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Abstract. A new substraction formula is presented to renormalize Feynman amplitudes
written in Schwinger's integral representation.

The substractions are generated by an operator acting on the integrand, which only
depends on the total number of internal lines but is completely independent of the structure
of the graph.

This formulation is also valid for non-renormalizable theories and is shown to reduce to
Zimmermann's .R-operation for scalar theories. It satisfies in any case Bogoliubov's
recursive formula and yields an explicit tool for actual computations of renormalized
Feynman amplitudes with a minimal number of substractions.

I. Introduction

A procedure for extracting finite parts from divergent Feynman
amplitudes with the requirements of Lorentz covariance, causality and
unitarity was given several years ago by Bogoliubov and Parasiuk [1].
They introduced a substraction procedure, the so-called R operation,
defined recursively over the graphs and the subgraphs and they proved
this method to be equivalent to the addition of infinite counter terms in
the Lagrangian. The proof of the B.P. theorem was then completed by
Hepp [2] and recently Epstein and Glaser [3] reformulated the problem
as a decomposition of distributions in retarded and advanced parts.

On the other hand, using the parametric integral representation [6],
Appelquist [4] was able to give in closed form the value of a substracted
Feynman amplitude. He proved in the case of renormalizable theories
that his substraction scheme satisfies the B.P.H. recursive prescription.
This proof was established by decomposing the families of subgraphs
into forests. Later, this was proved by Zimmermann [5] to be, in the
momentum space, the general solution to the recursion of B.P.H. even
in the case of non-renormalizable theories.
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However, these explicit substraction formulae given by Appelquist
and Zimmermann, involved crucially the knowledge of the topology
of the graph.

In this paper, we have generalized Appelquist's result to any theory,
renormalizable or not, and found an operator generating the sub-
stractions, which is completely independent of the topology of the graph
except for the total number of internal lines. The renormalized Feynman
amplitude is proved to be equal to Zimmermann's finite part in the case
of scalar theories but differs from it by a finite renormalization when
higher spins are involved.

This paper is organized as follows:
For the sake of simplicity, the three first sections deal only with

spinless theories without derivative couplings.
In Section II we gather some known results about the parametric

integral representation; we introduce in Section III our definition of the
renormalized amplitude and prove the equivalence with the decomposi-
tion into forests; then Section IV is devoted to Zimmermann's formalism
and its translation into parametric language. Finally in Section V, the
different results are extended to the case of theories with spin and
derivative couplings. In Section VI, we summarize our results and indicate
some possible applications. The first Appendix describes the various
properties of our substraction operator which is based on the definition
of a generalized Taylor expansion. Then Appendix II and III explicit the
complete proof of two intricate theorems (the first one was actually
established by Appelquist [4]).

II. Parametric Integral Representation of Feynman Amplitude

For the sake of simplicity we first present the parametric integral
representation for graphs associated with a spinless theory with non
derivative but possibly non-renormalizable couplings.

To any connected Feynman graph with / lines and n vertices corre-
sponds the following Feynman amplitude.

* ftI = ί Π dDK Π 2 * ft ^ ( P r t U (Π l)
β = l 1 Ka ~ m a " I " 1 8 7 = 1

up to numerical constants. D denotes the integral dimension of the
pseudo-Euclidian space with signature ( + , ( D - 1 ) - ) , pj denotes the
sum of the external momenta ending at vertex j and εja a topological
matrix which depends on the orientation of the internal lines of the graph:

' εjα = + 1 if the line a points away from the vertex j

εjα = — 1 if the line a points into the vertex j

and 0 otherwise.
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We introduce the parametric integral representation of the propagator

1 — = J d(xeίa{k2-m2 + iε) (112)
k2-m2 + is Ί

and
4 CO

τ^° ί d°xeikx-

All scalar products are taken in the sense of the pseudo-Euclidian metric.
After integration of the gaussian integrals over the k and x variables,
we obtain the parametric integral representation of the Feynman
amplitude:

I

LD oo oo -iΣ<*a(ml-iε) ΛVidr^v3

J <*«i -date ' - ^ - (II.4)
0 0

where P is a homogeneous polynomial in the α's; d^1 is obtained as

follows: we define dtj = ]Γ ι° Ja as a rcxrc matrix; since YJ£ia = Q,

the determinant of d is zero; d^1 is the inverse of a (n— ί)x(n— 1)
diagonal minor of J.

Of course, the integral (II.4) is possibly divergent; we shall define
its finite part in the following section.

The above representation can be found extensively in the literature [6].
Let us just mention some useful properties:
1) The polynomial P is homogeneous in the α's with degree L, the

number of loops of the graph.
P is positive when all α's are positive; it vanishes as ρLι when all α's

corresponding to a subdiagram with L{ loops vanish as ρ.
Each term in P is a product of L different α's attached to L lines

which must be cut if we want to transform the graph into a tree-graph.

2) The matrix d^1 is the ratio of two polynomials —£- where Ntj is

a homogeneous polynomial in the α's of degree L+ί; d^1 has no
singularities. There exist many other properties for which we refer to [6].

Let us define some concepts which will be used later on.
A subdiagram is defined by a family of α's. A family of α's defines a

set of lines and vertices (all the end-points of these lines).
A family of α's is said to be proper (or one-particle irreducible) if in

the corresponding subdiagram each line belongs to at least one loop.
A family of α's is connected if the corresponding subdiagram is

connected.
A family of α's is said to be a subgraph if any two vertices in the

corresponding subdiagram are joined by all the lines which already
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joined them in the original graph. The concepts of union, intersection,
inclusion and the symbols u , n , c will be understood over sets of lines
and vertices.

