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Factorization of the operator product algebra in conformal field theory into independent left 
and right components is investigated. For those theories in which factorization holds we propose 
an ansatz for the number of independent amplitudes which appear in the fusion rules, in terms of 
the crossing matrices of conformal blocks in the plane. This is proved to be equivalent to a recent 
conjecture by Verlinde. The monodromy properties of the conformal blocks of 2-point functions 
on the torus are investigated. The analysis of their short-distance singularitities leads to a precise 
definition of Verlinde's operations. 

1. Introduction 

Conformal field theories are fully characterized by the central charge c of the left 
and right Virasoro algebras, by the set of primary fields and their conformal weights 
(hi, hi), and by the structure constants Cls K of the operator product algebra [1]. The 
problem of classifying possible consistent choices of these data is actively pursued. 
Much progress has been done on the classification of the possible operator contents, 
following Cardy's observation [2] that they are encoded in the genus-one (torus) 
partition function. The partition function can be written in terms of the Virasoro 
characters 

X= ~Niixi(q)xi({1 ), (1.1) 

and must be modular invariant. (See, for example, ref. [3] for a review and a rather 
extensive list of references.) On the other hand, little is known about the possible 
choices of structure constants [1, 4, 5]. 
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Recently, Verlinde [6] has made the remarkable observation that the operator 
product algebra (O.P.A.) may be determined simply in terms of the matrix S, which 
carries out the modular transformation ~-~ -1 /~-  on the characters. Conversely, 
from this algebra, some a priori restrictions on the possible values of c and h may 
be derived [6] (see also ref. [7] for analogous results). 

Verlinde's arguments left many questions unanswered. The operations he sug- 
gested on characters were not defined precisely. These operations form an algebra 
with multiplicities, the interpretation of which was not clear (at least to us). Finally, 
the relationship of this algebra with the O.P.A. of the theory is only tentative. 

These questions motivated the present work. We have achieved a precise realiza- 
tion of Verlinde's operations on characters. The analysis of 2-point functions on the 
torus enables us to express Verlinde's algebra in terms of the crossing matrices of 
the conformal blocks of 4-point functions in the plane. This means that Verlinde's 
ansatz concerning the O.P.A. may equally be expressed in terms of these crossing 
matrices. We discuss several theories in which non-trivial multiplicities appear and 
try to elucidate their general meaning. Our analysis is done only for conformal field 
theories in which the O.P.A. factorizes into independent left and right algebras. It 
seems that the analysis of the O.P.A. in unfactorized theories remains an open 

problem. 
Throughout  this paper, we focus on the O.P.A. of fields which are mutually local 

and belong to the untwisted sector of the theory and hence appear in the partition 
function. Extension to other situations should not present particular difficulties. 

Our discussion is far from being complete. Many conjectures remain to be 
(hopefully) proved. . ,  or invalidated. Still, we believe that our partial results clarify 
enough the situation and raise interesting questions. 

The paper is organized as follows. Sect. 2 is a review of standard lore in 
conformal field theory. It is mainly intended to establish notations and possibly 
refresh the reader's memory. In sect. 3, we discuss the issue of left x right factoriza- 
tion of the O.P.A. In cases where it does factorize we propose an ansatz for its 
selection rules, in terms of the crossing matrices of conformal blocks in the plane. In 
sect. 4, we discuss the monodromy properties of the conformal blocks of the 2-point 
function on the torus. The analysis of their short-distance singularities leads to a 
precise definition of Verlinde's operations. The ansatz of sect. 3 is then directly 
related to Verlinde's conjecture. Sect. 5 contains examples and a discussion, based 
on these examples, of how degeneracies may occur, whilst some additional com- 
ments and a recapitulation of all our conjectures appear in sect. 6. Some technical 
details are gathered in appendix A. 

2. Generalities on the Operator Product Algebra 

We consider a conformal field theory, the primary fields of which take their 
conformal weights in a certain set (h i }, finite or infinite, discrete or continuous: 
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h, h ~ (h~). Accordingly, the primary fields are denoted cpi(z, ~), labeled by the 
pair I =  (i, i) such that h = h,, h = h~. The spin h~ -h~  is integer. It may happen 
that there is no one-to-one correspondence between pairs (h, h) and primary fields 
of the theory. In such cases, the label I has to be supplemented by some additional 
index, usually in the representation of some group (Z 3 for the three state Potts 
model, a Lie group for the WZW theories, etc.). This will be implicitly contained in 
the index I or i. We have, however, to introduce a separate notion for the conjugate 

field ¢Pi such that 

1 
( % ( z ,  = × "c .c" ,  (2.1) 

Here, and in what follows, "c.c" is an abuse of notation to denote the analogous 
expression with bar variables. 

We also make use of the descendants of the primary field %, 

~Sk},(k} = ~ - k  ...... kp,-7¢1 .. . . .  k q ) =  L k ~ " "  L - ~ y t (  z, 5), (2.2) 

of level Ikl = S, ki, Ilcl = EYe 2, and of the corresponding in and out states 

I I , ( k ) ( ~ : ) ) =  lira q0~k}'(k}(Z,~)[0 ), 
z,E~O 

( I , ( k ) ( T c ) [ =  lira zZ(h'+lkl)£2(h'+lkl)(OlcP/k)'G~(Z,£). (2.3) 

I t  is assumed that an orthonormal basis of such descendants has been con- 
structed*, denoted by 

II, N )  = E n { k } n ( ~ } ] I , { k ) { k ) ) ,  (2.4) 
(k}(~} 

( I N I J M )  = ~IJ~NM, (2.5) 

where N stands for the set of coefficients (n(k)nG}) .  The corresponding linear 
combinat ion of descendant fields is denoted q0~ N). The assumption of positivity of 
the norm (2.5), consistent with the hermiticity properties of the Virasoro generators 
(L*~ = L_o, Z,*~ = L _ , )  means that we are dealing with a unitary theory [10]. 

* In practice the actual construction of such a basis is a formidable task, requiring a diagonalization of 
the contravariant form [8, 9] and a consistent elimination of the null states and their descendants. 
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The O.P.A. is usually characterized by the so called "structure constants" which 
are defined through one of the following equivalent formulae 

(q0I(Z 1, -~l)q0j(Z2,-F2)q0K(Z 3, -F3) > 

( , 
= CIJK (2"1 - -  z2)hi+hj-h'~(Z'l  -- Z 2 )  

h;+ha-h~ X perm),  (2.6) 

</*1%,(1, 1) [K> = C, jK, (2.7) 

or any permutation of the 1.h.s. 

E 
K , N  

(2.8) 

By orthonormality 

( / (NI% (1,1)[J> 
flU, k.'flU,~a = (K[qvt(1,1)[J) ' (2.9) 

and flu, k0 = 1. The left × right factorization of these coefficients follows from the 
factorized holomorphic x antiholomorphic form of the 3-point function 
(~(KN)(zl, ZX)%(Z2, Y2)¢&(z3, Z3)) (see ref. [1] and appendix A). 

