions be satisfied by their spectral

data and by the structure constants of their Operator Product Algebra (OPA).

This is what we shall consider now, examining in turn the cases of the theory

“in the bulk”, i.e. in the absence of any boundary, and then in the half-plane.

1.2. Spectral and OPA Data in the Bulk

In the plane punctured at the origin, equiped with the coordinate z, or equiva-

lently on the cylinder of perimeter L with the coordinate w, with the conformal

mapping from the latter to the former z = exp−2πiw/L, a given RCFT is de-

scribed by a Hilbert space HP . This Hilbert space is decomposable into a

finite sum of irreducible representations of two copies of the chiral algebra

(Vir or else), associated with the holomorphic and anti-holomorphic sectors of

the theory:

HP = ⊕Zjj̄Vj ⊗ Vj̄ , (1.14)

with (non negative integer) multiplicities Zjj̄ . By the state-field correspon-

dence, (1.14) also describes the spectrum of primary fields of the theory, i.e.

of those fields that transform as heighest weight representations of A ⊗ A.

On the cylinder, it is natural to think of the Hamiltonian as the operator of

translation along its axis (the imaginary axis in w), or along any helix, defined

by its period τL in the w plane, with ℑmτ > 0. If Lcyl
−1 and L̄cyl

−1 are the two

generators of translation in w and w̄, Hcyl,τ = (τLcyl
−1+ τ̄ L̄cyl

−1). Mapped back in

the plane using the transformation law of the energy-momentum tensor (1.1),

Lcyl
−1 reads

Lcyl
−1 = −

2πi

L
(L0 −

c

24
) (1.15)
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where the term c/24 comes from the schwarzian derivative of the exponential

mapping. The evolution operator of the system, i.e. the exponential of L times

the Hamiltonian is thus

e−Hcyl,τ L = e2πi(τ(L0−
c
24 )−τ̄(L̄0−

c
24 )) . (1.16)

A convenient way to encode the information (1.14) is to look at the partition

function of the theory on a torus T. Up to a global dilatation, irrelevant here,

a torus may be defined by its modular parameter τ , ℑmτ > 0, such that its

two periods are 1 and τ . Equivalently, it may be regarded as the quotient of

the complex plane by the lattice generated by the two numbers 1 and τ :

T = C/(Z ⊕ τZ) , (1.17)

in the sense that points in the complex plane are identified according to w ∼

w′ = w+n+mτ , n,m ∈ Z. There is, however, a redundancy in this description

of the torus: the modular parameters τ and Mτ describe the same torus, for

any modular transformation M ∈ PSL(2,Z). The partition function of the

theory on this torus is just the trace of the evolution operator (1.16), with the

trace taking care of the identification of the two ends of the cylinder into a

torus

Z = tr HP
e2πi[τ(L0−

c
24 )−τ̄(L̄0−

c
24 )] . (1.18)

Using (1.14) and the definition (1.3) of characters, this trace may be written

as

Z =
∑

Zjj̄ χj(q)χj̄(q̄) q = e2πiτ q̄ = e−2πiτ̄ . (1.19)

Let’s stress that in these expressions, τ̄ is the complex conjugate of τ , and q̄

that of q, and therefore, Z =
∑
Zjj̄χj(q)

(
χj̄(q)

)∗
is a sesquilinear form in the

characters. It is a natural physical requirement that this partition function be

intrinsically attached to the torus, and thus be invariant under modular trans-

formations. Finally one imposes the extra condition Z11 = 1 which expresses

the unicity of the identity representation (i.e. of the “vacuum”).

One is thus led to the problem of finding all possible sesquilinear forms

(1.19) with non negative integer coefficients that are modular invariant, and

such that Z11 = 1. As explained in the previous section, the finite set of

characters of any RCFT, labelled by I, supports a unitary representation of

the modular group. This implies that any diagonal combination of characters

Z =
∑

i∈I χi(q)χi(q̄) is modular invariant. In that case, all representations of

A⊗A appearing in (1.14) are left-right symmetric, and thus all primary fields
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are spinless: hj − hj̄ = 0. This situation is referred to as the “diagonal case”

or “diagonal theory”. Other solutions are, however, known to exist.

The problem has been completely solved only in a few cases: for the RCFTs

with an affine algebra, the ŝl(2) [12] and ŝl(3) [13] theories at arbitrary level,

plus a host of cases with constraints on the level, e.g. the general ŝl(N) for k =

1 [14]; some of the associated coset theories [8] have also been fully classified,

including all the minimal c < 1 theories, N = 2 “minimal” superconformal

theories, etc. A good review on the current state of the art is provided by T.

Gannon [15]. For a short account of the cases of ŝl(2) and ŝl(3), see [16].