Two families of α's are disjoint if their intersection is empty. If two
families of α's are neither disjoint nor contained one inside the other,
the families are said to overlap.

A forest is a set of non overlapping families of α's. This definition
differs from Zimmermann's [5] who only considered forests of proper,
connected, divergent subdiagrams, the so-called renormalization parts.

As mentioned before, the integral (II.4) may diverge due to the zeros
of the polynomial P. Given a family of α's with Lt loops and lt lines, the
integral diverges if LtD — 2/£^0. Such families of α's are said to be
divergent; LtD — 2/£ is the so-called superficial degree of divergence of the
subdiagram.

III. Renormalized Feynman Amplitude

Definition. The renormalized Feynman amplitude is:
I

LD oo oo ^ i Σ α α ( w ^ - i ε )
L ^ P j ) J -. f da, ... doLxe '

\ ι J ^ ι n pD/2 f

The operators ZΓ denote generalized Taylor operators: given a

function f(x) which behaves as —y (integer p^O) at x = 0, $~nf is equal

to — - times the Taylor expansion of g(x) = xp f(x) up to order n + p.
x

A complete definition and various properties are gathered in Appendix I.
The product Y\ runs over all possible families of α's, that is (2' — 1)

ί

families. For each family Sf{ with lt lines, ^~y.2ίι acts upon the dilatation
variable ρf of the family when j/αj is dilated into ρf ]/αj.

Let us define

Although the 2Γ operators do not commute in general, they do commute
when the corresponding families of α's do not overlap; however it will
be shown in Appendix II that the complete product of (1 — ̂ ")'s does
not depend on their order. Consequently \\(i — , ^ 2 Z i ) Z behaves for
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any family of lj α's as a pole of order less than l} and thus the integrability
at the lower limit of integration is ensured.

This section is devoted to the proof of the following identity

nonempty
forests

where the sum runs over the set of all non-empty forests; this identity
will be further reduced to a sum over the set of non-empty forests of
proper, connected, divergent subgraphs.

In contradistinction to Appelquist's result [4], our proof is valid for
graphs occurring in a non renormalizable theory.

Theorem I1.

where the sum runs over the forests of families of α's whether proper,
connected, divergent or not.

Proof. Since Y[ (1 — 3Γ^2lι)Z is independent of the order of them's,
i

we order it in such a way that the number of lines decreases from left to
right. We then establish recursively the following identity:

+ Σ Π ( - ^

where <fw_ 1 is the set of forests built with elements at the right of 5^m_ 1

and eventually £fm-γ itself.
The identity (III.5) is trivially verified for the nearest element to Z

and we shall prove it for order m.
Let us define S'm _ 1 C Sm _ 1 the set of forests which contains at least one

family of α's overlapping with £fm. Then the recursion proof amounts
to the validity of the following identity:

Π (l- ^ M - ^ J f Σ Π (-^)1 z=°- ( m 6)

The general idea for the proof of (III.6) is the following: given two
overlapping families of α's ^ and £f2>

 w e observe from the properties
of the ^"'s and (1 — ̂ ) ' s and from the topological relation

L = h+l2-ln> (ΠL7)
that

{^fy^) (1 - Fϊ£ϊ?2) (1 - ^2X) ( - ^2

2h)Z = 0. (IΠ.8)
1 It is interesting to remark that this theorem holds for any function Z such that the

product of (1 — «̂ ")'s is independent of their order.
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The problem here is to generalize this property to a complete forest. This
highly technical part of the proof is given in Appendix III. On the right
hand side of (III.4), each term of the sum is now a commutative product
of ^"'s since the corresponding families of α's do not overlap.

Theorem 2.

+ Σ Π i-^/

where the sum runs over the forests of divergent families of α's, whether
proper, connected or not.

Proof. Let us consider a term in the right hand side of (III.4) that
contains a convergent family of α's. From the commutation property
of the c^'s, we can bring the corresponding F to the right, next to Z.
Z has a pole of order LtD for this family and since — 211 + LtD is negative,
— SΓy^Z vanishes [Appendix (A.I-5)3 In particular note that tree-
graphs are eliminated at this stage.

From now on, we shall feel free, if needed, to reintroduce in the sum
(III.9) any product of commuting 5~'s containing convergent families
of α's.

Theorem 3.

π(i-^>- 2 / oz= fi + Σ U i-Pf*1')} z (iii.io)
L J

where the sum runs over the forests of proper, divergent families of α's,
whether connected or not.

Proof. Let us consider a term in the right hand side of (III.9) that
contains an improper divergent family of α's 9?

i. This term might also
contain other improper divergent families of α's contained in Sfγ. We
pick among them 9>[ which does not contain any other improper
divergent family. Then, the maximal proper divergent family of α's ̂ 2

contained in Sf[ forms a forest with the other elements of the considered
term. We can group the terms

...(l-^-^M-^'OZ (iii.ii)

where the corresponding y operators are written to the right, next to Z.
After dilatation of the j/α's belonging to ίf[ by ρ and to £f2 by μ, Z(ρ, ρμ)

has the form - — - ^ g(ρ, ρμ) where L denotes the common number of

ίoops of £f[ and 9^2 and g has a Taylor expansion in ρ and ρμ. Then,
we can write:

1 nkl (nπΫ2

{ yi ' {Qμ)LD

 kh k,ϊ k2\
 9 ( ° ' 0 ) ( Π L 1 2 )

ki+k2S -21Ί+LD
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Clearly, it behaves in μ as μq with q^—2Γί. Since / 2 < / Ί , (1 -^2

2h)
•(-3Γ~{

2h)Z vanishes.

