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Abstract
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1. Introduction
1.1. History and motivation

The subject of boundary conformal field theory has a fairly long history. It was born
more than ten years ago, in parallel work on open string theory [1-8] and on conformal field
theories (CFTs) describing critical systems with boundaries [9]. The work of Cardy [10]
was a landmark, leading to the unification of methods, to the introduction of important
concepts such as boundary conformal fields and to the systematic investigation of their
properties and couplings [11,12]. The subject remained dormant for some time, in spite
of some activity motivated again by string theory [13—15] and of beautiful applications
to the Kondo problem [16,17]. Lately, the subject has undergone a revival of interest in
connection with various problems. On the one hand, work on boundary conditions in
integrable field theories and boundary flows [18—-20] and on quantum impurities [21,22]
motivated a closer look at boundary CFT. On the other hand, within statistical mechanics,
integrable Boltzmann weights satisfying the so-called Boundary Yang—Baxter Equation
(BYBE) were constructed in lattice models [23-25]. Finally new progress in string theory
was another reason to reconsider the problem. Generalizations of D-branes as boundary
conditions in CFT have been studied by several groups [26—34].

In the present work, we want to reconsider several issues in the discussion of boundary
conditions in (rational) conformal field theories: what are the general boundary conditions
that may be imposed, what are the structure constants of the bulk and boundary fields in
the presence of these boundary conditions. These are the basic questions that we want to
address. The methods that we use are not essentially new, but are based on the systematic
exploitation of the work of Cardy and Lewellen [10-12].

Among the main results of this paper:

e We establish a connection between the classification of boundary conditions and the
classification of integer valued representations of the fusion algebra. A preliminary
account of this result was given in [35,36]. In the same vein, we show that it is natural
to associate graphs to these problems. In particular, an ADE classification of boundary
conditions for Wess—Zumino-Witten (WZW) and mininsi(2) theories emerges in
a natural and simple way. A discussion of the state of the a8y models is also
included.

e We point out the deep connections between the features of conformal field theory in
the bulk and in the presence of boundaries. The classification of the latter has some
bearing on the classification of the bulk properties (modular invariants, etc.). This is
not a new observation. In particular, in string theory many connections are known to
exist between open and closed string sectors, but it seems that the point had not been
stressed enough. A triplet of algebras, specifically the graph fusion algebra and its
dual, the Pasquier algebra, appears naturally in our discussion, along with the Verlinde
algebra.

e We reanalyse in a systematic way the couplings (structure constants) of fields in the
presence of boundaries and the equations they satisfy, generalising the formalism
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of Cardy-Lewellen to accomodate the appearance of nontrivial multiplicities. In the
diagonal cases we find a direct relation between the chiral duality identities of Moore
and Seiberg and the basic sewing relations of the boundary CFT. The main point
is the observation that the bulk boundary coefficients in the diagonal case essentially
coincide with the matrice$(j) of modular transformations of torus 1-point functions.

In this way the two basic bulk-boundary equations [11,12] are shown to be equivalent
to the torus duality identity of [37,38].

Some more particular results include the extension of Cardy’s equation to non-
specialized characters, thus lifting an ambiguity in the original derivation, the proof
of uniqueness of boundary conditions ﬁ(Z) WZW and minimal models an@l(N)l
models, the clarification of the role of the graph algebra and the recovery of this algebra
along with its dual, the Pasquier algebra, from the boundary sewing constraints.

1.2. Background on bulk CFT

In this paper, we are only concerned with Rational Conformal Field Theories (RCFTSs).
We first establish notations, etc. In the study of a RCFT, one first specifies a chiral
algebraA. It is the Virasoro algebra or one of its extensions: current algébralgebra,
etc. The generators of this algebra will be denoted generigg/lgnd include the Virasoro
generatord.,. At a given level, the theory is rational, i.e4 has only a finite sef of
irreducible representationsg, i € Z. The labeli* indexes the representation conjugate
to i, andi = 1 refers to the identity (or vacuum) representation. We also suppose that
the characters;(q) = trvl.qLO*zL_ﬁ of these representations, the matsixof modular
transformations of the's and the fusion coefficient&’,»j" of the V’s are all known. The
matrix S;; is symmetric and unitary and satisfi§&= C, whereC is the conjugation matrix
Cij = 8;;+. The fusion coefficients are assumed to be given in ternsskof the Verlinde
formula [39]

Ni.kZZM’ (1.1)

S
ez PU

an assumption that rules out some cases of RCFTs.

A physical conformal theory is then defined by a collection of bulk and boundary fields
and their 3-point couplings (OPE Coefficients). In particular, the spectrum of bulk fields is
described by the finite set Spec of paiys j) of representations, possibly appearing with
some multiplicitieij]f, of the left and right copies ofl, such that the Hilbert space of the
theory on an infinitely long cylinder reads

H= P VieV; (1.2)
(j.J)eSpec
with the same multiplicitiesV; ;. The modular invariant torus partition function

Ztorus= ZijXj (CI)(X]'(CI))* (1.3)
i
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is a convenient way to encode this information. The finite subsétabels of elements of
the spectrum that are left—right symmetric will play a central role in the following

E={jl(j,j=j) € Speg, (1.9

and will be called the set @xponentsf the theory. Recall that these exponents may come
with some multiplicities. To distinguish them as different elements of th€ sesecond
index will be often added, i.e(j, @) € £, for j € Z.

In terms of all these data, one is in principle able to compute exactly all correlation
functions of the CFT on an arbitrary 2D surface, with or without boundaries [12,37,38,40,
41]. These data, however, are subject to consistency constraints: single-valuedmness of
point functions on the plane, modular invariance of the torus or annulus partition function,
etc., all rooted in the locality properties of the theory. In this paper, we shall reexamine the
conditions that stem from surfaces with boundaries (half-plane or disk, cylinder or annulus)
and explore their consequences.

For later reference, let us also recall that RCFTs fall in two classes. In the first
class (“type I"), the Hilbert space (1.2) is a diagonal sum of representations of a larger,
“extended”, algebrad’ © A. Accordingly, the partition function (1.3) is a sum of squares
of sums of characters

2= ¥ [$u

blocksB'ieB
The second class (“type II") is obtained from the first by letting an automorphisfrthe
fusion rules of the extended algehr act on the right components, thus resulting in a
non-block-diagonal partition function

ZZZ(Z)O’)( > X/) (1.6)
B “ieB jes(B)

For example, in the classical casestiR) theories, classified by- D- E Dynkin diagrams,

the A, Dy, Es and Eg cases are of the first type, whereas ihg 1 andE7 are obtained
respectively from theds,_1 and D1g cases by &, automorphism of their fusion rules.

We shall see below that the study of boundary conditions on a cylinder has some bearing
on these expressions of torus partition functions.

2
(1.5)

2. Cardy equation and Verlinde algebra
2.1. Boundary states

As discussed in [42,43], on the boundary of a domain such as the upper half plane or a
semi-infinite cylinder, one must impose a continuity condition of the form

TO=TQA|_.. W=WQ@)|_.. (2.1)

While the first of these conditions has the direct physical meaning of the absence of energy-
momentum flow across the boundary, or the preservation of the real boundary by diffeo-
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morphisms, the condition(s) on the otH& may be generalized to incorporate a possible
“gluing automorphism” [26,28,29,44]

W) =2W@)|,_.. (2.2)

A semi-annular domain in the upper half-plane may be conformally mapped into an
annulus in the complex plane ty= exp(—2irw/T), w = %Iogz. Then as shown by
Ishibashi [2] and Cardy [10], the boundary condition becomes

ST =T (@),

CYWE) = (=O"WWE) for |¢l=1 and |¢|=€"HT, (2.3)
wheresy denotes the spin oV, or more generally

VW) = (=) RW().
Through radial quantization, this translates into a conditiobamndary state$:)

(Wn = (=D 2(W_p))|a), =0. (2.4)
This includes in particular the condition that

(Ln —L_y)|a), =0, (2.5)

assuming that the automorphiginkeeps invariant the Virasoro generators. For the central
charge operator we havg — k)|a)o = 0.

Solutions to this linear system are spanned by special states called Ishibashi states [2],
labelled by the finite sef, = {j|(j, ] = w(j)) € Speg, wherew depends in particular
on £2. To see this, let us consider first the simpler equation (2.5) in the case Mhen
is the Virasoro algebra an@ is trivial. Then observe that one may solve (2.5) in each
component of (1.2) independently, as these spaces are invariant under the action of the two
copies ofA. Now we recall that any staté =, - an alj,n) ® |j,7)in Vi®V; is in one-
to-one correspondence with a homomorphigsm= Znﬁ anilj, n)(f, n| of Vjv into V;.
This uses the scalar product]'/?). SinceL_, = L;[ for that scalar product, (2.5) implies
thatL, X4 = XaL,,i.e., thatX 4 intertwines the action aof,, in the two representations
andvjv of the Virasoro algebra. As these two representations are irreducible, they must be
equivalent, which by our convention on the labelling of representations, mearysthat
Thus the only non-vanishing componentstoin H are in diagonal produclg; ® V; and in
each oneX 4 is proportional to the projecta?; =), | j, n){(j, n|. To fix the normalization
we chooseX 4 = P; and the corresponding Ishibashi state is denpigdThis completes
the proof that there is an independent boundary staie for each element of the set
E€=1{jl(J.Jj =) € Speg.

The argument is a formal extension of the proof, based on the Schur lemma, of
the existence and uniqueness of an invariant in the tensor product of finite-dimensional
representations. It extends to the odd spin case (2.4). We have to use the fact that

2 Many thanks to G. Watts (private communication) to whom we owe this elegant derivation. Some elements
had appeared already in M. Bauer's PhD thesis (1989).
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W,:r = (—1)*" Ut W_, U with respect to a bilinear (or Hermitian) form wheteis a
unitary (or antiunitary) operator. One exploits the same definition of the homomorphism
X4 :Vy— V;, now V., V; being highest weight representations of the chiral algebra
A generated byV,. HoweverX 4 corresponds to states W, ® Up U V;/, whereUg, is

a unitary (antiunitary) operator implementing the automorphidgw,,)) = U, W, U§1.

Eq. (2.4) leads td¥, X4 = X4 W, again with the resulj’ = j and X4 = P; while the
Ishibashi states are given biho =), 1j.n) @ U U |j, n).

The operatorU is in general nontrivial, e.g., for thel(N); WZW theoriesW,:r =
w(W_,) wherew is the horizontal projection of the Chevalley involution of the affine
algebra [45],i.e., itis determined by(e”) = — f%, w(f%) = —e", for the simple roots
a; of sl(N), where &/ are raising/lowering operators respectively, and for the Cartan
generatorso(h') = —h',i =1,2,..., N — 1. The pair(j, w(j)) characterising, refers
to the eigenvalues dff on the first term inj)) . If £2 is the identity, themw (j) = —j. If
2 = wo, Wherewg represents the longest element of the Weyl group, thgh) = —j*
and hencew(j) = wow(j) = j*. On the other hand(j) = j for £2 coinciding with the
Chevalley automorphisi® = w. In the last two of these examples we can idenﬁ;y:

Ug U V; with a highest weight modulg,, (), «(j) € Z. It should be stressed that all these
automorphisms2 keep invariant the Sugawara Virasoro generators so the condition (2.5)
is also satisfied on the corresponding Ishibashi states.

We shall hereafter drop the explicit dependence&n

In fact we still have to define a norm (or a scalar product) on boundary states, in
particular on the Ishibashi states. We have to face two difficulties. First because of the
infinite dimension of the representatiof), the most naive norm, proportional toAy,
would be infinite. The second problem concerns non-unitary representations. In such cases,
the hermitian form ofV; is not positive definite, and we may encounter signs in the norm
of states. _

The first problem requires some regularization of the naive normg ket e+ be a
real number, O< § < 1. Then((j|g2(LotLo=12)| j) = tr P;gLo~ 3 = x;(§). We write in
general, allowing some multiplicity = 1, ..., N;; for the representations:

~1 Lo—<)] -+ ~
((j. o |g2 ot 2| j a)) = 85800 Xj(§)- (2.6)
The norm of|j)) should then be some renormalized version ofghe 1 limit of (2.6)

[2,10], i.e., of the limit in whichg = €271t the modular transform af, tends to 0. In
unitary theories, a new scalar product on boundary states may be defined according to

(el j'a'y = lim g2((j’, o |g2Fotlo= 1] j, o)
g—1

= 8 Baa 1M g% X;(@) = 8, bar 1. 2.7)
q%

where we have used the fact that in a unitary theory, the leading charactergn-she
limit is that of the identity operatoy1(q) ~ q—z%t. Note thatS;; is, up to a factor 1511,
the quantum dimension of the representatipa positive number. Thus in unitary theories
the normalization chosen fox; is such that the statgg)) are orthogonal for the scalar
product (2.7), with a square norm equal §¢;. Although in non-unitary theories the
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limit ¢ — 0 in (2.7) does not exist in general, due to the existence of representations of
conformal weightz; < 0 that will dominate that limit, we may stilefinethe norm by the
same formula as (2.7). Alternatively, j§ denotes the unique representation of smallest
conformal weight: j, < 0 belonging taf, andceft := ¢ — 24h j,, then we may define

S1j
(Jallj'o') =8 8aqar = 3. lim X # X (@). (2.8)
joj 40

In all cases we thus have

(el j'e’) = 8j18uarS1j (2.9)

which is now of indefinite sign. In the sequel, we use more compact notations and the
multiplicity label o will be implicit when referring toj € £.

The most general boundary stafe) satisfying condition (2.4) must be a linear
combination of these Ishibashi states, which, for later convenience, we write as

ja) =Y —==1j). (2.10)

We denote by = {a} the set labelling the boundary states. We assume that an involution
a — a* inthe sety is defined and thap’ =y, = (I/fa)* wherej — j* is aninvolution

in £ (in general(j, o) — (j* «*), see Appendix B for examples). We define conjugate
states as

Yl
(bl =3 (] 2, (2.11)

As explained in [26], this conjugate state may be regarded as resulting from the action of
an antilinear CPT operation. As a consequence

<b||a>=Z‘”“ )’ Gy = vd(vl)" (2.12)

S
je& L je&

so that the orthonormality of the boundary states is equivalent to that gf'she

In some cases, such as in the computation of partition functions involving the specialised
characters in the next section, it is sufficient to impose only the Virasoro condition (2.5)
on the boundary states. Then the sum in (2.10), when interpreted in terms of Ishibashi
states pertaining to some extended symmetry, may include s$jateswith different 2.
For example, in the minimadi(2) models when multiplicities occur i&f, one can build
the Ishibashi states using the Coulomb gas realisation Withii(1). Then there are two
choices of2 keepingL, invariant. This allows, in particular, the construction of two
different Ishibashi states with the same value of the scaling dimension, i.e., the explicit
resolution of the degeneracy of states dendfed)) above. Such mixtures of Ishibashi
states may be used in determining the boundary states of the non-didgoradyen)
models.
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(b)

Fig. 1. The two computations of the partition functidp,, : () on the cylinder, between the boundary
statest andb, (b) as a periodic time evolution on the strip, with boundary conditioaadb.

2.2. The Cardy equation

We now consider a conformal field theory on a finite cylinder. Following Cardy, the
partition function may be expressed in two alternative ways. Regarded as resulting from
the evolution of the system between boundary statesd b under the action of the
Hamiltonian on (i.e., the translation operator along) the cylinder, it is

Zbja = (b|g2Lotlo=12)| ), (2.13)

whereq% — e 277 describes the aspect-ratio of the cylinder of perfoénd lengthL
as in Fig. 1. Decomposing the boundary states on the Ishibashi basis and using (2.6), one
obtains

Zya= Y ud (w]) 21D (214)
je€ 7

where the statelg)) are admissible Ishibashi states of the system, i.e., the Jatoels over
the sett.

On the other handZ,,, may be regarded as resulting from the periodic “time” evolution
under the action of the translation operator along the finite width strip in the presence
of boundary conditiona andb. The latter manifest themselves only in the nature of the
Hilbert spaceH,, and its decomposition into representations dfiregle chiral algebra:

Hpa = B, nip“V; with non-negative integer multiplicities;,*. If ¢ = e‘”%, Zpa 1S @
linear form in the characters

Zpja = Z Xi(@nip®. (2.15)
i€l
We choose to write the modular transformation of characters in the fgKg) =
> Sijxj(q), hencex;(q) = >_; Sji-xi(q). Provided that specialized charactefigq)
are considered, this complex conjugation is immaterial, since) = x;+(¢). We shall,
however, make later use of unspecialized characters (Appendix A), for which it does matter.
With this convention, and assuming for the time being the independence of characters, the
two expressions (2.14) and (2.15) are consistent provided
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nia" =) f:—’ a () (2.16)
i 1
In the sequel we will refer to this as the Cardy equation. In the left-hand side, we have used
the first of the following symmetries
nia® = npp® = nip® (2.17)
which follow from the properties of the modular matrix and of the coefficiths

The boundary states), |b), are thus such that,” is a non-negative integer. Uniqueness
of the vacuum implies1,” < 1. The Cardy equation (2.16) isr@n-linearconstraint on
the components of boundary state$ and|b) on the basis of Ishibashi states. Note also
that it implies that)_; n;,“S;; vanishes ifj ¢ £ and, except in cases with multiplicities,
must factorize into a product of contributions of th@ndb boundary states, a nontrivial
constraint. Still, these constraints seem difficult to solve in full generality.

