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Abstract
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boundary conditions are labelled by the nodes ofG. This approach is carried to completion for
sl(2) theories leading to complete sets of conformal boundary conditions, their associated cylinder
partition functions and theA-D-E classification. We also review the current status for WZWsl(3)
theories. Finally, a systematic generalization of the formalism of Cardy–Lewellen is developed to
allow for multiplicities arising from more general representations of the Verlinde algebra. We obtain
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1. Introduction

1.1. History and motivation

The subject of boundary conformal field theory has a fairly long history. It was born
more than ten years ago, in parallel work on open string theory [1–8] and on conformal field
theories (CFTs) describing critical systems with boundaries [9]. The work of Cardy [10]
was a landmark, leading to the unification of methods, to the introduction of important
concepts such as boundary conformal fields and to the systematic investigation of their
properties and couplings [11,12]. The subject remained dormant for some time, in spite
of some activity motivated again by string theory [13–15] and of beautiful applications
to the Kondo problem [16,17]. Lately, the subject has undergone a revival of interest in
connection with various problems. On the one hand, work on boundary conditions in
integrable field theories and boundary flows [18–20] and on quantum impurities [21,22]
motivated a closer look at boundary CFT. On the other hand, within statistical mechanics,
integrable Boltzmann weights satisfying the so-called Boundary Yang–Baxter Equation
(BYBE) were constructed in lattice models [23–25]. Finally new progress in string theory
was another reason to reconsider the problem. Generalizations of D-branes as boundary
conditions in CFT have been studied by several groups [26–34].

In the present work, we want to reconsider several issues in the discussion of boundary
conditions in (rational) conformal field theories: what are the general boundary conditions
that may be imposed, what are the structure constants of the bulk and boundary fields in
the presence of these boundary conditions. These are the basic questions that we want to
address. The methods that we use are not essentially new, but are based on the systematic
exploitation of the work of Cardy and Lewellen [10–12].

Among the main results of this paper:
• We establish a connection between the classification of boundary conditions and the

classification of integer valued representations of the fusion algebra. A preliminary
account of this result was given in [35,36]. In the same vein, we show that it is natural
to associate graphs to these problems. In particular, an ADE classification of boundary
conditions for Wess–Zumino–Witten (WZW) and minimalsl(2) theories emerges in
a natural and simple way. A discussion of the state of the art forsl(3) models is also
included.
• We point out the deep connections between the features of conformal field theory in

the bulk and in the presence of boundaries. The classification of the latter has some
bearing on the classification of the bulk properties (modular invariants, etc.). This is
not a new observation. In particular, in string theory many connections are known to
exist between open and closed string sectors, but it seems that the point had not been
stressed enough. A triplet of algebras, specifically the graph fusion algebra and its
dual, the Pasquier algebra, appears naturally in our discussion, along with the Verlinde
algebra.
• We reanalyse in a systematic way the couplings (structure constants) of fields in the

presence of boundaries and the equations they satisfy, generalising the formalism
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of Cardy–Lewellen to accomodate the appearance of nontrivial multiplicities. In the
diagonal cases we find a direct relation between the chiral duality identities of Moore
and Seiberg and the basic sewing relations of the boundary CFT. The main point
is the observation that the bulk boundary coefficients in the diagonal case essentially
coincide with the matricesS(j) of modular transformations of torus 1-point functions.
In this way the two basic bulk-boundary equations [11,12] are shown to be equivalent
to the torus duality identity of [37,38].

Some more particular results include the extension of Cardy’s equation to non-
specialized characters, thus lifting an ambiguity in the original derivation, the proof
of uniqueness of boundary conditions forŝl(2) WZW and minimal models and̂sl(N)1
models, the clarification of the role of the graph algebra and the recovery of this algebra
along with its dual, the Pasquier algebra, from the boundary sewing constraints.

1.2. Background on bulk CFT

In this paper, we are only concerned with Rational Conformal Field Theories (RCFTs).
We first establish notations, etc. In the study of a RCFT, one first specifies a chiral
algebraA. It is the Virasoro algebra or one of its extensions: current algebra,W algebra,
etc. The generators of this algebra will be denoted genericallyWn and include the Virasoro
generatorsLn. At a given level, the theory is rational, i.e.,A has only a finite setI of
irreducible representationsVi , i ∈ I. The labeli∗ indexes the representation conjugate
to i, and i = 1 refers to the identity (or vacuum) representation. We also suppose that
the charactersχi(q) = trVi q

L0− c
24 of these representations, the matrixS of modular

transformations of theχ ’s and the fusion coefficientsNij k of theV ’s are all known. The
matrixSij is symmetric and unitary and satisfiesS2= C, whereC is the conjugation matrix
Cij = δji∗ . The fusion coefficients are assumed to be given in terms ofS by the Verlinde
formula [39]

Nij
k =

∑
l∈I

SilSjlS
∗
kl

S1l
, (1.1)

an assumption that rules out some cases of RCFTs.
A physical conformal theory is then defined by a collection of bulk and boundary fields

and their 3-point couplings (OPE Coefficients). In particular, the spectrum of bulk fields is
described by the finite set Spec of pairs(j, j̄ ) of representations, possibly appearing with
some multiplicitiesNjj̄ , of the left and right copies ofA, such that the Hilbert space of the
theory on an infinitely long cylinder reads

H=
⊕

(j,j̄ )∈Spec

Vj ⊗ V j̄ , (1.2)

with the same multiplicitiesNj,j̄ . The modular invariant torus partition function

Ztorus=
∑
j,j̄

Njj̄ χj (q)
(
χj̄ (q)

)∗ (1.3)
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is a convenient way to encode this information. The finite subsetE of labels of elements of
the spectrum that are left–right symmetric will play a central role in the following

E = {j |(j, j̄ = j) ∈ Spec}, (1.4)

and will be called the set ofexponentsof the theory. Recall that these exponents may come
with some multiplicities. To distinguish them as different elements of the setE a second
index will be often added, i.e.,(j,α) ∈ E , for j ∈ I.

In terms of all these data, one is in principle able to compute exactly all correlation
functions of the CFT on an arbitrary 2D surface, with or without boundaries [12,37,38,40,
41]. These data, however, are subject to consistency constraints: single-valuedness ofn-
point functions on the plane, modular invariance of the torus or annulus partition function,
etc., all rooted in the locality properties of the theory. In this paper, we shall reexamine the
conditions that stem from surfaces with boundaries (half-plane or disk, cylinder or annulus)
and explore their consequences.

For later reference, let us also recall that RCFTs fall in two classes. In the first
class (“type I”), the Hilbert space (1.2) is a diagonal sum of representations of a larger,
“extended”, algebraA′ ⊇A. Accordingly, the partition function (1.3) is a sum of squares
of sums of characters

Z =
∑

blocksB

∣∣∣∣∑
i∈B

χi

∣∣∣∣2 . (1.5)

The second class (“type II”) is obtained from the first by letting an automorphismζ of the
fusion rules of the extended algebraA′ act on the right components, thus resulting in a
non-block-diagonal partition function

Z =
∑
B

(∑
i∈B

χi

)( ∑
j∈ζ(B)

χ̄j

)
. (1.6)

For example, in the classical case ofsl(2) theories, classified byA-D-E Dynkin diagrams,
theA, D2p, E6 andE8 cases are of the first type, whereas theD2p+1 andE7 are obtained
respectively from theA4p−1 andD10 cases by aZ2 automorphism of their fusion rules.
We shall see below that the study of boundary conditions on a cylinder has some bearing
on these expressions of torus partition functions.

2. Cardy equation and Verlinde algebra

2.1. Boundary states

As discussed in [42,43], on the boundary of a domain such as the upper half plane or a
semi-infinite cylinder, one must impose a continuity condition of the form

T (z)= T (z̄)∣∣
z=z̄, W(z)=W(z̄)∣∣

z=z̄. (2.1)

While the first of these conditions has the direct physical meaning of the absence of energy-
momentum flow across the boundary, or the preservation of the real boundary by diffeo-
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morphisms, the condition(s) on the otherW may be generalized to incorporate a possible
“gluing automorphism” [26,28,29,44]

W(z)=ΩW(z̄)∣∣
z=z̄. (2.2)

A semi-annular domain in the upper half-plane may be conformally mapped into an
annulus in the complex plane byζ = exp(−2iπw/T ), w = L

π
logz. Then as shown by

Ishibashi [2] and Cardy [10], the boundary condition becomes

ζ 2T (ζ )= ζ̄ 2T (ζ̄ ),

ζ sWW(ζ )= (−ζ̄ )sWW(ζ̄ ) for |ζ | = 1 and |ζ | = e2πL/T , (2.3)

wheresW denotes the spin ofW , or more generally

ζ sWW(ζ )= (−ζ̄ )sWΩW(ζ̄ ).
Through radial quantization, this translates into a condition onboundary states|a〉Ω(

Wn − (−1)sWΩ(W−n)
)∣∣a〉

Ω
= 0. (2.4)

This includes in particular the condition that(
Ln − L̄−n

)∣∣a〉
Ω
= 0, (2.5)

assuming that the automorphismΩ keeps invariant the Virasoro generators. For the central
charge operator we have(k − k̄)|a〉Ω = 0.

Solutions to this linear system are spanned by special states called Ishibashi states [2],
labelled by the finite setEΩ = {j |(j, j̄ = ω(j)) ∈ Spec}, whereω depends in particular
on Ω . To see this, let us consider first the simpler equation (2.5) in the case whenA
is the Virasoro algebra andΩ is trivial. Then observe that one may solve (2.5) in each
component of (1.2) independently, as these spaces are invariant under the action of the two
copies ofA. Now we recall that any stateA=∑n,n̄ an,n̄|j,n〉⊗|j̄ , n̄〉 in Vj ⊗Vj̄ is in one-

to-one correspondence with a homomorphismXA =∑n,n̄ an,n̄|j,n〉〈j̄ , n̄| of Vj̄ into Vj .
This uses the scalar product inVj̄ . SinceL−n = L†

n for that scalar product, (2.5) implies
thatLnXA =XALn, i.e., thatXA intertwines the action ofLn in the two representationsVj
andVj̄ of the Virasoro algebra. As these two representations are irreducible, they must be

equivalent, which by our convention on the labelling of representations, means thatj = j̄ .
Thus the only non-vanishing components ofA inH are in diagonal productsVj⊗Vj and in
each one,XA is proportional to the projectorPj =∑n |j,n〉〈j,n|. To fix the normalization
we chooseXA = Pj and the corresponding Ishibashi state is denoted|j 〉〉. This completes
the proof2 that there is an independent boundary state|j 〉〉 for each element of the set
E = {j |(j, j̄ = j) ∈ Spec}.

The argument is a formal extension of the proof, based on the Schur lemma, of
the existence and uniqueness of an invariant in the tensor product of finite-dimensional
representations. It extends to the odd spinsW case (2.4). We have to use the fact that

2 Many thanks to G. Watts (private communication) to whom we owe this elegant derivation. Some elements
had appeared already in M. Bauer’s PhD thesis (1989).
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W
†
n = (−1)sW U−1W−n U with respect to a bilinear (or Hermitian) form whereU is a

unitary (or antiunitary) operator. One exploits the same definition of the homomorphism
XA : Vj ′ → Vj , now Vj ′ ,Vj being highest weight representations of the chiral algebra
A generated byWn. HoweverXA corresponds to states inVj ⊗ UΩ U Vj ′ , whereUΩ is
a unitary (antiunitary) operator implementing the automorphismΩ(Wn) = UΩ WnU

−1
Ω .

Eq. (2.4) leads toWnXA = XAWn again with the resultj ′ = j andXA = Pj while the
Ishibashi states are given by|j 〉〉Ω =∑n |j,n〉 ⊗UΩ U |j,n〉.

The operatorU is in general nontrivial, e.g., for thêsl(N)k WZW theoriesW†
n =

w̄(W−n) wherew̄ is the horizontal projection of the Chevalley involution of the affine
algebra [45], i.e., it is determined bȳw(eαi )=−f αi , w̄(f αi )=−eαi , for the simple roots
αi of sl(N), where eα/f α are raising/lowering operators respectively, and for the Cartan
generators̄w(hi)=−hi , i = 1,2, . . . ,N − 1. The pair(j,ω(j)) characterisingEΩ refers
to the eigenvalues ofhi on the first term in|j 〉〉Ω . If Ω is the identity, thenω(j)=−j . If
Ω = w0, wherew0 represents the longest element of the Weyl group, thenw0(j)=−j∗
and henceω(j)= w0w̄(j)= j∗. On the other handω(j) = j for Ω coinciding with the
Chevalley automorphismΩ = w̄. In the last two of these examples we can identifyV j̄ =
UΩ U Vj with a highest weight moduleVω(j), ω(j) ∈ I. It should be stressed that all these
automorphismsΩ keep invariant the Sugawara Virasoro generators so the condition (2.5)
is also satisfied on the corresponding Ishibashi states.

We shall hereafter drop the explicit dependence onΩ .
In fact we still have to define a norm (or a scalar product) on boundary states, in

particular on the Ishibashi states. We have to face two difficulties. First because of the
infinite dimension of the representationVj , the most naive norm, proportional to trPj ,
would be infinite. The second problem concerns non-unitary representations. In such cases,
the hermitian form onVj is not positive definite, and we may encounter signs in the norm
of states.

The first problem requires some regularization of the naive norm. Letq̃
1
2 = e

−π i
τ be a

real number, 0< q̃ < 1. Then〈〈j |q̃ 1
2 (L0+L̄0− c

12)|j 〉〉 = trPj q̃L0− c
24 = χj (q̃). We write in

general, allowing some multiplicityα = 1, . . . ,Njj for the representations:〈〈
j ′, α′

∣∣q̃ 1
2 (L0+L̄0− c

12)
∣∣j,α〉〉= δjj ′δαα′ χj (q̃). (2.6)

The norm of|j 〉〉 should then be some renormalized version of theq̃→ 1 limit of (2.6)
[2,10], i.e., of the limit in whichq = e2π iτ , the modular transform of̃q, tends to 0. In
unitary theories, a new scalar product on boundary states may be defined according to

〈〈jα‖j ′α′〉〉 = lim
q̃→1

q
c

24
〈〈
j ′, α′

∣∣q̃ 1
2 (L0+L̄0− c

12)
∣∣j,α〉〉

= δjj ′ δαα′ lim
q→0

q
c
24χj (q̃)= δjj ′ δαα′S1j , (2.7)

where we have used the fact that in a unitary theory, the leading character in theq→ 0
limit is that of the identity operatorχ1(q)≈ q− c

24 . Note thatSj1 is, up to a factor 1/S11,
the quantum dimension of the representationj , a positive number. Thus in unitary theories
the normalization chosen forXj is such that the states|j 〉〉 are orthogonal for the scalar
product (2.7), with a square norm equal toS1j . Although in non-unitary theories the
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limit q→ 0 in (2.7) does not exist in general, due to the existence of representations of
conformal weighthi < 0 that will dominate that limit, we may stilldefinethe norm by the
same formula as (2.7). Alternatively, ifj0 denotes the unique representation of smallest
conformal weighthj0 < 0 belonging toE , andceff := c− 24hj0, then we may define

〈〈jα‖j ′α′〉〉 = δjj ′ δαα′ S1j

Sj0j
lim
q→0

q
ceff
24 χj (q̃). (2.8)

In all cases we thus have

〈〈jα‖j ′α′〉〉 = δjj ′δαα′S1j (2.9)

which is now of indefinite sign. In the sequel, we use more compact notations and the
multiplicity labelα will be implicit when referring toj ∈ E .

The most general boundary state|a〉 satisfying condition (2.4) must be a linear
combination of these Ishibashi states, which, for later convenience, we write as

|a〉 =
∑
j∈E

ψ
j
a√
S1j
|j 〉〉. (2.10)

We denote byV = {a} the set labelling the boundary states. We assume that an involution
a→ a∗ in the setV is defined and thatψja∗ =ψj

∗
a = (ψja )∗, wherej→ j∗ is an involution

in E (in general(j,α)→ (j∗, α∗), see Appendix B for examples). We define conjugate
states as

〈b| :=
∑
j∈E
〈〈j | ψ

j
b∗√
S1j

. (2.11)

As explained in [26], this conjugate state may be regarded as resulting from the action of
an antilinear CPT operation. As a consequence

〈b‖a〉 =
∑
j∈E

ψ
j
a

(
ψ
j
b

)∗
S1j

〈〈j‖j 〉〉 =
∑
j∈E

ψ
j
a

(
ψ
j
b

)∗ (2.12)

so that the orthonormality of the boundary states is equivalent to that of theψ ’s.
In some cases, such as in the computation of partition functions involving the specialised

characters in the next section, it is sufficient to impose only the Virasoro condition (2.5)
on the boundary states. Then the sum in (2.10), when interpreted in terms of Ishibashi
states pertaining to some extended symmetry, may include states|j 〉〉Ω with differentΩ .
For example, in the minimal̂sl(2) models when multiplicities occur inE , one can build
the Ishibashi states using the Coulomb gas realisation withA= û(1). Then there are two
choices ofΩ keepingLn invariant. This allows, in particular, the construction of two
different Ishibashi states with the same value of the scaling dimension, i.e., the explicit
resolution of the degeneracy of states denoted|j,α〉〉 above. Such mixtures of Ishibashi
states may be used in determining the boundary states of the non-diagonal(A,Deven)

models.
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Fig. 1. The two computations of the partition functionZb|a : (a) on the cylinder, between the boundary
statesa andb, (b) as a periodic time evolution on the strip, with boundary conditionsa andb.

2.2. The Cardy equation

We now consider a conformal field theory on a finite cylinder. Following Cardy, the
partition function may be expressed in two alternative ways. Regarded as resulting from
the evolution of the system between boundary statesa and b under the action of the
Hamiltonian on (i.e., the translation operator along) the cylinder, it is

Zb|a =
〈
b
∣∣q̃ 1

2 (L0+L̄0− c
12)
∣∣a〉, (2.13)

whereq̃
1
2 = e−2π L

T describes the aspect-ratio of the cylinder of periodT and lengthL
as in Fig. 1. Decomposing the boundary states on the Ishibashi basis and using (2.6), one
obtains

Zb|a =
∑
j∈E

ψ
j
a

(
ψ
j
b

)∗χj (q̃)
Sj1

, (2.14)

where the states|j 〉〉 are admissible Ishibashi states of the system, i.e., the labelj runs over
the setE .

On the other hand,Zb|a may be regarded as resulting from the periodic “time” evolution
under the action of the translation operator along the finite width strip in the presence
of boundary conditionsa andb. The latter manifest themselves only in the nature of the
Hilbert spaceHba and its decomposition into representations of asinglechiral algebra:

Hba =⊕i nib
aVi with non-negative integer multiplicitiesniba . If q = e−π TL , Zb|a is a

linear form in the characters

Zb|a =
∑
i∈I

χi(q)nib
a. (2.15)

We choose to write the modular transformation of characters in the formχi(q) =∑
j Sij χj (q̃), henceχj (q̃) =∑i Sji∗χi(q). Provided that specialized charactersχi(q)

are considered, this complex conjugation is immaterial, sinceχi(q) = χi∗(q). We shall,
however, make later use of unspecialized characters (Appendix A), for which it does matter.
With this convention, and assuming for the time being the independence of characters, the
two expressions (2.14) and (2.15) are consistent provided
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nia
b =

∑
j∈E

Sij

S1j
ψ
j
a

(
ψ
j
b

)∗
. (2.16)

In the sequel we will refer to this as the Cardy equation. In the left-hand side, we have used
the first of the following symmetries

nia
b = ni∗ba = nib∗a∗, (2.17)

which follow from the properties of the modular matrix and of the coefficientsψ
j
a .

The boundary states|a〉, |b〉, are thus such thatniab is a non-negative integer. Uniqueness
of the vacuum impliesn1a

b 6 1. The Cardy equation (2.16) is anon-linearconstraint on
the components of boundary states|a〉 and|b〉 on the basis of Ishibashi states. Note also
that it implies that

∑
i nib

aSji vanishes ifj /∈ E and, except in cases with multiplicities,
must factorize into a product of contributions of thea andb boundary states, a nontrivial
constraint. Still, these constraints seem difficult to solve in full generality.