The compact notation I, that we use to label a state, may at this stage be slightly 
misleading. In the general case where I incorporates extra indices, such as group 
indices, the structure constants CIj K may also be a tensor in these indices. For 
example, in the SU(3) WZW model and in particular when dealing with the fields 
transforming as octets of the left and right algebras, we write I = (i, i, a, ~) where 
a ,6  = 1 , . . . , 8 ,  and 

.4 ,4 _r td)_ _+,~ ~ r ( f )  (2.10) 
CIJK : *'*afly~fl~'~ii, j j ,  kk Ja f l yJ~ '~ i i ,  j], kk" 

How are the structure constants determined? The idea [1] is to consider the 
4-point function and use the associativity of the O.P.A. to derive a system of 
relations between the C's. For our present purpose, it is sufficient to consider a 
special 4-point function, namely, (Wq0Wtq0j). Using SL(2, C) invariance, one writes 

<w(z,, &)%(z3, &)%(z4, &)) 

1 1 z -2hi 
x 
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in terms of the cross-ratio z = (z 1 - z2)(z 3 - z4)/( q - %)(z 2 - z4). Multiplying by 
z2hJ£2h; and considering the limit zt, £t ~ oo, z z ~ 1 (respectively 0), z 4 ~ 0 (respec- 
tively 1), we see that z approaches z 3 (respectively 1 - z3) and 

~- (z ,  5) = (Jl~i(1,1)qaz(z, i ) l J  ) = (Jlr&(1,1)q0,(1 - z , 1  - 5 ) 1 £ > .  (2.12) 

The operator product expansions of q01(z, Z)r&(0) (respectively 9~1(1- z, 
1 - £)cpi(0)), are then inserted into these two amplitudes 

[1 [] ii ii (5) (J{qat(1,1)q~,(z,g)}J)= Z}C,jx}2I jj k ( z ) I  ~: 
K 

= ECHLCj}LI[ iy" ~y.~ ( 1 -  z ) / [  i~̂ *id:] ( 1 - 5 ) .  (2.13) 

The homomorphic "conformal blocks", I, are built up by 
descendants 

the summation over 

I[i.i.] ( z ) =  Elfl/ j ,k.laz -h, h:+&+l., (2.14) 
[YY lk 

(Remember that the leading term is normalized to flij, k0 = 1.) A pictorial represen- 
tation may be favorably substituted for those cumbersome notations (fig. 1). The 

i ( z )  i ( , )  

J(o) J(oo) 

i(l - z)  i ( o )  

\ /  
X 

/ \  
J(,) J(oo) 

Fig. 1. Pictorial representation of the crossing transformation of conformal blocks, 
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conformal blocks in the two channels are related by a linear transformation 

l J J k  ; f ,  

In particular, in minimal theories, Dotsenko and Fateev have computed these 
"crossing matrices" X by using integral representations of the conformal blocks. 
(As any rational theory is likely to be the minimal theory of some adequately 
extended algebra [11], their method is presumably generic.) 

From eqs. (2.13) and (2.15), we see that the C's  must satisfy the following system 
of equations 

E l / - ` ,  1 2 y  X *  = * "'IJKI "'(ij)kl (ij)lc-I CI[LCj~L" (2.16) 
k 

Therefore, whenever the pair (l, l) does not correspond to an operator present in the 
theory, the 1.h.s. of eq. (2.16) must vanish. In particular 

El CIJKI 2x(ij)klx(;])~-I* = 0 if (l, i)  corresponds to non-integer spin. (2.17) 
k 

In the case of minimal theories with only spinless operators - those classified as 
(A, A) in refs. [12,13] - these equations have been solved in ref. [4]. In this case 

E l  2 * - -  * (2.18) C,~l X¢is)ktXos)k,-- ClZLCj~La,j. 
k 

Take l = 1, for which we know that CII 1 = 1. This determines 

] C,jKI 2 -  (X{i)))lk (2.19) 
x.%1 ' 

and likewise 

ICtiLI2_ (Xi-d])l, (2.20) 
X(ii)ll 

So far, the reality properties of the structure constants C and the crossing matrices 
X were not specified. In unitary theories, using charge conjugation symmetry, 
CI~ r = C i £ g  = C I j  K,  so that the structure constants are real. So presumably are the 
crossing matrices. In what follows we assume that the crossing matrices in unitary 
theories are real. Moreover, in unitary minimal (A, A) theories, it has been observed 
[4] that the structure constants may be consistently chosen to be positive. Note that 
the structure constants are generically transcendental numbers. 
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Instead of insisting on the associativity of the O.P.A. and on the crossing relations 
(2.16) that it entails, one may alternatively put the emphasis on the monodromy 
properties of the conformal blocks I(z) .  The latter have singularities at 0, 1, and oo 
which give rise to non-trivial monodromy properties as z circles around these special 
points. The monodromy around 0 is read off from eq. (2.14) as 

[JJ lk  [JJ Jk 

The monodromy properties around 1 may be obtained by using eq. (2.15) and the 
I - - - ' l  

simple monodromy properties of I/i~"], ( 1 - z ) L ~ j  around 1 - z = 0 ;  finally, the mon- 

odromy properties around oc follow from the composition of those around 0 and 1. 
The requirement that the physical quantity ~ J Icpf (1) q~l (z)  I J )  be a uniform function 
of joint  variables (z, £) is then fulfilled if only integer-spin operators appear in 
either channel. Hence, uniformity around 0 results from the summation over 
integer-spin intermediate states K in eq. (2.13), while uniformity around 1 follows 
from eq. (2.17). It is then seen that the monodromy group is tightly connected to the 
crossing property. 

3. Selection rules on factorized Operator Product Algebras 

The data (c, { I } , { C i j x }  ) characterize fully the conformal field theory. As the 
previous discussion suggests, the determination of the C's  in a given theory is a 
laborious task and their a priori classification seems, for the time being, out of 
reach. Selection rules on the C's, on the other hand, are better understood 
[1, 4, 5,14, 15]. It seems that a general formula exists for the indicator of CIj~. The 
indicator is zero or integer depending on whether Cij K vanishes or not. More 
precisely, define NIj~ as the number of independent terms appearing in the fusion 
of I ® J--~/~ (see, e.g. eq. (2.10)). Clearly, these numbers are fully symmetric in 
I, J,  K. The ansatz of Verlinde [6] amounts to a closed expression for Ntj  x (in a 
certain class of theories). 

Notice that determining the operator content (the set { I }), and the selection rules 
N~j~ do not suffice to fix uniquely the structure constants, hence not the whole 
theory. A standard counterexample is provided by the E 8 × E 8 and SO(32)/Z 2 level 
one WZW theories, which have the same spectrum of {h i, hi),  the same genus-one 
partition function, the same NIj K (see ref. [6] and below) and still are inequivalent 
theories. 

To proceed, we have to address the issue of left × right factorization of the O.P.A. 
The reader may have noticed that while the holomorphic × antiholomorphic struc- 
ture of the 2-point function and the 3-point function was emphasised (eqs. (2.1) and 
(2.6)) nothing was assumed on the C's. All the preceding discussion was held 
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irrespective of whether the structure constants factorize, i.e. 