Theorem 4.

Π ( i - ^ 2 i )Z= fl + Σ Π (-^ij2'1)} Z (ΠI.13)
I J

where the sum runs over the forests of proper, connected, divergent families
of α's.

Proof. Let us consider a term in the right hand side of (III. 10) that
contains a disconnected, proper, divergent family of α's £f = 5^ u u yk

where the 5 '̂s are mutually disjoint.
It is always possible to gather the following terms:

... (-^i2l)(ί ~^2h)... (1 -^2l*)Z (111.14)

where again, the corresponding «̂ "'s are written to the right, next to Z.
Using the same argument as in Theorem 3, it is easy to check that after
dilatation of the l/α's belonging to ^ by ρ and to £f{ by μb

k k

Y\ (1 — ZΓyχ

 2h) Z(ρμi) behaves in ρ as a power greater than 2 Σ (— lt) = — 21
1 1

so that (III. 14) vanishes.
This achieves the proof that the product of (1 — «̂ ")'s over all families

of α's is equivalent to the sum over Zimmermann's forests. At this stage,
we still have to eliminate the families of α's which are not subgraphs.

Theorem 5.

[ (ΠL15)

where the sum runs over the forests of proper, connected, divergent sub-
graphs.

Proof. Let us consider a term in the right hand side of (III. 13) that
contains a family of α's 5^ which is not a subgraph, i.e. it is necessary
to add further lines but no vertices to obtain a subgraph. Let us add one
such line to ̂  to get the family &*2 ^i has one line and one loop more
than <9̂ . Again, we gather the following terms

. . . ( l - ^ 2

2 / 2 ) ( - ^ - 2 i ι ) Z (111.16)

where the 3Γ\ are written close to Z.
After dilatation of the |/α's belonging to Sfλ by ρ and to ̂ 2 by μ,

P(ρμ,μ) = ρ

2Lμ2^L+^F(ρμ,ρ) (111.17)

as can easily be seen from the fact that there is only one α dilated by μ2

alone.
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The same property holds for the numerator of d^1. Then, similar
considerations as in Theorem 3 and 4 show that (III. 16) vanishes.

By repeated application of this property, adding each time one more
line and no vertices to 5^, we arrive at the complete subgraph which
is the only contribution to the right hand side of (III. 15).

Now,

LD co oo

~ f -. f dβl... da,

(111.18)
^ '\\ 4. v π (- <r~2 /<ϊi I e ' p l IJ Pj \1 ̂  Δ ll^l î J I pD/2 J

. ^-iΣ«α(Wα-iε)

where the sum runs over all non empty forests of proper, connected
divergent subgraphs.

Note. We have proved theorems similar to Theorems 2-5 for the
product of (1 — «^")'s operating upon all families of α's; namely we have
shown that it is equivalent to the product of (1 — «^")'s over all proper,
connected, divergent subgraphs and that this product is independent
of the order of the operators (1 —9~\ [This proof makes extensive use
of identity (A.I-13).]

From a purely computational point of view, it is often easier to
calculate Π (1 — &~) than to perform the sometimes tedious decomposi-
tion into forests. At this point, it is worthwhile to emphasize an im-
portant property of the complete product Π(l—^) in (III.l): this
product seems to depend on the structure of the graph, since we have to
extract the pole in each family before performing the Taylor expansion.
However, we always know an upper bound M on the order of the pole
which might occur in any family of α's after a certain number of (1 -5~)'s
have been applied. Then:

2'-l 2 l - l r2'-l J

where Z is obtained from Z by dilatation of all J/αJe 5^ by ρt . Since the
product in (III. 19) runs over all possible families 5 ,̂ we do obtain a
substraction operator completely independent of the topology of the
graph (except for the total number of internal lines).

IV. Finite Part of a Feynman Amplitude in Momentum Space

In this section, our purpose is to show that the finite part of a Feyn-
man amplitude as defined by (III. 18) is equal to the finite part as defined
by Zimmermann [5] in momentum space.
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Given the Feynman amplitude I(pl9 ...,pn-i) associated to a Feyn-
man graph, the finite part is given by Bogohubov's recursive ^-operation:
the integrand in p-space IΓ has to be replaced by

RΓ = (ί-T£iΠ)RΓ (IV. 1)

where, for any proper, connected, divergent subdiagrams (renormaliza-
tion parts) y

Ry=Iy+ Σ ' j Π < V ( I V 2)

In these formulae, γί9... γc are mutually disjoint renormalization parts

y
of y (y excluded), denotes the reduced γ subgraph where γl9..., yc

/I * i c

are contracted to points and Ty

iy) is the Taylor expansion over the ny — 1
external momenta of y, at zero momentum up to the superficial degree of
divergence

d{y) = DL-2l. (IV.4)

(L and I are the number of loops and of lines of γ).
The solution to the recursive operation (IV. 1.2.3) was proved by

Zimmermann to be

+ Σ U(
forests §* yeίf

where the Taylor operators are ordered in such a way that Tγί stands to
the left of Ty2 if y2 Cy l 9 and 3F are the forests of renormalization parts.

Note. If Γ has no overlapping divergencies, the above formula is
equivalent to

RΓ=Π(ί-Tf{y))IΓ9 (IV.6)

where the ordered product is taken over all renormalization parts of Γ.
In order to calculate ίy:

J = l

(iv.7)

the integrand /,, is generally expressed as a function of loop variables and
external momenta q by integration of the n - 1 δ{D) distributions. Then,
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the Taylor substraction operator acts upon those propagators, the
momenta of which are functions of the g's.