Before we proceed, we have to pause on the question of independence of characters.
In general, it is not true thapecializeccharacters such as those that we have been using
so far, are linearly independent. For instance, complex conjugate representatiahs
give rise to the same charactgn(q). Unfortunately, little is known about unspecialized
characters for general chiral algebras, beside the case of affine algebras. In Appendix A,
we show that in the case of rational conformal field theories with a current algebra, the
previous discussion may indeed be repeated if the energy momentum tensor of the theory
has been modified in such a way that unspecialized characters appear. Then using the
known modular transformations of the latter [45], one derives (2.16). We shall therefore
assume that (2.16) holds true for general RCFT.

We now return to the Cardy equation (2.16), and assume that we have found an
orthonormal set of boundary states, i.e., satisfying

> i (W) =bav. (2.18)
je€

Moreover, we make the stronger assumption that we have foumnpleteset of such
states, i.e., satisfying

Sowid(wl) =6 (2.19)

(Note that this implies that the number of these boundary states must be equal to the
cardinality of€.)

Finally we recall that the ratios;;/S1;, for a fixed j € Z, form a one-dimensional
representation of the fusion algebra, as a consequence of the Verlinde formula (1.1):

Sivj Sizj i Sizj
J 2] NN, s B 2.20
CTETd P (2.20)

It follows from (2.19), (2.20) that the matrices, defined by
()" =nia”, i€l (2.21)



716 R.E. Behrend et al. / Nuclear Physics B 579 [FS] (2000) 707-773

also satisfy the (commuting) fusion algebra
ninij, = Z Nill'zi:s Nis. (222)

izeZ
By (2.18),n1 = I, the unit matrix, and by (2.17),+ =n! .
Conversely, given a set of matrices with non-negative integer elements, satisfyiag

T n1 =1 and the fusion algebra, they form a commuting set, and thusrgagimmutes
with its transpose. These matrices are thus normal matrices that may be diagonalized in
an orthonormal basis. Their eigenvalues are of the f8irms,; for somej, and they may
thus be written in the form (2.16). If one pretends to determine the spedétrfrom the
n’s, one has to impose also that= 1 appears only once ifi, as a manifestation of the
unigueness of the vacuum.

We thus conclude that the search for orthonormal and complete solutions to the Cardy
equation is equivalent to the search fdrvalued representations of the fusion algebra
satisfyingn! = n;».

This is the first important result of this paper, already presented succinctly in [36]. The
fact that some solutions to the Cardy equation were associated with representations of
the fusion algebra had been noticed before. In his seminal paper [10], Cardy considered
the case of “diagonal theories” (for whi¢h= Z) and showed that the; matrices were
nothing other than the fusion matrica's, thus obtaining an alternative and more intuitive
derivation of the Verlinde formula. In an antecedent work by Saleur and Bauer [9], other
solutions had been obtained in non-diagonal theories, starting from their lattice realization,
and the fact that thesg coefficients satisfied the fusion rules had been emphasized in [46].
More recently Pradisi, Sagnotti and Stanev [14,15,34] proposed a different argument to
the same effect, where a notion of completeness of boundary conditions is also playing a
crucial role.

Solutions such thadll matricesn; may be written ag; = (n1); ® (n2); after the same
suitable permutation of rows and columns can be called reducible. They describe sets
of decoupled boundary conditions. We thus restrict our attention to irreducible sets of
matrices.

2.3. WZW sl(2) theories

For theories with the affine (current) aIge@&Z) as a chiral algebra, the problem of
classifying representations of the fusion algebra was solved long ago [46]. The integrable
highest weight representations sif2); at levelk € N are labelled by an integer &

<k+1, 85 = ‘/kiZ sm,’(ﬂf2 and the Cardy equation says that the generajos

no+ has e|genvalue§r =2cos-5 k+2 The only symmetric irreducible matrices with non-
negative integer entries and eigenvalues less than 2 are the adjacency matdeés of
E-T graphs [47] of Fig. 2 (see also Table 1). The “tadpole” graphs are given, by

Ao, /77. Here the levek is related to the Coxeter number py=k + 2. Only theA-D-E
solutions are retained as their spectrum matches the spectrﬁ(ﬂpﬁeories, known by
their modular invariant partition functions [48-50]. For a theory classified by a Dynkin
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A, 1 2 3 n
7
D, 1 2 3 <
, — 1
6
Ey 1 2 4 5
3
7
E. 1 2 3 5 6
4
8
Fy 1 2 3 4 6 7
5
1 1 2 3

Fig. 2. TheA-D-E-T graphs.

Table 1
The Coxeter numbeg and Coxeter exponents of the A-D-E-T
graphs

G g m € EXp(G)

Ap n+1 1,23,....,n

Dy, 2n—2 135....21-3,n—-1

Eg 12 14,578, 11

E7 18 15,7,9,11,13 17

Eg 30 17,11,1317,19,23, 29

T n+1 135,..., n—-1

diagramG of A-D-E type, the set is the set of Coxeter exponentsGfas in Table 1.
The matrices:; are then defined recursively gy = 1, np = G and by Eq. (2.22) which
reduces here t@;+1 = non; —n;—1,i = 2,3,...,k. They are the well known “fused
adjacency matrices” or “intertwinersV;, studied in [46,57] and whose properties are
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recalled in Appendix B. One verifies that all their entries are non-negative integers. This
set of complete orthonormal solutions of the Cardy equatiosltgy theories is unique up
to a relabelling of the statés).

2.4. Minimal s(2) models

The classification of < 1 minimal models in the bulk is given in terms of a pair of
Dynkin diagramg A, G) whereG is of A-D-E type [48-50]. Let: be the Coxeter number
of A;_1 andg the Coxeter number off as given in Table 1. Then the completeD-E
classification is

./\/l(Ah,]_, Agfl)y
M(Ap-1, Dg12)/2), g even,

M(A, G) = { M(Ap-1, Ep), (2.23)
M(Ap-1, E7),
M(Ap-1, Es),
with i, g > 2 and central charges given by
_,_ 8—g) (2.24)
hg

We willuse M (A, G) to denote these minimal theories. Sigcandh must be coprime and

g is even for all nonA cases, one may always assume, at the price of a possible interchange

inthe (A, A) case, that is odd,h = 2p + 1.

Some members of these series are identified as follows:

M(Az, A3) = critical Ising c=1/2,
M (A4, A3) = tricritical Ising, ¢c=7/10,
M (A4, Dg) = critical 3-state Potts c=4/5,
M((Ae, Dg) = tricritical 3-state Potts ¢ =6/7.

We will useG to denote both the Dynkin diagram and its adjacency matrix. We- use
r1, 2 to denote nodes or exponentsdf_i; s, s1, s2 for the nodes (or exponents) af,_1;
a, a1, az, b for the nodes of5. We refer the reader to Appendix B for more data on these
matrices and their eigenvectors.

If Exp(G) denotes the set of exponentI®{see Table 1), the modular invariant partition
function of M(Aj_1, G) reads

1 ) .
Z= > Z Z | xrs(q)| + off-diagonal terms (2.26)
r=1seExp(G)

(2.25)

The factor% removes the double counting due to the well-known identification ofithe
and(h —r, g — s) representations of the Virasoro algebra. The diagonal ternzs ire.,
the left—right symmetric (highest weight) states in the spectrum are thus labelled by the set

5:{j:(r,s)z(h—r,g—s);1<r<h—l;seEXp(G)}. (2.27)

Each of the unitary minimal model§1(A;—1, G) with g — h = £1 can be realized as
the continuum scaling limit of an integrable two-dimensional lattice model at criticality,
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with heights living on the nodes of the gragh In particular, the critical series with
g —h =1is associated with thé- D-FE lattice models [52,53] and the tricritical series with
g —h = —1is associated with the dilute lattice models [54,55]. In the non-unitary cases
the associated lattice models [56] possess negative Boltzmann weights. In the construction
of the corresponding lattice models as well as in the description of boundary conditions, it
turns out that the two diagrams of the pé#r, G) do not play a symmetric role.

According to the discussion of the previous section, we have to study the fusion algebras
of minimal models and their (integer-valued) representations. The Verlinde formula for the
fusion coefficients makes use of the matfivof modular transformations of characters

8 / A . —_—
Srs,r’s’ = _h (_1)(r+s)(r +5) Slnﬂr}’/g
V 8

with the restrictiorr, ' odd (or any equivalent condition). The fusion coefficients are then
found to be tensor products of those relative todli2) algebras of levek — 2 andg — 2,
up to a symmetrization which accounts for the identification) = (h —r, g — s)

= Nrr’r”NSS’SN + Nrr’l17r” NSS’87S”' (229)

h . —h
smnss’g—, (2.28)
8

/\/‘rs,r’s’r”S”
This may be regarded as the regular representation of the fusion makfigesf the
Virasoro algebra of central charge (2.24). Our problem is to find the general non-negative
integer valued representations of this algebra. One observes/that V,1NV1, and that
the algebra is thus generated by; andN7». Also, the eigenvalues g¥7, andA>; are of
the form

S r's’ ry o — h ’ ]’l

125" _ (_qyr'+s 2cosrs’E 0 = (=1 2costs’—, (2.30)
Sll,r’s’ 8 8
S s’ ]
2L’ _ (_1)" 2 costr' S, (2.31)
Sll,r’s’ h

withl<r’'<h—-1,1<s'<g-—1landagainr’,s)=h—-r',g—ys').

Turning now to a general (integer valued) representatjgrof the fusion algebra, it is
still true that it is generated by andns. In addition, we want the spectrum of thg
to be specified by the set of “exponentsdf (2.23), that is(r/, s) in (2.30), (2.31), with
the eigenvalues labelled sy appearing with some multiplicity in general. To remove the
redundancy in the labelling of eigenvalues, we will usually telkedd,»' = 1,3, ..., h — 2,
and(s’, @) € Exp(G). In the sequel, we will drop this explicit notation for multiplicities.
We know of course a solution to this problem, namely,

nps =Ny @ Vs + Ny ® ngsw (232)

in terms of the fusion matrices of si(2) at levelk — 2 and of the intertwiner¥ of typeG
introduced in the previous subsection (see also Appendix B). More explicitly, this describes
a solution to the Cardy equation between boundary staties) and(rz, b)

nrs;(rl,a)(rz’b) =Ny "2 Vsab + Ni—rry"? Vg—sab, (2.33)

with 1< rr,ro<h—1=2p, 1<s < g —1, anda, b running over the nodes of the
Dynkin diagramG.
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Because of the properties of theandV matrices recalled in Appendix B, it is readily
seen that

v = s "2 = 00 ) B (2.34)

for an automorphisnmy acting on the nodes of the graph this is the identity except for
the A, Dogq and Eg cases, for which it is the naturd, symmetry of the diagram. We
conclude that this solution describes boundary state$1efi,_1, G) labelled by pairs
(r, a) of nodes of thed;,_1 and of theG graph, with the identification

(r,a)=(h—r,y(a)). (2.35)

One checks that the number of independent boundary states) is

1
number of independent boundary staiei (h—Dn (2.36)

with n the number of nodes afr, or the number of its exponents. This number (2.36)
coincides with the number of independent left—right symmetric highest weight states
Ir, s) ® |r, s) in the spectrum of the theory on a cylinder, i.e., with the cardinality of the set
&, as it should.

With such boundary states, the cylinder partition function reads

Z(r.a)(r2.b) = Z(rp.b)(rr.a) = Z(rr.a) | (h—ra.y (b)) = Z Xrs (@) Nir 2 Vsa". (2.37)
r,s
Herethe sumrunsoverdr <h—1,1<s<g—1.
Let us look more closely at (2.33). There exists a basis in which (2.33) takes a factorized
form. Indeed one may use the identificatigns) = (h — r, g — s) and (2.35) to restriat,
r1, r2 to odd values (recall thdt = 2p + 1 is odd). ThenV;,_,,"2 =0, the r.h.s. of (2.33)
factorizes and the following expressions

g s — «/ES”HI/I;”, r,r” odd, s” e Exp(G), (2.38)

written in terms of the modular matrix §1(2) at levelh — 2 and of eigenvectorg of G,
are readily seen to be eigenvectors:pf. Their eigenvalue is of the forif, /s /S11.rs’
after some reshuffling’, s — r’, s’.

One also shows (see Appendix C) that there exists a basis in which

G
G
n2=1,®G= . , (2.39)
G
0O r
r o r
no1=T,®I = . (2.40)
. -‘ 1—‘
r r

in terms of the tadpolel), adjacency matrix and of”, the matrix that realizes the
automorphisny: I',? =84, ).
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Conversely, suppose we only know that the representatiohas a spectrum specified
by the set of exponents. The question is: are these spectral data sufficient to guarantee
that the onlyn,; are of the form (2.33) in a certain basis? A proof of this fact is relegated
to Appendix C. Notice that our discussion has assumed the classification of modular
invariants to be known. It should be possible to extend it as in the case of BRI\
models and to classify the representations of the Verlinde algebra without this information.
A few spurious cases involving tadpoles, etc., would then have to be discarded.

To recapitulate, we have proved that the only representations of the fusion algebra
of minimal models are given by (2.33). To our knowledge, this is the first proof of the
uniqueness of these (complete orthonormal) boundary states of minimal models.

Some physical intuition about the meaning of these boundary conditions may be helpful.
For this we appeal to the lattice realization of the minimal model as a generalized height
model on the graply (see [35]). A boundary condition of the typ&, a) describes dixed
boundary condition, where the height of the model is fixed to valoa the graph. The
interpretation of the other labelis less intuitive. The boundary conditi@n «) is realized
by attaching am-times fused weight to heiglat

The expression (2.37) for the cylinder partition function encompasses and generalizes
cases that were already known:

e From the work of Saleur and Bauer [9] who discussed boundary conditions in lattice
height models ofA-D-E type on a cylinder in which the heights on the boundaries
are fixed to the values respectivelyb. They showed that in the continuum limit, the
partition function reads

Zpla = Z Via” x5
N

e From the work of Cardy [10] who showed how to construct new boundary conditions

by fusion.
e From the work of Pasquier and Saleur [58], who interpreted the pair of relations
(Ap-1,G6) b
Z(1b1)|(11a) = Z X1s Vsa > (2.41)
N
(Ap-1,A¢-1)
Z(l,s)\(l,f) = X1s, (2.42)

as expressing the decomposition of the representation of the Temperley—Lieb algebra
on the space of paths fromto 4 on graphG onto the irreducible ones on the paths
from 1 tos on graphA,_1, see point (ii) at the end of Appendix B.

Examples

Let us illustrate these expressions of boundary states by a few simple cases. In the
Ising model (the(A2, Az) minimal model),h = 3, G = A3, thusn = 3 and there are
%(3 — 1) x 3= 3 boundary states, generally denoted [#Q]— and f. On the lattice,
the first two describe fixed boundary conditions on the spia 1 or —1 respectively,
while f corresponds to free boundary conditions.

It is then instructive to consider two related examples, see also [22,30]. The first is the
¢ = 2 Dy solution of§(2)4 at level 4, and the other is its cousin, the- 4/5 minimal
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(3-state Potts) model, already mentioned in Section 2.4 and labelled by thelpaivs).
In the former case, we find four boundary states, labelled by 1 to 4, that we attach to the
nodes of theD, diagram. All these states satisfy the required boundary conditions. The set
of exponents i€ = {1, 3, 3, 5}. But this D4 §I(2) model is also known to result from the
conformal embedding @(2)4 into §I(3)1. Regarded as a§i(3) theory, the model admits
three boundary states satisfying the more restrictﬁ(@) conditions(L, — L_,)|a) =
(J, + 2J_,)|a) =0, where the choice af corresponds to the diagonal ¢t j). These
three boundary states may be regarded as the three nodes of a trianguladgrafsee
Appendix D and Fig. 11), or as the three extremal nodes ofhaliagram that have
survived the additionzﬁl(3) constraint.

The discussion of the Potts model is quite parallel. From the minimal model standpoint,
itis the (A4, D4) model,h =5,n = 4 and there are 8 boundary states [22,30]:

A=1,1) =41, B=(1,3=(43), C=(14=@44),
BC=(2,1)=3,1), AC=(2,3=(3,3), AB=(24)=@3,4),
ABC=(1,2=(4,2), N=(2,2)=(3,2). (2.43)

On the lattice, the first thre#, B, C describe fixed boundary conditions where the “spin”
takes at each site of the boundary one of the three possible values. The mixed boundary
conditionsA B, BC, AC describe boundary conditions where the spin on the boundary can
take on two values independently. The boundary conditioB€ andN are free boundary
conditions but forV the weights depend on whether adjacent spins are equal or not.

The model may also be regarded as the simplgstmodel. In that picture, one may
impose more stringent boundary conditions. Only the six states denoted Ab@eC,
AB, BC, AC satisfy the additional conditiom/,ﬁs) + Qm,nﬂa) = 0. They correspond
to the extremal nodes of the paifz, D4) or, alternatively, to the nodes of the pair
(T2, A®). As will be discussed in more detail in Section 3, the subset of these nodes,
to be denoted’, can be identified in both examples with the representation labels of the
corresponding extended chiral algebra. The matrix elemght®r a € T satisfy [63] the
relation

j ext
7 Salj)

S - ext
vELE S

where{j} denotes the orbit of the exponehwith respect to theZ, automorphism and
sz‘}} is the modular matrix of the extended theory. This relation implies that

SeE‘t.}
_ alj .
=2 o 2 1)
{J} ) et}

i.e., we can identifyzie{” i) = I{j}) with an extended Ishibashi state. The missing
boundary condition corresponds to a twisted boundary condition from the point of view of
the extended algebra.