Crjl,: = C i jkCi j -  k.  (3.1) 

There is a class of theories in which this factorization is obviously satisfied, namely 
theories with only spinless operators. For these theories the distinction between I 
and i is immaterial, and we may write 

CIj  x = C i j  k = (Cuk) 2, (3.2) 

and the genus-one partition function is a sum of squared moduli of characters 

z =  ~NIx , I  2. (3.3) 

More generally, consider a theory with an extended algebra whose partition func- 
tion takes the diagonal form (3.3) in terms of supercharacters of this extended 
algebra. With respect to the extended algebra, all the primary fields are diagonal, i.e. 
{ I } = { i, i } where i is an index of the extended algebra. Hence, factorization of the 
structure constants for these fields is obvious. When the representations of the 
extended algebra are decomposed into representations of the Virasoro algebra, 
the partition function reads 

2 

Z =  ~_,N[i I ~ X j , 
i] j ~  i] 

(3.4) 

where the index [i] in eq. (3.4) is an index of the extended algebra. The partition 
function (3.4) exhibits Virasoro primary fields of non-zero spin but the left × right 
factorization is preserved. Therefore, it is very tempting to conjecture that, in 
general, for theories whose partition function has the general form (3.4), the O.P.A. 
factorizes (even if the underlying extended algebra has not been identified). We 
refer to such theories as of class I. For example the minimal theories of class I are 
those classified by (A,A), (A, D . . . .  ), (A,  E6) o r  (A,  E s )  in refs. [12, 13]. Theories of 
class II are those theories whose partition function cannot be written in the form of 

eq. (3.4). 
For  theories of class II, there m a y  exist operators of non zero integer spin 

h i - h i ~ Z such that either of the two spinless operators (h i, hi) or (h i, hi) does not 
exist. Again referring to minimal theories, this is what happens in the theories* 
(A, Doad) or (A, Ev). In such a case, it would clearly be inconsistent to write eq. 
(3.1). Consider for example taking I = J = (i, i) and some appropriate K = (k, k). 

* The fact that Doa a and E 7 models have specific features has been also noticed in a similar context 
but a different language in ref. [16]. 
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The factorization Cxj K = c~ikcii~ would then be in contradiction with the absence of 
either I '  = (i, i) or I "  = (i, f) which implies the vanishing of C r r  K, = (ciik) 2 or of 
Cr,r,x,,  = (c i~)  2. Note that not all theories of class II  may be disposed of by this 

simple argument. Such would be the case of a theory with a partition function of the 

form 

Z =  ]Nil 2 -1- ]X2[ 2 "J¢" IX3] 2 -[- ( X l ( g ~  -1- X ~ )  "+" c . e . ) .  ( 3 . 5 )  

From now on we restrict the discussion to class I theories. Observe that belonging 
to the same cluster [i] defines an equivalence relation between fields. We shall soon 
need, as a consistency relation, that 

Y[il[jl[k] = Y'- Ci2kX(ij)kl depends only on the equivalence class of i, j ,  k. 
kE[k] 

(3.6) 

The sum in eq. (3.6) runs over the k ' s  which appear in i ® j  and belong to a certain 
class [k]. The intuitive meaning of eq. (3.6) is that couplings between various 
representatives of the same equivalence class are related. This can be checked in the 
Potts model. 

The fact that the coefficient Y depends only on the class of k results from its 
definition. At the end of appendix A, we prove the i and j part of this statement in 
any diagonal theory (cf. eq. (3.3)) with an extended algebra. The idea is to repeat, 
for the generators of this extended algebra, a discussion carried out for the Virasoro 
generators, showing that the residue of the leading z ~ 1 singularity of 
2 N ( J ] c p t ( 1 ) I K N ) ( K N ] ~ I ( z ,  £) ] J )  does not depend on the descendant of I or J. 
Again it is tempting to assume that this property holds for any "class I" theory. 

Notice that some care has to be exercised when dealing with extended algebras; 
arguments familiar within the Virasoro algebra may turn out to be incorrect. For 
example, in the fusion of two extended primary fields, the leading term within a 
cluster may not be the primary field of that cluster, whereas the leading term in eq. 
(2.8) for a given k is a Virasoro primary (see, e.g., claim 2 of ref. [15]). A 
counterexample within extended algebras is provided by the Potts model where the 
fusion rule of two energy operators e(h = '5 2) is E ® e = ~ + d. The operator c'(h = !)s 
is a Virasoro primary but a descendant of e in Fateev-Zamolodchikov algebra 
[17]*. 

Assuming eq. (3.6), the crossing relation (2.16) for l = 1 = 1 yields the sum rule 

1 y' 2 ¢2 -- X 2 X y 2  = cijk i)~a{ij)kl (i;)~1 = ~-, Y'. cijk Cik)kl }-'- I,lfjllkl" (3.7) 
k ,k  [kl k~[k] [k] 

It  is hoped that for the theories of class ! the general solution of the crossing 
relation, together with the additional information implicit in eq. (3.4), may be shown 
to satisfy factorization and eq. (3.6), and hence eq. (3.7). 

* Epsilon does not appear in c ® ¢ because it is odd under the self-duality of the Potts model whereas ¢' 
is even. 
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The  factor izat ion of the C ' s  implies that  the N ' s  factorize 

N,]K = Nij Nu . (3.8) 

Recall  tha t  Nij k counts the number  of independent  ampli tudes  in the fusion 
i ® j  --*/~ (see, for example,  eq. (2.10) and sect. 5). Actually,  in theories of class I, it 
seems that  the best we can do is to determine the number  of independent  ampli-  
tudes in the fusion to a given cluster [[c] 

0, if N, j k = 0  for all k ~ [ k ] ,  

NiAkl = N, jk, the c o m m o n  value of some non-zero Nuk; k ~ [ k ] .  (3.9) 

The  fact that  Nij[k I does not depend on the choice of the non-vanishing Nzj k follows 
f rom the in terpre ta t ion of the N ' s  as counting the number  of independent  ampli-  
tudes.  The  various k ' s  in [k] have " in terna l  quan tum numbers"  of the same nature, 
and  the n u m b e r  of amplitudes,  if non-zero, should be the same for all k ~ [k]. By 
the same considerat ions as for eq. (3.6), it is easy to see that  N, Ak j depends  only on 
[i] and  [ j ]  and should therefore be writ ten as Nii][jl[k 1. 

We are ready  now to propose  our ansatz for N[il[j][k ] in terms of the conformal  
blocks  in the p lane*  

YI~JLJlLkJYHtAk] (3.10) 
N[i][jl[k] = Y[i][/"][t] 

N o t e  that  this ansatz seems to require the knowledge of the c ' s  to determine their 
indicator!  I t  may,  however, be recast in other forms. In part icular  as we shall see, it 
is equivalent  to Verlinde's ansatz [6]. In this simple case where [i], [ j] ,  [k] contain a 
single (Virasoro) p r imary  field it reduces to 

Ci4kX(ij)klX(ik)jl 
(3.11) 

NU, = X(i? m 

Obviously,  Nij k vanishes with cuk and is symmetr ic  under  j ~ k, but  neither its 
integrality,  nor  even its full symmetry  in (i, j ,  k )  is apparent .  The main  evidence we 
have  in favor  of  this conjecture comes f rom explicit checks in many  cases, either in 
this form, or  in Verlinde's form (see below eq. (4.26)). In simple cases where only 
one channel  is open to i ® ~, i ®j ,  and i ® k, namely  ],  k, and j ,  respectively, eq. 
(3.6) fixes N, jk (up to a sign) to be 1. The  gaussian model  provides a trivial example  
for  such a case. For  this model  each factor in eq. (3.11) is actually a Kronecker  delta 
funct ion!  Ano the r  example  is provided by the Ising model  for I,  J,  K = ] or e. Here  

* The subscript 1 refers, as usual, to the identity operator. 
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n,E are the identity and energy operators. In the case of the diagonal (A,A), 
minimal theories, we may use the explicit expressions for CIjI~ given in eq. (2.19) to 

rewrite our ansatz as 

N~k = 1 (3.12) 

It is easy to check, using the explicit expressions of ref. [4], that this agrees with the 
known fusion rules of minimal models [1] and their interpretation as addition of 
SU(2) spins. 