However, since the propagators as expressed in (IV.7) are independent
of the external legs, we can perform the Taylor substractions over the
(n — 1) δφ) distributions; by suitable integration by parts we recover the
preceding results. Moreover, this second method is convenient for the
parametric integral representation. Indeed, after dilatation of the
external momenta by ρ, it leads to

n-1

(IV.8)
0 = 1

so that ίy is simply

-m2

a+iε
(IV.9)

It is important to note that, in (IV.9), a — factor is now attached to each

internal momentum inside the δ(D) distribution. This mechanism and
the resulting property can be generalized to a product of several Tγι

operators relative to several subdiagrams γt as long as the subdiagrams
form a forest and Ty. stands to the left of T if y} C γt. We thus obtain for
each forest SF.

I I

Γ ΓΊ dDk Π

Π (-7? f

(yι))
i

I
Qi

kaeyι Qi=ί

We now introduce for Eq. (IV. 5) the parametric integral representation
as in Section II; after integration over the k momenta and use of (IV. 10),
a factor ρf remains attached to all α's which belong to γt.

The finite part for the Feynman amplitude as defined by Zimmer-
mann is now found to be

LD
2 <5 ( Z)}

 (ΣP
\ j

0 0

/) ί -
/ o

0 0

J ώ i ...
b

TλoLiD
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From the definition of the ZΓ operators (A.I-3), we finally obtain
Eq. (III. 13). The equivalence between Zimmermann's definition of the
finite part and ours is thus established.

V. Generalization to Theories with Spin and Derivative Couplings

The Feynman amplitude for graphs arising in such theories can be
written

= ί Π dDK Π JQaϋ?+h Π { ^ Ό

up to numerical constants and γ matrices. The polynomials Qa of degree
da are characteristic of the spin of the particles and the polynomials ^
of degree dj are homogeneous in the internal and external momenta
ending at vertex j.

We use the integral representation of the propagator

(V.2)—7^ — —
ij/α dzμ

where the factor α 1 / 2 is introduced for convenience.

The parametric integral representation for the Feynman amplitude

(V.I) is found to be
I

LD oo oo — iΣ<*a(ma~iε)

) 2 δ{D)(ΣPj) f ••• f d α , ...da,e '

" ' ( V . 3 )

with

z = - 5 5 7 Γ e x P ί b ^ ϋ :

^ ^ w \ (V 4)

= Z(α, p, z).

It can be shown [6] that dfjί εja is proportional to αα and εία dr:1 sjb -ocaδab

is proportional to oca<xb. Then, df"J
1 i^— is the ratio of two polynomials

1/ 0C
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in ]/α's: —jf- where iViα is homogeneous of degree 2L+ 1 in the |/α's;

% and ka = Λ d Π r ^ have no singularities. Also, ^ d ^

is the ratio of two polynomials in j/α's: —-̂ - where Nab is homogeneous

of degree 2L in the ]/α's; —^- has no singularities but

ab

is singular as a pole of degree 2 in the |/α's for any proper connected
family2 of α's containing both αfl and ah (Aaa is singular for any proper
connected family of α's containing αΛ).

It will be useful to introduce the following notation

Π Qa(K) Π WPJ, U = Σ Π P, Π fcα (v-5)
α = l J = l σ j = i Λ = 1

where we omit Lorentz indices and constant coefficients:
h Πi

Given a diagram £fu each term in (V.5) is of degree <5f(σ) ^ Σ <iα + Σ ^j
1 1

in the momenta ka internal to 6^. We define the superficial degree of
divergence of ^ for a given term in (V.5) as:

) = DLi-2li + δi(σ). (V.6)

Note that this definition differs from Zimmermann's definition [5]

ί/(^) = DL ;-2/ i+Σ4+Σ^ (V.7)
1 1

for all terms in (V.5). For the sake of completeness, we can perform the
scalar decomposition of the integral (V.3) using3

(V.8)

Σ
fc=O

2 For improper or non connected families, only the maximal proper connected

families contained into it, contribute to the pole.
3 £(*) denotes the integral part of x.
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and obtain, up to constant coefficients:

where we sum over rf from 1 to n — 1 and where the scalar integrals are

LD

δiD)(Σp) \dal...dale
 ι

(V.10)
'J

In Eqs. (V.8) and (V.9), "Sym" indicates that symmetrization on indices

must be performed.
For a given term in the sum (V.5), we define the convergent families

of α's as the families such that d(£fh σ) < 0.
Each integral /$ in (V.10) has a pole for a given family of α's of order

at most equal to LtD + 2βt where βt is the number of Δab in (V.10) such
that αfl and ocb belong to a maximal proper connected part of the family,

1 For convergent families of α's, d(&?

hσ)<0 implies

O; the converse is not true: it means that for any
convergent family, the corresponding singularity in (V.10) is indeed
integrable.

Definition. The renormalized Feynman amplitude is:

(V.ll)

Note that this definition is equivalent to

LD
\ 2 i ε ) Σ UPJ

because Z is regular in z.

The product f| runs over all possible families of α's.
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In Appendix II, it is shown that the complete product of (1 — ^)'s
does not depend on their order. Consequently, the integrability at the
lower limit of integration is ensured.

In Eq. (V.I 1), we can replace Π ( l - ^ ~ 2 Z ι ) by [1+ Σ
i I forests

as can be shown by simply repeating the Theorems 1 to 5 of Section II.
The same property holds for Eq. (V.I2).

In Theorem II, we eliminate the convergent families of α's as defined
before and consequently, the decomposition into forests is different for
each term of the sum (V.5). Moreover, for a given term, some forests may
contribute nothing, when applied to some integrands (V.10).