We conclude that, as expected, the number and nature of the boundary states reflect the
precise conditions that they are supposed to satisfy.
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3. Graph fusion algebras

According to the discussion of Section 2, given a certain chiral algdbithe sets of
complete orthonormal boundary states of RCFTs consistent with this algebra are classified
by representations of the Verlinde algebratfon matrices:; with non-negative integral
entries. Or stated differently: given a certain RCFT with a chiral algefrdahe sets
of complete orthonormal boundary states of this theory consistent with this algebra are
classified by representations of the Verlinde algebtd ,adn matrices; with non-negative
integral entries, with eigenvalues specified by the diagonal${aftthe spectrum. These
matrices may thus be regarded as the adjacency matrices of a collectibhghphs.

In practice, it is sufficient to look at the smaller number of matrices representing the
generators of the fusion ring. For example, one matrix in the cas¥(2f considered
above, or theV — 1 matrices associated with the fundamental representations, in the case
of sl(N).

The simplest case is given by the regular representation of the fusion algebra, when
the matrices:; are the Verlinde matrices themselves= N;. This is the case of so-called
diagonal theories, when all representations of th& sgipear once in the spectrum Spec
{(i,i)|i € Z}. This may be regarded as the case of reference from several points of view:
it was the first case analysed in detail [10]; the corresponding graphs are playing a central
role; and finally in that case, Cardy was able to provide a physical argument explaining
why the fusion matrices arise naturally. It is the purpose of this section to extend these
considerations to more general solutions. We shall find that the role of the fusion matrices
in the arguments of Cardy is now played by two sets of matrices. The first is the set of
matrices:; that describe the coefficients of the cylinder partition function; the second is a
new set of matricea/,, forming what is called the graph fusion algebra.

On the other hand, since we know that the cylinder partition functions, or equivalently
the matrices:;, contain some information about the bulk theory, through the knowledge
of the diagonal spectrurd, it is expected that this classification of boundary conditions
should have some bearing on the classification of bulk theories, namely on the classification
of torus partition functions and on bulk structure constants. Remarkably, this programme
works even better than expected and the two classification problems seem to be essentially
equivalent, at least for type | theories (see end of Section 1). This will be explained in
Section 3.3 below.

3.1. More on graphs and intertwiners

Suppose we have found a solution to the Cardy equation, namely arsetiofatrices
(2.16),(ni)s?, i=1,...,|Z|,a,b=1,...,n. What was said in detail in Section 2 and in
Appendix B in the case ofi(2) can be repeated here. As their entries are non-negative
integers, these matrices may be regarded as adjacency matrices of a|Beg@phs
G;, with n = |G;| = |G| nodes. We shall refer collectively to thegg graphs as “the
graphG”, whereas the basic solution provided by thi&s themselves will be called “tha
graph” (borrowing the notation from tte(2) case). The eigenvalues of the matrisgare
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specified by a set EXg) in the sense that they are of the fosim/S1;, (j, @) € EXp(G).
Moreover ExgG) = € if the RCFT is given and the diagonal spectrgnis known. But
in general, the determination of the set E&p is part of the problem. The fundamental
relation", (n;).” ()5 = 3, Nij* (nx).¢ may be interpreted in two ways:
e Regarded agG| x |G| matrices, the matrices form a representation of the fusion
algebra (2.22).
e Regarded asd| x |G| rectangular matrix, each matrix for a fixed, (7ia) ;* :=n 4"
intertwines the representativés andn; in the two representations;n, = riiyn;, or
more explicitly

ZN,'./knkac ZZn./abnibc. (3.2)
k b
We shall thus occasionally refer to the matrieg®s “intertwiners”.

The case of graphs and intertwiners pertainin@l(ﬁ) theories has been discussed at
length in Section 2 and in Appendix B. In Appendix D, we outline the discussisi .
Inthat case, the fusion algebrais generated by two matrigagandn 1 o) (labelled by the
two fundamental (shifted) weights ef(3)), and as these two representations are complex
conjugate to one another, the matriegsire related by transpositiony, 1) = ”(Tl,z) . Then
according to (2.22)y; is given by the same polynomial a{1 2y andn 2,1y with integral
coefficients as that representing in terms ofN(1,2) and N2, 1. It is thus sufficient to list
all possible graphs representing the maiix1, provided one checks that all have non-
negative integral entries. In contrast with the cassl@), no complete solution is known
for sl(3). The current state of the art is presented in Appendix D with tables, figures and
relevant comments.

3.2. Graph fusion algebras

To see what is playing the role of the fusion algebra in the argument of Cardy, we
have to introduce the graph fusion algebra. The graph fusion algebra, as first discussed
by Pasquier [59], is a fusion-like algebra attached to a connected grapét v/, be the
common orthonormal eigenvectors of the adjacency matdtésbelled by € Exp(G).

In general, these eigenvectors can be complex. In the case of degenerate eigenvalues
the associated eigenvectors need to be suitably chosen. We assume that the graph has a
distinguished node labelled= 1* such thaty; > 0, for all j € EXp(G).

One then defines the numbers

J o d (a1 d V%
G SR AN 32)

J
JEEXP(G) V1

and the matriced/, with elementsN,),¢ = Ny, satisfy Nyy© = Nyex?” and N7 = N,x.
Because of orthonormalitﬁl = I. Since each matriV, has a single non-vanishing
entry in the row labelled 1, name@a)lb = (ﬁl)ab = 84p, the matricesf\?a are linearly
independent. ThéV,;¢ are the structure constants of the graph fusion algebra satisfied by
the N matrices
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NuNp =" Nap*Ne (3.3)
c

which is an associative and commutative algebra. Of course, if the graplof type A,
this boils down to the ordinary Verlinde fusion algebra since the mditrof eigenvectors
is nothing but the modular matrik.
Since thef\?a andn; matrices have the same eigenvectors, it is easy to derive the matrix
relation

n,']/V\a sz’liabﬁb (3.4)
b
In particular fora = 1, N1 =1, and alln; appear as linear combinations with non-negative
integer coefficients of th&/’s

nig? =Zn516ﬁcab. (3.5)
C

Alternatively (3.4) may be used as a starting point to reconstruct the graph algebra, as
explained in Section 3.5.

It should be stressed that the definition of a graph fusion algebra is not unique. In
general, it depends on the choice of the distinguished node 1 and, when there are degenerate
eigenvalues, also on the choice of the eigenveatgtsTo view the graph fusion algebra as
a proper fusion algebra we would like the structure constahis to be non-negative
integers. But even the rationality of these numbers is not obvious and it is therefore
surprising that, for appropriate choices of th&s and of node 1 and famost cases, they
turn out to be integers of either sign. Among all the examples known toslG\n theories,
2< N <5, itfails in only two cases: the graph calléﬁz) in Fig. 12, for which there is no
node 1 satisfying & 1*, and whoseV algebra involves fractions of denominator 4; and a
graph in thesi(4)4 theory, [63], in which half-integeN,,;¢ of either sign occur. Adopting
(2.22), (3.4) in the framework of subfactors theory the latter example has been reinterpreted
by Xu [65] by trading commutativity of the graph fusion algebra for integrality.

Finally the non-negativity of theV is only possible for certain graphs which we call
proper fusion graphs. For example, for $1€) theories, theA-D-E graphs that admit a
proper graph fusion algebra are

properA-D-E graphs= A,, Dy, Es, Eg. (3.6)

The choice of distinguished node for thié2) A-D-E graphs is explained in Appendix B.

We note that the set of propet(2) fusion graphs matches the modular invariant
partition functions listed as “type I” at the end of Section 1. The situation is somewhat
different for sl(3) graphs, for which we have to introduce a further distinction. In this
case, some graphs with non—negatﬁs are not associated with type | theories. We
reserve the terminology “type | graph” for those graphs associated with type | theories
(see Appendix D and Tables 2—3). Moreover, as is clear fronsiiae, example above,
some type | modular invariant partition functions are associated with graphs with non-
integer and/or non-positivﬁabc. In the following, we discard these exceptional cases and
restrict ourselves to type | graphs that are associated with type | RCFTs. In general, the
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question of precisely which graphs admit type | fusion algebras should be related to the
classification of type | RCFTs, and thus is a very interesting open question.

3.3. Fusion rules and block characters

Given a solution to the Cardy equation, that is a set of partition functions
Zap(@) =Y _nia" xi(q) 3.7
iel
and the corresponding graphs, we assume as in Section 3.2 above that there exists a special
node called 1. We then introduce the combinations of characters (or “block characters”)

Xel@) = hic xi(q), (3.8)
ieZ
where
ic =ni1" (3.9)

is referred to as the basic intertwiner. Thanks to (3.5), (3.7) may be rewritten as

Zalb(Q):Zﬁcab )A(C(Q)s (310)

where the coefficients are now given by the structure constants of the graph fusion algebra
of G.

Equation (3.10) is a mathematical identity and as such is valid and consistent
independent of the choice of the distinguished node and eigenvectais Bhysically,
however, the case where the,¢ are non-negative integers is the most interesting. In that
case, following Cardy’s discussion [10], it is suggested Wat gives the number of times
that the propagating mode or representatiappears in the strip or cylinder with boundary
conditionsz andb. ThusifG is a type | graph, i.e., if the structure constaRig¢ are non-
negative integers, we have a possible interpretation: the nodéshe graph(s)G under
consideration label a class of representations of some extended chiral algebra. The blocks
Xa are their characters, and the integer coeffici&;,tg are their fusion coefficients.

To probe this interpretation, let us see how it confronts the results “in the bulk”, in
particular how it is consistent with the form of the torus partition function. There, it has
been observed already long ago that (for type | theories) the torus partition function (cf.
(1.5)) may be recast in the form

Ziorus= Y _ |%al®, (3.11)
aeT

i.e., as a diagonal sum ovarsubsetT" of block characters. The subsgtcorresponds
to a subalgebra of th&/ algebra, in the sense thatdf b € T, Ny # 0 only if ¢ €
T. This interpretation ofz;1¢ as a multiplicity of representationin the blocke, that
was first observed empirically [60,61], was subsequently derived in a variety of cases of
type | sl(N) theories based either on conformal embeddings or on orbifolding [63,64].
More recently, it appeared as an important ingredient in the investigation of the algebraic
structure underlying these theories [65—-68].
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The following interpretation is thus suggested. The nadesT’ label representations
of the maximally extended algebr& of the RCFT (of type 1) under consideration. The
subalgebra of theV algebra is the conventional fusion algebra of this RCFT. The other
nodesa ¢ T might label other “twisted” representations. The enﬂfealgebra would
describe the fusion of all, twisted and untwisted, representatiods.dfhis interpretation
in terms of twisted representations seems corroborated by the fact that spe
known also to occur in partition functions on a torus in the presence of twisted boundary
conditions. The fact that general boundary conditions on a cylinder also appeal to these
representations was first observed in the Potts model in [22]. See for some work in this
direction [69], and the more systematic developments [31-33] along the lines of [74]. The
concept of twisted representations in other cases, like conformal embeddings, remains to
be understood.

Having discussed the situation for type | theories and graphs, we return to RCFTs of type
Il. There the situation is more elusive. On the one hand, as discussed above, the boundary
conditions on a cylinder are labelled by nodes of an improper géapdnd although we
can still write an expression of the form (3.10), its physical interpretation is unclear. On the
other hand, from (1.6), we know [84] that the torus partition function may be expressed in
terms of block characters pertaining to a “parent” type | theory with g@ph

Ztorus= Z Xa (q)()?;(m(q))*, (3.12)
acT
whereT is once again a subset of the nodegséfcorresponding to a subalgebra of tNe
algebra, and is an automorphism of that subalgeb}?g(a)g(b)“") = ﬁub".
For example, thesl(2)16 theory labelled by the Dynkin diagrafi; is known to be
related in that way to th®; theory. Their respective torus partition functions read

D
ZE9 — 151 + xa71? + Ix3 + xasl? + x5+ x13l> + 1x7 + xu1l® + 2l x0l2  (3.13)

— Z Z ~ (Dlo)

a=1,3,5,7,9,10" i
aeDig

: (3.14)

E
Zt(orL)s—|Xl+Xl7| + x5 + x13l® + [x7 + x111? + |xol?

+ ((x3+ x15)xg +c¢.c) (3.15)

- T (T )(Sisn) @19
a=1,3,57,9,10 * i
aeD1g

with ¢ exchanging the two nodes 3 and 10 of g diagram.

It seems that the parent gragh also plays a role for cylinder partition functions of
type Il theories. Indeed, to obtain cylinder partition functions expanded with non-negative
coefficients in terms of block characters, we just have to expand in the block characters of
G'. Specifically, we find

G b A (G
Zy@) =Y GO g),
ceG’
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Z = ¥ [ e )

torus a T

L L
Fig. 3. The torus partition function reconstructed from two cylinder partition functions.
where theG-G’ intertwiners are given by

CAAEIDY

(G dm
meEXp(G) w

(G)

w(G)m I//.(G)m

These turn out to be non-negative intege % > 0 and satisfy the5’ graph algebra.
Here it is assumed that the distinct exponents of (E¥pare in ExgG’) and that the
sum is over exponents @ counting multiplicities. Moreover, if there is more than one
eigenvector ofG’ corresponding tan € Exp(G), then any of these eigenvectors can be
matched with the givem € Exp(G). The formula can be derived in the same way as our
previous formulas. In particular, this formula applies = E7 and G’ = D1p. In this
case there is an ambiguity as to whibhg eigenvector is taken forn = 9 but in fact one
can take either. The matrices are changed byzhsymmetry but the cylinder partition
functions agree. The formula also holds for the typs!(8) theoriesG = 5512), Efz) and
&? andG' = D12,

Putting everything together, we finally observe that in general for a “rectangular” torus
with two periods Z. andi T, made by pasting together two cylinders (see Fig. 3),

Zts= 3 Zuis Zip (3.17)
aeT
i.e., the partition function may be obtained as the sum over a special set of boundary
conditions of cylinder partition functions. This expression is of course deeply rooted in
all the connections between bulk and boundary theories, open and closed strings, etc., but
still we find its simplicity intriguing.

3.4. Examples

More examples can be given to the previous general scheme.

° Q(N): the classification of the representations of the fusion aIgeb&M‘)k is a
well posed problem on which we have only partial results. In particular, classes of
graphs pertaining tsl(3) as well as some cases for high€rhave been expounded
from various standpoints in [46,60-64,70] (see Appendix D). In all known cases, the
previous discussion may be repeated: intertwiners, type | graphs, and other concepts
introduced above, still apply. We refer the reader to the above references.

e The case o@(N)l may be described in detail. The representationgl(dV)l are
labelled by an integer & i < N — 1 (we depart here from our previous convention,
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with i = 0 denoting the identity). The fusion rules are isomorphic to the addition
of integers moduloN, and the algebra defined by;N; = Ni+; modn IS thus
generated by, N; = (N1)/. The eigenvalues af; are ex(i2ixjl/N). The regular
representation is provided by x N matrices, generated biyvy);/ = 8j.i+1 modn -

All the previous eigenvalues are reached once and we may thus say that the system
has “exponentsI =0, ..., N —1 (modN).

In general, a representatid¢m; } of the fusion algebra is associated with each divisor
g of N = p.q, includingqg = 1 andg = N: ¢ denotes the order of the matrix
which is (g x ¢)-dimensional and such thai),” = 8.1 modg, for a labelling

of the nodesi, b =1, ..., q. (This exhausts all integer-valued representations of the
algebra. Indeed the conditions thet = ny_1 andniny_1 = I imply that the only
entries ofny are 0 and 1, and that; is a permutation matrix. Being of order

and indecomposable; is a matrix of a cycle of lengtly. Q.E.D.) Obviously the
matricesn; = (n1)" are all integer-valuedyo = 1, andniT =n;x =ny—;. The graph

of adjacency matrixz1 is an orientedz-gon. In that case, we may say that the
exponents are,®, ..., p(g — 1).

This census of representations of #iev); fusion algebra matches almost perfectly
that of modular invariant partition functions carried out by ltzykson [71] and
Degiovanni [72]. We recall that according to these authors, a different modular
invariant is associated with each divisormgfwheren = N if N is odd andh = N /2

if it is even. Thus, only the cas¥ even,q = 1 has to be discarded in our list of
representations of the fusion algebra, as it does not correspond to a modular invariant.

3.5. More on graph algebras

In Section 3.2, we have introduced the matriaéby (3.2) and derived (3.4). Instead of
looking at the graph as a collection of points we can look at it as a collection of maktices
providing a basis of a commutative, associative algebra with identity, and an action of the
intertwinersn; given by (3.4), that is, we take (3.4) as a starting point. Given the géaph
in particular the coefficients;1¢, it is possible in many cases to invert (3.5) and solve for
N, as linear combinations with integral coefficients of the intertwimgrsr equivalently,
as polynomials of the fundamental adjacency matrices. Similarly the relation (3.4) written
in terms of the eigenvalues (i) = S;i /Sy, Pa(i) = ¥ /i

yi()Pa) =Y ni"Pi), i€& eI, (3.18)
b

is a recursive relation determining (the rows of) the eigenvector matfixin general,
typically in the presence of degenerate eigenvalues, the mgfriss not determined
uniquely, or alternatively, (3.5) cannot be inverted for @l V. For the type | cases,
however, as explained above, there exists an extended fusion algebra isomorphic to a
subalgebra of the graph algebra, so that the extended fusion mali@}‘fasan be identified

with a subsetV, with the nodes: € T c V [60,61]. In most of these type | cases one

can solve for aIIf\?a in terms of then;’s and Ngi‘t, or alternatively expresg, in terms
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of the modular matrices;;, ngg,. A particularly simple subclass of Type | for which

one can go quite far in the programme of reconstructing the géajind all the related
structures is presented by the orbifold theories, in particular the ones associated with groups
generated by simple currents. In our approach they can be described by graphs obtained by
“orbifolding” the fundamental graphs of the initial diagonal theory, the simplest example
being provided by the WZ\8I(2) Dy, series obtained by “orbifolding” the Dynkin diagram

Ay _3 over theZ, group generated by the automorphigmin these cases as well as in
theirsl(N) generalisations defined in [73] involving the grafip, one can algorithmically
construct the eigenvector matrix, see Appendix B for an illustration in the simjglesf

case. In a different approach, using tools similar to the original orbifold treatment of [74],
an elegant general formula for the eigenvector matrix was derived recently in [31-33]. It
should be noted that the same graph (orbi)folding procedure leads also to type Il graphs,
e.0., thesl(2) Doqq Series, or theisl(3) generalisations fat £ 0 mod 3, see Appendix D.