In the case of CFTs with a current algebra, it is in fact better to look at the same problem

of modular invariants after replacing in (1.19) all specialized characters by non-specialized

ones, v.i.z.
∑

Zjj̄χj(q, u)
(
χj̄(q, u)

)∗
. Because these non-specialized characters are linearly

independent, there is no ambiguity in the determination of the multiplicities Zjj̄ from Z.

This alternative form of the partition function may be seen to result from a modification of

the energy-momentum tensor T (z) → T (z) − 2πi
L

(u, J(z)) − k
2

(
2π
L

)2
(u, u), see [3].

The matrix Zjj̄ of (1.14) gives us the spectrum of primary fields of the

theory. We have also to determine the couplings of these fields. This may be

done by expressing them in terms of the CVO as

Φ(i,̄i)(z, z̄) =
∑

j,j̄,k,k̄,t,t̄

d
(k,k̄);t,t̄

(i,̄i)(j,j̄)
φk

i,j;t(z) ⊗ φk̄
ī,j̄;t̄(z̄) . (1.20)

Then matrix elements of Φ(i,̄i) between highest weight states are given in terms

of those of CVO, which are supposed to be known

〈k, k̄|Φ(i,̄i)(1, 1)|j, j̄〉 =
∑

t,t̄

d
(k,k̄);t,t̄

(i,̄i)(j,j̄)
〈k|φk

i,j;t(1)|j〉 〈k̄|φk̄
ī,j̄;t̄(1)|j̄〉 . (1.21)

For ŝl(2) or minimal theories, the latter have been explicitly computed in

[17,18]. In the diagonal theories, the d coefficients are equal to a product

of Kronecker delta symbols δīiδjj̄δkk̄δtt̄ with t = 1, · · · ,Nij
k implying that d

vanishes if Nij
k = 0. Thus the expansion coefficients d

(k,k̄);t,t̄

(i,̄i)(j,j̄)
give in general

the relative OPE coefficients of the non-diagonal model with respect to the

diagonal model of same central charge. These numbers are constrained by

the requirement of locality of the physical correlators, which makes use of the

braiding matrices B(±). The resulting set of coupled quadratic equations has

been fully solved only in the sl(2) cases (see [17,19] and further references

therein).
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A curious empirical fact was then observed: one may introduce graphs,

whose properties are intimately connected with some features of the modular

invariants or of the structure constants. In the simplest case of ŝl(2)k theories,

these graphs are the well-known ADE Dynkin diagrams of Coxeter number

h = k+2, and the set of labels j of the diagonal terms appearing in Z in (1.19)

is precisely the set of so-called exponents labelling the eigenvalues 2 cosπj/h

of the adjacency matrix of the diagram (see Table 1). Moreover let’s introduce

the corresponding eigenvectors ψj
a of the adjacency matrix, (a being a vertex

of the diagram G) and define the structure constants of the so-called Pasquier

algebra [20]

Mij
k =

∑

a∈G

ψi
aψ

j
a(ψk

a)∗

ψ1
a

. (1.22)

Then the structure constants d(i,i),(j,j)
(k,k) of spinless fields in the theory may

be shown to be equal to those of the Pasquier algebra d(i,i),(j,j)
(k,k) = Mij

k.

Thus the ADE graph encodes some non trivial information about a subsector

of the theory, namely that of spinless fields, their spectrum and OPE.

Table 1: ADE graphs, their Coxeter number and their exponents

h exponents

An
2 3 n1

n + 1 1, 2, · · · , n

Dn+2
1 2

n+2

n+1

3
2(n+ 1) 1, 3, · · · , 2n + 1, n + 1

E6
1 2

3

4 5

6

12 1, 4, 5, 7, 8, 11

E7
1 2

3

4 5 6

7

18 1, 5, 7, 9, 11, 13, 17

E8
1 2

3

4 5 6 7

8

30 1, 7, 11, 13, 17, 19, 23, 29

These empirical facts are known to extend to more complicated theories.

In general, we expect that among the pairs (j, j̄) appearing in Z, a special role
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will be played by the diagonal subset

E = {j|j = j̄, Zjj 6= 0} , (1.23)

the elements of which, the “exponents” of the theory, are counted with the

multiplicity Zjj . (We assume that E is stable under conjugation: j and j∗

occur with the same multiplicity.) Then the relevant graphs Gi are labelled by

the set I, they have a common set of vertices and their spectrum is described

by the set E in the sense that their eigenvalues are of the form Sij/S1j, j ∈ E .

The origin and interpretation of these empirical facts had remained elusive

until recently. It is one of the virtues of BCFT to have cast a new light on

these facts and to have offered a new framework in which they appear more

natural and systematic.