Before we proceed, we have to pause on the question of independence of characters.
In general, it is not true thatspecializedcharacters such as those that we have been using
so far, are linearly independent. For instance, complex conjugate representationsi andi∗
give rise to the same characterχi(q). Unfortunately, little is known about unspecialized
characters for general chiral algebras, beside the case of affine algebras. In Appendix A,
we show that in the case of rational conformal field theories with a current algebra, the
previous discussion may indeed be repeated if the energy momentum tensor of the theory
has been modified in such a way that unspecialized characters appear. Then using the
known modular transformations of the latter [45], one derives (2.16). We shall therefore
assume that (2.16) holds true for general RCFT.

We now return to the Cardy equation (2.16), and assume that we have found an
orthonormal set of boundary states, i.e., satisfying∑

j∈E
ψ
j
a

(
ψ
j
b

)∗ = δab. (2.18)

Moreover, we make the stronger assumption that we have found acompleteset of such
states, i.e., satisfying∑

a

ψ
j
a

(
ψ
j ′
a

)∗ = δjj ′ . (2.19)

(Note that this implies that the number of these boundary states must be equal to the
cardinality ofE .)

Finally we recall that the ratiosSij /S1j , for a fixed j ∈ I, form a one-dimensional
representation of the fusion algebra, as a consequence of the Verlinde formula (1.1):

Si1j

S1j

Si2j

S1j
=
∑
i3∈I

Ni1i2
i3
Si3j

S1j
. (2.20)

It follows from (2.19), (2.20) that the matricesni , defined by

(ni)a
b = niab, i ∈ I, (2.21)
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also satisfy the (commuting) fusion algebra

ni1ni2 =
∑
i3∈I

Ni1i2
i3 ni3. (2.22)

By (2.18),n1= I , the unit matrix, and by (2.17),ni∗ = nTi .
Conversely, given a set of matrices with non-negative integer elements, satisfyingni∗ =

nTi , n1= I and the fusion algebra, they form a commuting set, and thus eachni commutes
with its transpose. These matrices are thus normal matrices that may be diagonalized in
an orthonormal basis. Their eigenvalues are of the formSij /S1j for somej , and they may
thus be written in the form (2.16). If one pretends to determine the spectrumE from the
n’s, one has to impose also thatj = 1 appears only once inE , as a manifestation of the
uniqueness of the vacuum.

We thus conclude that the search for orthonormal and complete solutions to the Cardy
equation is equivalent to the search forN valued representations of the fusion algebra
satisfyingnTi = ni∗ .

This is the first important result of this paper, already presented succinctly in [36]. The
fact that some solutions to the Cardy equation were associated with representations of
the fusion algebra had been noticed before. In his seminal paper [10], Cardy considered
the case of “diagonal theories” (for whichE = I) and showed that theni matrices were
nothing other than the fusion matricesNi , thus obtaining an alternative and more intuitive
derivation of the Verlinde formula. In an antecedent work by Saleur and Bauer [9], other
solutions had been obtained in non-diagonal theories, starting from their lattice realization,
and the fact that theseni coefficients satisfied the fusion rules had been emphasized in [46].
More recently Pradisi, Sagnotti and Stanev [14,15,34] proposed a different argument to
the same effect, where a notion of completeness of boundary conditions is also playing a
crucial role.

Solutions such thatall matricesni may be written asni = (n1)i ⊕ (n2)i after the same
suitable permutation of rows and columns can be called reducible. They describe sets
of decoupled boundary conditions. We thus restrict our attention to irreducible sets of
matrices.

2.3. WZW sl(2) theories

For theories with the affine (current) algebraŝl(2) as a chiral algebra, the problem of
classifying representations of the fusion algebra was solved long ago [46]. The integrable
highest weight representations of̂sl(2)k at level k ∈ N are labelled by an integer 16
j 6 k + 1, Sij =

√
2
k+2 sin ijπ

k+2 and the Cardy equation says that the generatorn2 =
n2∗ has eigenvalues

S2j
S1j
= 2 cos πj

k+2. The only symmetric irreducible matrices with non-
negative integer entries and eigenvalues less than 2 are the adjacency matrices ofA-D-
E-T graphs [47] of Fig. 2 (see also Table 1). The “tadpole” graphs are given byTn :=
A2n/Z2. Here the levelk is related to the Coxeter number byg = k + 2. Only theA-D-E
solutions are retained as their spectrum matches the spectrum ofŝl(2) theories, known by
their modular invariant partition functions [48–50]. For a theory classified by a Dynkin
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Fig. 2. TheA-D-E-T graphs.

Table 1
The Coxeter numberg and Coxeter exponentsm of theA-D-E-T
graphs

G g m ∈ Exp(G)

An n+ 1 1,2,3, . . . , n

Dn 2n− 2 1,3,5, . . . ,2n− 3, n− 1

E6 12 1,4,5,7,8,11

E7 18 1,5,7,9,11,13,17

E8 30 1,7,11,13,17,19,23,29

Tn 2n+ 1 1,3,5, . . . ,2n− 1

diagramG of A-D-E type, the setE is the set of Coxeter exponents ofG as in Table 1.
The matricesni are then defined recursively byn1 = I , n2 =G and by Eq. (2.22) which
reduces here toni+1 = n2ni − ni−1, i = 2,3, . . . , k. They are the well known “fused
adjacency matrices” or “intertwiners”Vi , studied in [46,57] and whose properties are
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recalled in Appendix B. One verifies that all their entries are non-negative integers. This
set of complete orthonormal solutions of the Cardy equation forŝl(2) theories is unique up
to a relabelling of the states|a〉.

2.4. Minimal sl(2) models

The classification ofc < 1 minimal models in the bulk is given in terms of a pair of
Dynkin diagrams(A,G) whereG is ofA-D-E type [48–50]. Leth be the Coxeter number
of Ah−1 andg the Coxeter number ofG as given in Table 1. Then the completeA-D-E
classification is

M(A,G)=


M(Ah−1,Ag−1),

M(Ah−1,D(g+2)/2), g even,
M(Ah−1,E6),

M(Ah−1,E7),

M(Ah−1,E8),

(2.23)

with h,g > 2 and central charges given by

c= 1− 6(h− g)2
hg

. (2.24)

We will useM(A,G) to denote these minimal theories. Sinceg andhmust be coprime and
g is even for all non-A cases, one may always assume, at the price of a possible interchange
in the(A,A) case, thath is odd,h= 2p+ 1.

Some members of these series are identified as follows:

M(A2,A3)= critical Ising, c= 1/2,
M(A4,A3)= tricritical Ising, c= 7/10,
M(A4,D4)= critical 3-state Potts, c= 4/5,
M(A6,D4)= tricritical 3-state Potts, c= 6/7.

(2.25)

We will useG to denote both the Dynkin diagram and its adjacency matrix. We user,
r1, r2 to denote nodes or exponents ofAh−1; s, s1, s2 for the nodes (or exponents) ofAg−1;
a, a1, a2, b for the nodes ofG. We refer the reader to Appendix B for more data on these
matrices and their eigenvectors.

If Exp(G) denotes the set of exponents ofG (see Table 1), the modular invariant partition
function ofM(Ah−1,G) reads

Z = 1

2

h−1∑
r=1

∑
s∈Exp(G)

|χrs(q)|2+ off-diagonal terms. (2.26)

The factor1
2 removes the double counting due to the well-known identification of the(r, s)

and(h− r, g − s) representations of the Virasoro algebra. The diagonal terms inZ, i.e.,
the left–right symmetric (highest weight) states in the spectrum are thus labelled by the set

E = {j = (r, s)≡ (h− r, g− s);16 r 6 h− 1; s ∈ Exp(G)
}
. (2.27)

Each of the unitary minimal modelsM(Ah−1,G) with g − h =±1 can be realized as
the continuum scaling limit of an integrable two-dimensional lattice model at criticality,
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with heights living on the nodes of the graphG. In particular, the critical series with
g−h= 1 is associated with theA-D-E lattice models [52,53] and the tricritical series with
g − h = −1 is associated with the dilute lattice models [54,55]. In the non-unitary cases
the associated lattice models [56] possess negative Boltzmann weights. In the construction
of the corresponding lattice models as well as in the description of boundary conditions, it
turns out that the two diagrams of the pair(A,G) do not play a symmetric role.

According to the discussion of the previous section, we have to study the fusion algebras
of minimal models and their (integer-valued) representations. The Verlinde formula for the
fusion coefficients makes use of the matrixS of modular transformations of characters

Srs,r ′s ′ =
√

8

gh
(−1)(r+s)(r ′+s ′) sinπrr ′

g− h
h

sinπss′
g− h
g

, (2.28)

with the restrictionr, r ′ odd (or any equivalent condition). The fusion coefficients are then
found to be tensor products of those relative to theŝl(2) algebras of levelh− 2 andg− 2,
up to a symmetrization which accounts for the identification(r, s)≡ (h− r, g− s)

Nrs,r ′s ′ r
′′s ′′ =Nrr ′ r ′′Nss ′s ′′ +Nrr ′h−r ′′Nss ′g−s ′′ . (2.29)

This may be regarded as the regular representation of the fusion matricesNrs of the
Virasoro algebra of central charge (2.24). Our problem is to find the general non-negative
integer valued representations of this algebra. One observes thatNrs =Nr1N1s and that
the algebra is thus generated byN21 andN12. Also, the eigenvalues ofN12 andN21 are of
the form

S12,r ′s ′

S11,r ′s ′
= (−1)r

′+s ′ 2 cosπs′ g− h
g
= (−1)r

′
2 cosπs′ h

g
, (2.30)

S21,r ′s ′

S11,r ′s ′
= (−1)s

′
2 cosπr ′ g

h
, (2.31)

with 16 r ′ 6 h− 1, 16 s′ 6 g − 1 and again(r ′, s′)≡ (h− r ′, g − s′).
Turning now to a general (integer valued) representationnrs of the fusion algebra, it is

still true that it is generated byn12 andn21. In addition, we want the spectrum of thenrs
to be specified by the set of “exponents”E of (2.23), that is(r ′, s′) in (2.30), (2.31), with
the eigenvalues labelled bys′ appearing with some multiplicity in general. To remove the
redundancy in the labelling of eigenvalues, we will usually taker ′ odd,r ′ = 1,3, . . . , h−2,
and(s′, α) ∈ Exp(G). In the sequel, we will drop this explicit notation for multiplicities.
We know of course a solution to this problem, namely,

nrs =Nr ⊗ Vs +Nh−r ⊗ Vg−s, (2.32)

in terms of the fusion matricesN of ŝl(2) at levelh−2 and of the intertwinersV of typeG
introduced in the previous subsection (see also Appendix B). More explicitly, this describes
a solution to the Cardy equation between boundary states(r1, a) and(r2, b)

nrs;(r1,a)(r2,b) =Nrr1r2Vsab +Nh−r r1r2Vg−s ab, (2.33)

with 16 r, r1, r2 6 h − 1= 2p, 16 s 6 g − 1, anda, b running over the nodes of the
Dynkin diagramG.
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Because of the properties of theN andV matrices recalled in Appendix B, it is readily
seen that

nrs;(r1,a)(r2,b) = nrs;(r1,a)(h−r2,γ (b)) = nrs;(h−r1,γ (a))(r2,b) (2.34)

for an automorphismγ acting on the nodes of the graphG: this is the identity except for
theA, Dodd andE6 cases, for which it is the naturalZ2 symmetry of the diagram. We
conclude that this solution describes boundary states ofM(Ah−1,G) labelled by pairs
(r, a) of nodes of theAh−1 and of theG graph, with the identification

(r, a)≡ (h− r, γ (a)). (2.35)

One checks that the number of independent boundary states|(r, a)〉 is
number of independent boundary states= 1

2
(h− 1)n (2.36)

with n the number of nodes ofG, or the number of its exponents. This number (2.36)
coincides with the number of independent left–right symmetric highest weight states
|r, s〉 ⊗ |r, s〉 in the spectrum of the theory on a cylinder, i.e., with the cardinality of the set
E , as it should.

With such boundary states, the cylinder partition function reads

Z(r1,a)|(r2,b) =Z(r2,b)|(r1,a) =Z(r1,a)|(h−r2,γ (b)) =
∑
r,s

χrs(q)Nrr1
r2Vsa

b. (2.37)

Here the sum runs over 16 r 6 h− 1, 16 s 6 g− 1.
Let us look more closely at (2.33). There exists a basis in which (2.33) takes a factorized

form. Indeed one may use the identifications(r, s)≡ (h− r, g− s) and (2.35) to restrictr,
r1, r2 to odd values (recall thath= 2p+ 1 is odd). ThenNh−rr1r2 = 0, the r.h.s. of (2.33)
factorizes and the following expressions

Ψ
(r ′′s ′′)
(r,a) =

√
2Srr ′′ψ

s ′′
a , r, r ′′ odd, s′′ ∈ Exp(G), (2.38)

written in terms of the modular matrix of̂sl(2) at levelh− 2 and of eigenvectorsψ of G,
are readily seen to be eigenvectors ofnrs . Their eigenvalue is of the formSrs,r ′s ′/S11,r ′s ′
after some reshufflingr ′′, s′′ → r ′, s′.

One also shows (see Appendix C) that there exists a basis in which

n12= Ip ⊗G=


G

G
.. .

G

 , (2.39)

n21= Tp ⊗ Γ =


0 Γ

Γ 0 Γ
. . .

. . . Γ

Γ Γ

 (2.40)

in terms of the tadpoleTp adjacency matrix and ofΓ , the matrix that realizes the
automorphismγ : Γab = δaγ (b).
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Conversely, suppose we only know that the representationnrs has a spectrum specified
by the set of exponentsE . The question is: are these spectral data sufficient to guarantee
that the onlynrs are of the form (2.33) in a certain basis? A proof of this fact is relegated
to Appendix C. Notice that our discussion has assumed the classification of modular
invariants to be known. It should be possible to extend it as in the case of WZWŝl(2)
models and to classify the representations of the Verlinde algebra without this information.
A few spurious cases involving tadpoles, etc., would then have to be discarded.

To recapitulate, we have proved that the only representations of the fusion algebra
of minimal models are given by (2.33). To our knowledge, this is the first proof of the
uniqueness of these (complete orthonormal) boundary states of minimal models.

Some physical intuition about the meaning of these boundary conditions may be helpful.
For this we appeal to the lattice realization of the minimal model as a generalized height
model on the graphG (see [35]). A boundary condition of the type(1, a) describes afixed
boundary condition, where the height of the model is fixed to valuea on the graph. The
interpretation of the other labelr is less intuitive. The boundary condition(r, a) is realized
by attaching anr-times fused weight to heighta.

The expression (2.37) for the cylinder partition function encompasses and generalizes
cases that were already known:
• From the work of Saleur and Bauer [9] who discussed boundary conditions in lattice

height models ofA-D-E type on a cylinder in which the heights on the boundaries
are fixed to the valuesa respectivelyb. They showed that in the continuum limit, the
partition function reads

Zb|a =
∑
s

Vsa
bχ1s .

• From the work of Cardy [10] who showed how to construct new boundary conditions
by fusion.
• From the work of Pasquier and Saleur [58], who interpreted the pair of relations

Z
(Ah−1,G)

(1b)|(1a) =
∑
s

χ1sVsa
b, (2.41)

Z
(Ah−1,Ag−1)

(1,s)|(1,1) = χ1s, (2.42)

as expressing the decomposition of the representation of the Temperley–Lieb algebra
on the space of paths froma to b on graphG onto the irreducible ones on the paths
from 1 tos on graphAg−1, see point (ii) at the end of Appendix B.

Examples
Let us illustrate these expressions of boundary states by a few simple cases. In the

Ising model (the(A2,A3) minimal model),h = 3, G = A3, thusn = 3 and there are
1
2(3− 1) × 3= 3 boundary states, generally denoted [10]+, − andf . On the lattice,
the first two describe fixed boundary conditions on the spinσ = 1 or −1 respectively,
while f corresponds to free boundary conditions.

It is then instructive to consider two related examples, see also [22,30]. The first is the
c = 2 D4 solution of ŝl(2)4 at level 4, and the other is its cousin, thec = 4/5 minimal
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(3-state Potts) model, already mentioned in Section 2.4 and labelled by the pair(A4,D4).
In the former case, we find four boundary states, labelled by 1 to 4, that we attach to the
nodes of theD4 diagram. All these states satisfy the required boundary conditions. The set
of exponents isE = {1,3,3,5}. But thisD4 ŝl(2) model is also known to result from the
conformal embedding of̂sl(2)4 into ŝl(3)1. Regarded as an̂sl(3) theory, the model admits
three boundary states satisfying the more restrictiveŝl(3) conditions(Ln − L̄−n)|a〉 =
(Jn +ΩJ̄−n)|a〉 = 0, where the choice ofΩ corresponds to the diagonal set(j, j). These
three boundary states may be regarded as the three nodes of a triangular graphA(4) (see
Appendix D and Fig. 11), or as the three extremal nodes of theD4 diagram that have
survived the additional̂sl(3) constraint.

The discussion of the Potts model is quite parallel. From the minimal model standpoint,
it is the(A4,D4) model,h= 5, n= 4 and there are 8 boundary states [22,30]:

A= (1,1)= (4,1), B = (1,3)= (4,3), C = (1,4)= (4,4),
BC = (2,1)= (3,1), AC = (2,3)= (3,3), AB = (2,4)= (3,4),
ABC = (1,2)= (4,2), N = (2,2)= (3,2). (2.43)

On the lattice, the first threeA, B, C describe fixed boundary conditions where the “spin”
takes at each site of the boundary one of the three possible values. The mixed boundary
conditionsAB,BC,AC describe boundary conditions where the spin on the boundary can
take on two values independently. The boundary conditionsABC andN are free boundary
conditions but forN the weights depend on whether adjacent spins are equal or not.

The model may also be regarded as the simplestW3 model. In that picture, one may
impose more stringent boundary conditions. Only the six states denoted aboveA, B, C,
AB,BC,AC satisfy the additional condition(W(3)

n +ΩW(3)−n)|a〉 = 0. They correspond
to the extremal nodes of the pair(T2,D4) or, alternatively, to the nodes of the pair
(T2,A(4)). As will be discussed in more detail in Section 3, the subset of these nodes,
to be denotedT , can be identified in both examples with the representation labels of the
corresponding extended chiral algebra. The matrix elementsψ

j
a for a ∈ T satisfy [63] the

relation

ψ
j
a√
S1j
= Sext

a{j}√
Sext
{1}{j}

,

where{j } denotes the orbit of the exponentj with respect to theZ2 automorphism and
Sext
a{j} is the modular matrix of the extended theory. This relation implies that

|a〉 =
∑
{j}

Sext
a{j}√
Sext
{1}{j}

∑
j∈{j}
|j 〉〉,

i.e., we can identify
∑
j∈{j} |j 〉〉 = |{j }〉〉 with an extended Ishibashi state. The missing

boundary condition corresponds to a twisted boundary condition from the point of view of
the extended algebra.

We conclude that, as expected, the number and nature of the boundary states reflect the
precise conditions that they are supposed to satisfy.
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3. Graph fusion algebras

According to the discussion of Section 2, given a certain chiral algebraA, the sets of
complete orthonormal boundary states of RCFTs consistent with this algebra are classified
by representations of the Verlinde algebra ofA, on matricesni with non-negative integral
entries. Or stated differently: given a certain RCFT with a chiral algebraA, the sets
of complete orthonormal boundary states of this theory consistent with this algebra are
classified by representations of the Verlinde algebra ofA, on matricesni with non-negative
integral entries, with eigenvalues specified by the diagonal partE of the spectrum. These
matrices may thus be regarded as the adjacency matrices of a collection of|I| graphs.
In practice, it is sufficient to look at the smaller number of matrices representing the
generators of the fusion ring. For example, one matrix in the case ofsl(2) considered
above, or theN − 1 matrices associated with the fundamental representations, in the case
of sl(N).

