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A simple derivation of the classical non-local conservation laws in two dimensions discovered by Liischer and Pohlmeyer 
is given. Several classes of models are shown to possess the same structure.  

A few years ago Ltischer and Pohhneyer [1] dis- 
covered conserved non-local charges in the two dimen- 
sional non-linear o-model. I f  the lagrangian is written 

"as 

£ = ( 2 X ) - I O u S O u S  , 
(1) 

S = (SI(x) ..... Sn(x)) ,  S 2 = 1 , 

the simplest nontrivial conserved charge is 

+~ +~ 

f f dx'jg7(t,x)JoV~(t,x')O(x-x ') 

+~ 

- f dx,  (2) 

+> 

j 2  ~ = 2S  a 3uSp.  (3) 

These charges have been obtained by inverse scatter- 
ing methods without use of conformal invariance and 
thus, as shown later by Lfischer [2], they are also 
quantum-mechanically conserved, implying the ab- 
sence of  particle production and factorization of  the 
multiparticle S-matrix elements. These were the main 
hypotheses made by the Zamalodchikovs [3] in their 
construction of  the S-matrix of  the O(n) non-linear 
o-model in two dimensions, 

In this note we want to give a brief derivation of  
the existence of  these conserved charges and to show 
that many generalized two-dimensional o-models 
possess this same structure. Assume that we have 
found a set of  matrices A ~ ( x )  with the following 

442 

properties: 
(i) Au(x ) is a pure gauge, i.e. there exists a non- 

singular matrix g such that 

A u ( x )  = g - l ( x ) O u g ( x )  ; (I)  

(ii) A u ( x  ) is conserved as a consequence of  the 
equations of  motion of  the model: 

a.A.(x) = 0 .  (II) 

We can then construct an infinite set of  (non-local) 
conserved currents by the following inductive proce- 
dure. Define the covariant derivative 

D y  = 5 ~ 3 ~  +A~ ~ . (4) 

It follows from (I) that 

IDa, Dvl = 0 ,  (5) 

and from (II) that 

OuD ~ = D  uO~ . (6) 

Let us assume that we have constructed the nth con- 
served current j(n).  Therefore, there exists a function 
x(n)(x) such that: 

j ( n ) = e u v 3 v x ( n ) ,  n~>l  . (7) 

The (n+l)th current is then defined as 

j ( n + l )  = DtaX(n) , n >~ 0 . (8) 

The induction starts with X (0) = 1, and thus j(1) = Au ' 
which is conserved. To show that j(n+l) is conserved, 
we note that from eq. (6) 

~uJ (n+l) = Du~ux(n)  , n >~ 1 , 
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and from eq. (7) 

OuJ~(n+l) = - e u v D u J ( n ) ,  n >i 1.  (9) 

We then obtain 

O u 4  n+l) =-euvDuDvx (n-l) 

=-[Do, D1]X(n-I)=o, n>~l,  

which completes the induction. We thus have an in- 
finite number of  conserved charges 

+ ~  

QO')(t) = f dxJfon)(t,x). (10) 

It is easy to verify that Q(2)(t) has precisely the struc- 
ture (2) in terms o f ]  (1) since 

+ ~  

Q(2)(t) = f dx (~o + ](1)) X(1) 

(11) 
+o* +oo 

=- f + f dx j(ol)(t,x)x(1)(t,x). 

We can now integrate (7) for n -- l,  

/'0 (1)(t, X) = ~1 t X (1) ~ X(1)( t, x) = 
X 

f dx'J(O1)(t,x ') 
_ c o  

(apart from an irrelevant integration constant which 
would add tc Q(2) a piece proportional to Q(1)), and 
eq. (11) takes precisely the form (2). It is thus suffi- 
cient to find models which possess properties (I) and 
(II) in order to ensure the existence of  these charges. 