The identification of the multiplicities with the r.h.s, of eq. (3.12) demands that 
the r.h.s, of these equations does not depend on a change of normalization of the 
conformal blocks. This is manifest in eq. (3.12). If Xuj ) ---> AX( i j )A  -1 here A, A are 
diagonal matrices, (Xu)))IkXuj)k t and therefore also N,j~ are indeed invariant. 
Actually, Dotsenko and Fateev [4] have used a basis in which the crossing matrices 
are algebraic numbers. It may also be observed that X(, j )DXu 1) where D = 

r 
is the monodromy matrix of the conformal block I]  ~,](z) diag(exp 2irr( h l - 2hi)), 

L 
• . /  ] 

around z = 1. 
All these remarks point to the possibility that eq. (3.12) is of more general validity 

and that the N ' s  may be expressed in terms of monodromy matrices. In any case 
proving either eq. (3.10) or eq. (3.11) remains a challenge. 

4. Verlinde's algebra 

In order to define Verlinde's operations on characters, we consider the 2-point 
function ( % ( w ,  ~)~i (0) )  on a torus of periods a = 1 and b -- r. It may be written 
in operator language, using the w and ~ translation operators on the cylinder of 
period a = 1 

Z(~pZ(W, ~)¢pi(O))torus = tr(eti{,-w)H+ .... ]q~ 1e fiwn+ .... lc~f), (4.1) 

with 0 < Im w < I m  T. Mapping the cylinder on the plane by z = e 2i~w and setting 
q = e 2i'" one finds [2], for rql < Izl < 1 

z(%(w, . . . .  

= (2iqT)2h'(--2iqT)2h'tr[(q)L°-c/24 ~)7~° c/24~plzLO-c/24~I-o-C/24~[ ] 

= ( 2 i ~ ) 2 h , ( - 2 i ~ )  2h, 

r ,  Lo ,0  _ 1 
X.z~M(JM'  [t  q )  ~/24(q) f~lzL°-c/24zL°-c/24~lllJm }. {4.2)  
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In order to exhibit the factorized structure of this 2-point function in terms of 
holomorphic and antiholomorphic blocks we insert a complete set of orthonormal 
intermediate states into eq. (4.2). With the notations of sect. 2 

lqt  ++'m' o 
J , M  \ Z 
K , N  

×Zhk+ t"l c/24£h~+ Inl-c/241(I~NI~tIjM) 12. (4.3) 

The factorized form is now evident: 

Z(cpt(w, ~)~f(0))toru s = E G K ~ / k (  z, q)Fid~(Z, q)" 
J , K  

(4.4) 

The holomorphic (in both z and q) conformal block reads 

Fi/k(z'q) = (2/~)2h, ( a  \ ,,,~_), c/24z hk - c/24 { m }, {,, } E  (7)q\lml Z I'1 
(fcnlCpi[jm)~ 2, 

( kl~pilj) (4.5) 

where ]q[ < Izl <1 .  The last ratio in eq. (4.5) results from the factorization 
properties of the 3-point functions in the plane and depends on the "left"  labels 
h i, h/, h k, m, n . . . .  only (see appendix A for details). A pictorial representation of 
F,;k is given in fig. 2. 

These conformal blocks are singular at z = 1, i.e. w = 0, corresponding to the 
short-distance singularity of the 2-point function. They may have non-trivial mono- 
dromy properties when w winds around 0 or is continued around the torus, i.e. 
w -~ w + 1 or w -* w + ~-. Only the physical amplitude (4.4) is a uniform, doubly 
periodic function on the torus. 

The conformal blocks FOk are relatives of those pertaining to the 4-point function 
in the plane, as the comparison between eqs. (2.14) and (4.5) shows. This similarity 
is an explicit manifestation of a general property emphasised in ref. [18]. 

- - r i k  i 

I I I 

(o) (b) 

Fig. 2. Pictorial representat ion of F,j k and its deformat ion into F,k ;. 
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In the singular limitr..ar ~ ioo, q ~ 0 where the torus degenerates (" pinches"), F,j k 

actually reduces to I leaL(z)  

F~Jk(z'q) - ( 2 i ' r ; ) 2 & q h s C / 2 4 z & l  JJ k 
q --, O 

Another interesting limit is z -~ 1. It may be shown (appendix A) that in this limit 

zl-I Iml (knl~i l jm)  2 Bijk 
{,} (/~[~ilJ> (1 - z) 2h'' (4.7) 

with a residue Bo k which is independent of the descendant m of j. Inserting this 
expression into eq. (4.5), one finds 

( 2irr ) 2& 
~Jk(z '  q )z21  ~ Bijk E qh,+ I,,I-c/24 

{m) 

_( 2irr ] 2h' 
1 - z  / B~JkxJ(q)' (4.8) 

b~¢ .definition of the character. The block F, Tk(z, q) therefore interpolates between 

I1".] (z) and x j (q) .  The residue B~j k is easily identified by considering the double 
I J J J k  

limit q ~ 0, z --+ 1. The crossing relation (eq. (2.15)) and the fact that the leading 
singularity in the crossed channel (in a unitary theory) comes from the identity 
operator, gives 

B i j  k = X ( G ) k  1. (4.9) 

Note that eq. (4.8) expresses a natural decoupling of the short-distance singularity 
of F~j k, depicted in fig. 3. 

Let us now examine the monodromy properties of F, Tk(z, q) as w = (1/2i~r)log z 
winds around the torus. The monodromy property of the block as w--+ w + 1, 
z --> eZi~rz is easily obtained from eq. (4.5) 

Fij~( z, q) ~ eZi~r(hk--hJ)Fijk( Z,  q); (4.10) 

the effect of w--+ w + r, z--+ zq cannot be read off directly from eq. (4.5), as it 
violates its condition of validity: ]q[ < [z[ < 1. For our purposes, however, it is 
sufficient to consider the change w ~ r - w, z --+ q / z  which does preserve it. One 
finds 

F~jk(q/z, q) = F~kj(z, q). (4.11) 

A pictorial interpretation of eq. (4.11) is given in fig. 2. 
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Fig. 3. Short-distance behaviour of F,/k. 
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We are now in position to define Verlinde's operations on characters. We restrict 
ourselves to theories of class I (using the terminology of sect. 3). We shall make use 
of the normalized combinations of F's defined b y  

l"i[jl(z,q)= ~ ~ Y[il[jl[kl[ ~%]1"ijkc2ijk]" 
j~[ j ]  [klc[i]®[j] k 

B y  virtue of eqs. (3 .6) ,  (4 .8)  and the sum rule (3.7) we obtain for z - 1 

( 2irr ] 2h' 2 
Fi[jl(z'q)- ~ - 2 ]  Y'~ xJ(q)EY[il[j][kl 

j~[ j ]  [k] 

2iqr )2h, 
= ~ Z xj(q) 

jE[j]  

(4.12) 

=( 2iqr )2h'X[jl(q), 

where we have introduced the 
irreducible representation of the extended algebra. 