2. Boundary Conformal Field Theory

2.1. Spectral Data in the Upper Half Plane

We now turn to the study of RCFT in a half-plane. There are several physical

reasons to look at this problem, as mentionned in the Introduction. Here we

shall only look at the new information and perspective that this situation gives

us on the general structure of RCFT.

In a half-plane, the admissible diffeomorphisms must respect the boundary,

taken as the real axis: thus only real analytic changes of coordinates, satisfying

ǫ(z) = ǭ(z̄) for z = z̄ real, are allowed. The energy momentum itself has this

property:

T (z) = T̄ (z̄)|real axis , (2.1)

which expresses simply the absence of momentum flow across the boundary

and which enables one to extend the definition of T to the lower half-plane by

T (z) := T̄ (z) for ℑmz < 0. There is thus only one copy of the Virasoro algebra

Ln = L̄n. This continuity equation (2.1) on T extends to more general chiral

algebras and their generators, at the price however of some complication. In

general, the continuity equation on generators of the chiral algebra involves

some automorphism of that algebra:

W (z) = ΩW̄ (z̄)|real axis (2.2)

(see [3] and further references therein).

The half-plane, punctured at the origin, (which introduces a distinction

between the two halves of the real axis), may also be conformally mapped on
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an infinite horizontal strip of width L by w = L
π log z. Boundary conditions,

loosely specified at this stage by labels a and b, are assigned to fields on the

two boundaries z real > 0, < 0 or ℑmw = 0, L. For given boundary conditions

on the generators of the algebra and on the other fields of the theory, i.e. for

given automorphisms Ω and given a, b, we may again use a description of the

system by a Hilbert space of states Hba (we drop the dependence on Ω for

simplicity). On the half-plane or on the finite-width strip, only one copy of

the Virasoro algebra, or of the chiral algebra A under consideration, acts on

Hba, and this space decomposes on representations of Vir or A according to

Hba = ⊕nib
aVi , (2.3)

with a new set of multiplicities nib
a ∈ N. The natural Hamiltonian on the strip

is the translation operator in ℜew, hence, mapped back in the half-plane

Hb|a =
2π

L

(
L0 −

c

24

)
. (2.4)

To recapitulate, in order to fully specify the operator content of the theory

in various configurations, we need not only determine the multiplicities “in

the bulk”Zjj̄ of (1.14), but also the possible boundary conditions a, b on a

half-plane and the associated multiplicities nib
a. This will be our task in the

following, and as we shall see, a surprising fact is that the latter have some

bearing on the former.

2.2. Boundary states

In the same way that we found useful to chop a finite segment of the infinite

cylinder and identify its ends to make a torus, it is suggested to consider a finite

segment of the strip – or a semi-annular domain in the half-plane– and identify

its edges, thus making a cylinder. This cylinder can be mapped back into an

annular domain in the plane, with open boundaries. More explicitly, consider

the segment 0 ≤ ℜew ≤ T of the strip –i.e. the semi-annular domain in the

upper half-plane comprised between the semi-circles of radii 1 and eπT/L, the

latter being identified. It may be conformally mapped into an annulus in the

complex plane by ζ = exp(−2iπw/T ), of radii 1 and e2πL/T , see Fig. 1. By

working out the effect of this change of coordinates on the energy-momentum

T , using (1.1), one finds that (2.1) implies

ζ2T (ζ) = ζ
2
T (ζ̄) for |ζ| = 1, e2π L

T . (2.5)
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b a
0

z

πw/L
z e ζ e

-2iπw/T

a
0

iL

T

b
w

b

a

ζ

Fig. 1: The same domain seen in different coordinates: a semi-
circular annulus, with the two half-circles identified, a rectangular
domain with two opposite sides identified, and a circular annulus.

After radial quantization, this translates into a condition on boundary states

|a〉 , |b〉 ∈ HP which describe the system on these two boundaries.

(Ln − L̄−n)|a〉 = 0 (2.6)

(and likewise for |b〉).

Exercise : assuming that W transforms as a primary field of conformal weight (hW , 0),

find the corresponding condition on W (ζ). Then show that the analogue of (2.6) reads

(Wn − (−1)hW Ω(W̄−n))|a〉 = 0.

We shall now look for a basis of states, solutions of this linear system

of boundary conditions. One may seek solutions of these equations in each

Vj ⊗ Vj̄ ⊂ HP , since these spaces are invariant under the action of the two

copies of Vir or of the chiral algebra A. Consider only for simplicity the case

of the Virasoro generators.