The simplest case is given by the regular representation of the fusion algebra, when
the matricesni are the Verlinde matrices themselves,ni =Ni . This is the case of so-called
diagonal theories, when all representations of the setI appear once in the spectrum Spec=
{(i, i)|i ∈ I}. This may be regarded as the case of reference from several points of view:
it was the first case analysed in detail [10]; the corresponding graphs are playing a central
role; and finally in that case, Cardy was able to provide a physical argument explaining
why the fusion matrices arise naturally. It is the purpose of this section to extend these
considerations to more general solutions. We shall find that the role of the fusion matrices
in the arguments of Cardy is now played by two sets of matrices. The first is the set of
matricesni that describe the coefficients of the cylinder partition function; the second is a
new set of matriceŝNa , forming what is called the graph fusion algebra.

On the other hand, since we know that the cylinder partition functions, or equivalently
the matricesni , contain some information about the bulk theory, through the knowledge
of the diagonal spectrumE , it is expected that this classification of boundary conditions
should have some bearing on the classification of bulk theories, namely on the classification
of torus partition functions and on bulk structure constants. Remarkably, this programme
works even better than expected and the two classification problems seem to be essentially
equivalent, at least for type I theories (see end of Section 1). This will be explained in
Section 3.3 below.

3.1. More on graphs and intertwiners

Suppose we have found a solution to the Cardy equation, namely a set ofn× nmatrices
(2.16),(ni)ab, i = 1, . . . , |I|, a, b = 1, . . . , n. What was said in detail in Section 2 and in
Appendix B in the case of̂sl(2) can be repeated here. As their entries are non-negative
integers, these matrices may be regarded as adjacency matrices of a set of|I| graphs
Gi , with n = |Gi | ≡ |G| nodes. We shall refer collectively to these|I| graphs as “the
graphG”, whereas the basic solution provided by theN ’s themselves will be called “theA
graph” (borrowing the notation from thesl(2) case). The eigenvalues of the matricesni are
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specified by a set Exp(G) in the sense that they are of the formSij /S1j , (j,α) ∈ Exp(G).
Moreover Exp(G) = E if the RCFT is given and the diagonal spectrumE is known. But
in general, the determination of the set Exp(G) is part of the problem. The fundamental
relation

∑
b(ni)a

b (nj )b
c =∑k Nij

k(nk)a
c may be interpreted in two ways:

• Regarded as|G| × |G| matrices, the matricesni form a representation of the fusion
algebra (2.22).
• Regarded as a|I|×|G| rectangular matrix, each matrix̃na for a fixed,(ña)j b := njab

intertwines the representativesNi andni in the two representationsNiña = ñani , or
more explicitly∑

k

Nij
knka

c =
∑
b

nja
bnib

c. (3.1)

We shall thus occasionally refer to the matricesni as “intertwiners”.
The case of graphs and intertwiners pertaining toŝl(2) theories has been discussed at

length in Section 2 and in Appendix B. In Appendix D, we outline the discussion ofŝl(3).
In that case, the fusion algebra is generated by two matricesn(2,1) andn(1,2) (labelled by the
two fundamental (shifted) weights ofsl(3)), and as these two representations are complex
conjugate to one another, the matricesni are related by transpositionn(2,1) = nT(1,2) . Then
according to (2.22),ni is given by the same polynomial ofn(1,2) andn(2,1) with integral
coefficients as that representingNi in terms ofN(1,2) andN(2,1). It is thus sufficient to list
all possible graphs representing the matrixn(2,1), provided one checks that allni have non-
negative integral entries. In contrast with the case ofŝl(2), no complete solution is known
for ŝl(3). The current state of the art is presented in Appendix D with tables, figures and
relevant comments.

3.2. Graph fusion algebras

To see what is playing the role of the fusion algebra in the argument of Cardy, we
have to introduce the graph fusion algebra. The graph fusion algebra, as first discussed
by Pasquier [59], is a fusion-like algebra attached to a connected graphG. Letψja be the
common orthonormal eigenvectors of the adjacency matricesG labelled byj ∈ Exp(G).
In general, these eigenvectors can be complex. In the case of degenerate eigenvalues
the associated eigenvectors need to be suitably chosen. We assume that the graph has a
distinguished node labelled 1= 1∗ such thatψj1 > 0, for all j ∈ Exp(G).

One then defines the numbers

N̂ab
c =

∑
j∈Exp(G)

ψ
j
a ψ

j
b (ψ

j
c )
∗

ψ
j

1

(3.2)

and the matriceŝNa with elements(N̂a)bc = N̂abc satisfyN̂abc = N̂ac∗b∗ andNTa =Na∗ .
Because of orthonormality,̂N1 = I . Since each matrix̂Na has a single non-vanishing
entry in the row labelled 1, namely(N̂a)1b = (N̂1)a

b = δab, the matriceŝNa are linearly
independent. ThêNabc are the structure constants of the graph fusion algebra satisfied by
theN̂ matrices
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N̂aN̂b =
∑
c

N̂ab
cN̂c (3.3)

which is an associative and commutative algebra. Of course, if the graphG is of typeA,
this boils down to the ordinary Verlinde fusion algebra since the matrixψ of eigenvectors
is nothing but the modular matrixS.

Since theN̂a andni matrices have the same eigenvectors, it is easy to derive the matrix
relation

niN̂a =
∑
b

nia
bN̂b. (3.4)

In particular fora = 1, N̂1= I , and allni appear as linear combinations with non-negative
integer coefficients of thêN ’s

nia
b =

∑
c

ni1
cN̂ca

b. (3.5)

Alternatively (3.4) may be used as a starting point to reconstruct the graph algebra, as
explained in Section 3.5.

It should be stressed that the definition of a graph fusion algebra is not unique. In
general, it depends on the choice of the distinguished node 1 and, when there are degenerate
eigenvalues, also on the choice of the eigenvectorsψ

j
a . To view the graph fusion algebra as

a proper fusion algebra we would like the structure constantsN̂ab
c to be non-negative

integers. But even the rationality of these numbers is not obvious and it is therefore
surprising that, for appropriate choices of theψ ’s and of node 1 and formost cases, they
turn out to be integers of either sign. Among all the examples known to us inŝl(N) theories,
26N 6 5, it fails in only two cases: the graph calledE (12)

5 in Fig. 12, for which there is no
node 1 satisfying 1= 1∗, and whosêN algebra involves fractions of denominator 4; and a
graph in thêsl(4)4 theory, [63], in which half-integer̂Nabc of either sign occur. Adopting
(2.22), (3.4) in the framework of subfactors theory the latter example has been reinterpreted
by Xu [65] by trading commutativity of the graph fusion algebra for integrality.

Finally the non-negativity of thêN is only possible for certain graphs which we call
proper fusion graphs. For example, for thesl(2) theories, theA-D-E graphs that admit a
proper graph fusion algebra are

properA-D-E graphs=An,D2q,E6,E8. (3.6)

The choice of distinguished node for thesl(2) A-D-E graphs is explained in Appendix B.
We note that the set of propersl(2) fusion graphs matches the modular invariant

partition functions listed as “type I” at the end of Section 1. The situation is somewhat
different for sl(3) graphs, for which we have to introduce a further distinction. In this
case, some graphs with non-negativêN ’s are not associated with type I theories. We
reserve the terminology “type I graph” for those graphs associated with type I theories
(see Appendix D and Tables 2–3). Moreover, as is clear from theŝl(4)4 example above,
some type I modular invariant partition functions are associated with graphs with non-
integer and/or non-positivêNabc. In the following, we discard these exceptional cases and
restrict ourselves to type I graphs that are associated with type I RCFTs. In general, the
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question of precisely which graphs admit type I fusion algebras should be related to the
classification of type I RCFTs, and thus is a very interesting open question.

3.3. Fusion rules and block characters

Given a solution to the Cardy equation, that is a set of partition functions

Za|b(q)=
∑
i∈I

nia
b χi(q) (3.7)

and the corresponding graphs, we assume as in Section 3.2 above that there exists a special
node called 1. We then introduce the combinations of characters (or “block characters”)

χ̂c(q)=
∑
i∈I

n̂ic χi(q), (3.8)

where

n̂ic = ni1c (3.9)

is referred to as the basic intertwiner. Thanks to (3.5), (3.7) may be rewritten as

Za|b(q)=
∑
c

N̂ca
b χ̂c(q), (3.10)

where the coefficients are now given by the structure constants of the graph fusion algebra
of G.

Equation (3.10) is a mathematical identity and as such is valid and consistent
independent of the choice of the distinguished node and eigenvectors ofG. Physically,
however, the case where thêNabc are non-negative integers is the most interesting. In that
case, following Cardy’s discussion [10], it is suggested thatN̂ab

c gives the number of times
that the propagating mode or representationc appears in the strip or cylinder with boundary
conditionsa andb. Thus ifG is a type I graph, i.e., if the structure constantsN̂ab

c are non-
negative integers, we have a possible interpretation: the nodesa of the graph(s)G under
consideration label a class of representations of some extended chiral algebra. The blocks
χ̂a are their characters, and the integer coefficientsN̂ab

c are their fusion coefficients.
To probe this interpretation, let us see how it confronts the results “in the bulk”, in

particular how it is consistent with the form of the torus partition function. There, it has
been observed already long ago that (for type I theories) the torus partition function (cf.
(1.5)) may be recast in the form

Ztorus=
∑
a∈T
|χ̂a|2, (3.11)

i.e., as a diagonal sum overa subsetT of block characters. The subsetT corresponds
to a subalgebra of thêN algebra, in the sense that ifa, b ∈ T , N̂abc 6= 0 only if c ∈
T . This interpretation ofni1c as a multiplicity of representationi in the blockc, that
was first observed empirically [60,61], was subsequently derived in a variety of cases of
type I sl(N) theories based either on conformal embeddings or on orbifolding [63,64].
More recently, it appeared as an important ingredient in the investigation of the algebraic
structure underlying these theories [65–68].
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The following interpretation is thus suggested. The nodesa ∈ T label representations
of the maximally extended algebraA′ of the RCFT (of type I) under consideration. The
subalgebra of thêN algebra is the conventional fusion algebra of this RCFT. The other
nodesa 6∈ T might label other “twisted” representations. The entireN̂ algebra would
describe the fusion of all, twisted and untwisted, representations ofA′. This interpretation
in terms of twisted representations seems corroborated by the fact that someχ̂a are
known also to occur in partition functions on a torus in the presence of twisted boundary
conditions. The fact that general boundary conditions on a cylinder also appeal to these
representations was first observed in the Potts model in [22]. See for some work in this
direction [69], and the more systematic developments [31–33] along the lines of [74]. The
concept of twisted representations in other cases, like conformal embeddings, remains to
be understood.

Having discussed the situation for type I theories and graphs, we return to RCFTs of type
II. There the situation is more elusive. On the one hand, as discussed above, the boundary
conditions on a cylinder are labelled by nodes of an improper graphG, and although we
can still write an expression of the form (3.10), its physical interpretation is unclear. On the
other hand, from (1.6), we know [84] that the torus partition function may be expressed in
terms of block characters pertaining to a “parent” type I theory with graphG′

Ztorus=
∑
a∈T

χ̂a(q)
(
χ̂ζ(a)(q)

)∗
, (3.12)

whereT is once again a subset of the nodes ofG′ corresponding to a subalgebra of thêN
algebra, andζ is an automorphism of that subalgebrâNζ(a)ζ(b)ζ(c) = N̂abc.

For example, thêsl(2)16 theory labelled by the Dynkin diagramE7 is known to be
related in that way to theD10 theory. Their respective torus partition functions read

Z
(D10)
torus = |χ1+ χ17|2+ |χ3+ χ15|2+ |χ5+ χ13|2+ |χ7+ χ11|2+ 2|χ9|2 (3.13)

=
∑

a=1,3,5,7,9,10
a∈D10

∣∣∣∣∑
i

n̂
(D10)
ia χi

∣∣∣∣2, (3.14)

Z
(E7)
torus= |χ1+ χ17|2+ |χ5+ χ13|2+ |χ7+ χ11|2+ |χ9|2

+ ((χ3+ χ15)χ
∗
9 + c.c.

)
(3.15)

=
∑

a=1,3,5,7,9,10
a∈D10

(∑
i

n̂
(D10)
ia χi

)(∑
i

n̂
(D10)
iζ(a) χi

)∗
, (3.16)

with ζ exchanging the two nodes 3 and 10 of theD10 diagram.
It seems that the parent graphG′ also plays a role for cylinder partition functions of

type II theories. Indeed, to obtain cylinder partition functions expanded with non-negative
coefficients in terms of block characters, we just have to expand in the block characters of
G′. Specifically, we find

Z
(G)
b|a (q)=

∑
c∈G′

n(GG
′)

ca
bχ̂ (G

′)
c (q),
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Fig. 3. The torus partition function reconstructed from two cylinder partition functions.

where theG-G′ intertwiners are given by

n(GG
′)

ca
b =

∑
m∈Exp(G)

ψ
(G′)
c

m

ψ
(G′)
1

m
ψ(G)a

mψ
(G)
b

m∗.

These turn out to be non-negative integersn
(GG′)
ca

b > 0 and satisfy theG′ graph algebra.
Here it is assumed that the distinct exponents of Exp(G) are in Exp(G′) and that the
sum is over exponents ofG counting multiplicities. Moreover, if there is more than one
eigenvector ofG′ corresponding tom ∈ Exp(G), then any of these eigenvectors can be
matched with the givenm ∈ Exp(G). The formula can be derived in the same way as our
previous formulas. In particular, this formula applies forG = E7 andG′ = D10. In this
case there is an ambiguity as to whichD10 eigenvector is taken form= 9 but in fact one
can take either. The matrices are changed by theZ2 symmetry but the cylinder partition
functions agree. The formula also holds for the type IIsl(3) theoriesG= E (12)

2 , E (12)
4 and

E (12)
5 andG′ =D(12).
Putting everything together, we finally observe that in general for a “rectangular” torus

with two periods 2L andiT , made by pasting together two cylinders (see Fig. 3),

Z
(G)
torus=

∑
a∈T

Z
(G′)
a|1 Z

(G′)
ζ(a)|1, (3.17)

i.e., the partition function may be obtained as the sum over a special set of boundary
conditions of cylinder partition functions. This expression is of course deeply rooted in
all the connections between bulk and boundary theories, open and closed strings, etc., but
still we find its simplicity intriguing.

3.4. Examples

More examples can be given to the previous general scheme.
• ŝl(N): the classification of the representations of the fusion algebra ofŝl(N)k is a

well posed problem on which we have only partial results. In particular, classes of
graphs pertaining tôsl(3) as well as some cases for higherN have been expounded
from various standpoints in [46,60–64,70] (see Appendix D). In all known cases, the
previous discussion may be repeated: intertwiners, type I graphs, and other concepts
introduced above, still apply. We refer the reader to the above references.
• The case of̂sl(N)1 may be described in detail. The representations ofŝl(N)1 are

labelled by an integer 06 i 6 N − 1 (we depart here from our previous convention,
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with i = 0 denoting the identity). The fusion rules are isomorphic to the addition
of integers moduloN , and the algebra defined byNiNj = Ni+j modN is thus
generated byN1, Nj = (N1)

j . The eigenvalues ofNj are exp(2iπjl/N). The regular
representation is provided byN × N matrices, generated by(N1)i

j = δj,i+1 modN .
All the previous eigenvalues are reached once and we may thus say that the system
has “exponents”l = 0, . . . ,N − 1 (modN).
In general, a representation{ni} of the fusion algebra is associated with each divisor
q of N = p.q , including q = 1 andq = N : q denotes the order of the matrixn1

which is (q × q)-dimensional and such that(n1)a
b = δb−a,1 modq , for a labelling

of the nodesa, b = 1, . . . , q . (This exhausts all integer-valued representations of the
algebra. Indeed the conditions thatnT1 = nN−1 andn1nN−1 = I imply that the only
entries ofn1 are 0 and 1, and thatn1 is a permutation matrix. Being of orderq
and indecomposable,n1 is a matrix of a cycle of lengthq . Q.E.D.) Obviously the
matricesni = (n1)

i are all integer-valued,n0 = I , andnTi = ni∗ = nN−i . The graph
of adjacency matrixn1 is an orientedq-gon. In that case, we may say that theq
exponents are 0,p, . . . ,p(q − 1).
This census of representations of theŝl(N)1 fusion algebra matches almost perfectly
that of modular invariant partition functions carried out by Itzykson [71] and
Degiovanni [72]. We recall that according to these authors, a different modular
invariant is associated with each divisor ofn, wheren=N if N is odd andn=N/2
if it is even. Thus, only the caseN even,q = 1 has to be discarded in our list of
representations of the fusion algebra, as it does not correspond to a modular invariant.

3.5. More on graph algebras

In Section 3.2, we have introduced the matricesN̂ by (3.2) and derived (3.4). Instead of
looking at the graph as a collection of points we can look at it as a collection of matricesN̂ ,
providing a basis of a commutative, associative algebra with identity, and an action of the
intertwinersni given by (3.4), that is, we take (3.4) as a starting point. Given the graphG,
in particular the coefficientsni1c, it is possible in many cases to invert (3.5) and solve for
N̂a as linear combinations with integral coefficients of the intertwinersni , or equivalently,
as polynomials of the fundamental adjacency matrices. Similarly the relation (3.4) written
in terms of the eigenvaluesγj (i)= Sji/S1i , γ̂a(i)=ψia/ψi1

γj (i) γ̂a(i)=
∑
b

nja
b γ̂b(i), i ∈ E, j ∈ I, (3.18)

is a recursive relation determining (the rows of) the eigenvector matrixψia . In general,
typically in the presence of degenerate eigenvalues, the matrixψia is not determined
uniquely, or alternatively, (3.5) cannot be inverted for alla ∈ V . For the type I cases,
however, as explained above, there exists an extended fusion algebra isomorphic to a
subalgebra of the graph algebra, so that the extended fusion matricesNext

Bi
can be identified

with a subset̂Na with the nodesa ∈ T ⊂ V [60,61]. In most of these type I cases one
can solve for allN̂a in terms of theni ’s andNext

Bi
, or alternatively expressψja in terms
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of the modular matricesSij , Sext
BsBl

. A particularly simple subclass of Type I for which
one can go quite far in the programme of reconstructing the graphG and all the related
structures is presented by the orbifold theories, in particular the ones associated with groups
generated by simple currents. In our approach they can be described by graphs obtained by
“orbifolding” the fundamental graphs of the initial diagonal theory, the simplest example
being provided by the WZWsl(2) D2l series obtained by “orbifolding” the Dynkin diagram
A4l−3 over theZ2 group generated by the automorphismγ . In these cases as well as in
theirsl(N) generalisations defined in [73] involving the groupZN , one can algorithmically
construct the eigenvector matrix, see Appendix B for an illustration in the simplestN = 2
case. In a different approach, using tools similar to the original orbifold treatment of [74],
an elegant general formula for the eigenvector matrix was derived recently in [31–33]. It
should be noted that the same graph (orbi)folding procedure leads also to type II graphs,
e.g., thesl(2) Dodd series, or theirsl(3) generalisations fork 6= 0 mod 3, see Appendix D.

We have assumed up to now in this discussion that the graphs are already known. On
the other hand the relations (3.4), (2.22) can be taken as the starting point for finding new
graphs, typically “exceptional” graphs not covered by the previous orbifold constructions.
Since any graph in the vicinity of the identity resembles the original “diagonal” (A) graph,
one can first try to identifyni ’s for which the r.h.s. of (3.5) reduces to one term, i.e.,
ni1

a = δaai and hence one can identifyni = N̂ai . According to (3.18) this also determines

ψ
j
ai by γi(j) onceψj1 is known. This is a problem which is reduced to the computation of

some Verlinde fusion multiplicities. Indeed let us take the first matrix elementa = b = 1
of the matrix relation (2.22) we have∑

c

ni1
cnj1

c =
∑
l

Nli
j nl1

1=
∑
l∈ρ

Nli
j , (3.19)

where in the last sumρ = {l ∈ I|nl11 6= 0} and l is countednl11 times. Let us assume
first that in (3.19)i = j . Whenever the r.h.s. of (3.19) is equal to 1, since by definition
ni1

a are integers, the l.h.s. summation reduces to one term, i.e., we recoverni1
a = δaai .