We have assumed up to now in this discussion that the graphs are already known. On
the other hand the relations (3.4), (2.22) can be taken as the starting point for finding new
graphs, typically “exceptional” graphs not covered by the previous orbifold constructions.
Since any graph in the vicinity of the identity resembles the original “diagoa8lg¢aph,
one can first try to identify:;’s for which the r.h.s. of (3.5) reduces to one term, i.e.,
ni1® = 844, and hence one can identify = ﬁa,-- According to (3.18) this also determines
’»”dii by y; (j) oncewi/ is known. This is a problem which is reduced to the computation of
some Verlinde fusion multiplicities. Indeed let us take the first matrix elemenb = 1
of the matrix relation (2.22) we have

Y nianpt =" Nplnnt=>" N/, (3.19)
c [

lep

where in the last sump = {I € Z|n;1! # 0} and! is countedn;1! times. Let us assume

first that in (3.19)i = j. Whenever the r.h.s. of (3.19) is equal to 1, since by definition
n;1“ are integers, the l.h.s. summation reduces to one term, i.e., we rege¥et §,, .
Furthermore plugging this into the |.h.s. of (3.19) takenjfet i we recover ;1“ as being

given by the sum of Verlinde fusion multiplicities in the r.h.s. of (3.19), i.e., we determine
the multiplicity with which N,, appears im;, see (3.5). Similarly, a value 2 or 3 for the
r.h.s. of (3.19) withi = j would lead to 2, respectively 3 terms in (3.5), while 4 could be
interpreted either as leading to 4 terms with multiplicity one, or 1 term with multiplicity
two, i.e.,n;1* = 25,4,. What we only need in order to check all these possibilities is to
know the content of the set, i.e.,n;11. This data is provided in type | theories for all of
which p encodes the content of the identity representation of the extended algebra. More
generallyn;1 = multg, (i), identifyinga with a representatioB, of the extended algebra.

The relation (3.19) and its consequences just described are the first steps in a consistent
algorithmic procedure proposed by Xu [65] in the abstract framework of subfactors theory
(see also [66—68] for further developments). In particular, the subsetwhich can be
identified with somef\?a,. are related to “irreducible” sectors with the sum in the l.h.s. of
(3.19) interpreted as a scalar prodet, a ;). The algorithm reduces systematically the
determination of;, N, in type | cases to data provided by the Verlinde fusion matrices
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N and N®, All graphs previously found in [46,60,61,63] were recovered in [65] by this
method and a new example corresponding tosttid)s modular invariant was found in
[64].

Finally let us point out that to some extent this algorithm for finding new solutions of
the equations (3.4) and (2.22), i.e., new graphs, can be applied to type Il cases where we
do not know a priorinj11, i.e., the sep. One can start with some trial set and compute
Yo W2 =81, Y,, 8. Afirst consistency check is th3€ ;¢ (¥1)? = 1. Then one
can proceed as in type |. For example #heDynkin diagram may be reconstructed using
p =1{1,9,17}.3 Different (consistent) choices of the semight lead to the same graph,
reflecting the possibility of different choices of the identity node.

In some simple cases it is possible to recover a complete set of boundary conditions by
applying formula (3.4) to a known subset in such a way that only one term appears in the
sum in the r.h.s. In terms of the equivalent formula (3.18) for the eigenvalues we obtain
a new solution//li, b= b(a, j), by “fusing” a given oney’ with the Verlinde eigenvalue
y;(i). This seems to be the idea of the so-called “Affleck fusion conjecture” [17], which
clearly has a restricted application, with the general formulae (3.4), (3.18) being the correct
substitute for it.

Another approach to constructing Type | graphs was discussed in [63] and used to find
new solutions for higher rank cases. It is based on the use of a relation for the structure
constants of the Pasquier algebra, the dual of the graph algebra, with structure constants
labelled by elements in the set EXp(and given by a formula analogous to (3.2), however
with the summation running over the nodes of the graph; this algebra will be discussed
further in Section 4.4.1 below.

4. Bulk and boundary operator algebras

In this section we investigate the algebras of fields in the presence of boundaries and the
equations for their structure constants resulting from duality constraints. Our discussion
parallels that of Cardy and Lewellen [11], but generalises it in two respects: to higher rank
and to non-diagonal theories. This results in additional multiplicities associated with the
more general representations of the Verlinde algebra (2.22). Our presentation makes use
of concepts used by Moore and Seiberg for bulk RCFTs and extends them appropriately
for this new setting. This leads to a richer structure in the equations and the appearance of
a triplet of algebrasn;, Na, M;). Separately these algebras have appeared before but the
inter-relation between these algebras has not been shown in this context.

4.1. Ground state degeneracies

As stressed by Affleck and Ludwig [16], the logarithm of the partition function, in the
limit L/ T — oo, contains not only the universal term proportionaltand to the central

3 Note added in proof: this was independently discussed in the recent paper [98], see also [84]. The paper [98]
provides a systematic approach in the framework of the subfactors theory to both types of modular invariants.
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charge (in unitary theories), but also anindependent term, interpreted as a boundary
condition dependent “ground state degeneracy; . Indeed in that limit

IN Zpjq ~ Zl4;1 ? +Inyl +Inyt —In sy, 4.1)

where as before we denote by 1 the representation of conformal weight 0, corresponding
to the identity operator. We therefore identify
_ Y
TS
Thus in unitary minimal models, using (2.38) and (2.28), we have the following
expression for the boundary states

(h) s’
S
|(r,a)> — Z 21/4 rr a

h
NRR

r’odd s’€eExXp(G)
and theirg factor

CLUC@) _1a Si1 Vi

80,
N el S ¢(®) O
11 Y11 11 Y11

in terms of the modular matrice§” ands(® of sl(2) at levelsh —2 andg — 2, |g — h| = 1.
For example, for the critical 3-state Potts model, we obtain

 E\1/4
g = <5 35/§> — 0.550936

(4.2)

7', s") (4.3)

(4.4)

8A:8AB :8aBc 8N =1:

1+ JE V3 1+2\@ 3
in agreementwith [22]. As a particular case of (4.4), the rgiQ) /g1, equals?r(}{)/sﬂ),
in agreement with (A.3) of [22] and the fact that one obtains the boundary|étai¢) by
fusion (in the sense of Cardy) of boundary states:) and(r, 1).

In non-unitary cases, these expressions have to be slightly amendedidhotes the
representation of smallest conformal weighf < 0 and assumed to belong&o then

L . .
In Zpja ~ Cziz 4 -+ INY + Iy —In sy (4.5)
With ceff := ¢ — 24hj,. Also
o= v
L= .
V Slrio

For simplicity of notation in most of what follows we shall restrict to unitary theories.
Denotingg, = (1), from now on,

im  Zpae 87 /g, = 4.7
L/T 500 bla € /8b = (Da- ( )
One can consider furthermore the partition function with some field insertions at the same

limit [11,26,27]; we shall normalise them similarly so that only a dependencg, da

(4.6)
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retained, i.e.{1), will coincide with the 1-point function of the identity operator in this
limit.

4.2. Bulk and boundary fields, OPE

4.2.1. Boundary fields

According to Cardy [10], boundary conditions can be interpreted as created by the
insertion of fieldsbgl/j“,ﬁ(x) living on the boundary, Iny = 0, x = Re z of the upper
half-planez € Hy. Herej € Z, a,b € V, and 8 accounts for the multiplicityaja” of
such fields, to be called “of typ ’I’ a). Thusg can be interpreted as a “coupling” index
B=12,. ..,njab and the boundary fields as kind of “chiral vertex operators” (CVO)
associated with a second type of couplir(g%a) ,a,beV,jeZ. Thisis a formal

analogy since the boundary states, |b) labelled bya, b are superpositions of Ishibashi
states. The multiplicity indeg is traditionally omitted, but it should be stressed that even
in the sl(2) case, in all but the diagonal cases=£ 7), there are always some nontrivial
multiplicities n(,ab > 1, so most of the time we shall retain this index. Singg? = 8,

the index associated with the couplh@ b) takes only one value and will be denoted

B =1, or justl, or, altogether omitted. On the other hand in all non-diagonal cases there
is a nontrivial subse{tlgl/jl,j € p} of boundary fields, with & p C Z, where the sep has

been introduced in Section 3.5.

To make contact with Section 2.2, consider the finite strig % log z equipped with the
HamiltonianH,, = 7 (L(()H) — 72)- The space of states is generated by all the descendent
states created for fixed b from the (properly normalised) vacuum stétéjffﬁ(O)|O) by
the modes of the Virasoro algebra generating the real analytic conformal transformations.
This includes besides the sum oyet 7 a summation over the muItipIiciwjab of these
states for fixed:, b, j, i.e., we can think of the Vir representation spateg as being
labelled by pairgj, 8). The “dual vacuum state” is defined by a boundary field placed

atinfinity 3" iMoo Cap,jp.p 247 (O[“WP. 4, (x), Wherec,  j. g p is @ normalisation

constant ang’ = 1,...,n;+“ is an index of type( jf‘* b). Accordingly the trace of the
operator e’ Ha» computed imposing the periodicity ~ w + T in time direction can be
written as a sum ovefj, ) of charactersy; g, with the summation oveg leading to
(2.15), witha andb exchanged.

Boundary fields‘?llfj?fﬁ(x) appear as ordinary fields; (x) decorated by a pair of indices
a, b according to some rules. In the lintit/ T — oo their 1-, 2- and 3-point functions are
given by the corresponding invariants @ with respect tosl(2, R) with normalisation
coefficients depending an b. As for the ordinary fields the 1-point function is non-zero
only for the identity operator

(0", ()|0) = 8180 Bt (L) (4-8)

with the restriction o, b coming fromn1,” = 8,4p. As for the ordinary CVO the product
byec d“’ﬁaz of two boundary fields is defined only for coincidirg= d. Similarly the

1,1
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initial and the final indices in a vacuum expectation value of a product of boundary fields,
are restricted to coincide (due to the periodicity in the strip time direction, the boundary
half-line being effectively closed) but in distinction with the ordinary CVO they can be
arbitrary and not just equal to the identity 1. The 2- and 3-point functions read

ab
(0]“w?, (x))?Wf, (x2)|0) =88 i X1 # X2 (4.9)
]Ofl 1,02 Jurac |X12|2Aj ’ ’
b c cpd
(o]*w; al(xl) Vi o (X2) Wk,%(xs)\O),
abe
= 8ud ljk;alaz.%;t — X1 X2 F# X3F X1, (4.10)

IX12IA§" 2l “# |xag] A
whereA" =A;+A; — Ay andx;; = x; — x;.

The funct|ons (4. 9) (4.10) are invariant with respectt@2, R), with representations
denoted by a paifs, ¢ = +), see [51]; here we chooge= 1 corresponding to taking the
modulus of the multiplier of th&sL(2, R) transformations and the expressions in (4.9),
(4.10) imply trivial monodromy of the boundary field correlators. In e, WZwW
models the fields carry an additional tensor index, or, in a functional realisation, depend
on an additional (multi)variablé& accounting for the representations of the “isospin”
sl(n, R) algebra and tha-point functions involve alsa-point invariants with respect to
this algebra. For example, in tﬁé(Z)k WZW case the field®;(x, X) can be described
in terms of a pair of real variables [79], the coefficients in the polynomial expansion
with respect taX representing the horizontal algebra descendants. In this case the isospin
labelsare 2=0,1, ..., k, and the 2- and 3-point invariant correlators contain additional
factorle.le along with anyxi;ZA". For simplicity we adapt the notation for the minimal
W,, models rather than their WZW counterparts, omitting the explicit indication of the
“isospin” variables and the corresponding invariants. To keep track of the various possible
three-point invariants, we shall retain the multiplicity indexs in (4.10).

Up to the normalisation constant and up to phases, (4.10) is the 3-pointinvariant function
(Olg;. 1 1 k.1, |0) of the ordinary CVQp; ; (x). Herer is a coupling index of typé ’; ' )
t=12,. ]k . Two kinds of permutations act on these couplings, see [37¢381:

(E’ ) — (F’ ) andoi3: (, ,) — (jl.* o ) For simplicity in the sequel we denote the

[ J i

one value indices indicating couplings with one label of typset to 1, likeo23(1;), 1;,

or, 1, (corresponding to couplings of ty[(él 1), (11 * ) or (‘i Y ) resp.), simply byi.
Motivated by the form of the 3-point function, the operator product expansion (OPE) of

(primary) boundary fieldéllfl.f'a (x) is defined according to

. LaB ot
P ) W, (2) = D VR, [; a] > (p. Pl (x12)14, 0) 'W 5. p(x2)
a1

p.B.t P

=Y @p, | T L g gy, a0)
Py 4 |x1| 2+ Ai—4p p.B ’

p.B.t o102
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i
L (I)F p_,L_j
cp 12
b c a b a

Xy X B x

Fig. 4. Graphical representation of (4.13). To stress the presence of two types of vertices, we
distinguish them explicitlyn this particular figure only

where P is an index for the descendent states of the representefionith p € Z. The
indicesa1, a2, B account for the multiplicity of vertices of typé'i’ c) (C ) (” )

joa pa
respectivelya, b,c € V, i.e.,a1 = 1,2, ...,n;.l, etc., whiler is that of a standard vertex
(f i ) t=1,2,..., N;;”. We will often restrict for simplicity to thel(2) case, so that the

indext can be omitted. From the 1-point function

DF, [i 1}/3[—3 Sac 8up18:18
cp b = Opi Oac Oup190t190a1f>

o102

1 18!
<1>Fcp[b ﬂ =8 8he Bay 1611 8z - (4.12)

o1 a2

With the normalisation of the CV(éf i ) implied by the second equality in (4.11) the
t

Bt

voJ withi, j,peZ,a,b,c eV, represent the OPE

b

coefficients of the boundary fieldsagi\zd their determination is part of the problem. They
are reminiscent of the matrix elements of the fusing (or crossing) matfi¢eghence the
notation here for this “second” fusing matrix), which serve as OPE coefficients of the usual
CVO [37,38]. The definition (4.11) extends to descendent fields in the I.h.s. as for the usual
CVO. Symbolically (4.11) can be written as

b c 1 i J b p b
(0 G sl )G, e
ic)yg \dia), . @ oy \E /)y \P )y

p.B.t

numerical coefficientél)FC,, [

and can be depicted similarly as the standard Moore—Seiberg diagrams, see Fig. 4.
Denoting byuga the space of boundary fields of ty e'; b) we have dimuga =
og

n,a" while the space of standard CVO,’,’., has dimension given by the Verlinde fusion
multiplicity N;; 7, dim U,.’,’. = N;;”. Thus we can interprébF as a linear operator

P u. ous, ~ P uk ouh,, (4.14)
c P

the dimension of the two sides being identical, according to (2.22). Given the 1- and 2-
point correlators above the computation of the general boundaryfiplaint functions is
reduced to the computation of the conformal blocks of the standard é’}/p) :

t,x
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() J
i* i l—I— i . .
1) X2 i* i
al b | a EJI _aj a
X Xy ~ A N — <1> 1 i 1
~ . . M ! — a X %
(b) P
i j k k—L j ok
(I)F 12
al b c| a bk’ _al c a
¢ X X2 0% ! = ' X X3 \ 61{ e
i
%12 !
M I k i k
El _i 2 a ¥
MR Y — <1 L ix | k| 1
\\ // —_— a X X% X

Fig. 5. (a) and (b): boundary field 2- and 3-point functions.

Comparing with the 2- and 3-point functions, see Fig. 5(a) and (b), we have

, o R
Cit oo, = Fbl[a } (L. (4.15)

a o102

b @ B o23013(1) @ ok 1.2
a C
z]k arapasit § : Fppex [ Cj| Fcl[ a :| (D

apaz @ 1gag
k il
—Z“)Fu J DE, (1) (4.16)
oo a3 a a a1y

The 2- and 3-point normalisation coefficients are assumed to satisfy the symmetry
conditions

ab k
C hap T C - (Cl*l 013(/3*)013(06*))
abc bca cha
C'/k apazaz;t C.iki sap0315013023(1) (Ck*J*l 013(a§>013(a§>013(ai>;013(t*)) - (4.17)

The first equalities in (4.17) are cyclic symmetry relations, see Fig. 6, while the second
equalities come from an antilinear (“CPT”) transformation, which in particular sends the
field blI/]f"ﬁ(x) to its conjugatétlll’?* ora(pt) (%) with multiplicity indices consistent with

nj(lc = nj*ca = nj*a*cl
The cyclic symmetry relations imply

1’ L .161’1.*
<1>F1[J J} <1>a:<1>Fa1[’C J} (e, (4.18)
o102

a o207
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ik i ki

Fig. 6. The cyclic symmetry of 3-point functions.