On the other hand, Zimmermann's formalism leads to Eq. (IV.5)
where Tfiy) operates over the external legs of y at zero momentum with
a degree d(y) given by (V.7).

In contradistinction to Zimmermann's finite part, we define the
minimal finite part of a Feynman amplitude as the amplitude obtained
when performing the minimal number of substractions on each term
of the sum (V.5). In the general case, the minimal and Zimmermann's
power countings are inequivalent. However, due to the homogeneity
of the polynomials ^ in the internal and external momenta, derivative
couplings do not contribute to this difference.

Anyhow, both theories are related by a finite renormalization which
can be calculated order by order.

Then, Eq. (IV.7) is generalized to:

ϊγδ*\Σqj)= Σ Π % i Π d»ka{-T LΠ 2 L
α=l Ka ma +ιb (V13)

with d(y, σ) defined in (V.6).
Here again, Tγ operates over the δ distributions and, provided that

the product of Taylor operators within each forest in (IV.5) is performed
from minimal to maximal elements, the parametric integral representa-
tion for the renormalized amplitude can be calculated as in the scalar
case; we obtain:

LD -iΣ«α(wi-iε) λ

)μa1...daιe ' ΣYIPJ
σ j=L

I= l , Z α = O
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where the sum over the forests depends on the term considered in the
sum over σ.

After introduction of the operators ^ (V.I4) is equivalent to

LD

IR = iL(-iπ)
 2 δiD)(ΣPj) Ida, ... d^e-^^1'^ (V.15)

•Σ Π Pj\ή (77^ -D [1 + Σ Π ( - ^ + ^ ) 1 Z(α,ftz)

which is equal to (V.I2) by Theorems 1-4.

VI. Conclusion

In this paper, using the parametric integral representation, we have
defined a renormalized Feynman amplitude. The renormalized integrand
is obtained by applying the product of substraction operators over all
possible, whether connected, divergent, proper or not, families of
parameters.

This product is "a priori" non commutative, and the integrand seems
"a priori" oversubstracted. However this product is shown to be in-
dependent of the order of its factors, by simple generalization of Appel-
quist's theorem, so that the integrand is indeed integrable.

On the other hand, the complete product reduces to the product over
divergent, connected, proper subgraphs only, and then is proved to be
equal to a sum over Zimmermann's forests of renormalization parts.

Since this formulation is equivalent to Zimmermann's i^-operation
(up to a finite renormalization for theories with spins), it provides a new

proof of the B.P.H. theorem (we did not consider the ε->0 limit in the

1
propagator —^ 5k2-m2

Finally, as noted in the end of Section III, our substraction operator
does not depend on the actual topology of the graph (but only on the
total number of internal lines). The same property holds of course for any
graph in a theory with spin particles and derivative couplings. Moreover,
one can make further remarks:

Suppose that we introduce additional parameters α z + 1 , . . . ,α k and
the corresponding dilatation coefficients Q^I1 ̂ i^2k— 1). Then, due
to (A.I-13), (III. 19) is equivalent to
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where now R is independent of / provided / S k. Furthermore, we expect
the R substraction operator and the a integration to commute provided
a cut-off has been introduced. Then the R operator could be used to
renormalize a Green's function truncated at a given number of internal
lines.

We propose ourselves to examine this program in forthcoming
publications, as well as cut-off expansions and scaling behaviour of
Feynman graphs.

Appendix I

The Θ~Operators

Given a C00-function /(x), the Taylor operator at x = 0, Tn is defined as

\τn{f(x)}= Σ^/ ( k ) (0) for n*0

lτB{/(x)}=0 for n<0.

An important property of Tn is: for any integer λ ̂  0

Tn{xλf(x)} =χλTn'λ{f{x)}. (A.I-2)

We want to generalize the definition (A.I-1) to functions such that
xp f(χ) = g[x) is a C00 function in [0, a > 0[ for at least one value of the
integer p ̂  0.

Definition. For any integer n^O and xe [0, α[

where λ is any integer greater than or equal to p.
We note the following properties:
1) Of course, definition (A.I-3) is independent of λ^p. In particular

2) ^~n{f(x)} is a finite sum of terms the behaviour of which at x = 0

goes from —5- to xn.
xp

3) eT"{/(χ)}=0 for « + /7<0. (A.I-5)

4) (1 -&~n) {f(x)} behaves at x = 0 at least as xq with g >n. (A.I-6)

5) (1 - J " 2 ) J " 1 {f{x)} =0 if Λ2 ̂  Wi. (A.I-7)
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The integral representation for the rest of the Taylor expansion gives

(1 — &~") {/(*)} = J dξ—- —— zκn + Λ+1 (ζ f(χζ)) (A.I-8)

with λ ^ Sup(p, — ή).
Let us now look at the properties of a product of «̂ ~'s acting on func-

tions of several variables.
Given a C00 function of several variables / (x l 5 . . . , xk) which behaves

as —p— at xf = 0, x φ f φ 0, with integers Pi ̂  0, we assume the conditions

of (A.I-3) to be satisfied after an arbitrary number oϊ^~ operations. Then,
the following equation holds

911 f = 4 r T"l+λl ί̂ ί1/} = 4 τ "Z" 4
Xl Xl 0 ^

where g{q) is the f̂th derivative in regards to x1 of g=x*ίif and λx ^ P i
Each of the g{q) derivatives in (A.I-9) behaves at x2=0, xj>2 + 0 as

p2+d2{q) with integers d2(q)^0. We then define ^2Γ^f from (A.I-3)
x2

with A2 ^ p2 + D 2 where D 2 = Sup{d2(q}}.
q

Finally,

where J,f ^ pt + Df and Di = 0.
It is clear from this definition that the ^"'s do not commute.
We observe the following properties:
1) Definition (A.I-10) is independent of the λ/s provided that

^ .- ^ f = Π xΓp>-D*T£ + **+»<... TZ+

2) ^? k

k ••• ^x"1/ ^s a finite s u m of terms the behaviour of which at

x( = 0, XjφO goes from P.+D to x"1.
J + i X^

3) ^ f c . . . Zr^lf = 0 if for at least one xt the condition ^ + pt + D̂  < 0
is satisfied.