Furthermore plugging this into the l.h.s. of (3.19) taken forj 6= i we recovernj1
ai as being

given by the sum of Verlinde fusion multiplicities in the r.h.s. of (3.19), i.e., we determine
the multiplicity with whichNai appears innj , see (3.5). Similarly, a value 2 or 3 for the
r.h.s. of (3.19) withi = j would lead to 2, respectively 3 terms in (3.5), while 4 could be
interpreted either as leading to 4 terms with multiplicity one, or 1 term with multiplicity
two, i.e.,ni1a = 2δaai . What we only need in order to check all these possibilities is to
know the content of the setρ, i.e.,ni11. This data is provided in type I theories for all of
which ρ encodes the content of the identity representation of the extended algebra. More
generally,ni1a =multBa (i), identifyinga with a representationBa of the extended algebra.
The relation (3.19) and its consequences just described are the first steps in a consistent
algorithmic procedure proposed by Xu [65] in the abstract framework of subfactors theory
(see also [66–68] for further developments). In particular, the subset ofni which can be
identified with somêNai are related to “irreducible” sectors with the sum in the l.h.s. of
(3.19) interpreted as a scalar product(ai, aj ). The algorithm reduces systematically the
determination ofni, N̂a in type I cases to data provided by the Verlinde fusion matrices
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N andNext. All graphs previously found in [46,60,61,63] were recovered in [65] by this
method and a new example corresponding to theŝl(4)6 modular invariant was found in
[64].

Finally let us point out that to some extent this algorithm for finding new solutions of
the equations (3.4) and (2.22), i.e., new graphs, can be applied to type II cases where we
do not know a priorini11, i.e., the setρ. One can start with some trial set and compute∑
α(ψ

(j,α)
1 )2= S1j

∑
l∈ρ Slj . A first consistency check is that

∑
j∈E(ψ

j
1 )

2= 1. Then one
can proceed as in type I. For example theE7 Dynkin diagram may be reconstructed using
ρ = {1,9,17}. 3 Different (consistent) choices of the setρ might lead to the same graph,
reflecting the possibility of different choices of the identity node.

In some simple cases it is possible to recover a complete set of boundary conditions by
applying formula (3.4) to a known subset in such a way that only one term appears in the
sum in the r.h.s. In terms of the equivalent formula (3.18) for the eigenvalues we obtain
a new solutionψib, b = b(a, j), by “fusing” a given oneψia with the Verlinde eigenvalue
γj (i). This seems to be the idea of the so-called “Affleck fusion conjecture” [17], which
clearly has a restricted application, with the general formulae (3.4), (3.18) being the correct
substitute for it.

Another approach to constructing Type I graphs was discussed in [63] and used to find
new solutions for higher rank cases. It is based on the use of a relation for the structure
constants of the Pasquier algebra, the dual of the graph algebra, with structure constants
labelled by elements in the set Exp(G) and given by a formula analogous to (3.2), however
with the summation running over the nodes of the graph; this algebra will be discussed
further in Section 4.4.1 below.

4. Bulk and boundary operator algebras

In this section we investigate the algebras of fields in the presence of boundaries and the
equations for their structure constants resulting from duality constraints. Our discussion
parallels that of Cardy and Lewellen [11], but generalises it in two respects: to higher rank
and to non-diagonal theories. This results in additional multiplicities associated with the
more general representations of the Verlinde algebra (2.22). Our presentation makes use
of concepts used by Moore and Seiberg for bulk RCFTs and extends them appropriately
for this new setting. This leads to a richer structure in the equations and the appearance of
a triplet of algebras(ni , N̂a,Mj ). Separately these algebras have appeared before but the
inter-relation between these algebras has not been shown in this context.

4.1. Ground state degeneracies

As stressed by Affleck and Ludwig [16], the logarithm of the partition function, in the
limit L/T →∞, contains not only the universal term proportional toL and to the central

3 Note added in proof: this was independently discussed in the recent paper [98], see also [84]. The paper [98]
provides a systematic approach in the framework of the subfactors theory to both types of modular invariants.
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charge (in unitary theories), but also anL independent term, interpreted as a boundary
condition dependent “ground state degeneracy” lngagb. Indeed in that limit

lnZb|a ∼ c

24
4π

L

T
+ lnψ1

a + lnψ1
b − lnS11, (4.1)

where as before we denote by 1 the representation of conformal weight 0, corresponding
to the identity operator. We therefore identify

ga = ψ1
a√
S11

. (4.2)

Thus in unitary minimal models, using (2.38) and (2.28), we have the following
expression for the boundary states

|(r, a)〉 =
∑
r ′,s ′

r ′odd, s ′∈Exp(G)

21/4 S
(h)

rr ′ ψ
s ′
a√

S
(h)

1r ′ S
(g)

1s ′
|r ′, s′〉〉 (4.3)

and theirg factor

g(r,a) = 〈〈1,1|(r, a)〉√
S
(h)
11 S

(g)

11

= 21/4 S
(h)
r1 ψ

1
a√

S
(h)
11 S

(g)

11

, (4.4)

in terms of the modular matricesS(h) andS(g) of ŝl(2) at levelsh−2 andg−2, |g−h| = 1.
For example, for the critical 3-state Potts model, we obtain

gA =
(

5−√5

30

)1/4

= 0.550936,

gA : gAB : gABC : gN = 1 : 1+
√

5

2
: √3 : 1+

√
5

2

√
3

in agreement with [22]. As a particular case of (4.4), the ratiog(r,a)/g(1,a) equalsS(h)r1 /S
(h)
11 ,

in agreement with (A.3) of [22] and the fact that one obtains the boundary state|(r, a)〉 by
fusion (in the sense of Cardy) of boundary states(1, a) and(r,1).

In non-unitary cases, these expressions have to be slightly amended. Ifj0 denotes the
representation of smallest conformal weighthj0 < 0 and assumed to belong toE , then

lnZb|a ∼ ceff

24
4π

L

T
+ lnψj0a + lnψj0b − lnS1j0 (4.5)

with ceff := c− 24hj0. Also

ga = ψ1
a√
S1j0

. (4.6)

For simplicity of notation in most of what follows we shall restrict to unitary theories.
Denotingga = 〈1〉a from now on,

lim
L/T→∞Zb|a e−

πc
6
L
T /gb = 〈1〉a. (4.7)

One can consider furthermore the partition function with some field insertions at the same
limit [11,26,27]; we shall normalise them similarly so that only a dependence onga is
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retained, i.e.,〈1〉a will coincide with the 1-point function of the identity operator in this
limit.

4.2. Bulk and boundary fields, OPE

4.2.1. Boundary fields
According to Cardy [10], boundary conditions can be interpreted as created by the

insertion of fieldsbΨ a
j,β (x) living on the boundary, Imz = 0, x = Re z of the upper

half-planez ∈ H+. Here j ∈ I, a, b ∈ V, andβ accounts for the multiplicitynjab of

such fields, to be called “of type”
(
b

j a

)
. Thusβ can be interpreted as a “coupling” index

β = 1,2, . . . , njab and the boundary fields as kind of “chiral vertex operators” (CVO)

associated with a second type of couplings
(
b

j a

)
β
, a, b ∈ V, j ∈ I. This is a formal

analogy since the boundary states|a〉, |b〉 labelled bya, b are superpositions of Ishibashi
states. The multiplicity indexβ is traditionally omitted, but it should be stressed that even
in the sl(2) case, in all but the diagonal cases (E = I), there are always some nontrivial
multiplicities njab > 1, so most of the time we shall retain this index. Sincen1a

b = δab
the index associated with the coupling

(
b

1 b

)
takes only one value and will be denoted

β = 1b, or just1, or, altogether omitted. On the other hand in all non-diagonal cases there
is a nontrivial subset{1Ψ 1

j , j ∈ ρ} of boundary fields, with 1∈ ρ ⊂ I , where the setρ has
been introduced in Section 3.5.

To make contact with Section 2.2, consider the finite stripw = L
π

log z equipped with the

HamiltonianHab = π
L
(L
(H)
0 − c

24). The space of states is generated by all the descendent
states created for fixeda, b from the (properly normalised) vacuum statebΨ a

j,β (0)|0〉 by
the modes of the Virasoro algebra generating the real analytic conformal transformations.
This includes besides the sum overj ∈ I a summation over the multiplicitynjab of these
states for fixeda, b, j , i.e., we can think of the Vir representation spacesVj,β as being
labelled by pairs(j,β). The “dual vacuum state” is defined by a boundary field placed
at infinity

∑
β ′ limx→∞ ca,b,j ;β,β ′ x2∆j 〈0|aΨ b

j∗,β ′(x), whereca,b,j ;β,β ′ is a normalisation

constant andβ ′ = 1, . . . , nj∗ba is an index of type
(
a

j∗ b

)
. Accordingly the trace of the

operator e−THab computed imposing the periodicityw ∼ w + T in time direction can be
written as a sum over(j,β) of charactersχj,β , with the summation overβ leading to
(2.15), witha andb exchanged.

Boundary fieldsbΨ a
j,β (x) appear as ordinary fieldsΨj (x) decorated by a pair of indices

a, b according to some rules. In the limitL/T →∞ their 1-, 2- and 3-point functions are
given by the corresponding invariants ofΨj with respect tosl(2,R) with normalisation
coefficients depending ona, b. As for the ordinary fields the 1-point function is non-zero
only for the identity operator〈

0
∣∣bΨ a

j,α(x)
∣∣0〉= δj1 δba δα1a 〈1〉a (4.8)

with the restriction ona, b coming fromn1a
b = δab. As for the ordinary CVO the product

bΨ c
i,α1

dΨ a
j,α2

of two boundary fields is defined only for coincidingc = d . Similarly the
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initial and the final indices in a vacuum expectation value of a product of boundary fields,
are restricted to coincide (due to the periodicity in the strip time direction, the boundary
half-line being effectively closed) but in distinction with the ordinary CVO they can be
arbitrary and not just equal to the identity 1. The 2- and 3-point functions read

〈
0
∣∣aΨ b

j,α1
(x1)

bΨ c
i,α2
(x2)

∣∣0〉= δji∗ δac Cabi∗i;α1α2

|x12|2∆j
, x1 6= x2, (4.9)

〈
0
∣∣aΨ b

i,α1
(x1)

bΨ c
j,α2

(x2)
cΨ d

k,α3
(x3)

∣∣0〉
t

= δad
Cabc
ijk;α1 α2α3;t

|x12|∆
k
ij |x23|∆

i
jk |x31|∆

j
ki

, x1 6= x2 6= x3 6= x1, (4.10)

where∆kij =∆i +∆j −∆k andxij = xi − xj .
The functions (4.9), (4.10) are invariant with respect toSL(2,R), with representations

denoted by a pair(δ, ε =±), see [51]; here we chooseε = 1 corresponding to taking the
modulus of the multiplier of theSL(2,R) transformations and the expressions in (4.9),
(4.10) imply trivial monodromy of the boundary field correlators. In theŝl(n)k WZW
models the fields carry an additional tensor index, or, in a functional realisation, depend
on an additional (multi)variableX accounting for the representations of the “isospin”
sl(n,R) algebra and then-point functions involve alson-point invariants with respect to
this algebra. For example, in thêsl(2)k WZW case the fieldsΨj(x,X) can be described
in terms of a pair of real variables [79], the coefficients in the polynomial expansion
with respect toX representing the horizontal algebra descendants. In this case the isospin
labels are 2j = 0,1, . . . , k, and the 2- and 3-point invariant correlators contain additional

factorsX2j
il along with anyx

−2∆j
il . For simplicity we adapt the notation for the minimal

Wn models rather than their WZW counterparts, omitting the explicit indication of the
“isospin” variables and the corresponding invariants. To keep track of the various possible
three-point invariants, we shall retain the multiplicity indext as in (4.10).

Up to the normalisation constant and up to phases, (4.10) is the 3-point invariant function

〈0|φi,1′i φj,t φk,1k |0〉 of the ordinary CVOφj,t (x). Heret is a coupling index of type
(
i∗
j k

)
,

t = 1,2, . . . ,Njki
∗
. Two kinds of permutations act on these couplings, see [37,38]:σ23 :(

p

i j

)
→
(
p

j i

)
, andσ13 :

(
p

i j

)
→
(
j∗
i p∗

)
. For simplicity in the sequel we denote the

one value indices indicating couplings with one label of typeI set to 1, likeσ23(1i),1′i ,
or, 1a (corresponding to couplings of type

(
i

i 1

)
,
(

1
i i∗

)
, or

(
a

1 a

)
, resp.), simply by1.

Motivated by the form of the 3-point function, the operator product expansion (OPE) of
(primary) boundary fieldsbΨ c

i,α(x) is defined according to

bΨ c
i,α1
(x1)

cΨ a
j,α2

(x2) =
∑
p,β,t

(1)Fcp

[
i j

b a

]β t

α1α2

∑
P

〈p,P |φi,t (x12)|j,0〉 bΨ a
p,β;P (x2)

=
∑
p,β,t

(1)Fcp

[
i j

b a

]β t

α1α2

1

|x12|∆i+∆j−∆p
bΨ a

p,β(x2)+ · · · , (4.11)
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Fig. 4. Graphical representation of (4.13). To stress the presence of two types of vertices, we
distinguish them explicitlyon this particular figure only.

whereP is an index for the descendent states of the representationVp with p ∈ I. The

indicesα1, α2, β account for the multiplicity of vertices of type
(
b

i c

) (
c

j a

)
,
(
b

p a

)
,

respectively,a, b, c ∈ V , i.e.,α1 = 1,2, . . . , nicb, etc., whilet is that of a standard vertex(
p

i j

)
, t = 1,2, . . . ,Nij p . We will often restrict for simplicity to thesl(2) case, so that the

indext can be omitted. From the 1-point function

(1)Fcp

[
i 1
b a

]β t

α1α2

= δpi δac δα2 1 δt 1 δα1β,

(1)Fcp

[
1 j

b a

]β t

α1α2

= δp j δb c δα1 1 δt 1 δα2β . (4.12)

With the normalisation of the CVO
(
p

i j

)
t

implied by the second equality in (4.11) the

numerical coefficients(1)Fcp

[
i j

b a

]β t

α1α2

with i, j,p ∈ I, a, b, c ∈ V , represent the OPE

coefficients of the boundary fields and their determination is part of the problem. They
are reminiscent of the matrix elements of the fusing (or crossing) matricesF (whence the
notation here for this “second” fusing matrix), which serve as OPE coefficients of the usual
CVO [37,38]. The definition (4.11) extends to descendent fields in the l.h.s. as for the usual
CVO. Symbolically (4.11) can be written as(
b

i c

)
α1, x1

(
c

j a

)
α2, x2

=
∑
p,β,t

(1)Fcp

[
i j

b a

]β t

α1α2

(
p

i j

)
t, x12

(
b

p a

)
β, x2

(4.13)

and can be depicted similarly as the standard Moore–Seiberg diagrams, see Fig. 4.

Denoting byUbpa the space of boundary fields of type
(
b

p b

)
α1

we have dimUbpa =
npa

b while the space of standard CVO,Upij , has dimension given by the Verlinde fusion

multiplicity Nij p, dimU
p
ij =Nij p . Thus we can interpret(1)F as a linear operator⊕

c

Ubic ⊗ Ucja→
⊕
p

U
p
ij ⊗ Ubpa, (4.14)

the dimension of the two sides being identical, according to (2.22). Given the 1- and 2-
point correlators above the computation of the general boundary fieldn-point functions is

reduced to the computation of the conformal blocks of the standard CVO
(
p

i j

)
t, x

.
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(a)

(b)

Fig. 5. (a) and (b): boundary field 2- and 3-point functions.

Comparing with the 2- and 3-point functions, see Fig. 5(a) and (b), we have

Cabii∗;α1α2
= (1)Fb1

[
i i∗
a a

]1a1′i

α1α2

〈1〉a, (4.15)

Cabcijk;α1 α2α3;t =
∑
β

(1)Fbk∗
[
i j

a c

]β σ23σ13(t)

α1α2

(1)Fc1

[
k∗ k

a a

]1a1′
k∗

β α3

〈1〉a

=
∑
γ

(1)Fci∗
[
j k

b a

]γ t
α2 α3

(1)Fb1

[
i i∗
a a

]1a1′i

α1γ

〈1〉a. (4.16)

The 2- and 3-point normalisation coefficients are assumed to satisfy the symmetry
conditions

Cabi∗i;α β = Cbaii∗;β α =
(
Cabi∗i;σ13(β

∗) σ13(α
∗)
)∗
,

Cabcijk;α1α2α3;t = Cbcajki;α2α3α1;σ13σ23(t)
= (Ccba

k∗j∗i∗ ;σ13(α
∗
3) σ13(α

∗
2) σ13(α

∗
1);σ13(t

∗)
)∗
. (4.17)

The first equalities in (4.17) are cyclic symmetry relations, see Fig. 6, while the second
equalities come from an antilinear (“CPT”) transformation, which in particular sends the
field bΨ c

j,β(x) to its conjugatecΨ b
j∗,σ13(β

∗)(−x) with multiplicity indices consistent with

nja
c = nj∗ca = nj∗a∗c∗ .

The cyclic symmetry relations imply

(1)Fc1

[
j j∗
a a

]1a1′j

α1α2

〈1〉a = (1)Fa1

[
j∗ j

c c

]1c1′j∗

α2α1

〈1〉c, (4.18)
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Fig. 6. The cyclic symmetry of 3-point functions.

∑
β

(1)Fak∗
[
j s

b c

]β t
δ α

(1)Fc1

[
k∗ k

b b

]1b1′k∗

β β2

〈1〉b

=
∑
γ

(1)Fbs∗
[
k j

c a

]γ σ23σ13(t)

β2 δ

(1)Fc1

[
s s∗
a a

]1a1′s

α γ

〈1〉a, (4.19)

while the the second equalities in (4.17) lead to

(1)Fak

[
j s

b c

]βt
δ α

=
(
(1)Fak∗

[
s∗ j∗
c b

]σ13(β
∗)σ23(t

∗)

σ13(α
∗) σ13(δ

∗)

)∗
. (4.20)

Combining (4.18) and (4.19), one recovers (4.16).

4.2.2. Bulk fields and bulk-boundary coefficients
We turn to the second ingredient of the Cardy–Lewellen boundary CFT, the bulk fields.

The half-plane bulk fieldsΦI (z, z̄), z = x + iy ∈ H+, z̄ = x − iy transform under a
representation ofL(H) [42,43] realised by differential operators

LHn = Ln(∆i, z)+Ln(∆ī, z̄) (4.21)

and characterised by a pairI = (i, ī) of weights. In cases when there is more than one field
with the same labels(i, ī) a more involved notation likeI = (i, ī;α) is needed, but usually
omitted for simplicity. For type I theories as well as for arbitrary scalar fields bothi, ī ∈ E ,
while in generali, ī ∈ I.

The invariance with respect to the subalgebra spanned byL
(H)
±1,0 determines the 1-point

function ofΦ(i,ī)(z, z̄) as well as the 2-point function〈aΨ a
p,α Φ(i,ī)〉, e.g.,

〈0|aΨ a
p,α(x1)Φ(i,ī) (z, z̄)|0〉

=
Ca
p,(i,ī),α,t

(z− z̄)∆i+∆ī−∆p (x1− z)∆i+∆p−∆ī (x1− z̄)∆ī+∆p−∆i
, x1>Rez, (4.22)

while 〈Φ(i,ī) aΨ a
p,α〉 is defined for Rez > x1 by the analogous expression withx1 − z,

x1 − z̄ replaced byz − x1, z̄ − x1. Requiring the symmetry of this function under the
exchange of the two fields, i.e., the independence of the ordering, leads to the constraint
∆i −∆ī ∈ Z.