. Bt * 12
s Kkt k k
Z (l)Fak* I:i) j| (1)Fcl [ b bj| (Lp
8 €lsa B B2
kY0201 s s* 1,1
=Y O [ £ 1] BF, (W, (4.19)
> ¢ ajg, a a|,,

while the the second equalities in (4.17) lead to

: Bt x sk 0o13(BF)o23(*) \ ¥
s S
(1)Fak|:;) C} - (<1>Fak* [ i Jb} ) . (4.20)
Sa )

o13(a*) 013(8*

Combining (4.18) and (4.19), one recovers (4.16).

4.2.2. Bulk fields and bulk-boundary coefficients

We turn to the second ingredient of the Cardy—Lewellen boundary CFT, the bulk fields.
The half-plane bulk fieldsb;(z,z), z =x + iy € Hy,z = x — iy transform under a
representation of. () [42,43] realised by differential operators

LE = L,(Ai,2) + Ly(45,72) (4.21)

and characterised by a pdie= (i, i) of weights. In cases when there is more than one field
with the same label§, i) a more involved notation liké = (i, i; «) is needed, but usually
omitted for simplicity. For type | theories as well as for arbitrary scalar fields hota &£,
while in general,i € Z.

The invariance with respect to the subalgebra spannelo(ﬁ% determines the 1-point
function of @ ; 7 (z, 2) as well as the 2-point functiofi¥ ] , @, 7)), e.g.,

01wy, (x1) D 7, (2, 2)|0)
a
P01

(xp — )4 t4r—

x1>Rez, (4.22)

)Ai+AIT*A]) )AIT+AP7Ai ’

(z—1z Ai(x1 -2

while <q>(l.’;)wg,a> is defined for Re > x; by the analogous expression with — z,
x1 — z replaced byz — x1,z — x1. Requiring the symmetry of this function under the
exchange of the two fields, i.e., the independence of the ordering, leads to the constraint
Aj — A; € Z.

The r.h.s. of (4.22) is the 3-point block of standard le}pp,lfp (x1) ¢i+(2) ¢;,1; (2|0,

with 7 a coupling index of type( ”l 1) t=1,2,..., N”TP*. Consistently with this the
(primary) bulk field can be represented for smal 7 via the decomposition
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Din@D= Y. ”B’”)Zp,Plaﬁu(z—z)lt 0) ‘¥ . p()

a,a,pel,t
— Z a,appl ;awa Gt
- (D) (> _ \AitdA—A, P

a,a,pel,t (z—2) r

1
a,appst a.ra
= 2 Bl oraar W+ (4.23)
@,0) (2jv)4it4;—4 p,o
a,a,pel,t (2|y) r

which extends to descendents. Héve) , (z) are “unphysical” generalised CVO obtained
extending to the (full) plane the boundary fields of the previous section. Their OPE is
determined by the same fusing mat¢, i.e., as in (4.11), the latter extended to complex
argumentsg;, Rezi2 > 0, with |x12| replaced byzio; we shall need only this fusing
property.

The constant$: "‘B(” ’) (“bulk-boundary reflection coefficierifsn this decomposition

depend on two couplings of differenttyp({sﬁ ;) and(; a) . Note that the coefficients
t
used here differ by a phase from the traditionally normalised coefficients [11,12], which
will be denoted’*“Bg’l-f)(CL), ie.
pit I Z(Ai+4;—Ap) aaphit
”"‘B(l 5 =¢€?2 P ”O‘B(ij)(CL). (4.24)
The decomposition (4.23), symbolically written as

- 3y — aappt (P a
45(,',,')(& )= Z B(i,zT) < i l_) ) (P a) R (4-25)
t,z—2 a,z

a,a,p,t

see Fig. 7, reduces the computation of thpoint functions of®; ;, to the computation

of the blocks of the generalised CV@V},”a(z), which combined with their OPE (the
extension fromx12| to z12 of (4.11)) allows to recover all correlators in terms of standard
conformal blocks. The invariant 1-point function projected onto the boundarystatels

a,lBl,}
= G0
<®([,l_') (z, Z)>u = 81*1_ ﬁ <1>a (426)

Omitting the trivial indices and simplifying the labél, i*) to i, one has in particular
4Bl =1 for anya.
The OPE of the half-plane bulk fields,, ;,(z, z) is defined according to

P iy (21,21) P fy (22, 22)

= 30 DUTENT (i @l O, | 72
Gt J.J

’ >¢(j,]>;(1.,j)(12,22)

pY: Ditd
= Pwbih ;)22 72) + (4.27)

]

t, I kl
JoJ- Z12 21

The coeffluentsD((]i Z))(l’ 1t> are related to the full-plane bulk OPE coefficients, see below.
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Fig. 7. Graphical representation of the decomposition (4.25) of bulk fields.

4.3. Boundary CFT duality relations

4.3.1. Cardy—Lewellen equations rederived

We collect in this section the set of equations resulting from the sewing constraints on
the various OPE expansions [12]; some of these equations can be interpreted as expressing
locality (symmetry) of the boundary CFT correlators. For simplicity of notation we shall
sometimes omit the explicit indication of the coupling indices of t pjek and the
corresponding summations, i.e., the equations will be written essentially for the simplest
sl(2) case. However we shall keep the charge conjugation in the indicEésofthat the
general formulae can be easily recovered. In 4l{8) WZW case the braiding phases
are given by the shifted scaling dimensioﬂ?ug_ j, instead ofAfug (since the pair
of coordinate and isospin variables is moved as a whole). Then formulae work equally
well with the same fusing and braiding matrices, without additional signs, as for the
corresponding subfamilgl, 2 + 1) of fields in Virasoro minimal models.

Applying (4.11) in different ways to the 4-point function of boundary fieldsthat is
demanding associativity, leads to a relation connecting the two types of fusing matrices
DF andF, the fusing matrix for the ordinary CVO, which reads symbolically

FOr QO — Op Op (4.28)

or, more explicitly,

. .U U3 . yito . Bot3
i j ) i m ) j ok
E Fmp|:l kj| Fbl[a di| ch|:b di|

m, Bo,13,12 213 a1 B2 aras

_N" g [Pk
=S om(l ]
B1

The identity (4.29), when restricted to thE2) case, is a slightly simplified version of the
equation (L 3.29) in [12] and can be also obtained from the latter using the relation (4.16)
and dropping a (non-zero) factor of typeF,;1. The direct derivation of this pentagon-
like identity depicted in Fig. 8 is analogous to the derivation of the standard pentagon
equation for the fusing matriceB since the boundary field-point blocks are analogs

of the ordinary(n + 2)-point conformal blocks with an additional constraint due to the
delta function in the 2-point boundary bloékThe relation (4.16) is reproduced from the
pentagon identity (4.29) for particular values of the indices.

yiuz

1 ijﬁl”3
<>Fbp[ } . (4.29)

a

Bros a1

4 “Mixed” pentagon identities analogous to (4.28) appear in the framework of “weak Hopf algebras” as part of
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Fig. 8. The “mixed” pentagon identity.

Imposing the symmetry of the 3-point function
(w50 @52, D) W, () = ("W ) W) (k) D (2, D) )

one derives following Fig. 9,

b.BpP @ ]t ) il
2 "B Wy Fbl[ b b} , F‘”’*[b b]
8.8 B'B

sy
1 .o’
s* s k
= Z a,ani ) (1)a(1)Fa1|: j| (1)Fbs*[ ]i|
ot , a al],, a aj,,
i L o 0 k
o Z T RAI—2An+ At Aj=Ap) | [kj* l_} Fp [f* {} . (4.30)
m

On Fig. 9 the braiding matrice®(1-) appear, see Appendix E. Inthe r.h.s. of (4.30) we have
also used the cyclic symmetry relations (4.18), (4.19). Using furthermore these relations
a factor of typeV'F,; (and the related summation) can be dropped in both sides of (4.30)
which leads to a slighly simplified version as compared with the original equation (L 3.32)
in[12].

a “Big Pentagon identity” [76]. The counterparts &fF are interpreted as kind of “3j-symbols” along with the
standard interpretation of the fusing matridéss “6j-symbols”.
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Fig. 9. Derivation of (4.30).

From the 2-point functiod® , ,(z1,21)®; j,(z2, z2))a Using either the OPE formula
(4.27), or (4.23) (follow Fig. 10 withi = 1), we obtain

rs1 aBprtsz (1) Pt
a,o a,

Z Bio Bun Fa [ a:|
a,B ap

alln(AH»A —Ar—A4j) (//)tt IE
_Z B; : ZD(kk)(ll) [1‘*

or, equivalently,

k 023013(52) 023(51)
i| , (4.31)

o13(0) 1

(st tapl jr(Ac+Ar—A))
D(kk)(ll) B ¢ 1

1,1 o12(0) t
Z ein A, a,aprsi a ﬁB’ »52 (DF |: r*j| Fr*j I:_k l-:| ' . (432)
a a

*
o, f.r,51,52 (0 . af k=1 013(51) 52
Lastly from the 3-point functior(@(k,,;) (D) P 1 (ZZ)any (x)), we obtain, see Fig. 10

A A
kk 10 ai*
oy (k.k) () a al.p

— G aypi  dn(Ae—=Ar—A4))
o Z D(k,k)(lJ) B(Ai,./')
JrJ

. ik [ s 11
X Z s F]TS* |:l]* l_] Fjsps |:k* ];:| Fy |:r* i:| : (4.33)
N
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Fig. 10. Derivation of (4.33).

Fori =1 (4.33) reduces to (4.31). The sum owuein the r.h.s. of (4.33) represents
up to phases one of the sides in (an auxiliary) hexagon identity, resulting in permuting
{I,i,k} to {k,i,1}, i.e., can be written aBy3(—)B12(—) B23(—) and thus can be replaced
by B12(—)B23(—)B12(—). This gives an alternative representation of the r.h.s. of (4.33)
obtained from the above by replacing everywhérgk, j, r) — (1,1, j,t*). This is the
original form of Eq. (L 3.35) in [12], when (4.24) is inserted, with furthermore inverse
operator ordering convention and opposite overall sign of the phase.

The locality of this 3-point function (the symmetry under the exchange of the fi&)ds
implies also

Dty = CD* I DGRTECN si= A= 4 (4.39)

while from the associativity of the OPE (4.27) one obtains in particular the relation

Goitd (1D (k* k*);013023(1),013023(F) 1(1.1)
g 2 o =pWor)e D\ 4,
kYD 7 GG T A.DG*. %) (k* ) (k. k) (4.35)
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All the above equations hold true as well with a siga: +1, inserted in the exponents
of all the phases in these equations including (4.24), and replacing the bulk-boundary
coefficientsB with B.. Thus when rewritten in terms of the Cardy—Lewellen normalised
coefficientsB(CL) all equalities are true for both choices of sign.

Remark

The Lewellen equations in the diagorsd(2) case were recently confirmed in [81].
The seemingly different version of Eq. (4.30) in [14] is in fact equivalent to the original
Lewellen equation, after taking into account one of the duality relations (a hexagon identity,
see (E.6) in Appendix E) for the braiding matrices. On the other hand the derivation of
the versions of (4.31), (4.33) in [14] appears to be affected by a missing phase in the
intermediate (and needless) formula (17) in [14]. This phase is compensated in the final
formulae following from (4.31) (like (4.44) below) by another phase due to the presumably
neglected difference in the normalisation of the bulk-boundary coefficients (like in (4.24))
as compared with that in [11,12].

4.3.2. More pentagon relations

Before we turn to a discussion on the implications of the Cardy—Lewellen equations we
shall introduce one more ingredient to the scheme. It is natural to assume that there exists a
“third fusing matrix”, a matrix invertingVF, @F OF = 1 = WF @ F or more explicitly,

C otk 012(B3) 012(B2) J 013(y2) 1
Z © Fpp } P ! = 8ps By Ot'1

a* j c a

b.B2.53 - o23(a2) 1’ B2B3

9By
a 1

(3)pr [C X =084b 0%k pSapdr10y1,
Jdat

3 a j‘ﬁV

pr|:c 1 =08:p08jplaybr1dp1. (4.36)

Jdat

Along with the standard CVO{? k), this matrix involves new “couplings” of type

(: » >ﬂ, which can be thought of as obtained by a permutatigrirom the boundary fields

. (3 .y [T ”
(; a) , whence the notatiof’ = o23(8). The matrix®F satisfies a “mixed” pentagon

identity analogous to (4.28)
COFCFF=0CFOF (4.37)
J
a* ks,
summing over, a2, a3, using (4.36) in the r.h.s., we obtain another equation of similar
form

b i o12(a3) o12(002)
} and

Furthermore multiplying both sides of (4.29) wifFva/C*[

O O O — Op F,

which implies various useful relations obtained for particular values of the indices. One of
them reproduces the inverse property®#, another one reads
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at  i* 023(r) 023(B) . .x1l 1
Z<3>F1,,*[ . J,} |y = by (439)
5 @ J I o1s)o1ap) i

- |
whered; = §;1/511= F11 [J J, } is the quantum dimension. It furthermore implies
J o J

3 at ¥ o23(a) 023(B) 1 i 11 ,
d; § ( )Flb* . ( )Fal =n;,. (4.39)
a b J
ap J J11 o13(0) 013(B)

Using the inverse matri$®F, as introduced here, the half-plane bulk field can be also
written as a product of generalised boundary fields (a “bilocal” operator)

) i o 4 012023(B) 012023(ct)
- a.ygP-
P50 = Z Z By “Fp [a* z_'i|

a,b,a,p \p,y,t
x W, (2) "), (4.40)

012023(y) t

which reproduces the small — z expansion in (4.23); compare (4.40) with the chiral
decomposition of the (full) plane physical fields

I N (P @D; ) 1k Lk 7
Pon@O="3, DL L O @' D).
k,k,1,1,t,t

Finally we shall exploit the invers€F of the matrixV'F to rewrite (4.30) in another
equivalent form to be used in the next section. Namely we apply the invefS&jp- in
the r.h.s. and obtain

1

*
a,ups (1) s s

> B (Ma Fal[a }

a
o o13(0) o

7 (2A;—2An+ M +4Aj—A Joi ko j
x Z elJT( k+Aj=Ap) Fom |:k* l_:| Fmp* |:l_* ij|

m
b 1 ]t
=> ’ﬂBgl—.) (1) ¢ )Fbl[ b b}
b.B, B BB

a*  k108@020) Dk B
x 3 OF. [a* j} DF, - ;) .,
y.,0

o23(a’) 013(8) 013(y)

_ b.BRP Op | P T
= ) "Bl (1), VF [b a}
b,B.y’.8

3 a* k
% Z( ) [a* j}
v

In the last equality we have used the symmetry relation (4.16).

/

14

Bo13(8)

023(8) 023(y) 1
CI [k* k }

Y (4.41)

o23(a’) v o13(y)
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4.4. Consequences of the bulk-boundary equations

4.4.1. The Pasquier algebra and its dual

In this section we analyse some important consequences of the set of equations derived.
We start with Eq. (4.41), an inverted version of the first Lewellen bulk-boundary equation
(4.30), in which we take = 1= p. Thisimpliesk = j*,i =i*,a =1=o’ =g =p". The
sum overn in the l.h.s. is proportional to the modular matsix, see (E.9), while the sums
over the coupling indices, y are worked out using (4.39), the final result being

% Bl (1), = Xb: njqa” "B (1),. (4.42)
For simplicity we have done this computation in $€2) case but it extends straightfor-
wardly to arbitrary rank leading to the same formula.