4) (\-&'£)...{ί-&'Zl)f is expressed by a formula similar to
(A.I-10) where T is replaced by 1 - Γ and Dt by D\ = sup(0, /)f).

5) (1 -^)... (1 -FZDf behaves at xfc = 0, x φ O at least as xq

k
J + K
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with q > nk but nothing can be said about the behaviour in the other
variables except in the case where the (1 — ^~)'s commute. In this case
the above property is true for all xf.

Example. We take

f{χ,y)= 1

x + y

1

which clearly does not behave as xβ, q > 0 for x = 0, y φ 0.

6) . . . ( l - i Γ ; 0 . . . i Γ " / . . . / = O if n ;^n f

whatever the «̂ "'s in between.

Corollaries

a) ...(1-^;).../=...(l_^)...(l-^) .•/ if nί̂ n* (A.I-13)

b) ... ^ . . . / = . . . ^ I 1 ... ^ . . ./ if nj^Wf. (A.I-14)

The corresponding representation for (A.I-8) gives

(A.I-15)

Provided λt ̂  Sup(pf + DJ, — nf), the above expression is always integrable
by parts for a given order of integration. This order defines the order of
application of the (1 — «̂ ")'s over /.

If we choose the λ^s large enough so that the integrations by parts
can be performed in any order, a sufficient but not necessary condition
for the complete product of (1 — «^)'s to commute is that the integral is
absolutely convergent. This does not mean that the «̂ "'s commute. Such
a situation will appear for Feynman integrands.

We now define the 3" operators relative to a family of variables.
Given a function of several variables f(xi ... xk) and a family of x's
{xh...xip}, we define



Renormalization 131

Fig. 1

The direct application of (A.I-8) gives

1 (i _ £\n +λ pjn + λ+ 1 (AT-17Ϊ

= f d? \£λfix I Ix x Y\ ^ A < 1 1 / ^

with λ ̂  Sup(p, —n) and p denotes the order of the pole in the ξ variable
of the function /.

In this paper we deal with functions / = k where the function

φ(α, ) displays no singularities relative to any family of α's; the function /
develops poles due to zeros of the (homogeneous) polynomial P for any
family of α's associated with a diagram with loops.

The product of «̂ "'s operating upon / always commutes as long as the
families of α's do not overlap (see the end of Section II for the definition
of overlapping families). If two families of α's Sfγ and ^ 2 overlap and if
L y i u y 2 =L9>1 +Ly2 — LyinSe2 where the L's refer to the corresponding
number of loops, ^y\$~£2

2f = ̂ y2

2$~£\f', but if Z ^ 1 U ^ 2 >Lyi +L<?2

— Lcfiny2, the ^"'s generally do not commute: this is the main technical
difficulty of this paper; it was avoided by Appelquist [4] who considered
only renormalizable theories in four dimensions, and Green's functions
with two or more external legs.

Example. Consider the graph in Fig. 1 with a space-time dimension
D = 5, and take 9?

ι = { α 1 , α 2 , α 3 , α 4 , α 5 } , ^ 2 = {α 6 ,α 7 ,α 8 ,α 9 ,α 1 0 } . For
this graph:

P = (cc1 + α 2 + α 3 + α 4 ) α5 [α l o (α 6 + α 7 ) ( α 8 + α 9 ) + α 6 α 8 (α 7 + α 9 )

+ α 7 α 9 (α 8 + α6)] + (αx + α3) (α2 + α4) [(α6 + α7) (α8 + α9) α 1 0 (A.I-18)

Then

~^5/2 = p5/2 (A.I-19)' ^
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where P is the sum of the two first terms in the right hand side of (A.I-18).
^ ; 1 0 ^ Γ 2

1 0 Z is obtained from ^2

10J'fί

10. Z by exchanging OL1 to α5

into α 6 to α 1 0 respectively. This example shows that LyιuS?2>Lyι

— L^ίny2 implies the non commutativity of ̂ > x and 5> 2 .

Appendix II

Commutativity of the Complete Product f ] (1 -5~<^2/ι + <5ι)Z
i

Section II is mainly based on the fact that the complete product of
(1 — «̂ ")'s does not depend on their order. This Appendix is devoted to the
proof of this important property in the general case with spin and
derivatives couplings.

Since Z(α, p, z) defined in (V.4) is a regular function of z, we can write

(A.II-1)

= Π ( ^ ^ )

where δt is the total number of derivatives ^— attached to the lines of ̂ .
όz

By formula (A.I-15), the commutativity of the product is established if the
integral
1 1 k (A _ z \-2lι + δi + λi fl-2li + δι + λι+l

is absolutely convergent. Z is the expression Z where each j/αjis dilated
by all £/s such that α 7 6 ^ .

The absolute convergence of the above integral was already proved
by Appelquist [4]. Actually, his demonstration was performed on the

oo 1

complete integral J doc... j dξ ... where the ξ's refer to proper divergent
o o

subgraphs. The generalization to all families of α's is trivial and we shall
content ourselves with mentioning the most important steps.