Lemma There is an independent “Ishibashi state” |j〉〉, solution of (2.6), for

each j = j̄, i.e. j ∈ E , the set of exponents.
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Proof (G. Watts)[21]: Use the identification between states |a〉 ∈ Vj ⊗ Vj̄ and

operators Xa ∈ Hom(Vj̄ ,Vj), namely |a〉 =
∑

n,n̄ an,n̄|j, n〉 ⊗ |j̄, n̄〉 ↔ Xa =∑
n,n̄ an,n̄|j, n〉〈j̄, n̄|. Here we make use of the scalar product in Vj̄ for which

L̄−n = L̄†
n, hence (2.6) means that LnXa = XaLn, i.e. Xa intertwines the

action of Vir in the two irreducible representations Vj and Vj̄. By Schur’s

lemma, this implies that they are equivalent, Vj ∼ Vj̄ , i.e. that their labels

coincide j = j̄ and that Xa is proportional to Pj , the projector in Vj . We shall

denote |j〉〉 the corresponding state, solution to (2.6).

Since “exponents” j ∈ E may have some multiplicity, an extra label should be appended

to our notation |j〉〉. We omit it for the sake of simplicity. The previous considerations extend

with only notational complications to more general chiral algebras and their possible gluing

automorphisms Ω. See [3] for more details and more references on these points. Also, see

[22] for an alternative and mathematically more precise discussion of Ishibashi states.

The normalization of this “Ishibashi state” requires some care. One first

notices that, for q̃ a real number between 0 and 1,

〈〈j′|q̃
1
2 (L0+L̄0−

c
12 )|j〉〉 = δjj′χj(q̃) (2.7)

up to a constant that we choose equal to 1. It would seem natural to then

define the norm of these states by the limit q̃ → 1 of (2.7). This limit diverges,

however, and the adequate definition is rather

〈〈j||j′〉〉 = δjj′S1j (2.8)

This comes about in the following way: a natural regularization of the above limit is:

〈〈j||j′〉〉 = limq̃→1qc/24〈〈j′|q̃
1
2 (L0+L̄0−

c
12 )|j〉〉 (2.9)

where q is the modular transform of q̃ = e−2πi/τ , q = e2πiτ . In a (“unitary”) theory in

which the identity representation (denoted 1) is the one with the smallest conformal weight,

show that in the limit q → 0, the r.h.s. of (2.9) reduces to (2.8). In non unitary theories,

this limiting procedure fails, but we keep (2.8) as a definition of the new norm.

At the term of this study, we have found a basis of solutions to the constraint

(2.6) on boundary states, and it is thus legitimate to expand the two states

attached to the two boundaries of our domain as

|a〉 =
∑

j∈E

ψj
a√
S1j

|j〉〉 (2.10)
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with coefficients denoted ψj
a, and likewise for |b〉. We define an involution

a → a∗ on the boundary states by ψj
a∗ = ψj∗

a = (ψj
a)∗, (recall that j → j∗

is an involution in E). One may show [23] that it is natural to write for the

conjugate state

〈b| =
∑

j∈E

〈〈j|
ψj

b∗√
S1j

. (2.11)

As a consequence

〈b‖a〉 =
∑

j∈E

ψj
a

(
ψj

b

)∗

S1j
〈〈j‖j〉〉 =

∑

j∈E

ψj
a

(
ψj

b

)∗
(2.12)

so that the orthonormality of the boundary states is equivalent to that of the

ψ’s.

2.3. Cardy equation

Let us return to the annulus 1 ≤ |ζ| ≤ e2πL/T considered in last subsection,

or equivalently to the cylinder of length L and perimeter T , with boundary

conditions (b.c.) a and b on its two ends. Following Cardy [24], we shall

compute its partition function Zb|a in two different ways. If we regard it as

resulting from the evolution between the boundary states |a〉 and 〈b|, with

q̃
1
2 = e−2πL/T , we find

Zb|a = 〈b|(q̃
1
2 (L0+L̄0−

c
12 )|a〉 =

∑

j,j′∈E

(
ψj

b

)
∗ ψj′

a

S1j
〈〈j|q̃

1
2 (L0+L0−

c
12 )|j′〉〉

=
∑

j∈E

ψj
a

(
ψj

b

)
∗ χj(q̃)

S1j
.

(2.13)

On the other hand, if we regard it as resulting from the periodic “time”

evolution on the strip with b.c. a and b, using the decomposition (2.3) of the

Hilbert space Hba, and with q = e−πT/L

Zb|a(q) =
∑

i∈I

nib
aχi(q) . (2.14)

See Fig. 2. Note that string theorists would refer to these two situations as

(a): the tree approximation of the propagation of a closed string; (b) the one-

loop evolution of an open string. Performing a modular transformation on the
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b

a

L

T

(a) (b)

a b

T

L

Fig. 2: Two alternative computations of the partition function
Zb|a: (a) on the cylinder, between the boundary states |a〉 and
〈b|, (b) as a periodic time evolution on the strip, with boundary
conditions a and b.

characters χj(q̃) =
∑

i Sji∗χi(q) in (2.13), and identifying the coefficients of χi

yields

nia
b =

∑

j∈E

Sij

S1j
ψj

a

(
ψj

b

)
∗ , (2.15)

a fundamental equation for our discussion that we refer to as Cardy equation

[24]. In deriving this form of Cardy equation, we have made use of a symmetry

property of nia
b

nia
b = ni∗b

a (2.16)

which follows from the symmetries of S.