Comparing (4.42) with (3.18), we see that it can be identified with the realisation (3.18)
of the relation (3.4) in terms of the eigenvalugsi) = v /wl of the graph algebra
matricesN,. Namely we can identify the ratf@! (1), /“B} (1), with the ratiof; (i) /74 (i)
Recalling the expression fdd), in (4.6) we flnd a relation between the boundary state
coefficientsy;, and the bulk-boundary coefficierfta}

i Ciix
apl _ draiaglicp) j A /%, (4.43)
a 1

where for the time being;;» is an arbitrary constan€1; = 1. Conversely, if we assume

the identification (4.43) (as, e.g., derived in $l€2) case by other means in [11], with

Cii» =1, see also [26,27]) we recover the relation (3.18) or (3.4) directly from one of the
bulk-boundary equations. As discussed in Section 3.5, from this relation we reconstruct the
graph algebra. _

In the diagonal cas€ = Z, wherey; = S,;, the relation (3.18) coincides with the
Verlinde formula, i.e., the standard fusion algebra realised by its characters. On the other
hand the Verlinde formula is known [14] to be recovered from the diagonal version of the
other bulk-boundary equation, the Cardy—Lewellen equation (4.31) to which we now turn.
This equation simplifies for = 1, leading tok = k*, [ = [*. Using (4.43) and denoting
pi(a) =yl /vl Eq. (4.31) turns into

pr(a) pi@) ="y My’ pj(a), (4.44)
J
where

j_ (-J* ).t
My’ = Z A1)

11
d"d’ _Cir D(”)” Fj1 [k* k} (4.45)
k. k*)(1,1* ’ )
G e 2P P Howt

and M/ = 0 if the correspondlng Verlinde multiplicityVy;/ vanishes. Alternatively,
inverting (4.44),
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: vkylyl*
Mkl«/zz HT k1, jek. (4.46)

aeV

Let us first look at the diagonal case in which according to (4.46) the consints
coincide with the Verlinde fusion rule multiplicitiely;/. This is confirmed also directly
by the alternative expression (4.45) provided by Eq. (4.31) as we shall now show. In the
diagonal case, denotir‘@g:*,ﬁ*))éf,’;*) = C((k’,i))(,’,’) we can use the inverted equation (4.32)
taken fora = 1, a choice which trivialises all summations, singe! = N,11 = §4,-, with

the result (pointed out in th&(2) case in [81])

Bl st di—ap G ko]
_J @74k 1—Aj > g A .
1BkllBllel fc(k’k*)(l’l*)_Flj[k l*Ll : (4.47)

Taking in particularj = 1 (4.47) gives
1pl1p1 iA 11
Bj "Bjox = el kdkcék,k’z)(k*,k)‘ (4.48)

Comparing with (4.43) taken in the diagonal case we see that we can identify the
undetermined constaudt;» with the normalisation constant of the bulk 2-point function.
We shall retain this identification af;;+ in the non-diagonal cases (at the same level as
the given diagonal case) which amounts to setting the relative 2-point normalisation to
1. Combined with (4.35) and (4.43) the relation (4.47) leads to a symmetry of the fusing
matrices analogous to the cyclic symmetry (4.18)

1k 112 J k* 21
F1; [ j| d = Fy [ . j| d;. (4.49)
J 1 k* 11 j k 11 J
Inserting (4.47) back into (4.45) and using (4.49) reduces the sum: duehe standard

pentagon identity specialised for some choice of the indices (cf. the analogous relation

(4.38)). Finally we are left with the sum over the coupling index t(i ,), which

reproduces the Verlinde multiplicity,;/ and completes the argument; alternatively the
same conclusion is achieved using the simple choice of gauge (E.2).

Note that the relation (4.47), with (4.48) accounted for, is a linear version of the
standard (quadratic) relation for the full plane diagonal OPE coefficients which results
from locality of the (full) plane bulk fields 4-point functions, see Appendix E. Ingki2)
case this identifies the OPE coefficients of the half- and full-plane diagonal bulk fields.
The identification extends to the nondiagosig?) scalar OPE coefficients as can be seen
generalising to 2-point bulk correlators the computation of the limif" — oo of the
1-point correlators in [11], leading to (4.43).

In the general (non-diagona)(2) cases characterised by a fixed level (central charge)
we can express the fusing matrix in the r.h.s. of (4.45) in terms of that in the r.h.s. of (4.47).
Using once again thsl(2) versions of the identities just described, we express it in terms
of the diagonal OPE coefficients at the same level, obtaining/fpr = 1

i 0.0 _ pUd) ()
My’ = dicvan = Pawan/ Chban: (4.50)
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The relative scalar OPE coeﬁiciemg:)f;(,,,) have been computed for tis&2) WZW and
the Virasoro (unitary) minimal models, see, e.g., [62] for an exhaustive list of references.
Now using the expression for the eigenvectors (2.38), they can be computed as in (4.46)
for all minimal models.

The matrices(M;);/ = My’ can be seen as a matrix realisation of an associative
commutative algebra with identity, distinguished basis and an involutiom (4.44)
the algebra is realised by its 1-dimensional representations (characters) given by ratios
of elements of the eigenvector matrix defining This algebra, traditionally called the
“Pasquier algebra” (#"-algebra), is dual in the sense of Ref. [82] to the gr&pJalgebra
considered in Section 3 but unlike its dual, its structure constants are notin general integral,
but rather algebraic numbers. In the simplek®) case the squaregVy;/)? of these
constants are rational numbers for &HD- E cases; this rule persists for most of #1€3)
cases but is broken by two of the gra;ﬂiéz) andEélz) corresponding to the exceptional
modular invariant at levet + 3= 12, see Appendix D. The type $l(2) casesDydq and
E7 are again distinguished by the fact that the sign of some of the multiplidifigs is
negative and this is a basis independent statement in the sense that there is no choice of
basis to make aIM,fl non-negative, contrary to the Type | cagesen Es, Eg, and this is
a general feature of Type Il theories.

The formula (4.50) extends beyond thié2) case for(k, I, j) such thatN/ =1, i.e.,
in cases with trivial Verlinde multiplicity the matrix element;’ provide the (relative)
OPE coefﬁuentsi(k’ o 1L1) For nontrivial Verlinde multiplicitiesNy;/ > 1 the relation
between the constanigy;’ (4.46) and the OPE coefficients is not so direct. Let us give a
sl(3) WZW example which illustrates the relation (4.45). There are three graphs found
in [46] which correspond to the exceptional block-diagonal modular invariant at level
k + 3 =12, see Appendix D, where these graphs are denotef;“tfi/,i =1,2,3. One
can pick up triplets of weight€&, j, /) such that the Verlinde multiplicity of the diagonal
sl(3) model atlevek +3 = 12 is trivial, N;;! = 1 and check the values of the corresponding
Pasquier algebra structure constaMt,e; for each of the three graphs. The result is that,
comparing in partlculaf(lz) andS(lz) there exist such triplets leading to different values
of M,.,l for the two graphs. Since for trivial Verlinde multiplicities the formula (4.45) gives

a direct relation between the two types of constaMl;’?f d((ll ll*))(]l jl*), this result suggests
that there are two different solutions for the bulk OPE coefficients in this case. Only one
of these two non-diagonal solutions, namely the one which can be associated with the
Type | graphE{lZ) was recovered in [63], exploiting a set of equations for healgebra
structure constants. This set was derived from the bulk CFT locality equations assuming
an additional (quadratic) constraint on the OPE coefficients in theories with an extended
symmetry; some of its consequences were also reproduced in the abstract framework of
[65], in particular the relation;1* = mult, (i) discussed in Section 3. Precisely this relation
fails (and hence the assumptions on the OPE coefficients in [63]) for the @fe?bh/vhich
otherwise satisfies all the requirements of Type |.

We conclude with a comment on the OPE coefficients. As discussed in [26,27] one can
relate in the limitL /T — oo the correlators of the half- and full-plane bulk fiekd$! (z, z)
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and qﬁﬁ(g, ¢), looking at the two dual representations of the partition function with field
insertions; in particular (4.43) was recovered in this way. Though this transformation needs
to be elaborated for higher rank cases it seems reasonable to expect (and in agreement with
(4.47)) that using the two choices of the automorphigntdiscussed in Section 2.1, we can
identify in this way the OPE coefficients of the two bulk fields with eitlies= I = (j, j)
orl"=(j, j%).

A bit of history

The algebra (4.44) defined through the eigenvectors ofitfie- E Cartan matrices first
appeared in the context of the(2) A-D-E lattice models proposed by Pasquier [59]
a short time before the Verlinde fusion rule formula (the “A” algebra in $k{2) case)
was found. The interpretation in terms of a pair of dual C (“Character”)-algebras was
proposed in [60,61] in the discussion of the set of graphs found in [46] as a generalisation
of the Dynkin diagrams associated with the modular invariangy8f WZW and minimal
models. The fact that the relative scalar OPE coeﬁiciéﬂt’g(m of all A-D-E series of
the sl(2) WZW (or the subfamily of fieldg1, s) in unitary minimal models) coincide in
a suitable basis with the Pasquier algebra (4.44) structure congtapitsvas the main
result of [62]. It was established through a case by case check, supported by a lattice
model derivation in which the same coefficients appear considering representations of the
Temperley—Lieb algebra. CFT locality constraints resulting in formulae quite similar in
spirit to (4.45) were furthermore exploited in [63,64] as an ingredient in the construction of
generalised Pasquier algebras and thus of new examples of graphs retdtedireodular
invariants, extending the results in [46,60,61]. The authors of [62—64] were, however, not
aware of the parallel development of boundary CFT, and in particular of [11,12], where the
equation (4.31) first appeared. The importance of the algebra obtained from this equation
atr = 1 was recognised and stressed in [14], where a representative examplesio®the
WZW Doqdq series was considered, for which the $eand the characterg, (a) of the
algebra were explicitly described. Presumably the authors of [14] were not aware of the
generalA-D-E result in [62]. In the same framework of boundary CFT the Pasquier
algebra reappeared recently in a systematic study of orbifold theories, see [31-33] and
references therein, under the name “(total) classifying algebra”.

4.4.2. Relation to the Moore—Seiberg set of duality equations

We have seen that the two Lewellen bulk-boundary equations (4.30) and (4.31) when
restricted to some particular values of the indipes bB[:-Z- become in some sense “dual”
to each other, recovering the two dual C-algebras, the graph and Pasquier algebras. These
algebras are identical in the diagonal case, reproducing the Verlinde fusion algebra, which
suggests that in this case the above two equations might be related.

On the other hand let us recall that the original derivation [37—39] of the Verlinde
formula relies on the use of one of the basic Moore—Seiberg duality relations, namely the
equation resulting from the modular property of the two-point functions on the torus, see
(E.7). It involves the fusing/braiding matricésor B and the modular matris;; (p) (in
generaISl?]'.’(p)) for the 1-point functions(](p)(r, z) on the torus, the indey standing for
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the (representation) label of the inserted C\,(q,si )t ) and(; j)t +logz’ = (logz) /.
see [37,38].

The alert reader may have already noticed the full analogy between the Moore—Seiberg
torus identity (E.7) and the second version (4.41) of Eq. (4.30). It suggests that the quantity
taking over the role of the modular mati$X p) is the bulk-boundary reflection coefficient
BP”. In the diagonal case this correspondence is precise, i.e., the two are identical up to a
constant.

Indeed first note that Eq. (4.41), still considered in the general (non-diagonal) case,
simplifies fors = 1, thatisk = j*, i =i*, &’ = 1. Inserting in the first line the expression
for the modular matrixS;; (p), see (E.8), and using in the third line (4.38), we obtain an
expression for the modular matr(p),

8

1 8ji(p*) '
“B! (1), 7 s =2 "By (W ) Ry FA RGN
Fm[] / } ’ b.p 5 ps
p p

Let us concentrate now on the diagonal case £. The sums in the r.h.s. of (4.51) can
be reduced to one term choosimg- 1 and using (4.12), sinogj1” = Nj1®> =85, § = 1.
Alternatively, one can take = 1 directly in the original equation (4.30) — the resulting
(linear) formula forB? in terms of the fusing matriceB (instead of the formula for its
square derived in [11]) was first explicitly written down by Runkel [81]. More explicitly
we have in thesl(2) case,

1pl 1pl
ig? .):i ! S _ B 1 S (4.52)

Both (4.51) and (4.52) easily extend beyond 8i@) case. In particular restoring all
coupling indices the latter formula reads in general

- xquonaoza(p) g1 020130 ()
iBppt _1pl j Jt i p
alh =t (] ]

u

With the help of one of the consequences of the pentagon identity, (4.53) can be inverted
and brought into a form analogous to that of (4.52).

The coincidence of the two seemingly very different quantities, the coefficihts
the expansion (4.23) of the half-plane bulk field and the modular mé&igx of the torus
1-point blocks, is quite surprising and needs a better understanding. We were led to this
observation trying to find a connection between the two duality schemes, the one of Moore—
Seiberg involving the torus, the other, of Cardy—Lewellen, involving the cylinder. Thus to
bring Eq. (4.41), derived from the first of the Lewellen bulk-boundary equations (4.30),
into a form identical to the original Moore—Seiberg torus duality relation we furthermore
need to identify the three fusing matric€8F, F, ®F, i.e.,

k .yt k eV
(1)Fbp|: i} :Fbp|: J} 7

a op a ¢ op

4.53
11 S1i (4.53)



750 R.E. Behrend et al. / Nuclear Physics B 579 [FS] (2000) 707-773

c J o' B c J o B
@ _ . 4.54
pb |:a k}yltl pb [Cl k}y’[/ ( )

This identification is consistent since in the diagonal case £ both mixed pentagon
identities (4.29) and (4.37) then become the ordinary Moore—Seiberg pentagon identity;
see also [81], where the identification of the boundary field OPE coefficients with the
fusing matrices in thel(2) case was first established by a more elaborate argument.

Itis now straightforward to show that the first equality in (4.41) reproduce the two sides
of the Moore—Seiberg identity (E.7). Taking into account (4.52) and (4.54) the second
Lewellen bulk-boundary equation (4.31) is seen also to be a consequence of the first, i.e.,
of the same Moore—Seiberg torus duality relation. To show this, one has to insert in (4.31)
the expression (4.47) for the OPE coefficients and to compare the equation with (4.41) with
p =1, see also Appendix E.

We thus see that in the diagonal case the two basic bulk-boundary equations (4.30),
(4.31) are not independent and are equivalent to one of the basic Moore—Seiberg duality
relations. The third bulk-boundary equation (4.33), a more general version of (4.31), is an
identity which involves again only the Moore—Seiberg duality matriee®, S, and thus
can be expected, following the completeness argument of [37,38], to be derivable using the
basic Moore—Seiberg duality relations. This in particular implies that any solution of the set
of Moore—Seiberg (chiral) duality relations provides a solution of the diagonal boundary
CFT equations.

Remark

Rewritten in terms ofS(p) the diagonal case Lewellen equation (4.31) can be also
interpreted as a generalised Verlinde fusion formula with (non-integral) “multiplicities”
}‘flk given by some particulaF matrix elements. The matrices, are “diagonalised”
by S(p) with the usual eigenvalue$;; (1)/51;(1). Because of this they realise another
representation of the usual Verlinde algebra. This formula, which derives from the Moore—
Seiberg torus duality identity, appears to have been already considered, following a
different motivation, in [83].

We conclude this section with a few comments on the general non-diagonal cases. The
Cardy—Lewellen boundary CFT can be looked at as a purely “chiral” alternative of the
usual CFT approach in which we combine left and right chiral blocks imposing consistency
conditions. It has its “price” in that everything effectively “splits” — the geis replaced
by two “dual” setsy and& (for Type I, while for Type Il we have to retain the whale
to describe non-scalar fields), there are two representations of the Verlinde fusion algebra
and a related new fusion algebra (at least in Type | cases); there are two types of “chiral
vertex operators”, new duality matrices, in particular a second fusing métfixand
its inverse,®F, along with the standard’, satisfying new duality relations, the mixed
pentagon relations, generalising one of the basic genus zero polynomial identities; instead
of one relation involving the modular matrs(p), there are two independent relations —
the two bulk-boundary equations in which the roleSgp) is taken over by the reflection
coefficientsB?. It remains to find a consistent solution of the equations at least in the
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sl(2) case. Some of the ingredients are already known and have been recalled above. In
particular the solution for th®-series has just been obtained by Runkel [94].

5. Conclusions and outlook

In this paper we have reexamined various aspects of boundary effects in RCFTSs.
We have in particular analyzed the consistency conditions that determine the allowed
boundary states and fields and their characteristic data, OPE coefficients, etc. We have
seen that boundary conditions are naturally associated with a graph, or a collection of
graphs, whose spectral properties (eigenvalues) encode the diagonal spectrum of the bulk
theory. This legitimates empirical observations made previously on the role of graphs
in the classification of RCFTs. We have seen that the torus partition function may
be fully reconstructed from the information contained in these graphs. We have seen
also that in several caseﬁ(e), SI(N)1 theories), this approach provides a substantially
simpler route to the classification of RCFTs than the study of bulk properties (modular
invariants,...). We have finally seen that further important information about some
boundary effectsg-factors, boundary structure constants) is also encoded in the spectral
properties (eigenvectors) of these graphs. The bottom line of this analysis is that a triplet of
matrix algebras;, N., M;) plays a central role in the whole discussion. These algebraic
structures have been also confirmed by the detailed analysis of the basic equations of
the boundary field theory. In the diagonal case the triplet of algebras reduces to one, the
Verlinde fusion algebra. Accordingly, we have seen that in this case the basic boundary
CFT Lewellen equations can be identified with a set of genus 0 (the pentagon) and genus
1 duality identities of Moore—Seiberg. This leads to an identification of some of the basic
notions in the two approaches, namely, the boundary fields OPE coeffitieftand the
bulk-boundary reflection coefficient8”, with the chiral CFT fusing matrix¥’ and the
modular matrixS(p), respectively (see the text for precise formulae).

The more general representationsof the Verlinde fusion algebra and the dual pair
{N, M} of associative, commutative (semisimple) algebras have been introduced in earlier
work on bulk (and later on boundary) conformal field theories, but it seems to us that
the consistency of the whole scheme now appears in its full generality and that boundary
RCFTs reveal these features in a simpler and more compelling way than in the bulk. In a
loose sense, the boundary effects expose better the underlying chiral structure of the theory
and its algebraic pattern. This should certainly not come as a surprise, as this is in the same
spirit as the old connection between open and closed strings.

The study of a RCFT through its boundary conditions, its algebra triplet, etc., still
requires a lot of work. The derivation of the Cardy equation relies on a technical assumption
that has been only partially justified, namely the proper definition of unspecialized
characters with linear independence and good modular properties for general chiral
algebras. Also it would be good to have a better understanding of the completeness
assumption: given a certain number of boundary conditions satisfying the Cardy equation,
is it obvious that we may always supplement them into a complete set in the sense
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discussed in Section 2? Then many questions have been only partially treated: Justify in
full generality the validity of expressions (3.11), (3.12) which have been established so far
only for particular cases; understand better the nature and fusion rules of “twisted” block
representations that appear in this discussion; set up a general scheme for the systematic
classification of integer valued representations of fusion algebras; set up with more rigour
the formalism of generalized chiral vertex operators, their fusing matrices and the ensuing
duality equations as a consistent chiral approach, alternative to the Moore—Seiberg scheme,
etc., such are some of the outstanding problems that are awaiting a proper treatment.