We first perform the derivatives —-- in (A.II-2) and we obtain a sum

of terms of the form

fci r)Pι k2 flDLj-Uj + δj + pj+l

Π ϊ-DL1+2i,-ίI + p ι -l Γ\PPj_ Ύf ίATT-3)
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where

In (A.II-3), the indices i (resp. j) from 1 to /q (resp. fc2) refer to families
of α's such that DLt - 2/f + δt S - 1 (resp. DL ; - 2/,- + ̂  > - 1); pt (resp. p3)
are integers which take any value from 0 to — 2\i + £>; + λ; -f1 (resp.
λj — D£, ). The absolute convergence is proved if for any family {ξl9..., ξr}
the expression (A.II-3) has a pole of order less than r in ξί = ••• = ξr =0.

Given a family {£i,.. ξr} corresponding to the families of α's
Sfί9... 5^, we define the nested families of α's

^ ( r ) C <^(r - 1) C C S?(ί), (A.II-5)

where Sf(i) is the set of α's which are contained in at least i of the families

y\,...,5^.. The number of lines, loops, and derivatives ^— of

(resp. 5 )̂ is denoted by /(i), L(i) and δ(i) (resp. lh Li and ^i). We have the
following properties:

(A.Π-7)
1 1

We introduce the following polynomials in ξ and j/α: P', iV/7 , Nla and
iV^. They are deduced from the polynomials P and Ntj defined in Sec-
tion I, and from the polynomials Nia and Nab defined in Section V as
Z' was deduced from Z; for instance

). (A.π-8)

Then, each term of these polynomials has a zero of order m at

^mo= Σ(2L(ί)-2Q. (A.II-9)

1

Moreover there exists in polynomial P' at least one term such that m = m0.
Now, it is easy to convince oneself that
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is a sum of terms, each of them develop a zero of order 2Lj + Xj when all
]/α's of any family vanish; Xj is greater or equal to rij and depends upon
each term; Xj — rij is the order of the zero of the corresponding term
when ξj vanishes.

In (A.II-3),

fci flPi k2 f)DL

Π w Π
ί = l °ζi 7 = 1

where Rσ is a sum of products of σ terms of the form (A.II-10), times the
exponential. Each term in Rσ has thus a zero of order 2σLi + xt when all
J/α's belonging to ^ vanish, with

Xi^Pi if D L ί - 2 / i + ( 5 i ^ - l ,

and Xj ^ DLj — 2/f + 5f + pf + 1 otherwise. Similarly, each term in jRσ has
a zero of order 2σL(ί) + x(z) when all |/α's belonging to «$̂ (z) vanish,
with χ(i) ^ DL(ί) - 2/(i) + δ(0 + 1 (for non empty ^(i)).

The structure of the families ^ and ^(/) is such that

i = 1 ί = 1

Finally, each term in J^σ has a zero of order:

1

when ^ = . . . = £ , = 0. Combining (A.II-13), (A.II-12), (A.II-6) and
(A.II-7), and the value of m0, it is found that expression (A.II-3) has a
pole of order less than r when ξ1 = = ξr = 0 and the absolute con-
vergence is ensured.

Appendix III

Demonstration of Equation (111-6)

We use here, the same notations as in Section III, Theorem 1 we
intend to prove

Σ Π {-^t

2li)2\ =0 (A.III-1)

where <^_ 1 is the set of forests containing at least one element overlapping
with Sfn.

Let us consider a forest $F\j$F' of S'n_γ: #"' (resp. # ) is the sub-
forest of elements overlapping (resp. non overlapping) with Sfn, $F' is
never empty.
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Fig. 2. Construction of the families Rι and T(, from the families Sf/ overlapping with Sfn.
The stripped areas are the T('s. The dashed lines surround

R2=
and

Note that R6 = ̂  and R8 = ^ .

9*1 denote the elements of $F'. In <F' we call minimal (resp. maximal)
element, an element which does not contain (resp. which is not contained
in) any other element of SF'.

To any minimal element Sf{ we associate the family

7] = ^ n ^ \ (A.III-2)

To any non minimal element 5^', let lt be the set of indices k such that
Sfί C Sf{ and 5^' is maximal in <?[. Then we define:

keli I fee/,

(some intersections might be a set of vertices with no lines; some Rt might

be £f{ or even (J SfΔ We note that the T/s are contained in £fn, whereas
I

the R/s overlap with £fn.
On Fig. 2, the construction of the families Rt and 7] is illustrated:

each bubble in Fig. 2 represents a set of lines and vertices.
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Lemma 1. Let us consider U = £fn u 5^' u
The elements of 3FκjgF\ the JR/s, the T?s form a forest in S'n-ιi U

form a forest with them.

We let the reader to convince himself of this property.

Lemma 2. The different numbers of lines are related by:

lυ = l?n+ Σ kϊ-Σ'n.-Σ'T, (A.IΠ-4)
SfleSF' i i

where £ means a sum over all R?s and all T s.
i

The proof is based upon the trivial identity

lβ^G1 = lGι + lβ2-lGιnβ1- (A.IΠ-5)

If we apply (A.III-5) to U,

lv = lyn+ Σ fe-^,π«) (A.IΠ-6)
Sf'i max

Now, if Sfl is a minimal element,

-l^^ι = -lTι (A.IΠ-7)

otherwise from (A.III-3)

- ^ n n ^ / = ~IRΛ Σ ( U - ^ n n ^ ) . (A.ΠI-8)
keh

The iterated application of (A.III-8) up to a minimal element, in (A.III-6)
leads to

lu = lyn+ Σ (^ί-W+ Σ fe-y (A.III-9)
Sf[ non min Sf[ min

which is equivalent to (A.III-4).