Consider first the block F, Ell(z, q) 

(4.13) 

character of the cluster [j], pertaining to the 

- -  C i l i X ( i l ) ~ l  - -  1. At small separation w ---, 0, This equation results from Y[i][ll[T]-- 2 

F/[ll(Z ,q )  = ~ ~ c~?F,?( z, q). (4.14) 
/~[1] ? e [ i ]  
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I m z > O ,  I z l - - , 1  

/~i[1]- 1 - z ] Y~, x z ( q )  - ~ Xi l l (q) .  (4.15) 
/~[1] 

We then let w wind around the torus and approach the point  ~, still satisfying 
Im w < Iml-. This means that z = q/z ' ,  z'  -* 1, Iz'J < 1 

G j ( ~ , q )  = E Z : ' ~.r.E;,~ ( z ,  q) 
l~[1] 7'~[?] 

z ' ~ l  \ 1 - z '  Ytilt,ltxl • x c ( q )  = - -  Ytili?lillX[i](q). (4.16) 
i' ~[i] 1 -- Z' 

The  compar ison  of eqs. (4.15) and (4.16) shows that we have defined a deformat ion 
of  Xlal into XI~I" The operator  ~ i (b )  of Verlinde may be therefore identified with 
(YIillqIxl)- 1 times this deformation.  

Next  we per form this deformation on some other character  X[j]. W e  thus start 
f rom Fqj I instead of Gill" At short distance 

F,If(z,q)= Z ZYtiltjltkl Z ci~kFikj(z',q) 
j~ [ j ]  [k] k~[k] 

2i~r )2h, 
Z YIilullkl ~-, Ci~X(ik)ilxk(q) 
[k] j ~ [ j ]  

k~lk]  

2ivr ] 2hi 
= 1---2-Fj Z r~,Hjl~k~rHIkl~j~ Z xk(q) 

[k] k~[k] 

2iqr ]2h, 
= 1 - z ' ]  Z VLilljllklYEilEklulXlkl(q), 

[kl 
(4.17) 

where we have used eq. (3.6). After multiplication by ~ 1 (YLilLilIll) , this realizes 
Verlinde's operat ion 

rb,( b )x f j l (  q ) = E NtilffIklX[kl( q ), (4.18) 

with Niijij~k J given by eq. (3.10). 
We can follow the same steps to define the deformat ion around the period 1 of 

the torus , i.e. z --* z e  2/~ with (1 - z) --* ei=(1 - z) (see fig. 4). Using eq. (4.10), one 
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T 

0 I 

/ Z  

( 1 

Fig. 4. The relation between the w and z planes. The two types of arrows correspond to the two periods 
of the torus. 

f ind s: 

2i¢r 12hi e g C i j k A ( i j ) k l  I'iul(ze2i~'q)- l - z }  E xj(qlEYtijt.i]tk] E 2i':'r(hk hi h )  2 ,z 
j ~ [ j ]  [k] k~[k] 

2i~r ]2h, 
--1--~-z] £ xj(q)EV2 ,~",,,~(h~-h,-h) = "[i][j][k] ~ 

jE[ j ]  [k] 

= (  2i~r ]2h ' x~ .~2  2i~v(h k hi h ) / 
k - '~_  Z } ]... l[i][j][k]e J X[j]~q), (4.19) 

[k] 

because  the phase factor exp[2iTr(h k - h i - hj)] depends only  on  the class [k]  (and 
[i], [ j ] ) .  Mult iplying again by (Y[qt;lEq) 1 al lows us to define the operator ~ i ( a )  of  
Verlinde.  W e  find 

~i(a)xtj](q) = ) t( / )Xtj l (q) ,  (4.20)  

with  

2 e2i~(hk h,-h~) 
X~j) = Elk]  Y[i]tj][kl 

Y[i]t}lul] 
(4.21) 

The  cases where  either i = 1 or j = 1 are trivial 

N[1][j][k] = ~[f][k], ~(J) = 1, 

N[i][1][k] = ~[/][k], •(1) = (Y[i][~][1]) 1 ( 4 . 2 2 )  
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Consider now the effect of the modular transformation S, S: r ~ - 1/~" on the 
previously defined deformations. Recall that S acts linearly on characters 
Xt~j(-1/~')  = EIJl SHIjlXIJl ('r)" The matrix S is a unitary matrix and its square 
exchanges conjugate fields 

SS t = 1, (S2)[i][J] = 6[Jll{l" (4.23) 

It is clear that the two deformations are related by S: Scb~(a)S - 1=  ~i(b). This 
suffices, together with eq. (4.22), to repeat Verlinde's steps and express N{~l[jl[k ] and 
X(/) in terms of the matrix S[ofj ] 

= x-,o X~n~St (4.24) N[il[j][k ] Z..2J[ j ][n]  i [n][kl '  
[n] 

and hence 

X(/) SIiltJl (4.25) 
S[1][ j  ] ' 

Ntiltjltk I = Y'~ S[il["lStJ]t"]St['qlkl (4.26) 
[n] S[1][n] 

From these expressions it follows that the operators ~ ( a )  and ~ (b )  that we defined 
obey Verlinde's algebra 

• i(c)Cbj(c)=~_,Nfiltjl[klCbk(c), where c = a  or b. (4.27) 
[k] 

It is interesting to compare the two alternative expressions obtained for N[i][j][k ] and 
X~ j), i.e. eq. (3.11) versus eq. (4.26) and eq. (4.21) versus eq. (4.25). One expression is 
given by a sum while the other consists of a single term. They seem to be a sort of 
dual expressions. 

The fact that it is possible to find expressions for the N ' s  and X's in terms of the 
matrix S and in terms of the crossing matrices X suggests that there is a hidden 
relationship betwaeen the X's  and S. Actually, using the formulae of ref. [4], we 
obtain for minimal (A,A) theories that, for k ~ i ®j, 

SnSlk  
a _ ( 4 . 2 8 )  X ( i j ) l k X ( i j ) k l  S l i S l j  ' 

corresponding to Nij k = 1 (see eq. (3.12)). 
As a last conjecture let us mention that 

S[1][1]S[1][k ] (4.29) 
Y[2]tj][k I = N[i][jl[k ] S[1][i]S[1][j] ' 
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is consistent with eqs. (3.7), (3.10) and (4.26) and is indeed satisfied in minimal 
(A, A) theories. It might be the missing link between the crossing matrices and 
modular transformations. 