Also it remains to see how our discussion of boundary conditions must be generalized
in theories where there is no choice of a common diagonalising magrileading toN
algebra with integer structure constants. In the approach of [65—67], in which the numbers
N are integers, one has to drop the axiom of commutativity, replacing this algebra by a
non-commutative structure. In that respect, a better understanding of the relation of our
work with other more abstract approaches — Ocneanu theory of subfactors, weak Hopf
algebras — would be most profitable.

Directions for future work also include the discussion of other cases: rational or
irrational theories at = 1, ¢ = 2, or N' = 2 superconformal theories are particularly
important cases in view of their physical applications to condensed matter or to string
theory. The generalization to other types of twisted boundary conditions along the cycle
of the cylinder, as examined recently in [95], might constitute another useful approach.
Finally the parallel discussion of these boundary conditions and algebraic structures in
lattice models should be extremely instructive and will be the object of a forthcoming
publication.

Appendix A. The Cardy equation

In this appendix, we rederive the Cardy equation (Section 2.2) in the presence of sources,
which have the effect of introducing unspecialized characters in the partition function. We
restrict to a conformal field theory with a current algebra. {t} denote the generators
in the Cartan subalgebra, ang be “charges” coupled to them. We consider the theory on
the cylinderL x T of Section 2.2, callv = u +iv the local variable, & v < L, u periodic
of period7', and modify the energy—momentum tengaiv) into

: 2

T (w) = T (w) — 2'7” > Ve ¥ (w) — g (ZNT”‘”> : (A.1)
. 2

T/ () = T () — 2'7” 3 va T (i) — g 3 (ZNT”‘”> . (A.2)

As an elementary calculation shows, the last term is dictated by the requiremeft that
satisfies the conventional OPE of an energy momentum tensor. The central charge is not
affected by the additional terms.

One then computes the evolution operators in the two channels of Section 2.2, see Fig. 1.
For the cylinder, mapped to the plane by e=27*/T  the Hamiltonian reads
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-T
1 / Bl 1 / s
HY — o / du (T'(w) + T'(w)) = o 55 dw (7" (w) + T'(w)) (A.3)
0
S <Lg’> T S fg%)). (A.4)

Note that the additional term in (A.1) and (A.2) has not contributed to the integral over a
closed cycle. Taking into account the fact that on boundary slq{fé& LBP) andJéP)“ =
—fép)"‘, we find that the first expression of the partition function reads

Zya = (ple T o 5t Teveld) o) = Y yd (g KLLYD (A5)
, Si1
je€
where we have defined
Xj(q,2) i=try, qhom 24P Xl (A.6)
and as abovg = e *"L/T hencef = 2iL/T.
In the other channel, the time evolution on the strip is described by the Hamiltonian
iLd 7md‘
Hyy = f 2T w) + f T ) (A7)
2ri 27i
0 0

and upon mapping on the upper half plaidedy z = e**/% | we find

) 2
T (H) c 2ir Ha L 27 vy
Hpg==—(L" - — )= - A.
ba L( 0 24> - ;vaJo Sk > (7 ) (A.8)

where now the additional piece in (A.1) contributes the last term. Since the theory
with energy-momentum tensor (A.1) and (A.2) has still the same operator content and
multiplicities n;+,” = n;;¢ as before,we may write

Zpla =1r e THba — eznk% o vl Zni*abxi (q,v) (A.9)
i

with ¢ = e 7T/L We then use the modular transformation of unspecialized characters
(see [45, p. 264]):

kY -
Xi(q.v) =KL N5y, v) (A.10)
J
together with the linear independence of jhég, z) to conclude that (2.16) is indeed true
in full generality.

Appendix B. A-D-E diagrams and intertwiners

In this appendix we establish notations @nD-E Dynkin diagrams and on the
associated intertwiners.
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Let G be a Dynkin diagram of thd-D-E type with Coxeter numbey. It hasn nodes
that may be coloured with two colours, i.e.,itsx n adjacency matrixG,, connects only
nodes of different colours. This matrix is symmetric and it may thus be diagonalized in an
orthonormal basis. We call this orthonormal bag/, it is labelled by the node and the
exponenin (see Fig. 2 and Table 1). Hence

b s s’ s
> G Yy =2cos— vy . (B.1)
b g
The s satisfy orthonormality conditions, namely
S v =0, 5" €EXRG), (8.2)
a
Ut =6 (B.3)
s'eExp

Because of the 2-colourability @¥, one may attach @, gradingr to each node. One
proves that ifs’ is an exponent, so i8(s’) = g — s’ and they’'s may be chosen to satisfy

vet) = (=D (B.4)

Moreover, all graphs havingvenexponents, viz. thd, Dyqqg and Eg diagrams, have
automorphisny acting on their nodes and preserving their adjacency matrix G £.=
Gy(a)V(b), this is the natural, symmetry of these graphs) such that

Vo= D"y (B.5)

Finally, one may find in the grap@i a distinguished node labelled= 1 such that/;" > 0
for all m. This special node is typically an extremal node, i.e., the end of a branch for the
A-D-E graphs; this is generally the end of a long leg, but for fhgg graphs, for which
we must choose 1 as the end point of one of the two short legs.

We list hereafter the explicit expressions of eigenvectors of the various Dynkin diagrams.

The Dy, series are the simplest examples of orbifold models. Their fundamental
graphs can be obtained by folding ti#g_1 Dynkin diagram so that the nodes =
ag_i € D%H,i =1,2,3,...,% — 1 are identified with the orbifi} of i under theZ,
automorphisnv, o (i) = g — i, while the fixed poini = g/2 is resolved into two points
as . on the graph, denoted, » — 1 in Fig. 2. This implies for the adjacency matrix
eIementsGal.aj =A;jj+ A=A, fori, j# %, and Ga%iaj = A%j and allows us

to determine the eigenvecto,bé of G in terms of the eigenvectors; of the A adjacency
matrix. To simplify notation we shall use sometimge$= v, .

B.1. Eigenvectors of theD,; adjacency matrix

5 _

' .8 .
vl =253, LS V0T =S, i#

9

N |00
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(5.¢" _ ext _ 1 /s /
vl =52 e _5(5%% +eeliv/(=1) ) (B.6)

8

E’E
Fori odd the orbitgi} belong toZ®! and can be identified with the subset= {a;,i =
1,3....5 - 2.as ,}. The matrixSeXt.} is the extended theory modular matrix. The

(i)
expressions (B.6) can be rewritten in the compact form

. Sl]
Va = Satj), | 5o (B.7)
{11}
wheresS, ;) is a rectangular matrix coinciding fare T with ng‘}}, while fora =a; ¢ T,
Suit(s. 0 = Sig =0andSy, (jy =3 ey Sij =25i; for j #g/2.

B.2. Eigenvectors of theDy; 1 adjacency matrix

N |00

s

. i—1 g

vl =(-1'7 V25, i,j;é%, Yi=0, i+
Lo L s 5 1

VAN S

The identity node is chosen to coincide with one of the “fork” nodesds; , (denoted

I =17 (B.8)
5.+ :

by L in Fig. 2) so that the dual Perron—Frobenius eigenve;lrtl’bh w‘é N has positive
25

8
entries (whiley,;; = 0). The “fundamental” nod¢ is identified with§ — 1, i.e,,G =
N§_1. Also a* = a for all a, while y(a%_‘_) =ag,

Next we display the eigenvectors of the exceptioBalDynkin diagrams as a matrix
{2}, with the row indexa running over the nodes, following the numbering of Fig. 2,
and the column index over the exponents in the same order as in Table 1. There&too,
denote the eigenvectors of the diagonal graph adjacency matnith the same Coxeter
number.

B.3. Eigenvectors of theEg adjacency matrix

1 1
a > b b 5 a
b % a—a—%—b
(j)_ ¢c 0—-d-d 0 ¢ (B.9)
@ b—% a —a %—b ' '
a—% b b—% a
d 0—-—c ¢ 0-d
where
_l3=v3 1343 _1/3+V3 . 1/3-43
“T2VTe C "T2V 6 © T2y 3 2\ " 3
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are determined from
; ; S1i .
vi= [Su )] Si Ve=(Sa+Sa) [ for i€f p=(17).
jep Z./’Ep Jt

B.4. Eigenvectors of theE7 adjacency matrix

a c b 7 b c a
e f d 0 —-d —f —e
‘ c b —a —% a b ¢
( ({)z f —d —e 0 e d—f1, (B.10)
1 1 1 oL _1 1
V6 /6 V6 NIV NG
d —e f 0-—f e —d
b —a —c % —c —a b
wherea, b, ¢, d, e, f are determined fromyf{ = /51 2 ic, Sij,» Wherep = {1,9,17},

and 1//'2/ = % 1//1’ (The values in the 5th row come frowg = \/ESBA, for j =1,5,7.)

Explicitly,

a=[18+12V3 coslls]_l/z, d=[12(1+ cos%)]_l/z,
b=[18+12v3costZ |2 e =[12(1+cos%)] 2, (B.11)
c=[18+12v/3cosk ]|, £ =[12(1+cos™)] 2.

B.5. Eigenvectors of theEg adjacency matrix

f ¢ d d ¢ f a
e h g —g—h —e —b
d —a—f—f —a d c¢
a

ISV U N

j —f - —a —d
(vd) = A 6.12)

—-h —g b b—-g—-h e
d —a a—-d c—f
—-b e —-h —-h e—-b g

—g b e —e b g —h

> = o
|
o

wherea, b, ¢, d, e, f, g, h are determined fron@tx{ =/S1 Xicp Sij andwé = —ii’ 1//{
X ’ J
forje&, p=1{1,11 19, 29}. Explicitly,
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15(3+ /) + 15(130+58ﬁ>) —1/2 -
: . b=|15+75-3

d=

2

N ooy
—1/2 -

[15(3 ++/5) — 215(130+ 58/5) ] . e=|15— \/m

| 7515078

153 — +/5) — /15(130— 58\/3):| r

[15(3 — /B) +/15(130— 58//5) ]‘1/ 2 -
— > , h
(B.13)

To such a graplt;, one then attaches matric&s as follows. The case of reference is
the A,_, diagram of same Coxeter numkgasG. For thisA graph, both the nodes and
the exponents take all integer valueg1n. .., ¢ — 1}. They's are then nothing other than
the entries of the (symmetric, unitary) matSxof modular transformations of characters
of the affine algebrgz atlevelg — 2

2
g —S,,/:\/?s n”;l (B.14)

in terms of which the fusion coefficient;,;,’* may be expressed through Verlinde
formula. Note also that

Ng—iiy87'2 = Ny, (B.15)

because of property (B.4) appliedd?) = §
We now return to the grap& of Coxeter numbep. The fused adjacency matric&s
withi =1,..., ¢ — 1 aren x n matrices defined recursively by ts&2) fusion algebra

Vi=VoVii1— Vi, 2<i<g, (B.16)

and subject to the initial conditiorig, = 7 andV, = G. (One may see that, =0.) The
matricesV; are symmetric and mutually commuting with entries given by a Verlinde-type
formula

Sim m,;m
Vi! = (V"= Y0 Sy (B.17)

meExp(G) V"

Regarded agg — 1) x n rectangular matrices, farfixed, theV;,” intertwine theA andG
adjacency matrices

DAV =) Vi Gy, (B.18)
l'/ b/

Regarded a8 x n matrices, theV; satisfy not only their defining relation (B.16) but also
the wholesl(2) fusion algebra (2.22)
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VisVip =Y Nipip*Vig. (B.19)
3
From their recursive definition and initial conditions, it follows that the entries ofthe

matrices areéntegers What is not obvious is that these entries aom-negativeintegers.

This follows either from a direct inspection or from an elegant group theoretic argument
due to Dorey [85]. We refer the reader to [46,57] for the explicit expressions of these
intertwiners. As a consequence of the existence of the automorphidefined above
(B.5), aZp symmetry onA, Doqg, Es graphs and the identity faDeven, E7, Eg, ONe has

ngsay(b) = Vsab~ (B-ZO)

Using (B.16) and (3.4) (i.e., in the notations of this appentiy, = 3", Vi.”N) one
can express the graph algetﬁ@matrices for all but théeyencases as polynomials df's
with integer coefficients. This in particular ensures that they have integer matrix elements.
For Devenone of the extended fusion algebra genera]h(f%éi} has to be added sinde% =

N{egtH + N{e‘g"tf} while N; = V; = V,_; fori =1,2,..., £ — 1. For the three exceptional
25 2

casesEt, we have

Ni=Vi, i=12,...,r=3,

]/V\rfl =Vic1— Vi3, ]/\7;'72 =V, —=Vi_a, ﬁr =Vi2+Vica—V;,
which translates into relations between the eigenvalues and gif/eﬁows to express any
%j in terms of the modular matrig elements.

Over recent years, these matrices have made repeated appearances in a variety of
problems. Originally introduced in the discussion of local height probabilities in lattice
models [59] and of boundary partition functions [9,46] (see below), they have also appeared
in the following contexts:

(i) The “cells” or intertwiners of Boltzmann weights of height models [46,57].

(i) The decomposition of the representation of the Temperley—Lieb algebra on the
space of paths from to b on graphG onto the irreducible ones on the paths from
1tos on graphA,_1 [58] according toR\"? = @, V> RIMs.

(i) The counting of “essential paths” on graphs [84]; see also recent mathematical
work by Xu, Béckenhauer and Evans [65—67].

(iv) The expression of the blocks of the partition function (1.2) as (3.11), (3.12), see
Section 3.3.

(v) The sl(2) intertwiners appear in the computation of the multiplicitie? of an
irreducible representatiob of the finite group, associated withi in the McKay
correspondence [86,87], in ti$J(2) representations of dimensieh[96]. Namely
the coefficients of the Kostant polynomials in the generating fundiipof these
multiplicities are given for a non triviab by ). GOCVSbC, where G, is the
adjacency matrix of the affine Dynkin diagram anek: O is the affine node deleted
in passing from the affine Dynkin diagram to the ordinary one. The proof of this
fact is reduced to the recursive relation (B.16).
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(vi) These same entries seem to appear ubiquituously in the descriptiematrices
of affine Toda theories [88] and in the description of the excitation spectrum of
integrable lattice models [89-91].

Appendix C. Unigueness of the boundary conditions of minimal models
C.1. Matrices with spectrumy <2

We first recall general results on symmetric matrices with non-negative integer entries
and with eigenvalues betweef? and 2.

It is a standard result that symmetric matrices with non-negative integer entries and
eigenvaluesy €]—2,2[ may be classified. A lemma of Kronecker asserts that the
elgenvalues are of the form 2c§}§ for integersp; andh; and for the largest one(s),

= 1. One may regard any such matrix as the adjacency matrix of a graph. Irreducible
matnces correspond to connected graphs, and by an abuse of language one may call a
matrix bicolourable if the graph has that property. One proves [47] that any irreducible
bicolourable symmetric matrix with spectrumJirn 2, 2[ is the adjacency matrix of one of
the simply laced Dynkin diagrams of type D-E.

If one relaxes the assumption of bicolourability, with any symmetric non-bicolourable

irreducible matrixG one may associate a bicolourable symmetric matrix with a block

form G’ = <g g) The corresponding graph is irreducible and h@s aymmetry that

exchanges the two colours. Any eigenvajuef G gives rise to two eigenvaluesy for G’
and one thus concludes th@t is of A-D-E type, and its irreducibility force&’” = Ao),.
Its Z» quotientG is what we call the tadpole gragh, = Az, /Z>.

Finally if one relaxes the assumption of irreducibility, one concludes that any matrix
(with non-negative entries and spectrum betwe@mand 2) is the direct sum of-D-E or
tadpole graphs

G=a:. G; of A-D-E or tadpole type

and this decomposition is unique, up to the permutation of factors. The uniqueness may
be easily proved by induction on the number of terms or on the dimension of the matrix:
Given a matrixG, one first identifies its largest eigenvalue, of the form= 2 cos,’f—l. By

the previous statement, there is AnD-E or tadpole graplG 1 with Coxeter numbef1

and exponents:;, such that all its eigenvalues 2 c%i's appear in the spectrum 6f. Thus

G =G1® G”, and one may apply o&” the induction hypothesis. }f; has multiplicity 1,

this suffices to establish the uniqueness of the decomposition (up to permutations), while
the case wherg; has nontrivial multiplicity is also easily dealt with. The uniqueness of this
decomposition implies a property used several times in the text, namely that the spectrum
(between—2 and 2) determines the form of the matrix up to a permutation of its rows and
columns.
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C.2. Representatives ofi12 and na;

We now return to minimal models.

Explicit form of ny2 and na;

It is convenient to work in a basis different from that used in (2.38). In the basis
1,...,p, a € G, the second term in (2.33) does not contribute:{e since No),,,"2 =
8r2p+1-r, =0 fOr 1< ry, 72 < p. Thusnip=1, ® V2 =1, ® G, wherel, is the p
dimensional unit matrix

G
G
n2=1,®G = . . (C.1)

G
As for np1, in the same basis, the second term of (2.33) receives a contribution only
from ry =r2 = p, namely(Nz,_1),” = 1, while V,_; = I', the matrix that realizes the
automorphisny:

Ia” =84y ). (C.2)
Thus one finds that
o I,
In 0 In
np1=
I,
I, I

After conjugation by a block-diagonal matrix withi and 7, in alternating positions,
which leaves the form (C.1) af1> unchanged;1 may be recast in the form
o r
r o r
n21= . . =T,QT, (C.3)
. .. r
r r

in terms of the tadpold), adjacency matrix. All the other,, are obtained as universal
polynomials of the two matrices > andny;.