(Comment: this identification of coefficients of specialized characters is in general not

justified, as the χi(q) are not linearly independent. As in sect. 1, it is better to generalize the

previous discussion, in a way which introduces non-specialized –and linearly independent–

characters. This has been done in [3] for the case of CFTs with a current algebra. Unfortu-

nately, little is known about other chiral algebras and their non-specialized characters.)

Let us stress that in (2.15), the summation runs over j ∈ E , i.e. this

equation incorporates some information on the spectrum of the theory “in the

bulk”, i.e. on the modular invariant partition function (1.19).

Cardy equation (2.15) is a non linear constraint relating a priori unknown

complex coefficients ψj to unknown integer multiplicities nia
b. We need addi-

tional assumptions to exploit it.

We shall thus assume that
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• we have found an orthonormal set of boundary states |a〉, i.e. satisfying

(n1)a
b =

∑

j∈E

ψa
j(ψb

j)∗ = δab ; (2.17)

• we have been able to construct a complete set of such boundary states |a〉

∑

a

ψa
j(ψa

j′)∗ = δjj′ . (2.18)

These assumptions imply that

# boundary states = # independent Ishibashi states = |E| .

None of these assumptions is innocent, and relaxing one of them forces to

reconsider the forthcoming discussion. For example, the constraint of orthog-

onality has been recently shown to be too strong under certain circumstances:

a renormalisation group flow may take us to a boundary state where it is vi-

olated [25,26,6]. In the diagonal theories at least, such a state A is a linear

superposition with non-negative integer coefficients of boundary states satis-

fying (2.17): ψA
j =

∑
a nA

aψa
j . As for the assumption of completeness, it is

not obviously natural to me and would also deserve a critical discussion.

2.4. Representations of the fusion algebra and graphs

Return to Cardy equation (2.15) supplemented by the above assumptions

(2.17)-(2.18) and observe that it gives a decomposition of the matrices ni,

defined by (ni)a
b = nia

b, into their orthonormal eigenvectors ψ and their

eigenvalues Sij/S1j . Observe also that as a consequence of Verlinde formula

(1.13), these eigenvalues form a one-dimensional representation of the fusion

algebra
Siℓ

S1ℓ

Sjℓ

S1ℓ
=
∑

k∈I

Nij
k Skℓ

S1ℓ
, ∀i, j, ℓ ∈ I . (2.19)

Hence the matrices ni also form a representation of the fusion algebra

ni nj =
∑

k∈I

Nij
k nk (2.20)

and they thus commute. Moreover, as we have seen above, they satisfy n1 = I,

nT
i = ni∗ .

Conversely, consider any N-valued matrix representation of the Verlinde

fusion algebra ni, such that nT
i = ni∗ . Since the algebra is commutative,
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[ni, n
T
i ] = [ni, ni∗ ] = 0, the ni commute with their transpose, (normal ma-

trices), hence they are diagonalizable in a common orthonormal basis. Their

eigenvalues are known to be of the form Sij/S1j . They may thus be written as

in (2.15). Thus any such N-valued matrix representation of the Verlinde fusion

algebra gives a (complete orthonormal) solution to Cardy’s equation.

Conclusion:

N-valued matrix representation of the fusion algebra

⇐⇒ Complete, orthonormal solution of Cardy equation

Moreover, since N-valued matrices are naturally interpreted as graph adjacency

matrices, graphs appear naturally and their spectral properties are those an-

ticipated in the last lines of sect. 1.

The relevance of the fusion algebra in the solution of Cardy equation had been pointed

out by Cardy himself for diagonal theories [24] and foreseen in general in [27] with no good

justification; the importance of the assumption of completeness of boundary conditions was

first stressed by Pradisi et al [28].

2.5. The case of ŝl(2) WZW theories

Problem: Classify all N-valued matrix reps of ŝℓ(2)k fusion algebra with k

fixed.

The algebra is generated recursively by n2

n1 = I, n2 ni = ni+1 + ni−1, i = 2, . . . , k (2.21)

S real ⇒ ni = nT
i .