Models which fulfill the properties (I) and (II). 
(i) The simplest examples are given by the 

lagrangian 

£ = (2a) - t  Yr(0ug(x) Dug- l (x)  ) , (12) 

in which g(x) varies in a group of  matrices G. This 
lagrangian is invariant by a global transformation of  
G × G: g(x) -+glg(x)g2. The most common examples 
correspond to G = U(n) (gg+ = 1 ), or G = O(n) 
(ggT = 1). The Euler-Lagrange equations of  motion 
are simply * 1 

au(g- l(x) D~g(x)) = o ,  

and of  course (I) and (II) are satisfied with A u =g-1  Dug . 

(ii) Other examples are provided by the same 
lagrangian (12) in which g(x) varies over a restricted 
set of  invertible matrices o f  the group G. Consider, for 
instance, the set o f  orthogonal matrices 

g(x) = e i'rP(x) , (13) 

in which P(x) is a projector onto a one-dimensional 
subspace, namely P°'~(x) = SC'(x) St~(x) with S c~ - S c~ 
= 1. It is elementary to verify that g - l ( x )  = g(x) = 
1 - 2P(x)  (i.e. g(x) is a symmetry with respect to the 
plane orthogonal to the subspace onto which P is a 
projector) and that 

Tr DugOng-1 = 8DIaSDuS, g-lD~g= 2 S ~ S ~ .  

The equations of  motion of  the model, Du So, DuS ~ = O, 
complete the identification of  the O(n)-model with 
the required structure. 

(iii) If we have again the structure (13)wi th  P 
projecting onto a complex one-dimensional subspace, 

Pa'~(x) = z°~*(x)z~(x) with z°'*z a = 1 . 

We now have 

Tr DugOng -1 = 4Tr DuPDuP , 

and the resulting lagrangian is that of  the CP n o-model: 

£ : ( 8 / 2 ~ ) ( D ~ z * ~ z  ~ + (z*~D~z~)(z*~D.z~)).  

The equations of  motion have indeed the form 

DuA ~=0 with A u = - 2 [ P , D ~ P ] .  

(iv) More generally we can take g matrices of  the 
form (13)which satisfy thusg 2 = ], but with a projec- 
tor P on a subspace of  arbitrary dimension p [5], as 
for instance in 

p 

e~(x):  ~ s?(x)Sp(x), 
i=l (14) 

with SF. S[=~j,  ~,~=1 .... , n .  

Again the lagrangian reads 

£ = (2a) -1 Tr ~ugDug -1 = (2/a)Tr  DuPD.P , 

t t  This is obviously true for the full linear group GL(n), It is 
also true for other compact Lie groups since g-t Oug is an 
element of the Lie algebra of the group, In the lattice for- 
mulation, recently discussed by A. Polyakov (unpublished) 
one must distinguish at this stage between GL(n) and tbr 
instance O(n). 
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with P given by eq. (14). This lagrangian is invariant 
by global O(n)-rotations, and local O(p)  rotat ions 
since we can obviously choose at any point  of  s p a c e -  
time an arbitrary basis in the subspace onto which P 
projects. This is a non-abelian generalization of  CP n 
which possesses the same conserved charges since the 
equations of  mot ion are again 

3~zA u = O,  A ~  = - 2 [ P ,  ~uP] = e-i~rP(x)3l~einP(x) . 

As a side remark we note that these models are sym- 
metric in the interchange p ~ n - p  by replacing P by 
the complementary projector Q such that PQ = QP = O, 
P + Q - - 1 .  

Conclusion: all the known models which generalize 
the O(n) o-model and possess only one coupling con- 
stant have the same infinite set of  non-local conserved 
charges with presumably a quantum-mechanical equiv- 
alent. The consequences concerning the classical com- 
plete integrability of  the models or on the quantum 
theory have not  yet  been explored.  The formalism 

used here can presumably be generalized to  gauge 
models in three dimensions along the lines suggested 
by Polyakov (see footnote  1). 
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