5. Examples 

All our discussion so far was quite formal. We have given an explicit realization 
of Verlinde's operations in terms of deformations on conformal blocks. We pro- 
posed an ansatz for the number of independent amplitudes appearing in the fusion 
rules of primary fields which is equivalent to Verlinde's ansatz. It would be, 
however, both useful and illuminating to see how these formal considerations apply 
to specific models. The simplest possible model is the gaussian model where 
everything is trivial and our ansatz is clearly satisfied (see also the discussion 
following eq. (3.11)). The only other model (leaving aside orbifolds of the gaussian 
model and low-level WZW models), where all the correlation functions are known 
for genus one, is the Ising model. In the untwisted sector of the Ising model the 
three primary fields 1, o, c satisfy the following O.P.A.: 

1 ®1=1, 1®~=c, 1 G o = a ,  

e ® e = l ,  c ® o = a ,  a ® o = l + e .  (5.1) 

All the structure constants but C,o, = ½ are necessarily equal to one (cf. eq. (3.7)). 
The appropriate crossing-matrix elements may be evaluated [4] and through eq. 
(3.11), lead to selection rules in perfect agreement with eq. (5.1), with all the 
non-zero N ' s  being equal to 1. On the other hand, the analysis of sect. 4 may be 
applied, using the result of ref. [19] where the various correlation functions on the 
torus are given*. The conformal blocks can be calculated and their monodromy 
properties may then be studied according to the discussion of sect. 4. In fact one can 
check and verify explicitly all the discussion carried out in sect. 4. In particular, one 
has to form the normalized combination (cf. eq. (4.12)) 

l j2  

too =  -(roo  + roo ) = [2n(q)l /2 

2i~r ]1/8 
w20 ~ y2-;_ ~ ] x o ( q ) ,  (5.2) 

* It now becomes clear why in that later work the (oo)  correlation function was found to be a sum of 
four moduli of holomorphic contributions while the @c) function was a sum of three. What was 
interpreted there in the fermionic language, specific to the [sing model, may now be recast in the 
general form (4.4) and reflects the various possibilities offered by the O.P.A. (5.1). 
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which verifies eq. (4.13). In short, the Ising model realizes our construct ion in a 

non-trivial  way. 
Let  us now discuss the models with SU(2) current  algebra of level k [20, 21]. We 

limit ourselves to those models which we expect to have lef t - r ight  factorized Ntj  K 

(see our  discussion of sect. 3); they are classified by Ak+>Dzo+2  if k = 40, E 6 if 
k = 10, or E 8 if k = 28 [12,13]. It is convenient  to label the pr imary fields by 
X = 2 j + 1, where j is their SU(2) spin, satisfying 

O<~j<~½k i.e. l ~ < X ~ < k + l .  (5.3) 

The  Nx,x2x, coefficients* have been computed for the Ak+ l series in ref. [6] and 
shown to agree with the selection rules expected for SU(2) WZW model [21] 

Nxlx2x, = 1 if and only if I J, -J21 ~<J3 ~< min(j~ +J2, k - J l  - J 2 ) .  (5.4) 

The  same selection rules for tensoring the representations { j } of SU(2) are obta ined 
by  using the following rules: 

(i) associativity; 
(ii) in the multiplication of { j } by f = { ½ }, the representations of spin j '  > ½k 

are discarded. 
T o  see how it works take, for example, the case of level k = 4 

{ ~ ) * { 2 } = { 3 } ,  

( { ½ } , { ½ } ) , { 2 } = ( { 0 }  + { 1 } ) , { 2 } .  (5.5) 

Using associativity 

( { 1 } ,  ( ½ } ) , { 2 }  = ( ½ } * ( { ½ } * { 2 } )  = { ½ } * { 3 }  = {1} + (2} .  (5.6) 

Compar ing  eq. (5.5) with eq. (5.6) we obtain (1} * {2} = {1}, in agreement with eq. 
(5.4). 

The  models  labeled E e and E 8 are easy to handle; they are actually interpreted as 
level-1 C 2 and level-1 G 2 WZW models respectively [22, 23]. Their  Verlinde algebra 
is the Ising one  (5.1) for the E 6 case and 

d ® a = ~ ,  1 ® ~ = q 0 ,  qp® q0 = d +~0, (5.7) 

for  the E 8 case. 

* In the rest of this section the indices refer to the extended algebra. For simplicity of notations we 
write them as i, j .... rather than [i],[j] . . . . .  
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The  models  labeled Ozp + 2 are more  interesting. Their  genus-one part i t ion func- 
t ions exhibit  a factor 2 

2p-1  

z =  ~ I x x + x 4 o + 2 _ x l 2 + 2 l X z o + l l  2, (5.8) 
~kod d = 1 

signaling that  there are two pr imary  fields of  spin j = p  [21]. In  the D 4 case, this 
m a y  be related to the interpretat ion of this model  as a level-1 SU(3) W Z W  model  
[22], with two fields of degenerate conformal  weight t ransforming as the 3 and the 
representat ions .  Note  that  these representat ions t ransform as the vector  representa-  
t ion of the SU(2) which is conformal ly  embedded  in SU(3) level 1 [22]. In that  case 
the mat r ix  S of modular  t ransformat ion reads 

1 1 1 1 ]  1 0 0 
S = ~ -  1 ~0 ~02 ) ,  60 = e 2i~r/3, S 2 = 0 0 1 , (5.9) 

1 ~0 2 ~ 0 1 0 

where  the first row and column refer to the (h  = 1) + (X = 5) cluster in the language 
of  SU(2), or to the representat ion 1 in the SU(3) interpretat ion.  The  corresponding 

a lgebra  reads 

qO3 @ ~3 = q0~, q0 3 ® q0~ = d, (5.10) 

in agreement  with the existence of a conserved Z 3 charge (triality). In this form the 
result ing non-zero  N ' s  are equal to 1. 

The  D 6 c a s e  may be treated in a similar fashion. However,  the degeneracy 
be tween  the two X = 5 representat ions has no clear interpretat ion.  Nevertheless,  
there are, at  first sight, several ways of splitting it. We use the basis X1 + X9, X3 + 

X7, Xs, Xs, to write 

2s  I 2 s  3 1 1 

S 4- 2s3 2Sl  - 1 - 1 (5.11) 
1 - 1  a fi  ' 

1 - 1  fl a 

where  st= s i n ( ~ r l ) ;  a and fl are such that  a + fl = 1, to recover the ordinary 
m o d u l a r  t rans format ion  when Xs -= Xs,. One may  consider two possibilities: either 

$2= 0 1 0 (5.12) 
0 0 0 ' 
0 0 1 

signaling that  (5) and (5') are conjugate, or S 2 = 1. It  turns out that  only the second 
alternative,  with a, fl = ½(1 + ¢5-) leads to integer coefficients Nij k. The  non-zero 
N ' s  turn out,  again, to be  1. Denot ing  the four clusters by  d, % t~ 1, and @2, 
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respectively, the algebra reads 

cp ® ¢p = ~ + ¢P + ~kl +tk2, 

~'/"1 ®¢1 ='ll q-~l' 
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and similar relations obtained by interchanging 1 (--) 2. This alleged O.P.A. should, 
of course, be tested against explicit calculations in the realization of this model as a 
SO(3) level 4 WZW model [21]. The case of higher D n models will be discussed 
briefly at the end of this section. 