The r.h.s. of (4.22) is the 3-point block of standard CVO〈0|φp,1′p (x1) φi,t (z) φī,1ī
(z̄)|0〉,

with t a coupling index of type
(
p∗
i ī

)
, t = 1,2, . . . ,Niī

p∗ . Consistently with this the

(primary) bulk field can be represented for smallz− z̄ via the decomposition
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Φ(i,ī)(z, z̄)=
∑

a,α,p∈I,t
a,αB

p,t

(i,ī)

∑
P

〈p,P |φi,t (z− z̄)|ī,0〉 aΨ a
p,α;P (z̄)

=
∑

a,α,p∈I,t
a,αB

p,t

(i,ī)

1

(z− z̄)∆i+∆ī−∆p
aΨ a

p,α(z̄)+ · · ·

=
∑

a,α,p∈I,t
a,αB

p,t

(i,ī)

1

(2iy)∆i+∆ī−∆p
aΨ a

p,α(x)+ · · · , (4.23)

which extends to descendents. HereaΨ a
p,α(z) are “unphysical” generalised CVO obtained

extending to the (full) plane the boundary fields of the previous section. Their OPE is
determined by the same fusing matrix(1)F , i.e., as in (4.11), the latter extended to complex
argumentszi , Rez12 > 0, with |x12| replaced byz12; we shall need only this fusing
property.

The constantsa,αBp,t
(i,ī)

(“bulk-boundary reflection coefficients”) in this decomposition

depend on two couplings of different types,
(
p

i ī

)
t

and
(
a

p a

)
α
. Note that the coefficients

used here differ by a phase from the traditionally normalised coefficients [11,12], which
will be denoteda,αBp,t

(i,ī)
(CL), i.e.,

a,αB
p,t

(i,ī)
= ei π2 (∆i+∆ī−∆p) a,αBp,t

(i,ī)
(CL). (4.24)

The decomposition (4.23), symbolically written as

Φ(i,ī)(z, z̄)=
∑
a,α,p,t

a,αB
p,t

(i,ī)

(
p

i ī

)
t, z−z̄

(
a

p a

)
α, z̄

, (4.25)

see Fig. 7, reduces the computation of then-point functions ofΦ(i,ī) to the computation

of the blocks of the generalised CVOaΨ b
p,α(z), which combined with their OPE (the

extension from|x12| to z12 of (4.11)) allows to recover all correlators in terms of standard
conformal blocks. The invariant 1-point function projected onto the boundary statea reads

〈
Φ(i,ī)(z, z̄)

〉
a
= δi∗ ī

a,1B
1,1
(i,ī)

(z− z̄)2∆i 〈1〉a. (4.26)

Omitting the trivial indices and simplifying the label(i, i∗) to i, one has in particular
aB1

1 = 1 for anya.
The OPE of the half-plane bulk fieldsΦ(k,k̄)(z, z̄) is defined according to

Φ(k,k̄)(z1, z̄1)Φ(l,l̄)(z2, z̄2)

=
∑
j,j̄ ,t,t̄

D
(j,j̄ );t,t̄
(k,k̄)(l,l̄)

∑
J,J̄

〈j, J |φk,t (z12)|l,0〉
〈
j̄ , J̄

∣∣φk̄,t̄ (z̄12)
∣∣l̄,0〉Φ(j,j̄ );(J,J̄ )(z2, z̄2)

=
∑
j,j̄ ,t,t̄

D
(j,j̄ );t,t̄
(k,k̄)(l,l̄)

z
∆
j
kl

12 z̄
∆
j̄

k̄l̄

12

Φ(j,j̄ )(z2, z̄2)+ · · · . (4.27)

The coefficientsD(j,j̄ );t,t̄
(k,k̄)(l,l̄)

are related to the full-plane bulk OPE coefficients, see below.
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Fig. 7. Graphical representation of the decomposition (4.25) of bulk fields.

4.3. Boundary CFT duality relations

4.3.1. Cardy–Lewellen equations rederived
We collect in this section the set of equations resulting from the sewing constraints on

the various OPE expansions [12]; some of these equations can be interpreted as expressing
locality (symmetry) of the boundary CFT correlators. For simplicity of notation we shall

sometimes omit the explicit indication of the coupling indices of type
(
i

j k

)
and the

corresponding summations, i.e., the equations will be written essentially for the simplest
sl(2) case. However we shall keep the charge conjugation in the indices ofI so that the
general formulae can be easily recovered. In thesl(2) WZW case the braiding phases
are given by the shifted scaling dimensions∆Sug

j − j , instead of∆Sug
j (since the pair

of coordinate and isospin variables is moved as a whole). Then formulae work equally
well with the same fusing and braiding matrices, without additional signs, as for the
corresponding subfamily(1,2j + 1) of fields in Virasoro minimal models.

Applying (4.11) in different ways to the 4-point function of boundary fieldsΨ , that is
demanding associativity, leads to a relation connecting the two types of fusing matrices
(1)F andF , the fusing matrix for the ordinary CVO, which reads symbolically

F (1)F (1)F = (1)F (1)F (4.28)

or, more explicitly,∑
m,β2,t3,t2

Fmp

[
i j

l k

]u2u3

t2 t3

(1)Fbl

[
i m

a d

]γ1 t2

α1β2

(1)Fcm

[
j k

b d

]β2 t3

α2α3

=
∑
β1

(1)Fcl

[
p k

a d

]γ1u2

β1α3

(1)Fbp

[
i j

a c

]β1u3

α1α2

. (4.29)

The identity (4.29), when restricted to thesl(2) case, is a slightly simplified version of the
equation (L 3.29) in [12] and can be also obtained from the latter using the relation (4.16)
and dropping a (non-zero) factor of type(1)Fa1. The direct derivation of this pentagon-
like identity depicted in Fig. 8 is analogous to the derivation of the standard pentagon
equation for the fusing matricesF since the boundary fieldn-point blocks are analogs
of the ordinary(n + 2)-point conformal blocks with an additional constraint due to the
delta function in the 2-point boundary block.4 The relation (4.16) is reproduced from the
pentagon identity (4.29) for particular values of the indices.

4 “Mixed” pentagon identities analogous to (4.28) appear in the framework of “weak Hopf algebras” as part of
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Fig. 8. The “mixed” pentagon identity.

Imposing the symmetry of the 3-point function〈
bΨ a

j,δ(x1)Φ(i,ī)(z, z̄)
aΨ b

k,γ (x2)
〉= 〈bΨ a

j,δ(x1)
aΨ b

k,γ (x2)Φ(i,ī)(z, z̄)
〉

one derives following Fig. 9,

∑
β,β ′

b,βB
p

(i,ī)
〈1〉b (1)Fb1

[
p∗ p

b b

]1

β ′ β

(1)Fap∗
[
j k

b b

]β ′
δ γ

=
∑
s, α,α′

a,αBs
(i,ī)
〈1〉a(1)Fa1

[
s∗ s

a a

]1

α′ α

(1)Fbs∗
[
k j

a a

]α′
γ δ

×
∑
m

eiπ(2∆i−2∆m+∆k+∆j−∆p) Fsm
[
j i

k∗ ī

]
Fmp∗

[
k j

ī∗ i

]
. (4.30)

On Fig. 9 the braiding matricesB(±) appear, see Appendix E. In the r.h.s. of (4.30) we have
also used the cyclic symmetry relations (4.18), (4.19). Using furthermore these relations
a factor of type(1)Fa1 (and the related summation) can be dropped in both sides of (4.30)
which leads to a slighly simplified version as compared with the original equation (L 3.32)
in [12].

a “Big Pentagon identity” [76]. The counterparts of(1)F are interpreted as kind of “3j-symbols” along with the
standard interpretation of the fusing matricesF as “6j-symbols”.
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Fig. 9. Derivation of (4.30).

From the 2-point function〈Φ(k,k̄)(z1, z̄1)Φ(l,l̄)(z2, z̄2)〉a using either the OPE formula
(4.27), or (4.23) (follow Fig. 10 withi = 1), we obtain

∑
α,β

a,αB
r,s1
(k,k̄)

a,βB
r∗,s2
(l,l̄)

(1)Fa1

[
r r∗
a a

]1a 1′r

α β

=
∑
j

aB1
j eiπ(∆k+∆l̄−∆r−∆j )

∑
t,t̄

D
(j,j∗);t,t̄
(k,k̄)(l,l̄)

Fjr

[
k̄ k

l̄∗ l

]σ23σ13(s2) σ23(s1)

σ13(t̄) t

, (4.31)

or, equivalently,

D
(j,j∗);t,t̄
(k,k̄)(l,l̄)

aB1
j eiπ(∆k+∆l̄−∆j )

=
∑

α,β,r,s1,s2

eiπ ∆r a,αB
r,s1
(k,k̄)

a,βB
r∗,s2
(l,l̄)

(1)Fa1

[
r r∗
a a

]1a 1′r

α β

Fr∗j

[
k l

k̄∗ l̄

]σ12(t̄) t

σ13(s1) s2

. (4.32)

Lastly from the 3-point function〈Φ(k,k̄)(z1)Φ(l,l̄)(z2)
aΨ a

i,γ (x)〉, we obtain, see Fig. 10

∑
α,β

a,αBr
(k,k̄)

a,βBt
(l,l̄)

(1)Fai∗
[
r t

a a

]γ
α β

=
∑
j,j̄

D
(j,j̄ )

(k,k̄)(l,l̄)

a,γBi
(j,j̄ )

eiπ(∆k−∆r−∆j )

×
∑
s

eiπ∆s Fj̄s∗

[
j k̄

i∗ l̄

]
Fj∗r∗

[
l s

k∗ k̄

]
Fst

[
l l̄

r∗ i

]
. (4.33)
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Fig. 10. Derivation of (4.33).

For i = 1 (4.33) reduces to (4.31). The sum overs in the r.h.s. of (4.33) represents
up to phases one of the sides in (an auxiliary) hexagon identity, resulting in permuting
{l, i, k̄} to {k̄, i, l}, i.e., can be written asB23(−)B12(−)B23(−) and thus can be replaced
by B12(−)B23(−)B12(−). This gives an alternative representation of the r.h.s. of (4.33)
obtained from the above by replacing everywhere(k, k̄, j, r)→ (l̄, l, j̄ , t∗). This is the
original form of Eq. (L 3.35) in [12], when (4.24) is inserted, with furthermore inverse
operator ordering convention and opposite overall sign of the phase.

The locality of this 3-point function (the symmetry under the exchange of the fieldsΦ)
implies also

D
(j,j̄ );t,t̄
(k,k̄)(l,l̄)

= (−1)sk+sl−sj D(j,j̄ );σ23(t),σ23(t̄)

(l,l̄)(k,k̄)
, sk :=∆k −∆k̄, (4.34)

while from the associativity of the OPE (4.27) one obtains in particular the relation

D
(j,j̄ );t,t̄
(k,k̄)(l,l̄)

D
(1,1)
(j,j̄ )(j∗,j̄∗) =D

(k∗,k̄∗);σ13σ23(t),σ13σ23(t̄)

(l,l̄)(j∗,j̄∗) D
(1,1)
(k∗,k̄∗)(k,k̄). (4.35)
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All the above equations hold true as well with a signε =±1, inserted in the exponents
of all the phases in these equations including (4.24), and replacing the bulk-boundary
coefficientsB with Bε . Thus when rewritten in terms of the Cardy–Lewellen normalised
coefficientsB(CL) all equalities are true for both choices of sign.

Remark
The Lewellen equations in the diagonalsl(2) case were recently confirmed in [81].

The seemingly different version of Eq. (4.30) in [14] is in fact equivalent to the original
Lewellen equation, after taking into account one of the duality relations (a hexagon identity,
see (E.6) in Appendix E) for the braiding matrices. On the other hand the derivation of
the versions of (4.31), (4.33) in [14] appears to be affected by a missing phase in the
intermediate (and needless) formula (17) in [14]. This phase is compensated in the final
formulae following from (4.31) (like (4.44) below) by another phase due to the presumably
neglected difference in the normalisation of the bulk-boundary coefficients (like in (4.24))
as compared with that in [11,12].

4.3.2. More pentagon relations
Before we turn to a discussion on the implications of the Cardy–Lewellen equations we

shall introduce one more ingredient to the scheme. It is natural to assume that there exists a
“third fusing matrix”, a matrix inverting(1)F , (3)F (1)F = I = (1)F (3)F , or more explicitly,∑

b,β2,β3

(3)Fpb∗
[
c∗ k

a∗ j

]σ12(β3) σ12(β2)

σ23(α2) t
′

(1)Fbs

[
k j

c a

]σ13(γ2) t

β2β3

= δps δα2 γ2 δt ′ t ,

(3)Fpb

[
a 1
c k

]β γ
α t

= δa b δk p δα β δt 1 δγ 1,

(3)Fpb

[
a j

c 1

]β γ
α t

= δc b δj p δα γ δt 1 δβ 1. (4.36)

Along with the standard CVOs
(
p

j k

)
, this matrix involves new “couplings” of type(

c

a p

)
β ′

which can be thought of as obtained by a permutationσ23 from the boundary fields(
c

p a

)
β
, whence the notationβ ′ = σ23(β). The matrix(3)F satisfies a “mixed” pentagon

identity analogous to (4.28)

(3)F (3)F F = (3)F (3)F. (4.37)

Furthermore multiplying both sides of (4.29) with(3)Fm′c∗
[
b∗ j

d∗ k

]σ12(α3) σ12(α2)

δ t

and

summing overc, α2, α3, using (4.36) in the r.h.s., we obtain another equation of similar
form

(3)F (1)F (1)F = (1)F F,

which implies various useful relations obtained for particular values of the indices. One of
them reproduces the inverse property of(3)F , another one reads
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∑
β

(3)F1b∗
[
a∗ j∗
a∗ j

]σ23(α) σ23(β)

1 1

(1)Fa1

[
j j∗
b b

]1 1

σ13(γ ) σ13(β)

= 1

dj
δα,γ , (4.38)

wheredj = Sj1/S11= F11

[
j j∗
j j

]−1

is the quantum dimension. It furthermore implies

dj
∑
α,β

(3)F1b∗
[
a∗ j∗
a∗ j

]σ23(α) σ23(β)

1 1

(1)Fa1

[
j j∗
b b

]1 1

σ13(α) σ13(β)

= nbja. (4.39)

Using the inverse matrix(3)F , as introduced here, the half-plane bulk field can be also
written as a product of generalised boundary fields (a “bilocal” operator)

ΦH
(i,ī)
(z, z̄)=

∑
a,b,α,β

(∑
p,γ,t

a,γB
p,t

(i,ī)

(3)Fpb∗
[
a∗ i

a∗ ī

]σ12σ23(β) σ12σ23(α)

σ12σ23(γ ) t

)
× aΨ b

i,α(z)
bΨ a

ī,β
(z̄), (4.40)

which reproduces the smallz − z̄ expansion in (4.23); compare (4.40) with the chiral
decomposition of the (full) plane physical fields

ΦP
(i,ī)
(ζ, ζ̄ )=

∑
k,k̄,l,l̄,t,t ′

(pl)D
(l,l̄);(t,t ′)
(j,j̄ )(k,k̄)

lφki,t (ζ )⊗ l̄φk̄
ī,t ′(ζ̄ ).

Finally we shall exploit the inverse(3)F of the matrix(1)F to rewrite (4.30) in another
equivalent form to be used in the next section. Namely we apply the inverse to(1)Fbs∗ in
the r.h.s. and obtain∑

α

a,αBs
(i,ī)
〈1〉a (1)Fa1

[
s∗ s

a a

]1

σ13(α
′) α

×
∑
m

eiπ(2∆i−2∆m+∆k+∆j−∆p) Fsm
[
j i

k∗ ī

]
Fmp∗

[
k j

ī∗ i

]

=
∑
b,β,β ′

b,βB
p

(i,ī)
〈1〉b (1)Fb1

[
p∗ p

b b

]1

β ′ β

×
∑
γ,δ

(3)Fs∗b∗
[
a∗ k

a∗ j

]σ23(δ) σ23(γ )

σ23(α
′)

(1)Fap∗
[
j k

b b

]β ′
σ13(δ) σ13(γ )

=
∑

b,β,γ ′,δ

b,βB
p

(i,ī)
〈1〉b (1)Fbk∗

[
p j

b a

]γ ′
β σ13(δ)

×
∑
γ

(3)Fs∗b∗
[
a∗ k

a∗ j

]σ23(δ) σ23(γ )

σ23(α
′)

(1)Fa1

[
k∗ k

b b

]1

γ ′ σ13(γ )

. (4.41)

In the last equality we have used the symmetry relation (4.16).
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4.4. Consequences of the bulk-boundary equations

4.4.1. The Pasquier algebra and its dual
In this section we analyse some important consequences of the set of equations derived.

We start with Eq. (4.41), an inverted version of the first Lewellen bulk-boundary equation
(4.30), in which we takes = 1= p. This impliesk = j∗, ī = i∗, α = 1= α′ = β = β ′. The
sum overm in the l.h.s. is proportional to the modular matrixSji , see (E.9), while the sums
over the coupling indicesδ, γ are worked out using (4.39), the final result being

Sji

S1i

aB1
i 〈1〉a =

∑
b

nja
b bB1

i 〈1〉b. (4.42)

For simplicity we have done this computation in thesl(2) case but it extends straightfor-
wardly to arbitrary rank leading to the same formula.

Comparing (4.42) with (3.18), we see that it can be identified with the realisation (3.18)
of the relation (3.4) in terms of the eigenvaluesγ̂a(i) = ψia/ψi1 of the graph algebra
matricesN̂a . Namely we can identify the ratiobB1

i 〈1〉b/aB1
i 〈1〉a with the ratioγ̂b(i)/γ̂a(i).

Recalling the expression for〈1〉a in (4.6) we find a relation between the boundary state
coefficientsψia and the bulk-boundary coefficientsaB1

i

aB1
i = eiπ∆i aB1

i (CL)=
ψia

ψ1
a

eiπ∆i

√
Cii∗

di
, (4.43)

where for the time beingCii∗ is an arbitrary constant,C11= 1. Conversely, if we assume
the identification (4.43) (as, e.g., derived in thesl(2) case by other means in [11], with
Cii∗ = 1, see also [26,27]) we recover the relation (3.18) or (3.4) directly from one of the
bulk-boundary equations. As discussed in Section 3.5, from this relation we reconstruct the
graph algebra.

In the diagonal caseE = I, whereψja = Saj , the relation (3.18) coincides with the
Verlinde formula, i.e., the standard fusion algebra realised by its characters. On the other
hand the Verlinde formula is known [14] to be recovered from the diagonal version of the
other bulk-boundary equation, the Cardy–Lewellen equation (4.31) to which we now turn.
This equation simplifies forr = 1, leading tok̄ = k∗, l̄ = l∗. Using (4.43) and denoting
pi(a)=ψia/ψ1

a , Eq. (4.31) turns into

pk(a)pl(a)=
∑
j

Mkl
j pj (a), (4.44)

where

Mkl
j =

∑
t,t̄

d
(j,j∗);t,t̄
(k,k∗)(l,l∗)

:=
√
dk dl

dj

√
Cjj∗

Ckk∗ Cll∗

∑
t,t̄

D
(j,j∗);t,t̄
(k,k∗)(l,l∗) Fj1

[
k∗ k

l l

]1 1

σ13(t̄) t

, (4.45)

andMkl
j = 0 if the corresponding Verlinde multiplicityNklj vanishes. Alternatively,

inverting (4.44),
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Mkl
j =

∑
a∈V

ψka ψ
l
a ψ

j∗
a

ψ1
a

, k, l, j ∈ E . (4.46)

Let us first look at the diagonal case in which according to (4.46) the constantsMkl
j

coincide with the Verlinde fusion rule multiplicitiesNklj . This is confirmed also directly
by the alternative expression (4.45) provided by Eq. (4.31) as we shall now show. In the

diagonal case, denotingD(j,j
∗);t,t̄

(k,k∗)(l,l∗) = C(j,j
∗);t,t̄

(k,k∗)(l,l∗), we can use the inverted equation (4.32)

taken fora = 1, a choice which trivialises all summations, sincenr11 = Nr11 = δ1r , with
the result (pointed out in thesl(2) case in [81])

1B1
j

1B1
k

1B1
l

eiπ(∆k+∆l−∆j ) C(j,j
∗);t,t̄

(k,k∗)(l,l∗) = F1j

[
k l

k l∗
]σ12(t̄) t

1 1
. (4.47)

Taking in particularj = 1 (4.47) gives

1B1
k

1B1
k∗ = e2π i∆kdkC

(1,1)
(k,k∗)(k∗,k). (4.48)

Comparing with (4.43) taken in the diagonal case we see that we can identify the
undetermined constantCii∗ with the normalisation constant of the bulk 2-point function.
We shall retain this identification ofCii∗ in the non-diagonal cases (at the same level as
the given diagonal case) which amounts to setting the relative 2-point normalisation to
1. Combined with (4.35) and (4.43) the relation (4.47) leads to a symmetry of the fusing
matrices analogous to the cyclic symmetry (4.18)

F1j

[
l k

l k∗
]t1 t2

1 1
dl = F1l

[
j k∗
j k

]t2 t1
1 1

dj . (4.49)

Inserting (4.47) back into (4.45) and using (4.49) reduces the sum overt̄ to the standard
pentagon identity specialised for some choice of the indices (cf. the analogous relation

(4.38)). Finally we are left with the sum over the coupling indext = t
(
j

k l

)
, which

reproduces the Verlinde multiplicityNklj and completes the argument; alternatively the
same conclusion is achieved using the simple choice of gauge (E.2).

