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A simple derivation of the classical non-local conservation laws in two dimensions discovered by Liischer and Pohlmeyer
is given. Several classes of models are shown to possess the same structure.

A few years ago Liischer and Pohlmeyer [1] dis-

covered conserved non-local charges in the two dimen-

sional non-linear o-model. If the lagrangian is written
“as

£=(20)"18,80,8,
M
§=(S1@), ...

sh(x), S2=1,

the simplest nontrivial conserved charge is

+oo

Q*B(¢) = f dxf dx' 7§ (@ %)igP(e, x) 0 (x —x")
- f i, x) dx @

caf <
i#=25,0,5;. 3)

These charges have been obtained by inverse scatter-
ing methods without use of conformal invariance and
thus, as shown later by Liischer [2], they are also
quantum-mechanically conserved, implying the ab-
sence of particle production and factorization of the
multiparticle S-matrix elements. These were the main
hypotheses made by the Zamalodchikovs [3] in their
construction of the S-matrix of the O(n) non-linear
o-model in two dimensions.

In this note we want to give a brief derivation of
the existence of these conserved charges and to show
that many generalized two-dimensional o-models
possess this same structure. Assume that we have
found a set of matrices Azﬁ(x) with the following

442

properties:
(1) 4,,(x) is a pure gauge, i.e. there exists a non-
singular matrix g such that

4,(x)=g71(x)0,8(x) ; ()

(ii) A ,(x) is conserved as a consequence of the
equations of motion of the model:

A,(x)=0. (I

We can then construct an infinite set of (non-local)
conserved currents by the following inductive proce-
dure. Define the covariant derivative

D3P =548y +42° . 4)
It follows from (I) that

[D,.D,]=0, (%)
and from (II) that

8,D,=D,9, . (©)

Let us assume that we have constructed the nth con-
served current Jﬁ"). Therefore, there exists a function
x®(x) such that:

JM=e,,0,x", n=1. (7)
The (n+1)th current is then defined as
JerD=p x®, n>0. 8)

The induction starts with ¥® = 1, and thus J(l) =A,,
which is conserved. To show that J S’ D s conserved
we note that from eq. (6)

3,/ V=D, x", n=>1,
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and from eq. (7)
3,/ V= ¢ DIV, n>1. ©)
We then obtain
n+1) - (n-1)
BMJM” =—€,,D,D,X

:—*[DO,DI]X(’T“I)=O, R}l,

which completes the induction. We thus have an in-
finite number of conserved charges

oo
oM@ = f dx J§O(t, x) . (10)

It is easy to verify that Q©@)(¢) has precisely the struc-
ture (2) in terms of j (1) since

+o0
0P = [ dx (@ +if")x

. " (11)

= [ dx i x) + [ dxj§Pe0x ).

We can now integrate (7) forn =1,

X
i@ 0 =a,x V= W, x) = f dx'j§P(e, x')

—0

(apart from an irrelevant integration constant which
would add tc Q?) a piece proportional to 0, and
eq. {11) takes precisely the form (2). It is thus suffi-
cient to find models which possess properties (I) and
(I1) in order to ensure the existence of these charges.

Models which fulfill the properties (I} and (11).
{i) The simplest examples are given by the
lagrangian

£=(20)~1 Tr(d,g(x) 0,6 1)), (12)

in which g(x) varies in a group of matrices G. This
lagrangian is invariant by a global transformation of
G X G: g{x) > g1£(x) g,- The most common examples
correspond to G =U(n) (gg* = 1), or G = O(n)

(ggT = 1). The Euler—Lagrange equations of motion
are simply *!

3, 1(0),8(:))=0,

and of course (I) and (II) are satisfied with 4, = g~13 .
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(i) Other examples are provided by the same
lagrangian (12) in which g(x) varies over a restricted
set of invertible matrices of the group G. Consider, for
instance, the set of orthogonal matrices

gx) = elmP&) | (13)

in which P(x) is a projector onto a one-dimensional
subspace, namely P*8(x) = §%(x) SF(x) with §& - §«
= 1. It is elementary to verify that g—1(x) =g(x) =

1 —2P(x) (ie. g(x) is a symmetry with respect to the
plane orthogonal to the subspace onto which P is a
projector) and that

1= “13 g=25 5
Traﬂga“g SBHSE)HS, g'0,8 2Saa“SE.

The equations of motion of the model, 9, S;B;SB =0,
complete the identification of the O(n)-model with
the required structure.

(iii) If we have again the structure (13) with P
projecting onto a complex one-dimensional subspace,

PoB(x)=z9%(x)zP(x) with zo*ze=1,

We now have

Tr Z)M,gawg’1 =4Tr o, Po, P,

and the resulting lagrangian is that of the CP”? g-model:
L=(8/20) (3,279, 2% + (2*%8,2%)(z*%0,2")) .

The equations of motion have indeed the form
0,4,=0 with A,=-2[P,8,P].

(iv) More generally we can take g matrices of the
form (13) which satisfy thus g2 = 1, but with a projec-
tor P on a subspace of arbitrary dimension p [5], as
for instance in

P
By = o 8 '
PYP(x) FEI S7x)SP(x), (14)

with S;"S;"=5 o B=1,..,n.

i
Again the lagrangian reads

L= Tr E)ugaug’l =(2/e) Tr 0,P0,7,

1 This is obviously true for the full linear group GL(n). It is
also true for other compact Lie groups since g™15 g is an
element of the Lie algebra of the group. In the lattice for-
mulation, recently discussed by A. Polyakov (unpublished)
one must distinguish at this stage between GL(n) and for
instance O(n).
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with P given by eq. (14). This lagrangian is invariant
by global O{n)-rotations, and local O(p) rotations
since we can obviously choose at any point of space—
time an arbitrary basis in the subspace onto which P
projects. This is a non-abelian generalization of CP”"
which possesses the same conserved charges since the
equations of motion are again

=0 = = e-inP()y oinP
3,4,=0, A, =-2[P,d,P]=e i"PM)p eitP()

As a side remark we note that these models are sym-
metric in the interchange p @ n—p by replacing P by
the complementary projector Q such that PQ = QP=0,
P+Q=1.

Conclusion: all the known models which generalize
the O(n) o-model and possess only one coupling con-
stant have the same infinite set of non-local conserved
charges with presumably a quantum-mechanical equiv-
alent. The consequences concerning the classical com-
plete integrability of the models or on the quantum
theory have not yet been explored. The formalism
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used here can presumably be generalized to gauge
models in three dimensions along the lines suggested
by Polyakov (see footnote 1).
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