We now want to discuss a feature which has not appeared in the simple cases 
discussed so far, i.e. the occurrence of multiplicities N,7 k > 1. Since the previous 
discussion has shown the connection with suitably modified Clebsch-Gordan  
decompositions, it seems natural to consider higher rank algebras, and the corre- 
sponding conformal-current algebra. Take SU(3) for illustration, and label the fields 
by the dimension of their SU(3) representation. At level k all the fields that may 
appear  correspond to Young tableaux with at most k columns. Working out the 
algebra using either eq. (4.26) or the calculus (5.5) adapted for SU(3), with f = (3), 
one finds: 

level 1 - see eq. (5.10); 
level 2 - representations (1, 3, 3, 6, 6, 8), N888 = 1 etc.; 
level 3 - representations (1, 3, 3, 6, 6, 8,10, 70,15,15), N888 = 2 etc. 

The interpretation is clear. At low levels, the truncation is effective and one does not 
recover the well-known composition rules of representations 8 × 8 = 1 + 8 + 8 + 10 
+ TO + 27. Instead we find 8 . 8  = 1 + 8 + (8 + 10 + 10) + (27) where the represen- 
tations in the first brackets appear for k >/3 and the (27) appears for k > 4. 

As we have discussed in sect. 2 the meaning of N888 = 2 is that there are two 
possible couplings between three primary fields in the octet representation (see eq. 
(2.10)), for high enough level. 

We finally return to the "D2o+2" SU(2) models, for O >/3. Surprisingly, non-triv- 
ial multiplicities arise there too! The matrix S is written in a form generalizing eq. 
(5.11), with a + fl = ( - 1 )  °, and S 2 = ~ for O even, S 2 of the form of eq. (5.12) for P 
odd. This somewhat arbitrary prescription is shown to lead to integer ~jk-  Alterna- 
tively, one may reproduce this algebra by a calculus analogous to eq. (5.5); one uses 
this time only integer spins running between 0 and O, the latter being twice 
degenerate is denoted by p and p2 The role of f is played by j = 1, and one 
postulates that 

(1)* (p) = ( O -  1) + 0', 

(1 )*(0 '1  = ( O -  1) + O- (5.14) 

Somehow, the allowed range of j at level 4 0 : 0  ~<j ~< 2 0 has been folded at the 
midpoint  j = O, with an identification j = 2p - j ,  0 ~<j ~< O - 1. These rules, or this 
folding are then responsible for the occurrence of non-trivial multiplicities. For 

~1 ® q'2 = cP, (5.13) 
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example, in the D 8 case: for j = 2, ?~ = 5:N555 = 2. This must signal the existence of 
a two-dimensional space of couplings in the corresponding channel. We emphasize 
that it would be extremely interesting to test these mysterious rules, and this 
interpretation of N555 = 2, by a direct study of the O.P.A. in the SO(3) WZW model, 
or in the corresponding "A, D" minimal theory. 

6. Conclusions 

In a class of conformal theories in which the structure constants of the operator 
algebra decouple into a product of left and right contributions, an ansatz has been 
proposed for the multiplicities y[il[Jl[k] which count the dimension of the space of 
couplings in the fusion i ®j  ~ k. This ansatz expresses N[i][jl[k ] in terms of elements 
of the crossing matrices of conformal blocks of four-point functions in the plane. 
This ansatz has been shown to be equivalent to that of Verlinde. We have 
constructed a realization of Verlinde's operations in terms of deformations of 
conformal blocks of the 2-point function on the torus. 

As several points along our line of argument remain unproven, let us recapitulate 
our conjectures. 

(1) We made the simplifying assumption that the crossing matrices of unitary 
theories are real. This is indeed what happens in minimal theories [4]. Relaxing it 
would replace the factor YtiJLjlEkl in eq. (3.10) by it complex conjugate and thus spoil 
the symmetry under the interchange of j and k. This is why we believe this reality 
to hold in general. Still, a general argument would be desirable. 

(2) The precise characterization of the set of factorizable O.P.A. is missing. It is 
clear that it is not empty, and includes at least all the theories which are "diagonal" 
in terms of some extended algebra, i.e. contain only spinless primary fields of this 
algebra. We have conjectured that this class extends to all theories with a genus-one 
partition function of the form of eq. (3.4) (class I); tests of this assumption are 
underway [24]. Our subsequent analysis, however, does not depend on this conjec- 
ture. 

(3) To achieve the connection between the ansatz and the deformation of 
characters, we need the consistency condition (3.6). We have proved it within 
theories endowed with an extended algebra, but a general (and more elegant) proof 
would be desirable. Whether it holds for all theories of class I remains to be 
investigated. Likewise, a general derivation of eq. (3.9) and its dependence on the 
classes [i], [j],  [k] is missing. 

(4) The main challenge remains of course the justification of the ansatz, either in 
the form of eq. (3.10) or eq. (4.26). Since the N ' s  are integers it would be gratifying 
if one could give some topological meaning to the r.h.s, of eq. (3.12), thus ensuring 
its integrality. 

It is to be noted that these points all imply some knowledge of the crossing 
matrices, more precisely about relations between crossing matrices in various related 
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channels, e.g. X(ij)kl, X(i~)jl and X(ihl 1. According to our remarks at the end of 
sect. 3, it may be that the ansatz can be expressed in terms of the monodromy 
matrices of conformal blocks, and that its proof relies on the study of monodromy 
properties and the corresponding braid group [25, 26] of the theory. 

It would also be very interesting to test directly the somewhat puzzling results on 
the O.P.A. of some models which follow from our ansatz (see sect. 5). Finally we 
have stressed that understanding of the O.P.A. in non-factorizable cases remain an 
open problem. Conformal field theory is still wrapped in a few mysteries . . . .  

We want to thank P. Di Francesco, A Ludwig, V. Pasquer, E. Verlinde, H. 
Verlinde and especially C. Itzykson for discussions, suggestions and constructive 
criticisms. J.-B. Z. thanks the School of Physics and Astronomy at Tel Aviv 
University for a kind invitation which enabled us to start this collaboration. 

Note Added in proof 

Soon after completion of this work, we received a paper by G. Moore and N. 
Seiberg (Phys. Lctt. B212 (1988) 451) proving the main conjecture. The case of 
"class II" theories has been discussed in ref. [24] and by Dijkgraft and Verlinde 
(Utrecht preprint) and Moore and Seiberg (Princeton preprint). 

Appendix A 

We discuss correlation functions of descendant fields, derive the explicit form of 
the coefficients flij, k,, in eq. (2.9) and prove the result announced in eqs. (3.6) and 
(4.7). 

We use the conformal Ward identity for N primary fields and M +  1 stress 
energy-momentum tensors [1] 

= hi l 0 

i=1 zi)  2 + zi)  ozi 

+ E + - -  ] /  

M C 

+ IA.I  

The 2 variables of the q~ fields are implicit and the caret over T denotes its 
omission. By integration of T on a contour encircling one and only one of the z 's, 
one generates the descendants of q0(z). 