Note that the relation (4.47), with (4.48) accounted for, is a linear version of the
standard (quadratic) relation for the full plane diagonal OPE coefficients which results
from locality of the (full) plane bulk fields 4-point functions, see Appendix E. In thesl(2)
case this identifies the OPE coefficients of the half- and full-plane diagonal bulk fields.
The identification extends to the nondiagonalsl(2) scalar OPE coefficients as can be seen
generalising to 2-point bulk correlators the computation of the limitL/T →∞ of the
1-point correlators in [11], leading to (4.43).

In the general (non-diagonal)sl(2) cases characterised by a fixed level (central charge)
we can express the fusing matrix in the r.h.s. of (4.45) in terms of that in the r.h.s. of (4.47).
Using once again thesl(2) versions of the identities just described, we express it in terms
of the diagonal OPE coefficients at the same level, obtaining forNkl

j = 1

Mkl
j = d(j,j)(k,k)(l,l)=D(j,j)(k,k)(l,l)/C

(j,j)

(k,k)(l,l). (4.50)
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The relative scalar OPE coefficientsd(j,j)(k,k)(l,l) have been computed for thesl(2) WZW and
the Virasoro (unitary) minimal models, see, e.g., [62] for an exhaustive list of references.
Now using the expression for the eigenvectors (2.38), they can be computed as in (4.46)
for all minimal models.

The matrices(Mk)l
j = Mkl

j can be seen as a matrix realisation of an associative
commutative algebra with identity, distinguished basis and an involution∗. In (4.44)
the algebra is realised by its 1-dimensional representations (characters) given by ratios
of elements of the eigenvector matrix definingni . This algebra, traditionally called the
“Pasquier algebra” (“M”-algebra), is dual in the sense of Ref. [82] to the graphN̂ -algebra
considered in Section 3 but unlike its dual, its structure constants are not in general integral,
but rather algebraic numbers. In the simplestsl(2) case the squares(Mkl

j )2 of these
constants are rational numbers for allA-D-E cases; this rule persists for most of thesl(3)
cases but is broken by two of the graphsE (12)

1 andE (12)
2 corresponding to the exceptional

modular invariant at levelk + 3= 12, see Appendix D. The type IIsl(2) cases,Dodd and
E7 are again distinguished by the fact that the sign of some of the multiplicitiesMkl

j is
negative and this is a basis independent statement in the sense that there is no choice of
basis to make allMj

kl non-negative, contrary to the Type I casesDeven, E6,E8, and this is
a general feature of Type II theories.

The formula (4.50) extends beyond thesl(2) case for(k, l, j) such thatNklj = 1, i.e.,
in cases with trivial Verlinde multiplicity the matrix elementsMkl

j provide the (relative)
OPE coefficientsd(j,j

∗)
(k,k∗)(l,l∗). For nontrivial Verlinde multiplicitiesNklj > 1 the relation

between the constantsMkl
j (4.46) and the OPE coefficients is not so direct. Let us give a

sl(3) WZW example which illustrates the relation (4.45). There are three graphs found
in [46] which correspond to the exceptional block-diagonal modular invariant at level
k + 3= 12, see Appendix D, where these graphs are denoted byE (12)

i , i = 1,2,3. One
can pick up triplets of weights(i, j, l) such that the Verlinde multiplicity of the diagonal
sl(3)model at levelk+3= 12 is trivial,Nij l = 1 and check the values of the corresponding
Pasquier algebra structure constantsMij

l for each of the three graphs. The result is that,

comparing in particularE (12)
1 andE (12)

3 , there exist such triplets leading to different values
ofMij

l for the two graphs. Since for trivial Verlinde multiplicities the formula (4.45) gives

a direct relation between the two types of constants,Mij
l = d(l,l∗);1,1(i,i∗)(j,j∗), this result suggests

that there are two different solutions for the bulk OPE coefficients in this case. Only one
of these two non-diagonal solutions, namely the one which can be associated with the
Type I graphE (12)

1 was recovered in [63], exploiting a set of equations for theM-algebra
structure constants. This set was derived from the bulk CFT locality equations assuming
an additional (quadratic) constraint on the OPE coefficients in theories with an extended
symmetry; some of its consequences were also reproduced in the abstract framework of
[65], in particular the relationni1a =multa(i) discussed in Section 3. Precisely this relation
fails (and hence the assumptions on the OPE coefficients in [63]) for the graphE (12)

3 , which
otherwise satisfies all the requirements of Type I.

We conclude with a comment on the OPE coefficients. As discussed in [26,27] one can
relate in the limitL/T →∞ the correlators of the half- and full-plane bulk fieldsΦHI (z, z̄)
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andΦP
I ′ (ζ, ζ̄ ), looking at the two dual representations of the partition function with field

insertions; in particular (4.43) was recovered in this way. Though this transformation needs
to be elaborated for higher rank cases it seems reasonable to expect (and in agreement with
(4.47)) that using the two choices of the automorphismΩ , discussed in Section 2.1, we can
identify in this way the OPE coefficients of the two bulk fields with eitherI ′ = I = (j, j̄ )
or I ′ = (j, j̄∗).

A bit of history
The algebra (4.44) defined through the eigenvectors of theA-D-E Cartan matrices first

appeared in the context of thesl(2) A-D-E lattice models proposed by Pasquier [59]
a short time before the Verlinde fusion rule formula (the “A” algebra in thesl(2) case)
was found. The interpretation in terms of a pair of dual C (“Character”)-algebras was
proposed in [60,61] in the discussion of the set of graphs found in [46] as a generalisation
of the Dynkin diagrams associated with the modular invariants ofsl(3)WZW and minimal
models. The fact that the relative scalar OPE coefficientsd

(j,j)

(k,k)(l,l) of all A-D-E series of
the sl(2) WZW (or the subfamily of fields(1, s) in unitary minimal models) coincide in
a suitable basis with the Pasquier algebra (4.44) structure constantsMkl

j was the main
result of [62]. It was established through a case by case check, supported by a lattice
model derivation in which the same coefficients appear considering representations of the
Temperley–Lieb algebra. CFT locality constraints resulting in formulae quite similar in
spirit to (4.45) were furthermore exploited in [63,64] as an ingredient in the construction of
generalised Pasquier algebras and thus of new examples of graphs related tosl(n)modular
invariants, extending the results in [46,60,61]. The authors of [62–64] were, however, not
aware of the parallel development of boundary CFT, and in particular of [11,12], where the
equation (4.31) first appeared. The importance of the algebra obtained from this equation
at r = 1 was recognised and stressed in [14], where a representative example of thesl(2)
WZW Dodd series was considered, for which the setV and the characterŝχi (a) of the
algebra were explicitly described. Presumably the authors of [14] were not aware of the
generalA-D-E result in [62]. In the same framework of boundary CFT the Pasquier
algebra reappeared recently in a systematic study of orbifold theories, see [31–33] and
references therein, under the name “(total) classifying algebra”.

4.4.2. Relation to the Moore–Seiberg set of duality equations
We have seen that the two Lewellen bulk-boundary equations (4.30) and (4.31) when

restricted to some particular values of the indicesp in bB
p

(i,ī)
become in some sense “dual”

to each other, recovering the two dual C-algebras, the graph and Pasquier algebras. These
algebras are identical in the diagonal case, reproducing the Verlinde fusion algebra, which
suggests that in this case the above two equations might be related.

On the other hand let us recall that the original derivation [37–39] of the Verlinde
formula relies on the use of one of the basic Moore–Seiberg duality relations, namely the
equation resulting from the modular property of the two-point functions on the torus, see
(E.7). It involves the fusing/braiding matricesF or B and the modular matrixSij (p) (in

generalSt
′ t
ij (p)) for the 1-point functionsχ(p)j (τ, z) on the torus, the indexp standing for
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the (representation) label of the inserted CVOs
(
i

p i

)
t, z′

and
(
j

p j

)
t, z

, logz′ = (logz)/τ,

see [37,38].
The alert reader may have already noticed the full analogy between the Moore–Seiberg

torus identity (E.7) and the second version (4.41) of Eq. (4.30). It suggests that the quantity
taking over the role of the modular matrixS(p) is the bulk-boundary reflection coefficient
Bp . In the diagonal case this correspondence is precise, i.e., the two are identical up to a
constant.

Indeed first note that Eq. (4.41), still considered in the general (non-diagonal) case,
simplifies fors = 1, that isk = j∗, ī = i∗, α′ = 1. Inserting in the first line the expression
for the modular matrixSij (p), see (E.8), and using in the third line (4.38), we obtain an
expression for the modular matrixS(p),

aB1
i 〈1〉a

1

Fj∗1

[
j j∗
p p

] Sji(p∗)
Si1

=
∑
b,β

b,βB
p

(i,i) 〈1〉b
∑
δ

(1)Fbj

[
p j

b a

]δ
β δ

. (4.51)

Let us concentrate now on the diagonal caseI = E . The sums in the r.h.s. of (4.51) can
be reduced to one term choosinga = 1 and using (4.12), sincenj1

b =Nj1
b = δjb, δ = 1.

Alternatively, one can takea = 1 directly in the original equation (4.30) — the resulting
(linear) formula forBp in terms of the fusing matricesF (instead of the formula for its
square derived in [11]) was first explicitly written down by Runkel [81]. More explicitly
we have in thesl(2) case,

jB
p

(i,i) =
1B1
i

didj

1

Fi1

[
i i

p p

] Sij (p)
S11

=
1B1
i

didj

1

Fj1

[
j j

p p

] Sji(p)
S11

. (4.52)

Both (4.51) and (4.52) easily extend beyond thesl(2) case. In particular restoring all
coupling indices the latter formula reads in general

j,βB
p∗,t
(i,i∗) = 1B1

i

∑
u

F1p

[
j j∗
j j

]uσ13σ23(β)

1 1

S
u σ23σ13(t)
j i (p)

S1i
. (4.53)

With the help of one of the consequences of the pentagon identity, (4.53) can be inverted
and brought into a form analogous to that of (4.52).

The coincidence of the two seemingly very different quantities, the coefficientsBp in
the expansion (4.23) of the half-plane bulk field and the modular matrixS(p) of the torus
1-point blocks, is quite surprising and needs a better understanding. We were led to this
observation trying to find a connection between the two duality schemes, the one of Moore–
Seiberg involving the torus, the other, of Cardy–Lewellen, involving the cylinder. Thus to
bring Eq. (4.41), derived from the first of the Lewellen bulk-boundary equations (4.30),
into a form identical to the original Moore–Seiberg torus duality relation we furthermore
need to identify the three fusing matrices,(1)F , F , (3)F , i.e.,

(1)Fbp

[
k j

a c

]γ t
α β

= Fbp
[
k j

a c

]γ t
α β

,
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(3)Fpb

[
c j

a k

]α′ β ′
γ ′ t ′
= Fpb

[
c j

a k

]α′ β ′
γ ′ t ′

. (4.54)

This identification is consistent since in the diagonal caseI = E both mixed pentagon
identities (4.29) and (4.37) then become the ordinary Moore–Seiberg pentagon identity;
see also [81], where the identification of the boundary field OPE coefficients with the
fusing matrices in thesl(2) case was first established by a more elaborate argument.

It is now straightforward to show that the first equality in (4.41) reproduce the two sides
of the Moore–Seiberg identity (E.7). Taking into account (4.52) and (4.54) the second
Lewellen bulk-boundary equation (4.31) is seen also to be a consequence of the first, i.e.,
of the same Moore–Seiberg torus duality relation. To show this, one has to insert in (4.31)
the expression (4.47) for the OPE coefficients and to compare the equation with (4.41) with
p = 1, see also Appendix E.

We thus see that in the diagonal case the two basic bulk-boundary equations (4.30),
(4.31) are not independent and are equivalent to one of the basic Moore–Seiberg duality
relations. The third bulk-boundary equation (4.33), a more general version of (4.31), is an
identity which involves again only the Moore–Seiberg duality matricesF , B, S, and thus
can be expected, following the completeness argument of [37,38], to be derivable using the
basic Moore–Seiberg duality relations. This in particular implies that any solution of the set
of Moore–Seiberg (chiral) duality relations provides a solution of the diagonal boundary
CFT equations.

Remark
Rewritten in terms ofS(p) the diagonal case Lewellen equation (4.31) can be also

interpreted as a generalised Verlinde fusion formula with (non-integral) “multiplicities”
F lqk given by some particularF matrix elements. The matricesFq are “diagonalised”
by S(p) with the usual eigenvaluesSqi(1)/S1i (1). Because of this they realise another
representation of the usual Verlinde algebra. This formula, which derives from the Moore–
Seiberg torus duality identity, appears to have been already considered, following a
different motivation, in [83].

We conclude this section with a few comments on the general non-diagonal cases. The
Cardy–Lewellen boundary CFT can be looked at as a purely “chiral” alternative of the
usual CFT approach in which we combine left and right chiral blocks imposing consistency
conditions. It has its “price” in that everything effectively “splits” — the setI is replaced
by two “dual” setsV andE (for Type I, while for Type II we have to retain the wholeI
to describe non-scalar fields), there are two representations of the Verlinde fusion algebra
and a related new fusion algebra (at least in Type I cases); there are two types of “chiral
vertex operators”, new duality matrices, in particular a second fusing matrix(1)F and
its inverse,(3)F , along with the standardF , satisfying new duality relations, the mixed
pentagon relations, generalising one of the basic genus zero polynomial identities; instead
of one relation involving the modular matrixS(p), there are two independent relations —
the two bulk-boundary equations in which the role ofS(p) is taken over by the reflection
coefficientsBp . It remains to find a consistent solution of the equations at least in the
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sl(2) case. Some of the ingredients are already known and have been recalled above. In
particular the solution for theD-series has just been obtained by Runkel [94].

5. Conclusions and outlook

In this paper we have reexamined various aspects of boundary effects in RCFTs.
We have in particular analyzed the consistency conditions that determine the allowed
boundary states and fields and their characteristic data, OPE coefficients, etc. We have
seen that boundary conditions are naturally associated with a graph, or a collection of
graphs, whose spectral properties (eigenvalues) encode the diagonal spectrum of the bulk
theory. This legitimates empirical observations made previously on the role of graphs
in the classification of RCFTs. We have seen that the torus partition function may
be fully reconstructed from the information contained in these graphs. We have seen
also that in several cases (ŝl(2), ŝl(N)1 theories), this approach provides a substantially
simpler route to the classification of RCFTs than the study of bulk properties (modular
invariants, . . .). We have finally seen that further important information about some
boundary effects (g-factors, boundary structure constants) is also encoded in the spectral
properties (eigenvectors) of these graphs. The bottom line of this analysis is that a triplet of
matrix algebras (nj , N̂a ,Mi ) plays a central role in the whole discussion. These algebraic
structures have been also confirmed by the detailed analysis of the basic equations of
the boundary field theory. In the diagonal case the triplet of algebras reduces to one, the
Verlinde fusion algebra. Accordingly, we have seen that in this case the basic boundary
CFT Lewellen equations can be identified with a set of genus 0 (the pentagon) and genus
1 duality identities of Moore–Seiberg. This leads to an identification of some of the basic
notions in the two approaches, namely, the boundary fields OPE coefficients(1)F and the
bulk-boundary reflection coefficientsBp , with the chiral CFT fusing matrixF and the
modular matrixS(p), respectively (see the text for precise formulae).

The more general representationsni of the Verlinde fusion algebra and the dual pair
{N̂,M} of associative, commutative (semisimple) algebras have been introduced in earlier
work on bulk (and later on boundary) conformal field theories, but it seems to us that
the consistency of the whole scheme now appears in its full generality and that boundary
RCFTs reveal these features in a simpler and more compelling way than in the bulk. In a
loose sense, the boundary effects expose better the underlying chiral structure of the theory
and its algebraic pattern. This should certainly not come as a surprise, as this is in the same
spirit as the old connection between open and closed strings.

The study of a RCFT through its boundary conditions, its algebra triplet, etc., still
requires a lot of work. The derivation of the Cardy equation relies on a technical assumption
that has been only partially justified, namely the proper definition of unspecialized
characters with linear independence and good modular properties for general chiral
algebras. Also it would be good to have a better understanding of the completeness
assumption: given a certain number of boundary conditions satisfying the Cardy equation,
is it obvious that we may always supplement them into a complete set in the sense
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discussed in Section 2? Then many questions have been only partially treated: Justify in
full generality the validity of expressions (3.11), (3.12) which have been established so far
only for particular cases; understand better the nature and fusion rules of “twisted” block
representations that appear in this discussion; set up a general scheme for the systematic
classification of integer valued representations of fusion algebras; set up with more rigour
the formalism of generalized chiral vertex operators, their fusing matrices and the ensuing
duality equations as a consistent chiral approach, alternative to the Moore–Seiberg scheme,
etc., such are some of the outstanding problems that are awaiting a proper treatment.

Also it remains to see how our discussion of boundary conditions must be generalized
in theories where there is no choice of a common diagonalising matrixψ

j
a leading toN̂

algebra with integer structure constants. In the approach of [65–67], in which the numbers
N̂ are integers, one has to drop the axiom of commutativity, replacing this algebra by a
non-commutative structure. In that respect, a better understanding of the relation of our
work with other more abstract approaches — Ocneanu theory of subfactors, weak Hopf
algebras — would be most profitable.

Directions for future work also include the discussion of other cases: rational or
irrational theories atc = 1, c = 2, or N = 2 superconformal theories are particularly
important cases in view of their physical applications to condensed matter or to string
theory. The generalization to other types of twisted boundary conditions along the cycle
of the cylinder, as examined recently in [95], might constitute another useful approach.
Finally the parallel discussion of these boundary conditions and algebraic structures in
lattice models should be extremely instructive and will be the object of a forthcoming
publication.

Appendix A. The Cardy equation

In this appendix, we rederive the Cardy equation (Section 2.2) in the presence of sources,
which have the effect of introducing unspecialized characters in the partition function. We
restrict to a conformal field theory with a current algebra. Let{J α} denote the generators
in the Cartan subalgebra, andνα be “charges” coupled to them. We consider the theory on
the cylinderL×T of Section 2.2, callw = u+ iv the local variable, 06 v 6 L, u periodic
of periodT , and modify the energy–momentum tensorT (w) into

T ′(w)= T (w)− 2iπ

T

∑
a

ναJ
α(w)− k

2

∑
α

(
2πνα
T

)2

, (A.1)

T ′(w̄)= T (w̄)− 2iπ

T

∑
α

ναJ̄
α(w̄)− k

2

∑
α

(
2πνα
T

)2

. (A.2)

As an elementary calculation shows, the last term is dictated by the requirement thatT ′
satisfies the conventional OPE of an energy momentum tensor. The central charge is not
affected by the additional terms.