Even though ψj and E are yet unknown, we know from (1.10) that n2 has

eigenvalues of the form

γj =
S2j

S1j
= 2 cos

πj

k + 2
, j ∈ E . (2.22)

We shall discard the case where the matrix n2 is “reducible”, i.e. may be

written as a direct sum of two matrices n2 = n
(1)
2 ⊕ n

(2)
2 , because then all the

other matrices ni have the same property and this corresponds to decoupled

boundary conditions. It turns out that irreducible N-valued matrices G with

spectrum |γ| < 2 have been classified [29]. They are the adjacency matrices
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either of the A-D-E Dynkin diagrams or of the “tadpoles” Tn = A2n/Z2.

Thus as a consequence of equation (2.15) alone, for a ŝl(2) theory at level k,

the possible boundary conditions are in one-to-one correspondence with the

vertices of one of these diagrams G, with Coxeter number h = k + 2. If we

remember, however, that the set E must appear in one of the modular invariant

torus partition functions, the case G = Tn has to be discarded, and we are left

with ADE. (Up to this last step, this looks like the simplest route leading to

the ADE classification of ŝl(2) theories.) We thus conclude that for each ŝl(2)

theory classified by a Dynkin diagram G of ADE type

E = Exp(G), dim(ni) = |E| = |G|

complete orthonormal b. c. = a, b, · · · : vertices of G

n2 = adjacency matrix of G

ni = “i-th fused adjacency matrix” of G

ψj = eigenvector of n2 with eigenvalue γj .

One checks indeed that the matrices ni, given by equation (2.15), together with

(1.10), have only non negative integer elements. See [3,16] for a review of their

remarkable properties and of their ubiquitous rôle in a variety of problems.

2.6. The case of c < 1 minimal models

As recalled above, this case is closely related to the ŝl(2) models that we just

discussed. If c = 1 − 6(p−p′)2

pp′
, as in sect 1.1, the classification of modular

invariants is done by pairs of Dynkin diagrams (Ap′−1, G), with p equal to the

Coxeter number of G. Our problem is then to classify all N-valued matrix

representations of the corresponding fusion algebra.

Theorem: [3] The only complete orthonormal solution to Cardy’s equation

are labelled by pairs (r, a) of nodes of the Ap′−1 and of the G graphs, with the

identification

(r, a) ≡ (p′ − r, γ(a)) (2.24)

where γ is the following automorphism of the G Dynkin diagram: the natural

Z2 symmetry for the A, Dodd and E6 cases, the identity for the others.

The solutions are given explicitly as

nrs = Nr ⊗ n(G)
s +Np′−r ⊗ n

(G)
p−s (2.25)

or

nrs;(r1,a)
(r2,b) = Nrr1

r2 n(G)
sa

b +Np′−r r1

r2 n
(G)
p−s a

b , (2.26)
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with 1 ≤ r, r1, r2 ≤ p′ − 1, 1 ≤ s ≤ p− 1, and a, b are running over the nodes

of the Dynkin diagram G; Nr are the fusion matrices of ŝl(2)p′−2, n
(G)
s are the

representation matrices of the fusion algebra of ŝl(2)p−2 associated with the

graph G and introduced in sect 2.5.

Hint: Look at the generators n21 and n12 of fusion algebra. Both have eigen-

values |γ| < 2, but now they are no longer irreducible matrices as in sect. 2.5.

To show that (2.25) is indeed the only solution requires a detailed discussion,

see [3].

Example: The 3-state Potts model. This is the p′ = 5, p = 6 (c = 4/5) minimal model,

classified by the pair (A4, D4). According to the previous discussion, there are 8 distinct

boundary conditions labelled by

(r, a) ∈ (A4, D4)/Z2 e.g. r = 1, 2, a ∈ D4

This was first pointed out in [30]: the three boundary conditions (1, a) where a = 1, 3, 4 is

one of the three end-points of the D4 diagram are fixed b.c., corresponding to fixing the value

of the Potts “spin” to one of its three values, while in the three b.c. (2, a), the boundary

spin may take either value different from a; the b.c. (1, 2), where 2 denotes the middle point

of the diagram, is the free boundary condition: the boundary spin may take an arbitrary

value; finally the b.c. (2, 2) is more delicate to describe [30]. See also Oshikawa’s lectures at

this school. The explicit expressions of the different partition functions of type Z(1,1)|(r,a)

read

Z(1,1)|(1,1) = χ(1,1) + χ(1,5)

Z(1,1)|(1,2) = χ(4,2) + χ(4,4)

Z(1,1)|(1,a) = χ(1,3) if a = 3, 4

Z(1,1)|(2,1) = χ(3,1) + χ(3,5)

Z(1,1)|(2,2) = χ(2,2) + χ(2,4)

Z(1,1)|(2,a) = χ(3,3) if a = 3, 4 .

The others are linear combinations with non-negative integer coefficients of the latter. See

also [31,32] for a lattice realization with integrable boundary weights.