1 
q~(-k~(z) = ( L _ k c p ) ( z )  = 2 - ~ d ~ ( ~ - z )  k+ lT( t )qo(z ) .  (A.2) 

Arbitrary descendants are obtained by repeated such integrations. 
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By performing M +  1 such integrations around z I in eq. (A.1), and using eq. 
(A.1) itself recursively, it is easy to see that 

( ~ - <  ..... k '+ ' ) (Z , ) . . .~N(ZN))=da(9 , , ,9 , . . . ) (~p,(Zz). . .~N(ZN)),  (A.3) 

where 9 _  l is the differential operator 

N ( l - -  1 )h  i 1 O 
9 - l ( z l )  = ~'~ - - - - ~ 2 5  (a.4)  

i=2  ( Z , - -  Z1) (Z i -  Z1)/-10Z i '  

homogeneous of degree - l  in the z's, and ~ is a polynomial in the 9 ' s ,  
homogeneous in the z's of degree -~2~ +~ kg. The interpretation is simple; the 9 's 
satisfy Virasoro algebra 

[ 9  k (Z l ) ,  ~ / (Z l )  l = ( l--  k ) 9  k_l(Zl), (A.5)  

with no contribution from the central charge since - k - I < 0. Therefore the 9 's 
just realize Virasoro algebra on the field epa(Zl) and eq. (A.3) may therefore be 
recast in the simple form 

<q01-kz ..... -kM+D(Zl)  .. " epN( ZN) ) = ( L_ku+a ... L-k,~l( Zl)... ~PN( ZN) ) 

=9_kM....  9 kl<C, OI(Z1)... ~ N ( Z N ) ) .  ( A . 6 )  

As a simple application, this justifies the factorization of (/<N I q0t(1,1) I J )  displayed 
in eq. (2.9). 

<K{I} {]}l~/(1,1)lJ  > 

= lim z~ (h~+l'l) x " c . c . " ( ~ ' ,  ..... *q)(z 1, ~l)ep/(1,1)~j(O,O)) 
ZI, Z,1 ---+ OO 

l im Z21(h~+ I/I) X "e.c." 
Zl '  ZI --+ ~ 

X g - / p ( Z 1 ) - - - 9 - / l ( Z l ) 9 - ~ q ( e l ) - - - 9 - - ] l ( Z 1 )  

with 

X <~K(Z1, Zl)~0/(Z2, Z2)q0j(Z3, z3))l ~=1 
x3=O 

= C I J K ~ i j ,  k{l}~ij-,~:(]}' 

flij, kU) = lim Zl z(h~+ [l[)=@_lp(21) 
gl --~ ~ 
z2~.l 
z3~O 

1 

. . .  9 _ , , ( z 1 )  ( z ,  - z 2 ) h k + h ' - h J ( z 2  -- - -  Zl)  h '  

This is a mere repeat of results of ref. [1]. 

(A.7) 

( A . 8 )  
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Let us now consider a correlation function with two descendant fields. For our 
purpose, it is sufficient to consider a 4-point function of the form 

(qg~-t ...... -tp)( zl)epi( z2)cp,( z3)~p( J k ...... -kq)(z4)).  (A.9) 

It  cannot  be simply given by a homogeneous polynomial in the ~ ( z l )  and ~ ( z 4 )  

acting on (qoj(zl) . . .  qos(z4) ). The commutation of the two Virasoro algebras at z 1 
and z 4 is still quite complicated and in general "feels" the central charge. By 
inspection, it is, however, easy to convince oneself that the differential operator is 
now a homogenous polynomial in the ~ /(zl), ~ / (Z4)  and Zl ,(Zl) , A m(Z4) 

where 

a m b m 0 

A _ m ( Z 4 )  - ( z  4 -  z1)m ( Z 4 - -  z 1 ) m _ l  Oz 4 ( a . 1 0 )  

does not depend on z2, z 3. 
Let us finally apply this result to the study of the singularities of eq. (A.9) 

as Z z ~ Z  3. We start from eq. (2.11) and apply the differential operator 
9~ (~  .(Zl), ~ .(z4), A .(Zl), Zl .(z4) ). We claim that whenever such an operator 

Z ) -2hi acts on (z 2 -  3 or on the cross ratio z, it produces a term proportional to 
(z 2 - z 3 )  which therefore does not contribute to the leading singularity 

i,=2 (z i , -  Zx)' (z i , -  zl) '-1 0zi, 2h' 

t ( l -  1)h, 

-- (Z 2 -  Z3 )2h ' - I ( z  2 -  Z1)/+1 q- . . . .  

0 { Z 1 -  Z 2 Z 3 -  Z 4 ] Z 1 -  Z 2 

aZ4 / Z1 -- Z3 Z2 -- Z4 } (Z 1 -- Z3)(Z 2 -- Z4) 2 (Z2 -- Z3)" ( A . 1 1 )  

Therefore, the only contribution to the leading z 2 ~ z 3 singularity comes from the 
action of the polynomial ~ ( ~ ' . ( z l )  , ~ ' ( z a )  ,A .(Zl) , A .(z4) ) on (z 1 - z 4 )  2hi 
where in 9 '  the terms in eq. (A.4) involving z 2 or z 3 have been removed. But the 
result is nothing but 

1 
lim z [ ( h k + l t l ) ~ ( ~ ' , ~ ' , A , A ) ( z l  z4) 2h, - -  ( J { - l } l J { - k } ) ,  (A.12) 

Zl~OO 
z4~ 

and the same result applies to each term in eq. (2.13), i.e. for a given in te rmedia te / (  

~(Jmlq~i(1) lI(N}(I(NIq~z(Z,  2 ) l J m )  - ~(JI~Pi(1)II(N}(I~NIq~,(z, 2)lJ  }. 
N z ~ l  N 

(A.13) 

This is the result announced in eq. (4.7). 
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By the same token, this justifies the consistency condition (3.6) in the class of 
factorizable theories with an extended algebra. In the latter, the various generators 
including T are expected to satisfy with their primary fields Ward identities 
generalizing (A.1) (with poles of different orders) [27]. A repeat of the previous 
discussion leads to the conclusion that if J' is a descendant of the primary field J, 
then 

~'  (J'IcPi(1)II~N)(I~NI%(z, ~)[J') - ~'(J lepf(1)lI~N)(I~Nlepz(z,  ~)lJ) ,  
KN z ~ l  KN 

(A.14) 

where the sum runs over K in a certain cluster [K ]. This means that Ek ~ ~2 [k] Cijk X ( i j ) k l  
depends only on the class [j]  in the terminology of sect. 3. Let us now examine the 
effect of changing the representative of [i], say from i, the primary, (of the extended 
algebra) to i', some descendant. The 4-point function (Jcpi, eprJ ) is related to 
(J~i %J) again by the same extended Ward identity, and the leading singularity as 
z--+ 1 of the former comes entirely from the action of differential operators 
~l(z2,  z3) generalizing eq. (A.4) on the latter. This only affects the order of the pole 
which is changed from 2h i to 2h~ but, for well-normalized descendants %,, not the 

2 residue, hence not ~k ~ [klCijk X(ij)kl. 
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