One then computes the evolution operators in the two channels of Section 2.2, see Fig. 1.
For the cylinder, mapped to the plane byζ = e−2π iw/T , the Hamiltonian reads
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H cyl = 1

2π

−T∫
0

du
(
T ′(w)+ T ′(w̄))= 1

2π

∮
dw

(
T ′(w)+ T ′(w̄)) (A.3)

= 2π

T

(
L
(P)
0 + L̄(P)0 −

c

12
+
∑
α

να
(
J
(P)α
0 − J̄ (P)α0

))
. (A.4)

Note that the additional term in (A.1) and (A.2) has not contributed to the integral over a
closed cycle. Taking into account the fact that on boundary statesL

(P)
0 = L̄(P)0 andJ (P)α0 =

−J̄ (P)α0 , we find that the first expression of the partition function reads

Zb|a =
〈
b
∣∣e− 4πL

T (L0− c
24+

∑
α ναJ

α
0 )
∣∣a〉=∑

j∈E
ψ
j
a

(
ψ
j
b

)∗ χj (q̃, ντ̃ )
Sj1

, (A.5)

where we have defined

χj (q, z) := trVj q
L0− c

24e2π i
∑
α zαJ

α
0 , (A.6)

and as abovẽq = e−4πL/T , henceτ̃ = 2iL/T .
In the other channel, the time evolution on the strip is described by the Hamiltonian

Hba =
iL∫

0

dw

2π i
T ′(w)+

−iL∫
0

dw̄

2π i
T ′(w̄) (A.7)

and upon mapping on the upper half planeH by z= eπw/L, we find

Hba = π
L

(
L
(H)
0 − c

24

)
− 2iπ

T

∑
α

ναJ
Hα
0 − L

2π
k
∑
α

(
2πνα
T

)2

, (A.8)

where now the additional piece in (A.1) contributes the last term. Since the theory
with energy-momentum tensor (A.1) and (A.2) has still the same operator content and
multiplicitiesni∗ab = niba as before,we may write

Zb|a = tr e−THba = e2πk LT
∑
α ν

2
α

∑
i

ni∗abχi(q, ν) (A.9)

with q = e−πT/L. We then use the modular transformation of unspecialized characters
(see [45, p. 264]):

χi(q, ν)= e2iπk
∑ z̃2α

2τ̃
∑
j

Sij χj (q̃, ντ̃ ) (A.10)

together with the linear independence of theχi(q, z) to conclude that (2.16) is indeed true
in full generality.

Appendix B. A-D-E diagrams and intertwiners

In this appendix we establish notations onA-D-E Dynkin diagrams and on the
associated intertwiners.
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LetG be a Dynkin diagram of theA-D-E type with Coxeter numberg. It hasn nodes
that may be coloured with two colours, i.e., itsn× n adjacency matrixGab connects only
nodes of different colours. This matrix is symmetric and it may thus be diagonalized in an
orthonormal basis. We call this orthonormal basisψma , it is labelled by the nodea and the
exponentm (see Fig. 2 and Table 1). Hence∑

b

Ga
b ψs

′
b = 2 cos

πs′

g
ψs
′
a . (B.1)

Theψ’s satisfy orthonormality conditions, namely∑
a

ψs
′
a ψ

s ′′∗
a = δs ′s ′′ , s′, s′′ ∈ Exp(G), (B.2)∑

s ′∈Exp

ψs
′
a ψ

s ′ ∗
b = δab. (B.3)

Because of the 2-colourability ofG, one may attach aZ2 gradingτ to each nodea. One
proves that ifs′ is an exponent, so isσ(s′)= g − s′ and theψ’s may be chosen to satisfy

ψσ(s
′)

a = (−1)τ(a)ψs
′
a . (B.4)

Moreover, all graphs havingevenexponents, viz. theA,Dodd andE6 diagrams, have aZ2

automorphismγ acting on their nodes and preserving their adjacency matrix (i.e.,Ga
b =

Gγ(a)
γ (b), this is the naturalZ2 symmetry of these graphs) such that

ψs
′
γ (a) = (−1)τ(s

′)ψs
′
a . (B.5)

Finally, one may find in the graphG a distinguished node labelleda = 1 such thatψm1 > 0
for all m. This special node is typically an extremal node, i.e., the end of a branch for the
A-D-E graphs; this is generally the end of a long leg, but for theDodd graphs, for which
we must choose 1 as the end point of one of the two short legs.

We list hereafter the explicit expressions of eigenvectors of the various Dynkin diagrams.
The Dg

2+1 series are the simplest examples of orbifold models. Their fundamental
graphs can be obtained by folding theAg−1 Dynkin diagram so that the nodesai =
ag−i ∈ Dg

2+1, i = 1,2,3, . . . , g2 − 1 are identified with the orbit{i} of i under theZ2

automorphismσ , σ(i) = g − i, while the fixed pointi = g/2 is resolved into two points
a g

2 ,± on the graph, denotedn, n − 1 in Fig. 2. This implies for the adjacency matrix

elementsGaiaj = Ai j + Ai σ(j) = Aij , for i, j 6= g
2, andGag

2 ,±
aj = Ag

2 j
and allows us

to determine the eigenvectorsψja of G in terms of the eigenvectorsSij of theA adjacency

matrix. To simplify notation we shall use sometimesψji =ψjai .

B.1. Eigenvectors of theD2l adjacency matrix

ψ
j

i =
√

2Sij , i, j 6= g
2
, ψ

(
g
2 ,±)
i = Si g2 , i 6= g

2
,

ψ
j
g
2 ,±
=
Sg

2 j√
2
, j 6= g

2
,
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ψ
(
g
2 ,ε
′)

g
2 ,ε
= Sext
{( g2 ,ε)}{( g2 ,ε′)} =

1

2

(
Sg

2
g
2
+ εε′i

√
(−1)l

)
. (B.6)

For i odd the orbits{i} belong toIext and can be identified with the subsetT = {ai, i =
1,3, . . . , g2 − 2, a g

2 ,±}. The matrixSext{i}{j} is the extended theory modular matrix. The
expressions (B.6) can be rewritten in the compact form

ψ
j
a = Sa{j}

√
S1j

Sext
{1}{j}

, (B.7)

whereSa{j} is a rectangular matrix coinciding fora ∈ T with Sext
a{j}, while for a = ai 6∈ T ,

Sai{( g2 ,±)} = Si g2 = 0 andSai {j} =
∑
l∈{i} Slj = 2Sij for j 6= g/2.

B.2. Eigenvectors of theD2l+1 adjacency matrix

ψ
j
ai = (−1)

j−1
2
√

2Sij , i, j 6= g
2
, ψ

g
2
ai = 0, i 6= g

2
,

ψ
j
g
2 ,±
= (−1)

j−1
2

1√
2
Sg

2 j
= 1√

g
, j 6= g

2
, ψ

g
2
g
2 ,±
=± 1√

2
. (B.8)

The identity node is chosen to coincide with one of the “fork” nodes 1= a g
2 ,+ (denoted

by L in Fig. 2) so that the dual Perron–Frobenius eigenvectorψ
j

1 = ψjg
2 ,+

has positive

entries (whileψ
g
2
a1 = 0). The “fundamental” nodef is identified with g

2 − 1, i.e.,G =
N̂ g

2−1. Also a∗ = a for all a, while γ (a g
2 ,+)= a g2 ,−.

Next we display the eigenvectors of the exceptionalEr Dynkin diagrams as a matrix
{ψja }, with the row indexa running over the nodes, following the numbering of Fig. 2,
and the column indexj over the exponents in the same order as in Table 1. There too,Sij

denote the eigenvectors of the diagonal graph adjacency matrixA with the same Coxeter
number.

B.3. Eigenvectors of theE6 adjacency matrix

(
ψ
j
a

)=


a 1
2 b b 1

2 a

b 1
2 a −a −1

2 −b
c 0 −d −d 0 c

b −1
2 a −a 1

2 −b
a −1

2 b b −1
2 a

d 0 −c c 0 −d


, (B.9)

where

a = 1

2

√
3−√3

6
, b = 1

2

√
3+√3

6
, c= 1

2

√
3+√3

3
, d = 1

2

√
3−√3

3
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are determined from

ψi1=
√
S1i

∑
j∈ρ

Sji , ψi6= (S4i + S8i )

√
S1i∑
j∈ρ Sji

for i ∈ E, ρ = {1,7}.

B.4. Eigenvectors of theE7 adjacency matrix

(
ψ
j
a

)=



a c b 1√
3

b c a

e f d 0 −d −f −e
c b −a − 1√

3
−a b c

f −d −e 0 e d −f
1√
6
− 1√

6
1√
6

0 1√
6
− 1√

6
1√
6

d −e f 0 −f e −d
b −a −c 1√

3
−c −a b


, (B.10)

wherea, b, c, d , e, f are determined fromψj1 =
√
S1j

∑
i∈ρ Sij , whereρ = {1,9,17},

andψj2 = S2j
S1j
ψ
j

1 . (The values in the 5th row come fromψj5 =
√

2S6j for j = 1,5,7.)
Explicitly,

a = [18+ 12
√

3cosπ18

]−1/2
, d = [12

(
1+ cosπ9

)]−1/2
,

b= [18+ 12
√

3cos11π
18

]−1/2
, e= [12

(
1+ cos5π

9

)]−1/2
,

c= [18+ 12
√

3cos13π
18

]−1/2
, f = [12

(
1+ cos7π

9

)]−1/2
.

(B.11)

B.5. Eigenvectors of theE8 adjacency matrix

(
ψ
j
a

)=



a f c d d c f a

b e h g −g −h −e −b
c d −a −f −f −a d c

d a −f −c c f −a −d
e −h −g b b −g −h e

f −c d −a a −d c −f
g −b e −h −h e −b g

h −g −b e −e b g −h


, (B.12)

wherea, b, c, d , e, f , g, h are determined fromψj1 =
√
S1j

∑
i∈ρ Sij andψj2 = S2j

S1j
ψ
j

1

for j ∈ E, ρ = {1,11,19,29}. Explicitly,



R.E. Behrend et al. / Nuclear Physics B 579 [FS] (2000) 707–773 757

a =
[

15(3+√5)+
√

15(130+ 58
√

5)

2

]−1/2

, b =
[
15+

√
75− 30

√
5

]−1/2

,

c=
[

15(3+√5)−
√

15(130+ 58
√

5)

2

]−1/2

, e=
[
15−

√
75+ 30

√
5

]−1/2

,

d =
[

15(3−√5)−
√

15(130− 58
√

5)

2

]−1/2

, g =
[
15+

√
75+ 30

√
5

]−1/2

,

f =
[

15(3−√5)+
√

15(130− 58
√

5)

2

]−1/2

, h=
[
15−

√
75− 30

√
5

]−1/2

.

(B.13)

To such a graphG, one then attaches matricesVi as follows. The case of reference is
theAg−1 diagram of same Coxeter numberg asG. For thisA graph, both the nodes and
the exponents take all integer values in{1, . . . , g− 1}. Theψ ’s are then nothing other than
the entries of the (symmetric, unitary) matrixS of modular transformations of characters
of the affine algebrâsl2 at levelg− 2

ψ
(A) i′
i = Sii′ =

√
2

g
sin

πii ′

g
, (B.14)

in terms of which the fusion coefficientsNi1i2
i3 may be expressed through Verlinde

formula. Note also that

Ng−i i1g−i2 =Nii1 i2 (B.15)

because of property (B.4) applied toψ(A) = S.
We now return to the graphG of Coxeter numberg. The fused adjacency matricesVi

with i = 1, . . . , g− 1 aren× n matrices defined recursively by thesl(2) fusion algebra

Vi = V2Vi−1− Vi−2, 2< i 6 g, (B.16)

and subject to the initial conditionsV1 = I andV2 =G. (One may see thatVg = 0.) The
matricesVi are symmetric and mutually commuting with entries given by a Verlinde-type
formula

Via
b = (Vi)ab =

∑
m∈Exp(G)

Sim

S1m
ψma ψ

m∗
b . (B.17)

Regarded as(g− 1)× n rectangular matrices, fora fixed, theViab intertwine theA andG
adjacency matrices∑

i′
Ai
i′Vi′a

b =
∑
b′
Via

b′Gb′
b. (B.18)

Regarded asn× n matrices, theVi satisfy not only their defining relation (B.16) but also
the wholêsl(2) fusion algebra (2.22)
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Vi1Vi2 =
∑
i3

Ni1i2
i3Vi3. (B.19)

From their recursive definition and initial conditions, it follows that the entries of theV

matrices areintegers. What is not obvious is that these entries arenon-negativeintegers.
This follows either from a direct inspection or from an elegant group theoretic argument
due to Dorey [85]. We refer the reader to [46,57] for the explicit expressions of these
intertwiners. As a consequence of the existence of the automorphismγ defined above
(B.5), aZ2 symmetry onA,Dodd, E6 graphs and the identity forDeven, E7, E8, one has

Vg−s aγ (b) = Vsab. (B.20)

Using (B.16) and (3.4) (i.e., in the notations of this appendix,ViN̂a =∑b Via
bN̂b) one

can express the graph algebraN̂a matrices for all but theDevencases as polynomials ofV ’s
with integer coefficients. This in particular ensures that they have integer matrix elements.
ForDevenone of the extended fusion algebra generatorsNext

{ g2 ,±}
has to be added sinceVg

2
=

Next
{ g2 ,+}

+Next
{ g2 ,−}

while N̂i = Vi = Vg−i for i = 1,2, . . . , g2 − 1. For the three exceptional

casesEr we have

N̂i = Vi, i = 1,2, . . . , r − 3,

N̂r−1= Vr−1− Vr−3, N̂r−2= Vr − Vr−4, N̂r = Vr−2+ Vr−4− Vr,
which translates into relations between the eigenvalues and givenψ

j

1 allows to express any

ψ
j
a in terms of the modular matrixS elements.
Over recent years, these matrices have made repeated appearances in a variety of

problems. Originally introduced in the discussion of local height probabilities in lattice
models [59] and of boundary partition functions [9,46] (see below), they have also appeared
in the following contexts:

(i) The “cells” or intertwiners of Boltzmann weights of height models [46,57].
(ii) The decomposition of the representation of the Temperley–Lieb algebra on the

space of paths froma to b on graphG onto the irreducible ones on the paths from
1 to s on graphAg−1 [58] according toR(G)a

b =⊕s Vsa
bR

(A)
1

s .
(iii) The counting of “essential paths” on graphs [84]; see also recent mathematical

work by Xu, Böckenhauer and Evans [65–67].
(iv) The expression of the blocks of the partition function (1.2) as (3.11), (3.12), see

Section 3.3.
(v) The sl(2) intertwiners appear in the computation of the multiplicitiesmb

s ′ of an
irreducible representationb of the finite group, associated withG in the McKay
correspondence [86,87], in theSU(2) representations of dimensions′ [96]. Namely
the coefficients of the Kostant polynomials in the generating functionFb of these
multiplicities are given for a non trivialb by

∑
c G0cV

b
sc, whereGab is the

adjacency matrix of the affine Dynkin diagram anda = 0 is the affine node deleted
in passing from the affine Dynkin diagram to the ordinary one. The proof of this
fact is reduced to the recursive relation (B.16).
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(vi) These same entries seem to appear ubiquituously in the description ofS-matrices
of affine Toda theories [88] and in the description of the excitation spectrum of
integrable lattice models [89–91].

Appendix C. Uniqueness of the boundary conditions of minimal models

C.1. Matrices with spectrumγ < 2

We first recall general results on symmetric matrices with non-negative integer entries
and with eigenvalues between−2 and 2.

It is a standard result that symmetric matrices with non-negative integer entries and
eigenvaluesγ ∈]−2,2[ may be classified. A lemma of Kronecker asserts that the
eigenvalues are of the form 2 cospiπ

hi
for integerspi andhi and for the largest one(s),

p = 1. One may regard any such matrix as the adjacency matrix of a graph. Irreducible
matrices correspond to connected graphs, and by an abuse of language one may call a
matrix bicolourable if the graph has that property. One proves [47] that any irreducible
bicolourable symmetric matrix with spectrum in]−2,2[ is the adjacency matrix of one of
the simply laced Dynkin diagrams of typeA-D-E.

If one relaxes the assumption of bicolourability, with any symmetric non-bicolourable
irreducible matrixG one may associate a bicolourable symmetric matrix with a block

formG′ =
(

0 G

G 0

)
. The corresponding graph is irreducible and has aZ2 symmetry that

exchanges the two colours. Any eigenvalueγ ofG gives rise to two eigenvalues±γ forG′
and one thus concludes thatG′ is of A-D-E type, and its irreducibility forcesG′ = A2p.
Its Z2 quotientG is what we call the tadpole graphTp =A2p/Z2.

Finally if one relaxes the assumption of irreducibility, one concludes that any matrix
(with non-negative entries and spectrum between−2 and 2) is the direct sum ofA-D-E or
tadpole graphs

G=
⊕

Gi, Gi of A-D-E or tadpole type

and this decomposition is unique, up to the permutation of factors. The uniqueness may
be easily proved by induction on the number of terms or on the dimension of the matrix:
Given a matrixG, one first identifies its largest eigenvalue, of the formγ1= 2 cosπ

h1
. By

the previous statement, there is anA-D-E or tadpole graphG1 with Coxeter numberh1

and exponentsmi , such that all its eigenvalues 2 cosmj
h1

appear in the spectrum ofG. Thus
G=G1⊕G′′, and one may apply onG′′ the induction hypothesis. Ifγ1 has multiplicity 1,
this suffices to establish the uniqueness of the decomposition (up to permutations), while
the case whereγ1 has nontrivial multiplicity is also easily dealt with. The uniqueness of this
decomposition implies a property used several times in the text, namely that the spectrum
(between−2 and 2) determines the form of the matrix up to a permutation of its rows and
columns.
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C.2. Representatives ofn12 and n21

We now return to minimal models.

Explicit form of n12 and n21

It is convenient to work in a basis different from that used in (2.38). In the basisr1 =
1, . . . , p, a ∈ G, the second term in (2.33) does not contribute ton12 sinceN2p r1

r2 =
δr1,2p+1−r2 = 0 for 16 r1, r2 6 p. Thusn12 = Ip ⊗ V2 = Ip ⊗ G, whereIp is thep
dimensional unit matrix

n12= Ip ⊗G=


G

G
.. .

G

 . (C.1)

As for n21, in the same basis, the second term of (2.33) receives a contribution only
from r1 = r2 = p, namely(N2p−1)p

p = 1, while Vg−1 = Γ , the matrix that realizes the
automorphismγ :

Γa
b = δaγ (b). (C.2)

Thus one finds that

n21=


0 In

In 0 In
. . .

. . . In

In Γ

 .
After conjugation by a block-diagonal matrix withΓ and In in alternating positions,

which leaves the form (C.1) ofn12 unchanged,n21 may be recast in the form

n21=


0 Γ

Γ 0 Γ
. . .

. . . Γ

Γ Γ

= Tp ⊗ Γ, (C.3)

in terms of the tadpoleTp adjacency matrix. All the othernrs are obtained as universal
polynomials of the two matricesn12 andn21.