Uniqueness of the form ofry2 and noq

Conversely, suppose we only know that the representatiohas a spectrum specified
by the set of exponents We want to prove that there exists a basis in whighandna1
take the forms (C.1) and (C.3).

We first make use of the property that the set &Xpis stable modulo the Coxeter
numberg of G under multiplication by any integer coprime goand is also stable under
the reflections — g — s. We then find that the spectrum of, is made ofp copies of
Exp(G). As explained above in C.1, this implies that in some basis

n2=1,8G. (C.4)

For the other generatarp1, one observes first that the set of numbers that appear in
(2.31), namely2 cos%}, r'=1,3,...,2p — 1, is simply the sef(—1)¢12 cosz’;ill},
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r"=1,3,...,2p — 1, which is(—1)$*+1 times the spectrum of the tadpdf. According

to (2.31), this has to be multiplied hy-1)*', ass’ runs over the exponents 6f. Thus if

g is even (which is the general case except whes Ay ) the spectrum ofi21 is made of

as many copies of that df, (respectively—T,) as there are odd (resp. even) exponents in
G. For Ay which has as many even as odd exponents, the same conclusion is still correct!
Finally one notices that these signs are just the eigenvalues af thatrix, and one thus
concludes that

n21~Tp, T, (C.5)

where the sign~ means that it holds in some basis obtained from that of (C.4) by a
simultaneous permutation of rows and columns. From this expression, one can see that

n21 has no row or column with more than two, 1s (C.6)
n21 has exactly: rows and columns with one 1 (C.7n

properties invariant under permutations of rows and columns.

We also know thaiz21 must commute withi12. In a basis in whichr 2 takes the form
(C.4),n21 may thus be regarded as made:of n blocks that commute witli;. We shall
combine these facts aboui; as follows:

e A non-vanishing matrixX with elements inN which commutes wittG cannot have

arow or a column of zeros.

Proof: let 1 be the Perron—Frobenius eigenvecto6oiG X = X G implies thatx y!

is an eigenvector of; with the same eigenvalue, hence proportionapte Xyt =

ey, with ¢ # 0 since the entries of botki and ofy! are non-negative. Ik had a
vanishing row,X ¢1 would have a vanishing component, which is impossible for the
Perron—Frobenius eigenvectorXfhas a vanishing column, one repeats the argument
with X7

e Any matrix X with elements inN which commutes witlG and which appears in the

block decomposition af2; cannot have more than one 1 per row or column.

Proof. If a matrix X with more than one 1 in a row (respectively, column) was a
block ofnp1, because of the property (C.6), all the other blocks on the left or the right
(respectively, above or below) &f would have to have at least one vanishing row
(respectively, column), which is impossible by (i) above, or to vanish altogether. In
the latter case, after a possible reshuffling of rows and columns leaving (C.4) invariant,
one would have

X 0 --- 0 0O X O
) 0 xT 0 0
either np1 = : or na1=| g (C.8)
0 .

which would lead to a pait12, np1 reducible in the same basis.

o It follows that the matrices that may appear as blocks in the decompositiesy of
must be matrices with one 1 on each row and column, i.e., permutation matrices
that commute withG. These permutation matrices are the symmetries of the Dynkin
diagram, and thus are readily listed:
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X=1IT, if G=Ap, Dogy1, Es, (C.9
=1,I;,i=1,...,5 if G=Da, (C.10)
=1,T, if G=Doy,q>2, (C.11)
=1, if G=E7, Es. (C.12)

HereI; denote the 5 nontrivial permutations of the nodes offlheliagrams, and the
matrix I"" exchanges the two end pointsB$,, g > 2.
One then demands that the symmetric maitix made of such blocks is irreducible and
satisfies (C.4)—(C.7). This implies that at most one non-vanishing block appears on the
diagonal. Consistency with the form, ~ T, ® I" leaves as the only possibility

0 X3 O
xI' 0 x» O
no1=| 0 XJ : (C.13)
0o . Xp-1
0 X,{_l r

where X1, Xp,..., X,_1 are chosen among the symmetry matrices Gaf A final
permutation of rows and columns by a block diagonal matrix diag’, ..., Y,—1, 1)
bringsnyy into the formnoy = T, ® I" while leaving the form (C.4) ofi12 unchanged,
providedY; = FY]-HXAIT, henceY; = F"—«/Xg_lxlf_z XIT Then bothni2 andnog
have their canonical forms (C.1), (C.3). Q.E.D.

Remark

Although it is not required for the present analysis, it may be interesting to look at the
commutant of matrices of-D-E type.

For anyG of A-D-E type, with the exception oDeyen, all eigenvalues are distinct. It
follows that any matrixX that commutes wittG may be diagonalized in the same basis
asG and consequently be written as a polynomial®&fi.e., as a linear combination of
1,G,G2,...,G" L. In order to look at cases where entriesXfare requested to take
values 0 or 1 only, and with constraints on the number of 1's, it is advantageous to use rather
the basis of fused graph matrice€:is a linear combination of the linearly independent
matricesN1 = I, No = G, ..., N,. The Deven case is slightly more involved, since the
matrices that appear naturally are not independent.

The commutant of a- D-E matrix is:

e Alinear combination of the graph fusion matridﬁ§ for G = A, Dogg, Es, E7, Es.

e A linear combination of the}AJa and of two of the three matrices,,, a #b =1, 3,4,
that exchange two of the three extremal points ofEhegraph.

e A linear combination of theV, and of the two matrice¥ = F’ﬁzq andY = ﬁzqF’,
where the matrix™" exchanges the two end points, 16r= Dy, ¢ > 2.



R.E. Behrend et al. / Nuclear Physics B 579 [FS] (2000) 707-773 763
Appendix D. sI(3) modular invariants and graphs

The WZWslI(3) theories may be discussed along the same lines as in Sections 2 and 3.
Solutionsn; to the Cardy equation are associated with graphs, with specific spectral
properties: their eigenvalues are given by ratios of elements of the mo8lutaatrix
labelled by weights of the diagonal spectrdirof the bulk theory. Conversely, spectral
properties and the fact that thes form a representation of the fusion algebra are not
restrictive enough to yield the list of possible bulk spectra, as occurresl(2n (up
to the unwanted “tadpole” graphs). There are indeed many solutions, i.e., graphs and
representations of the fusion algebra, that must be discarded as not corresponding to a
modular invariant partition function in the list (Table 2) of Gannon [92,93]: see [46] for
such extra solutions. We may summarise the salient features of the analysis as follows, see
also the accompanying Tables 2 and 3 and Figs. 11 and 12.

e At least one graph (or rather one setomatrices) has been identified for each bulk
theory, i.e., each modular invariant. But it is not known if this list of graphsigss
exhaustive.

e Note that the hypothesis of 3-colourability of the graphs that looked natural on the
basis of thesl(2) case has to be abandoned if we want to cover all cases. This is
manifest on Table 3 where it appears that in some cases (natfiety and D™, n
not a multiple of 3, andZ®*, the seff is notinvariant under the automorphismof
(D.1), as it should be if the graph was 3-colourable.

e There are a few pairs or even triplets of isospectral graphs, i.e., different sets
of n's that give distinct solutions of the Cardy equation for a given bulk theory.
These graphs/representations should not only describe different sets of complete
orthonormal sets of boundary conditions for that bulk theory, but also presumably
be associated with different operator algebras and lattice realisations.

e In Table 3, which summarises the state of the art, we have also indicated if the graph
is of Type | or Type Il, following the discussion of Section 3. Some hybrid cases are
also encountered, in which the and N structure constants are both non-negative,
but theN algebra has no subalgebra isomorphic to some extended fusion algebra.

Notations and footnotes for Tables 2 and 3

(Shifted) weights ofSU(3) A = (A1, A2) := A1A1 + ApA2, where A1, A are the
fundamental weights o8U(3), 1* = (A2, A1), triality t(A) := (A1 — 1) + 202 — 1) =
A1 — A2 mod 3.

Q is the set of weights of triality zero.

Weyl alcove of shifted level, or “altitude’ := k + 3,

P ={A=MA1+)2A2 | A, k2 2 1, da+ A <n—1).
Automorphisms of PJ(r"Ji
0 (A1, A2) := (n — A1 — A2, A1). (D.1)

(a) One of the two connected parts of the fused Dynkin diagram of dype (the one
that possesses the exponéhtl)). It looks different depending on whetheris



Table 2

List of Q(S)k modular invariantsp =k + 3

()
(4

(o)

Z = 2
erpini |X)\.|

Z = ¥
erpini X2 X

L %ergmpﬁ 110+ Xoa + Xg2; |12 if 3 dividesn
ZAeQﬂPJ(r'ﬁ 1.2 + ZAE},&)\Q JAXine, if 3 does not divide:
35 (o) (Shokene)” if3dividesn

— reQNPLY
ZAeQmP}r’ﬁ XA Xox + ZAePﬂ\Q XA X} -neyx if 3 does not divide:

Z=lxan + 1@+ @2 + xasl’+1x@3 + x6.07 + x@ay + xaa” +xwy +x@al’ +xan +xcal?
Z=Ixa1 + x33)° + x3.2) + x1.6) X@2.3) + x6.1)* +C.CH [x@1) + xw.)? + (xA.3) + x4.3)X3.1) + x3.4)* +C.C.
Z=1xwn + Xaon + X10 T XG5 T X652 x5  +2x@3 + x@6 + x6.3/

Z=1Ixaw1 + xa0.1 + X102 + 1x3.3) + x3.6) + x6.3)1° + X555 + X(5.2) + X252 + |x@4.7) + x7.1) + x1.9)?
+ X4+ x@n + x@a P+ 2xaa? + X2 + X682 + X284 T CC

Z=1xwp + xaoy + xa10/” + X33 + x@6) + %63 + x5 T X652 x5+ 2Axas)?
+ (X@.7) + XD + X4 X4 + X7 + X(@1)* +CCF (X2.2) + X(8.2) + X(2.8) X4 4+ C-C:

Z=Ix@1 +x@221 + x1.22 + X555 + X514 + X145 + xa111) + x11.2) + X211 + x7.7) + x7.10 + X(1o,7)|2
+ X1 + X687 + X116 + XADX7.16 T X161 + X658 + XALS) T X8I + X@5) + X610 + X118

9.

€//-10. (0002) [S4] 6.5 g sd1sAud JtesjonN / ‘e 18 puaiyag '3y



Table 3

List of modular invariants and associated known graphﬁtﬁp. Footnotes (a)—(e) are explained at the end of Appendix D

Modular invariant ~ Graphs Altitude Exponents Type
A A n PJ(rnl |
Al AW = (A1 *Ay_1)e @ n (o) 1<) <1252 M.N>0
D™ D ©® n=0mod3 PN Q,with (4, %) triple !
A 74 © n#0mod3 P NQ M, N>0
Dm* DM =0123® (Ay_1 % Ay_1)e @ n (G s (0 =2/, ), (on =2},
1<) <1552 M,N>0
E® £® 8 (1, 1), (6,1), (1,6),(3,3),(3,2), (2, 3), |
4,1),(3,4),(L,3), (L4, 423,31
E®* FACL O 8 (1,1),(3,3),4,1), (15 M,N>0
E@? e i=123 12 (1.1).(10.1), (1.10), (5.5), (5.2). (2. 5). e =131
and twice(3, 3), (3, 6), (6.3) s
EG2* g1? 12 (1.1). (10, 1), (1, 10). (5.5). (5.2). (2. 5). I
(3,3),(3,6), (6, 3) and twice(4, 4)
EGS e? 12 (1.1, (10,1), (1. 10). (5.5). (5.2). (2.5). I
@4,0,7,4,1,7,14,4,(7,D,47),
(3,3), (3,6), (6,3) and twice(4, 4)
E@9 @y 24 (1, 1), (22, 1), (1,22), (5,5), (14,5), (5, 14),

(7.7),(10,7), (7,10, (11, 11), (11, 2), (2, 11),
(7.1),(16,7), (1,16), (1, 7). (16, 1), (7, 16),
(5.8),(11,5),(8,11),(8,5,(11,8), (5,11

€2/-,0. (0002) [S4] 625 g sdisAyd JesjonN / [e 18 puaiyag '3y

S99/
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A4’_'<I A(5>@ A‘"@

o0 2.0 200 4. Q00 »Q0Q0Q

p= >0 P @o D=

,D(s)= @ ,D(9)= @ ..

Fig. 11. The known graphs in the casesif3). Conventions: (a) For the 3-colourable graphs, the
triality © of nodes is indicated by the colour: black= 0, greyt = 1, or whitet = 2; the graph
represents the matrixoq if edges are oriented from black to grey, or grey to white, etc. (b) For the
non-3-colourable graphs, either the orientation of all edges (of magsixsay) is indicated, ",

3 /n, series£®*), or all links are unoriented4{-)* series).

even or odd. The/, N algebras ofA"™* are positive, as they follow simply from
the Verlinde fusion algebr& of §(2). If nis odd,.A"* is the connected component
of the graph of adjacency matrix}f_l — I made of the nodes odd (integer spin
in sl(2)). For a triplet of “exponentst = (I, 1), u = (m, m) andp = (r, r) of AM™*,
M. .° = Ni" + Ni" ™", andﬁab" is the restriction of the Verlindd,,_; algebra
to odda, b, c. For evem, the M andN algebras ofA™* = I + Ay _; coincide with
the Verlinde algebra ofty _;.

(b) Theorbifold of A™, see [73].

(c) The ordinaryZs fold of A™.,
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Fig. 12. The known graphs in the casesiB).

(d) The unfolded (and 3-colourable) version4f)*. Their adjacency matrix is a tensor
product by the permutation matrix

0 1 0
o123=|10 0 1
1 00

their M and N algebras are simply obtained from those4#)*, thus alsc> 0
(e) TheZs fold of £®.
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Appendix E. Formulae for fusing, braiding and modular matrices

We collect in this appendix some standard formulae for the genus 0 and 1 duality
matrices. The fusing matrices satisfy several identities implied by the pentagon identity
— they can be recovered from formulae (4.36), (4.38), (4.16) in the text making the
identification (4.54).

Symmetries:

ko ik i* 1 L
qu|:i l}:FP*q[l* i*}:qu*[k* j = Fpeg ok (E.1)

Choice of gauge:

. 1L
ol i i*|7 dy
Fq(l) |:J j ] 5 —y did; 8 013(a*)- (E.2)
o

In thesl(2) case denote bv C,‘fj the normalisation of the CVO in this gauge. Then for the
fusion matrix corresponding to CVO normalised to 1, one has

q i . 9 ~q9* ~1 .
Cij Cqr F(o>[k J}: Cij Cir1Caq F(o>[k J:| E3)
i P pa | o1 Lea | . :
Ckple i Cki*leCpp* il

or
* k j * k* i
P* AP AL J | _ 1 ~at ol
Cri»Ci1Chpr Fig [i ; } =Cy;Cix1Coyr Fap [ i l*} . (E.4)
This equation coincides with the quadratic relation resulting from locality of the physical

e . . . AN i 1 _
4-point function in the diagonal case. Hence the constépl;s_ C(k,k)(p,p), Ckp Civ =

C,fl C;p* can be identified with the physical OPE structure constants in this case. For the

minimal models these constants were computed in [80]; the matfit¥sin the gauge

(E.2) coincide up to signs with a product of standaf@l; symbols, see [97] for the latter.
Braiding matrices:

i ,] 023(y2) 8 . i 1 y24

B,,q[k 1} () = @ e At Ai=ap=2q) qu|:k } . (E.5)
B1023(B2) J 112

Theg-analogs of the Racah identity (hexagon identities}, +1:

i k i L i
F 77”8AqF
; ’”q[j l}e q”[j k}

— e An+Ap—Ai—Aj—Ai—Ar) Fnp |:i. /lC:| ‘ (E6)
J

Recall the Moore—Seiberg torus duality identity resulting from a relation in the modular
group of the torus with two field insertions, namel§sj1, j2) a = b S(j1, j2) Where
S(j1, j2) is the modular matrix of two-point blocks, expressed in termg'and S(p),
anda, b are the monodromy transformations moving one of the CVO around tlve
cycles, [37,38],
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2 1 Jj2
S”(S)Zezmm T Fe [j i*}FmP[Ji Jz}

1

=3 Su(p)Eiaran=an) Fy . [r* J,l} Frp [12 Jl] (E.7)
P r-Jjz q9 4
Chooses = 1=r. This implies thatj; = j; = j* andg = j, hence
Sy o .
Sji(p) = g ) €G24 A [J *} Fonp [J. J.}
F |0 } - joi i
"L
< e .
_ 1 Ze—m(ZA 24,280 [J* il*} Fo [{ Ji ]
F, [ ] } j
LJ
il TH LA M iy
i Jjoi i
Fpl _i* l*:| "

The second equality is obtained reversing the sums in (E.7) and solvi§g {or as above,
while the third is obtained from the transposed version of (E.7) taking into acSopyt =
Cce™'%r_ For p = 1 the formula reproduces the ordinafy= S(1) matrix

Sin i o

=T Zezmmﬂ 4 Fan [j i*}F’"l[Ji ﬂ
Ak
JoJ

=811 ) A=A g N, (E.9)
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