2.7. Other cases

It should be clear that the situation that we have described in detail for sl(2)

extends to all RCFTs. The matrices ni solutions to Cardy equation are the

adjacency matrices of graphs. In the case of ŝl(N), it is sufficient to supply the

(N − 1) fundamental matrices n
...
...

}
p

, p = 1, · · · , N − 1, indexed by the Young
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tableaux of the fundamental representations of sl(N), to determine all of them.

The fact that all ni have non negative integer elements is then non trivial. By

Cardy equation again, they satisfy a very restrictive spectral property: their

eigenvalues must be of the form Sij/S1j , when j runs over the set E , i.e. the

diagonal part of the modular invariant.

The program of classifying these graphs/boundary conditions has been

completed only in a few cases: ŝl(2) as discussed above, ŝl(3) through a combi-

nation of some empirical search of relevant graphs [33], of Gannon’s classifica-

tion of the modular invariants [13], and of the recent work of Ocneanu [34], see

[3,16] for a discussion; ŝl(N)1 [3], where the results match those obtained in

the study of modular invariants [14]: the graphs turn out to be star polygons.

3. Boundary Operator Algebra

According to Cardy [24], changes of boundary conditions can be interpreted

as due to the insertion of fields bΨa
j,β(x) living on the boundary, ℑmz = 0,

x = ℜe z of the upper half-plane z ∈ H. We know the spectrum of these

fields from the previous discussion: for a given pair a, b of boundary conditions

and a label i ∈ I, there are nia
b independent such fields, which are thus

labelled by a multiplicity label α = 1, · · · , nia
b. Pictorially, we may again use a

CVO-like representation for bΨa
j,α(x) =

α
b

x
a

j

. It is a natural –and physically

important– question to determine the correlation functions of these new fields

in the possible presence of the “usual” fields “in the bulk”. Two quantities of

particular importance are

i) the fusion matrix (1)F of boundary operators, which plays for the bound-

ary fields the same rôle as the matrix F for the CVO (sect. 1.1),

F
(1)

cp
c

i

2x

j

α1 2 xα1

b

i
jp

12x

2x

t

β

b aa , gives their OPE coefficient

bΨc
i,α1

(x1)
cΨa

j,α2
(x2) =

∑

p,β,t

(1)Fcp

[
i j
b a

]β t

α1 α2

1

|x12|hi+hj−hp

bΨa
p,β(x2)+ . . .

(3.1)

in which the multiplicity labels run over α1 = 1, · · · , nic
b, α2 = 1, · · · , nja

c,

β = 1, · · · , npa
b, t = 1, · · · ,Nij

p;

ii) the bulk-boundary coefficients R
(i,̄i∗,t)
a,α (p) (denoted a,αBp,t

(i,̄i)
in [3]) enable

one to expand bulk fields Φ in terms of Ψ, close to the boundary, i.e. for
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small y = ℑmz

Φ(i,̄i)(z , z̄) =
∑

a,α ,p∈I ,t

R(i,̄i∗,t)
a,α (p)

1

(2iy)hi+hī−hp

aΨa
p,α(x) + ... (3.2)

Here α = 1, · · · , npa
a, t = 1, · · · ,Nīi

p∗

. Given these data (and for a cho-

sen normalisation of the Ψ), we may in principle compute all correlation

functions of Ψ and Φ [35].

I shall not dwell here on the determination of the fusion matrices (1)F and

of the bulk-boundary coefficients. They have been the object of much activity

lately, in particular on their connection with chiral data and on the algebraic

relations that they satisfy. Their explicit determination for the A or D type

minimal models has been completed by Runkel [36,37]. I just mention two

results:

In the diagonal theories, the matrices (1)F coincide with the standard fusion

matrices F : this is in accordance with the fact that in that case, the indices

a, b, · · · are of the same nature as i, j, · · ·, i.e. also belong to the set I [36,3].

Also, the bulk coefficients R(p) are expressible in terms of the matrix S(p)

introduced at the end of sect. 1.1, a quite remarkable convergence between

seemingly very different objects.

In general, the bulk-boundary coefficient pertaining to the identity, i.e.

R
(i,i∗,1)
a,1 (1) is proportional to ψa

i/ψa
1. It thus satisfies, up to a normalisation,

the Pasquier algebra (1.22), [28,23,22,3]

ψa
i

ψa
1

ψa
j

ψa
1

=
∑

k∈I

Mij
k ψa

k

ψa
1
.

This expresses the OPA of bulk fields of type Φ(i,i∗) near the boundary (a) and

must be compared with the empirical observation made in sect. 1.2 on the rôle

of the Pasquier algebra in the OPA of spinless fields.