Uniqueness of the form ofn12 and n21

Conversely, suppose we only know that the representationnrs has a spectrum specified
by the set of exponentsE . We want to prove that there exists a basis in whichn12 andn21

take the forms (C.1) and (C.3).
We first make use of the property that the set Exp(G) is stable modulo the Coxeter

numberg of G under multiplication by any integer coprime tog and is also stable under
the reflections→ g − s. We then find that the spectrum ofn12 is made ofp copies of
Exp(G). As explained above in C.1, this implies that in some basis

n12= Ip ⊗G. (C.4)

For the other generatorn21, one observes first that the set of numbers that appear in
(2.31), namely{2 cosπgr

′
2p+1}, r ′ = 1,3, . . . ,2p− 1, is simply the set{(−1)g+12 cos πr ′′

2p+1},
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r ′′ = 1,3, . . . ,2p− 1, which is(−1)g+1 times the spectrum of the tadpoleTp . According
to (2.31), this has to be multiplied by(−1)s

′
, ass′ runs over the exponents ofG. Thus if

g is even (which is the general case except whenG=A2l) the spectrum ofn21 is made of
as many copies of that ofTp (respectively,−Tp) as there are odd (resp. even) exponents in
G. ForA2l which has as many even as odd exponents, the same conclusion is still correct!
Finally one notices that these signs are just the eigenvalues of theΓ matrix, and one thus
concludes that

n21∼ Tp ⊗ Γ, (C.5)

where the sign∼ means that it holds in some basis obtained from that of (C.4) by a
simultaneous permutation of rows and columns. From this expression, one can see that

n21 has no row or column with more than two 1s, (C.6)

n21 has exactlyn rows and columns with one 1, (C.7)

properties invariant under permutations of rows and columns.
We also know thatn21 must commute withn12. In a basis in whichn12 takes the form

(C.4),n21 may thus be regarded as made ofn× n blocks that commute withG. We shall
combine these facts aboutn21 as follows:
• A non-vanishing matrixX with elements inN which commutes withG cannot have

a row or a column of zeros.
Proof: letψ1 be the Perron–Frobenius eigenvector ofG,GX=XG implies thatXψ1

is an eigenvector ofG with the same eigenvalue, hence proportional toψ1, Xψ1 =
cψ1, with c 6= 0 since the entries of bothX and ofψ1 are non-negative. IfX had a
vanishing row,Xψ1 would have a vanishing component, which is impossible for the
Perron–Frobenius eigenvector. IfX has a vanishing column, one repeats the argument
with XT .
• Any matrixX with elements inN which commutes withG and which appears in the

block decomposition ofn21 cannot have more than one 1 per row or column.
Proof: If a matrix X with more than one 1 in a row (respectively, column) was a
block ofn21, because of the property (C.6), all the other blocks on the left or the right
(respectively, above or below) ofX would have to have at least one vanishing row
(respectively, column), which is impossible by (i) above, or to vanish altogether. In
the latter case, after a possible reshuffling of rows and columns leaving (C.4) invariant,
one would have

either n21=


X 0 · · · 0
0
...

0

 or n21=


0 X 0 · · ·
XT 0 0 · · ·
0 0
...

...

 (C.8)

which would lead to a pairn12, n21 reducible in the same basis.
• It follows that the matrices that may appear as blocks in the decomposition ofn21

must be matrices with one 1 on each row and column, i.e., permutation matrices
that commute withG. These permutation matrices are the symmetries of the Dynkin
diagram, and thus are readily listed:
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X = I, Γ, if G=An,D2q+1,E6, (C.9)

= I, Γi, i = 1, . . . ,5, if G=D4, (C.10)

= I, Γ ′, if G=D2q, q > 2, (C.11)

= I, if G=E7,E8. (C.12)

HereΓi denote the 5 nontrivial permutations of the nodes of theD4 diagrams, and the
matrixΓ ′ exchanges the two end points ofD2q , q > 2.

One then demands that the symmetric matrixn21 made of such blocks is irreducible and
satisfies (C.4)–(C.7). This implies that at most one non-vanishing block appears on the
diagonal. Consistency with the formn21∼ Tp ⊗ Γ leaves as the only possibility

n21=



0 X1 0 · · ·
XT1 0 X2 0

0 XT2
. . .

. . .

0
. . . Xp−1

0 XTp−1 Γ

 , (C.13)

where X1,X2, . . . ,Xp−1 are chosen among the symmetry matrices ofG. A final
permutation of rows and columns by a block diagonal matrix diag(Y1, Y2, . . . , Yp−1, I )

bringsn21 into the formn21= Tp ⊗ Γ while leaving the form (C.4) ofn12 unchanged,
providedYj = Γ Yj+1X

T
j , henceYj = Γ p−jXTp−1X

T
p−2 · · ·XTj . Then bothn12 andn21

have their canonical forms (C.1), (C.3). Q.E.D.

Remark
Although it is not required for the present analysis, it may be interesting to look at the

commutant of matrices ofA-D-E type.
For anyG of A-D-E type, with the exception ofDeven, all eigenvalues are distinct. It

follows that any matrixX that commutes withG may be diagonalized in the same basis
asG and consequently be written as a polynomial ofG, i.e., as a linear combination of
I,G,G2, . . . ,Gn−1. In order to look at cases where entries ofX are requested to take
values 0 or 1 only, and with constraints on the number of 1’s, it is advantageous to use rather
the basis of fused graph matrices:X is a linear combination of the linearly independent
matricesN̂1 = I , N̂2 = G, . . . , N̂n. TheDeven case is slightly more involved, since the
matrices that appear naturally are not independent.

The commutant of anA-D-E matrix is:
• A linear combination of the graph fusion matriceŝNa for G=A,Dodd, E6, E7, E8.
• A linear combination of thêNa and of two of the three matricesΣab, a 6= b = 1,3,4,

that exchange two of the three extremal points of theD4 graph.
• A linear combination of thêNa and of the two matricesX = Γ ′N̂2q andY = N̂2qΓ

′,
where the matrixΓ ′ exchanges the two end points, forG=D2q , q > 2.
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Appendix D. ŝl(3) modular invariants and graphs

The WZW ŝl(3) theories may be discussed along the same lines as in Sections 2 and 3.
Solutionsni to the Cardy equation are associated with graphs, with specific spectral
properties: their eigenvalues are given by ratios of elements of the modularS matrix
labelled by weights of the diagonal spectrumE of the bulk theory. Conversely, spectral
properties and the fact that then’s form a representation of the fusion algebra are not
restrictive enough to yield the list of possible bulk spectra, as occurred inŝl(2) (up
to the unwanted “tadpole” graphs). There are indeed many solutions, i.e., graphs and
representations of the fusion algebra, that must be discarded as not corresponding to a
modular invariant partition function in the list (Table 2) of Gannon [92,93]: see [46] for
such extra solutions. We may summarise the salient features of the analysis as follows, see
also the accompanying Tables 2 and 3 and Figs. 11 and 12.
• At least one graph (or rather one set ofn matrices) has been identified for each bulk

theory, i.e., each modular invariant. But it is not known if this list of graphs andn’s is
exhaustive.
• Note that the hypothesis of 3-colourability of the graphs that looked natural on the

basis of thesl(2) case has to be abandoned if we want to cover all cases. This is
manifest on Table 3 where it appears that in some cases (namelyA(n)∗, andD(n), n
not a multiple of 3, andE(8)∗, the setE is not invariant under the automorphismσ of
(D.1), as it should be if the graph was 3-colourable.
• There are a few pairs or even triplets of isospectral graphs, i.e., different sets

of n’s that give distinct solutions of the Cardy equation for a given bulk theory.
These graphs/representations should not only describe different sets of complete
orthonormal sets of boundary conditions for that bulk theory, but also presumably
be associated with different operator algebras and lattice realisations.
• In Table 3, which summarises the state of the art, we have also indicated if the graph

is of Type I or Type II, following the discussion of Section 3. Some hybrid cases are
also encountered, in which theM andN̂ structure constants are both non-negative,
but theN̂ algebra has no subalgebra isomorphic to some extended fusion algebra.

Notations and footnotes for Tables 2 and 3
(Shifted) weights ofSU(3) λ = (λ1, λ2) := λ1Λ1 + λ2Λ2, whereΛ1, Λ2 are the

fundamental weights ofSU(3), λ∗ = (λ2, λ1), triality τ (λ) := (λ1 − 1) + 2(λ2 − 1) ≡
λ1− λ2 mod 3.
Q is the set of weights of triality zero.
Weyl alcove of shifted level, or “altitude”,n := k + 3,

P
(n)
++ = {Λ= λ1Λ1+ λ2Λ2 | λ1, λ2> 1, λ1+ λ26 n− 1}.

Automorphismσ of P (n)++
σ(λ1, λ2) := (n− λ1− λ2, λ1). (D.1)

(a) One of the two connected parts of the fused Dynkin diagram of typeAn−1 (the one
that possesses the exponent(1,1)). It looks different depending on whethern is
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Table 2
List of ŝl(3)k modular invariants;n= k+ 3(

A(n)
)

Z =∑
λ∈P (n)++

|χλ|2(
A(n)∗

)
Z =∑

λ∈P (n)++
χλχλ∗∗

(
D(n)

)
Z =


1
3
∑
λ∈Q∩P (n)++

|χλ + χσλ + χσ2λ|2 if 3 dividesn∑
λ∈Q∩P (n)++

|χλ|2+
∑
λ∈P (n)++\Q

χλχ
∗
σnτ λ if 3 does not dividen

(
D(n)∗

)
Z =


1
3
∑
λ∈Q∩P (n)++

(∑2
`=0χσ`λ

)(∑2
`=0χσ`λ∗

)∗
if 3 dividesn∑

λ∈Q∩P (n)++
χλχλ∗ +

∑
λ∈P (n)++\Q

χλχ
∗
σ−nτ λ∗ if 3 does not dividen(

E(8)
)

Z = |χ(1,1)+ χ(3,3)|2+ |χ(3,2)+ χ(1,6)|2+ |χ(2,3)+ χ(6,1)|2+ |χ(4,1)+ χ(1,4)|2+ |χ(1,3)+ χ(4,3)|2+ |χ(3,1) + χ(3,4)|2(
E(8)∗

)
Z = |χ(1,1)+ χ(3,3)|2+ (χ(3,2)+ χ(1,6))(χ(2,3)+ χ(6,1))∗ + c.c.+ |χ(4,1)+ χ(1,4)|2+ (χ(1,3)+ χ(4,3))(χ(3,1)+ χ(3,4))∗ + c.c.(

E(12)
)

Z = |χ(1,1)+ χ(10,1)+ χ(1,10)+ χ(5,5)+ χ(5,2)+ χ(2,5)|2+ 2|χ(3,3)+ χ(3,6)+ χ(6,3)|2(
E
(12)
MS

)
Z = |χ(1,1)+ χ(10,1)+ χ(1,10)|2+ |χ(3,3) + χ(3,6)+ χ(6,3)|2+ |χ(5,5)+ χ(5,2)+ χ(2,5)|2+ |χ(4,7)+ χ(7,1)+ χ(1,4)|2
+ |χ(7,4)+ χ(1,7)+ χ(4,1)|2+ 2|χ(4,4)|2+ (χ(2,2)+ χ(8,2)+ χ(2,8))χ∗(4,4)+ c.c.(

E
(12)∗
MS

)
Z = |χ(1,1)+ χ(10,1)+ χ(1,10)|2+ |χ(3,3) + χ(3,6)+ χ(6,3)|2+ |χ(5,5)+ χ(5,2)+ χ(2,5)|2+ 2|χ(4,4)|2
+ (χ(4,7)+ χ(7,1)+ χ(1,4))(χ(7,4)+ χ(1,7)+ χ(4,1))∗ + c.c.+ (χ(2,2)+ χ(8,2)+ χ(2,8))χ∗(4,4)+ c.c.(

E(24)
)

Z = |χ(1,1)+ χ(22,1)+ χ(1,22)+ χ(5,5)+ χ(5,14)+ χ(14,5)+ χ(11,11)+ χ(11,2)+ χ(2,11)+ χ(7,7)+ χ(7,10)+ χ(10,7)|2
+ |χ(7,1)+ χ(16,7)+ χ(1,16)+ χ(1,7)χ(7,16)+ χ(16,1)+ χ(5,8)+ χ(11,5)+ χ(8,11)+ χ(8,5)+ χ(5,11)+ χ(11,8)|2
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Table 3
List of modular invariants and associated known graphs forŝl(3). Footnotes (a)–(e) are explained at the end of Appendix D

Modular invariant Graphs Altitude Exponents Type

A(n) A(n) n P
(n)
++ I

A(n)∗ A(n) = (An−1 ? An−1)c
(a) n {(j, j)}, 16 j 6 bn−1

2 c M,N̂ > 0

D(n) D(n) (b) n= 0 mod 3 P
(n)
++ ∩Q,with (n3 ,

n
3) triple I

A(n)/Z3
(c) n 6= 0 mod 3 P

(n)
++ ∩Q M,N̂ > 0

D(n)∗ D(n) = σ123⊗ (An−1 ? An−1)c
(d) n {(j, j), (n− 2j, j), (j, n− 2j)},

16 j 6 bn−1
2 c M,N̂ > 0

E(8) E (8) 8 (1,1), (6,1), (1,6), (3,3), (3,2), (2,3), I

(4,1), (3,4), (1,3), (1,4), (4,3), (3,1)

E(8)∗ E (8)∗ (e) 8 (1,1), (3,3), (4,1), (1,4) M, N̂ > 0

E(12) E (12)
i , i = 1,2,3 12 (1,1), (10,1), (1,10), (5,5), (5,2), (2,5), E (12)

i , i = 1,3: I

and twice(3,3), (3,6), (6,3) E (12)
2 II

E
(12)∗
MS E (12)

4 12 (1,1), (10,1), (1,10), (5,5), (5,2), (2,5), II

(3,3), (3,6), (6,3) and twice(4,4)

E
(12)
MS E (12)

5 12 (1,1), (10,1), (1,10), (5,5), (5,2), (2,5), II

(4,1), (7,4), (1,7), (1,4), (7,1), (4,7),

(3,3), (3,6), (6,3) and twice(4,4)

E(24) E (24) 24 (1,1), (22,1), (1,22), (5,5), (14,5), (5,14), I

(7,7), (10,7), (7,10), (11,11), (11,2), (2,11),

(7,1), (16,7), (1,16), (1,7), (16,1), (7,16),

(5,8), (11,5), (8,11), (8,5), (11,8), (5,11)
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Fig. 11. The known graphs in the case ofŝl(3). Conventions: (a) For the 3-colourable graphs, the
triality τ of nodes is indicated by the colour: blackτ = 0, greyτ = 1, or whiteτ = 2; the graph
represents the matrixn21 if edges are oriented from black to grey, or grey to white, etc. (b) For the
non-3-colourable graphs, either the orientation of all edges (of matrixn21, say) is indicated, (D(n),
3 6 |n, series,E (8)∗), or all links are unoriented (A(.)∗ series).

even or odd. TheM,N̂ algebras ofA(n)∗ are positive, as they follow simply from
the Verlinde fusion algebraN of ŝl(2). If n is odd,A(n)∗ is the connected component
of the graph of adjacency matrixA2

n−1 − I made of the nodesa odd (integer spin
in sl(2)). For a triplet of “exponents”λ= (l, l), µ= (m,m) andρ = (r, r) ofA(n)∗,
Mλ,µ

ρ =Nlmr +Nlmn−r , andN̂abc is the restriction of the VerlindeAn−1 algebra
to odda, b, c. For evenn, theM andN̂ algebras ofA(n)∗ = I +An

2−1 coincide with
the Verlinde algebra ofAn

2−1.

(b) Theorbifold of A(n), see [73].
(c) The ordinaryZ3 fold of A(n).
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Fig. 12. The known graphs in the case ofŝl(3).

(d) The unfolded (and 3-colourable) version ofA(n)∗. Their adjacency matrix is a tensor
product by the permutation matrix

σ123=
0 1 0

0 0 1
1 0 0


theirM andN̂ algebras are simply obtained from those ofA(n)∗, thus also> 0

(e) TheZ3 fold of E (8).



768 R.E. Behrend et al. / Nuclear Physics B 579 [FS] (2000) 707–773

Appendix E. Formulae for fusing, braiding and modular matrices

We collect in this appendix some standard formulae for the genus 0 and 1 duality
matrices. The fusing matrices satisfy several identities implied by the pentagon identity
— they can be recovered from formulae (4.36), (4.38), (4.16) in the text making the
identification (4.54).

Symmetries:

Fpq

[
k j

i l

]
= Fp∗q

[
j k

l∗ i∗
]
= Fpq∗

[
i∗ l

k∗ j

]
= Fp∗q∗

[
l i∗
j∗ k

]
. (E.1)

Choice of gauge:

F
(0)
q1

[
i i∗
j j

]1j 1′i

α β

=
√
dq

didj
δβ σ13(α

∗). (E.2)

In thesl(2) case denote by
√
C
q
kj the normalisation of the CVO in this gauge. Then for the

fusion matrix corresponding to CVO normalised to 1, one has

Fpq

[
k j

i l

]
=
√√√√C

q
kjC

i
ql

CikpC
p
jl

F (0)pq

[
k j

i l

]
=
√√√√C

q
kjC

q∗
i∗lC

1
qq∗

C
p∗
ki∗C

p
jlC

1
pp∗

F (0)pq

[
k j

i l

]
, (E.3)

or

C
p∗
ki∗C

p

jlC
1
pp∗ Fpq

[
k j

i l

]
= CqkjCq

∗
i∗lC

1
qq∗ Fqp

[
k∗ i

j l∗
]
. (E.4)

This equation coincides with the quadratic relation resulting from locality of the physical
4-point function in the diagonal case. Hence the constantsCikp = C(i,i)(k,k)(p,p), C

i
kp C

1
ii∗ =

C
p∗
ki∗ C

1
pp∗ can be identified with the physical OPE structure constants in this case. For the

minimal models these constants were computed in [80]; the matricesF (0) in the gauge
(E.2) coincide up to signs with a product of standardq-6j symbols, see [97] for the latter.

Braiding matrices:

Bpq

[
i j

k l

]σ23(γ2) δ

β1 σ23(β2)

(ε)= eπ iε(∆k+∆l−∆p−∆q) Fpq
[
i l

k j

]γ2 δ

β1β2

. (E.5)

Theq-analogs of the Racah identity (hexagon identities),ε =±1:∑
q

Fmq

[
i k

j l

]
e−π iε∆q Fqp

[
l i

j k

]

= eπ iε(∆m+∆p−∆l−∆j−∆i−∆k) Fmp
[
i l

j k

]
. (E.6)

Recall the Moore–Seiberg torus duality identity resulting from a relation in the modular
group of the torus with two field insertions, namely,S(j1, j2) a = b S(j1, j2) where
S(j1, j2) is the modular matrix of two-point blocks, expressed in terms ofF andS(p),
and a, b are the monodromy transformations moving one of the CVO around thea, b
cycles, [37,38],
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Sri(s)
∑
m

e2π i(∆i−∆m) Fs∗m
[
j2 i

j∗1 i∗
]
Fmp

[
j1 j2

i i

]
=
∑
q

Sqi(p)e
π i(∆p−∆j1−∆j2) Fsq∗

[
r∗ j1

r∗ j2

]
Frp

[
j2 j1

q q

]
. (E.7)

Chooses = 1= r. This implies thatj1= j∗2 = j∗ andq = j , hence

Sji(p)= S1i

F1p

[
j j∗
j j

] ∑
m

eπ i(2∆i+2∆j−2∆m−∆p) F1m

[
j i

j i∗
]
Fmp

[
j∗ j

i i

]

= S1i

F1p

[
j j∗
j j

] ∑
m

e−π i(2∆i+2∆j−2∆m) F1m

[
j∗ i

j∗ i∗
]
Fmp

[
j j∗
i i

]

= S1j

Fp1

[
i∗ i

i∗ i∗
] ∑

m

eπ i(2∆i+2∆j−2∆m−∆p) Fpm
[
j i

j i∗
]
Fm1

[
j∗ j

i i

]
. (E.8)

The second equality is obtained reversing the sums in (E.7) and solving forSri(s) as above,
while the third is obtained from the transposed version of (E.7) taking into accountS(p)2=
Ce−π i∆p . Forp = 1 the formula reproduces the ordinaryS = S(1) matrix

Sij = Si1

F11

[
j j∗
j j

] ∑
m

e2π i(∆i+∆j−∆m) F1m

[
j i

j i∗
]
Fm1

[
j∗ j

i i

]

= S11

∑
m

e2π i(∆i+∆j−∆m) dmNij m. (E.9)
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