To go further, we need to introduce some new concepts. Let us denote
by Ω the operation constructing Rt from £f{ and the set of 5̂ fc"s in (A.III-3)

we also use the notation Ω{tF') for the set of all R/s constructed in
(A.IΠ-10). We consider the forest 9 of elements overlapping with £fn\

There exist several forests 3F' such that (A.IΠ-11) generates the same
forest <3\ <§ itself belongs to this set since

ei 2 Rt = W M})
M M
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where the symbol 2 means that each element at the right of 2 is maximal
M M

in the element at the left, implies

QW Rt) = Ω{Rt {£%}) = Rt. (A.IΠ-13)

We intend to find out the unique element βF'~ of the set, contained in all
the other J^ 's of the set.

We define the subforest J^7 of ^ as the forest of elements Xt such that:
Xj D Xt D {̂ fc}, %>i is neither maximal nor minimal in ^ but is the only

maximal element in Xp and

Ω(Xj Xt) = Ω(Xt {%k}) = Xt. (A.IΠ-14)

Then # " ' " is the complement of J-f in ^ . Indeed, if Xt belongs to jf., then
Xj and Xk's in (A.III-14) belong to <F'~ ^ can be reconstructed from Xj
and the ^fc's by the Ω operation:

Xt-ΩiXj ΛXJ) (A.IIM5)

and consequently J^ '" generates ^ by (A.IΠ-11). On the other hand,
for any forest 3F\ the elements of Ω(βF') which are not in 3F' are certainly
in J f then 3F'~ is contained in 3F'.

Example. Suppose that we consider in the graph of Fig. 3 the families:

^ = {a1? a2, a5, a6} and 5^ = {α1? α2, α 5, α 6 ,α 7 } .

Then (7 is the complete graph and

and

To any forest J ^ u J ^ ' in C_χ, we can associate the disjoint forests
J*'~, Jf, ^ = {TJ, and ^~ =^-{3Γr\^) and we group several terms
of (A.III-1) to form the expression4

Π α - ^ ) ( - ^ ) Π(- ̂ ) Π (-^VΪ)
(A.ΠI-16)

Each of those expressions is characterized by its (3F'~,

4 Some 77s might be a set of vertices with no lines; then by definition 1 — «̂ "Γ = 1.
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2

Fig. 3

Lemma 3. i) each term in (A.IΠ-16) belongs to (A.III-1),
ii) each term in (A.III-1) is contained in one and only one expression

(A.III-16).

This lemma is now a trivial consequence of the above definitions.

Lemma 4. Each expression (A.IΠ-16) vanishes.

To prove this lemma, we only need to perform the d' operations
over a part of 3F'~ \

j f = # - ' - - ( # - ' - n Qψ1')) (A.III-17)

that is the elements of 3F'~ which are not JR/s. It is easy to see that X
is never empty. Moreover we have

(A.ΠI-18)

and the 77 s constructed from J Γ are the same as those constructed
from ^'~. In the above example (Fig. 3) J f = {£f[, 5^}.

From (A.III-4) applied to the forest Jf, we obtain:

lυ = lyn + Σ l?i - Σ k - Σ 'r. (A.IΠ-20)

We now perform the different dilatations over the corresponding j/α's:
we dilate the |/α's belonging to U = ^ (J ^ / by A, to ^ n by σ, to 7] e ^

by τ f, to î i 6 J f by ρf and to ^( e J f by q.
If we realize a partition of u with the elements:
1) Th Rt- [j S^κ, U - [j (^nSf/) which are contained in ίfn.

Keli i

2) Sf[ - Ti9 9"I - Rj which have no common lines with £fn it is easy
to convince oneself that

Z^Zίλσ, Π {Q^WQ&λσx. (A.ΠI-21)
)
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The expression (A.IΠ-16), is, by (A.I-13), equal to

Π (i-^)(-^)Π(-^) Π (-^)(i-^/)
ί>n+l &~ &'--JίT

(A.IΠ-22)

where the ^"'s written at the right of £fn are all commutative. The above
expression is the precise generalization to a complete forest of expression
(IΠ-8).

The product Y[( — ̂ yi)Z is a finite sum of terms:

with

kt+ X kj^-lly.. (A.IΠ-24)

Then,

is a finite sum of terms each term behaves in σ at least as a power greater
than

-Σ2/Γ l-Σ2/Λ (-Σ[^+ Σ kj-2lυ (A.IΠ-25)

which by (A.ΠI-20) and (A.ΠI-24) is greater or equal to -2/^ n .
The application of the ^ ' s in &~ and ψ'~ - X) in (A.IΠ-22) could

only increase this power; finally, ( — ̂ J causes all terms in (A.IΠ-22)
to vanish.

This completes the proof of (A.III-1).
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Note Added in Proof. As pointed out recently by S. A. Anikin, M. K. Polivanov and
O. I. Zavialov (Dubna preprint E 2-7433), power counting arguments used in App. II and
in the integrability of (III-1) are incomplete.

However, an algebraic proof of Eq. (III-3) is given by M. C. Bergere and Y. M. P. Lam
(Berlin preprint TH I FU No. 3) for any order of the left hand side, thus showing the com-
mutativity of the complete product π(l — 3Γ).

On the other hand, in Eq. (IΠ-1), the domain of integration can be decomposed into
sectors: 0 ^ α f l ^ah < ••• < α l V In each sector, the singularities come from nested sub-
diagrams ^ . The integrand possesses a Laurent series in the dilatation variables of the
&Ί%. The Taylor operators eliminate the dangerous poles of this series, and ensure the
integrability of (III-1).
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