The determination of the (1)F matrix, whose entries are called “cells” by

Ocneanu [38], turns out to be an essential step, not only in the study of bound-

ary effects, but also in uncovering hidden algebraic aspects of the theory. For

a given set of matrices {ni} –a given “graph”– this set of cells satisfies various

non linear relations: orthonormality expressing the fact that it plays the rôle

of a change of basis (“3−j coefficients”) in tensors products in a certain space,

a mixed pentagon identity written symbolically as F (1)F (1)F = (1)F (1)F , ex-

pressing the consistency (associativity) in the fusion of several boundary fields,
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1γ3α1α

3α

1γ3α

a

l*k
t

d

m

a b

i

β

j

3

21α

F
(1)

F
(1)

FF
(1)

F
(1)

a

l*k

a
3tt2

d

l
ji

2

a b c

i j k l*

d a
α α4

a

l*

a

k

j
i

l

d

p

2α
aa d

j
i

t3
c

1β

l*kp

m

Fig. 3: The mixed pentagon identity expressing the associativ-
ity of the fusion of boundary fields.

(see Fig. 3), and other identities. See [34,39,40] for more details and refer-

ences.

It is thus a non trivial task to determine (1)F for a given graph: it may fail,

in certain cases, because of some obstruction not revealed by the study of the

set {ni} alone. This is what has been announced by Ocneanu [34] for one of

the graphs of ŝl(3) listed in [3].

If it exists, this system of cells gives us access not only to the Boundary

CFT, as explained above. It turns out to also contain the essential information

about integrable lattice models and their Boltzmann weights.

4. Integrable lattice models

It should indeed be mentionned that parallel to the conformal field theoretic

discussion sketched in these notes, one may study a class of lattice integrable

models, the so-called face, or height, or RSOS, models, which are also described

in terms of the same graphs. There the degrees of freedom are attached to sites

of a square lattice, and are assigned to take their value in the set of vertices
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of the chosen graph. Typically, in the simplest models, neighbouring sites

on the lattice are assigned neighbouring vertices on the graph. Boltzmann

weights are given for each configuration of four vertices around a square face.

They depend on an additional parameter, the spectral parameter u, and must

satisfy an integrability condition, the celebrated Yang-Baxter equation. This is

realised algebraically through a representation of the Temperley-Lieb algebra,

or of some other quotient of the Hecke algebra, constructed on the graph as

follows. For a triplet of sites n − 1,n,n + 1 along a diagonal zig-zag line on

the lattice, and “heights” a, b or d and c assigned to them, the face Boltzmann

weight reads

Xn(u) =

n-1

u c

b

d

n n+1

a

α γ

α γ’’

= sin
(π
h
− u
)
δbd + sinu (Un)bd (4.1)

The Us are the generators of the Hecke algebra, i.e. satisfy

U2
n

= 2 cos
π

h
Un

UnUn+1Un − Un = Un+1UnUn+1 − Un+1 (4.2)

UnUm = UmUn if |n− m| ≥ 2 .

As a consequence, the face weights satisfy the Yang-Baxter identity

Xn(u)Xn+1(u+ v)Xn(v) = Xn+1(v)Xn(u+ v)Xn+1(u) . (4.3)

The Pasquier models [41] give the simplest and most explicit example: the

relevant graphs are (dare I say of course?) the ADE diagrams, and the U

matrix element reads

(Un)bd = δac

√
ψ1

b ψ
1
d

ψ1
a

. (4.4)

They are related to the sl(2) algebra. Although generalisations to higher rank

are known to exist, there is a lack of such explicit and general formulas. In gen-

eral, there are additional edge degrees of freedom α, γ, α′, γ′, α = 1, · · · , n a
b,

etc. The weights for the (generalised) A-type graphs are known from the work

of Jimbo et al, and Wenzl [42]. In [27,43] explicit expressions have been given

for models associated with some of the graphs of ŝl(3), and a general result has

been obtained in [44] for graphs of ŝl(N) corresponding to conformal embed-

dings. The recent observation by Ocneanu [34] that one may write the above
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generator of the Hecke algebra as

Ubd
γ′α′

γα =
∑

β

(1)F b

[

c a

]β 1

γ α

(1)F
∗

d

[

c a

]β 1

γ′ α′

. (4.5)

in terms of the (1)F matrix previously introduced is thus a significant progress,

both practically and conceptually, since it connects problems of apparently

different nature.

Finally, in these lattice models, it is legitimate to wonder if boundaries may

be introduced without spoiling integrability. This requires a careful determi-

nation of the boundary Boltzmann weights, satisfying the so-called Boundary

Yang-Baxter Equation [4]. This has now been completed for the unitary min-

imal models: a large class of boundary weights has been found, which at

criticality, match perfectly what we have learnt from BCFT [32]. It remains

to connect these boundary weights with quantities defined previously in the

context of BCFT to have a fully consistent and unified picture of all questions

of boundary conditions in integrable lattice models and conformal theories.
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