L'INVARIENCE CONFORME ET LA PHYSIQUE À DEUX DIMENSIONS

JEAN-BERNARD ZUBER

LES SYMÉTRIES JOUENT UN RÔLE TRÈS IMPORTANT EN PHYSIQUE. DES CRISTAUX AUX PARTICULES ÉLÉMENTAIRES EN PASSANT PAR LES NIVEAUX D'ÉNERGIE ATOMIQUES, LA CONNAISSANCE DES SYMÉTRIES SOUS-JACENTES SIMPLIFIE CONSIDÉRABLEMENT L'ÉTUDE D'UN SYSTÈME PHYSIQUE. OR PARMII LES SYMÉTRIES, IL EN EST UNE QUI INTÉRÈSSE DE PLUS EN PLUS LES MATHEMATICIENS ET LES PHYSICIENS : L'INVARIENCE CONFORME, C'EST-À-DIRE L'INVARIENCE PAR RAPPORT À DES TRANSFORMATIONS GÉOMÉTRIQUES QUI CONSERVENT LES ANGLES. CETTE SYMÉTRIE SE RÉVÈLE TRÈS FÉCONDE LORSQU'ELLE S'APPLIQUE À DES SYSTÈMES BIDIMENSIONNELS, SITUATION QUI CONCERNE DES DOMAINES TRÈS DIVERS, COMME L'ÉTUDE DES TRANSITIONS DE PHASE, LA « THÉORIE DES CORDES » QUI VISE À UNIFIER LES INTERACTIONS FONDAMENTALES OU LES MATHEMATICIENS DES NŒUDS. JEAN-BERNARD ZUBER EXPLIQUE DANS CET ARTICLE EN QUOI CONSISTE L'INVARIENCE CONFORME ET COMMENT CETTE NOTION A RÉVÉLÉ SON UTILITÉ EN PHYSIQUE.

Figure 1. La projection stéréographique utilisée en cartographie projette tout point M de la sphère depuis un point P, pris ici sur l'équateur, sur un plan parallèle au plan tangent au point O diaméralement opposé. On montre que la transformation M → M' conserve les angles. En particulier, le système de parallèles et méridiens est projeté en deux faisceaux de cercles orthogonaux. L'image du point P est rejetée à l'infini dans le plan. Une telle transformation, qui conserve les angles, est dite conforme. Certains systèmes étudiés en physique et en mathématiques ont la propriété d'être invariants sous l'effet des transformations conformes. Or lorsqu'elle s'applique à des systèmes bidimensionnels, cette symétrie a de riches conséquences. C'est pourquoi l'invariance conforme est devenue un thème très en vogue parmi les physiciens théoriciens et les mathématiciens.
La physique poursuit avec le concept de symétrie une longue histoire d'amour. Les Platonicciens, émerveillés par les cinq polyédres réguliers, voulaient leur faire correspondre les éléments chimiques. Kepler les utilisait quant à lui dans un modèle de système planétaire... Plus proches de nous, les cristallographes du XIXe siècle nous ont fait corps massif par un centre avec une force inversement proportionnelle au carré de la distance, la trajectoire du corps n'est pas elle-même invariante par les rotations autour du centre, mais est transformée en une trajectoire équivalente, soumise à la même loi. On dit alors que le problème est invariant par rotation, ou encore que les rotations quantiques ou laissant invariant un problème physique donnent formes un groupe ; aussi, la théorie des groupes constitue une branche importante des mathématiques contemporaines (voir « La genèse de la théorie des groupes » dans La Recherche de septembre 1979).

Dans les années 1930, avec les travaux de H. Weyl, E. Wigner et d'autres, le mariage de la toute nouvelle mécanique quantique avec la théorie des groupes a débouché sur d'immenses succès en physique atomique, moléculaire et nucléaire. En effet, les invariances, par rotation en particulier, impliquent des « règles de sélection » régissant les processus permis, et organisez les états (par conséquent, les niveaux d'énergie) susceptibles d'être observés. En mécanique quantique, si un système doté d'une certaine symétrie peut être dans un certain « état » (notion spécifique quantique qui remplace et généralise le concept classique de trajectoire), alors tous les états reliés par cette symétrie sont aussi accessibles. Les états possibles d'un tel système quantique peuvent donc être classés en familles, dites « représentations » du groupe de symétrie. Ainsi, dans un atome d'hydrogène (version électrique et quantique du problème de Kepler, et qui possède la même invariance par rotation), les états forment des représentations du groupe des rotations. Dans l'étude d'un système invariant par une symétrie, l'analyse et la classification des représentations du groupe correspondant constituent donc une étape importante.

Au début des années 1970, on s'est aperçu que, dans certaines circonstances sur lesquelles nous allons revenir, la symétrie spatiale est beaucoup plus...
plus vaste que les simples déplacements ; elle incorpore les transformations conformes, c'est-à-dire les transformations qui préservent les angles (mais pas nécessairement les distances). De telles transformations sont bien connues depuis l'Antiquité, puisque la projection stéréographique, due à Ptolémée, a cette propriété, si utile en navigation, de respecter les angles (fig. 1). Dans cet exemple, la transformation fait passer d'une figure sur la sphère (le globe terrestre) à une figure sur un plan (la carte). Les deux configurations, initiale et transformée, peuvent être considérées comme équivalentes. Comme on le verra plus bas, ce n'est que dans un espace à deux dimensions que l'invariance par de telles transformations devient extrêmement contraintante, et donc riche de conséquences. Il y a une dizaine d'années, sous l'impulsion de l'école soviétique de mathématiques et de physique, des progrès décisifs ont été effectués dans l'étude des systèmes quantiques sujets à une invariance conforme bidimensionnelle, et un cadre théorique adéquat a été mis en place. On assiste de longueur caractéristique : c'est ainsi que la physique atomique fait intervenir des échelles variant de l'angström au micromètre, tandis qu'en hydrodynamique, elles vont du centimètre (tourbillons) au kilomètre (haut).

LES TRANSFORMATIONS CONFORMES SONT LES TRANSFORMATIONS GÉOMÉTRIQUES QUI LAISSENT LES ANGLES INCHANGÉS

Des phénomènes d'échelles complètement différentes ne s'influencent généralement pas ; par exemple, les mouvements de l'atmosphère ne dépendent pas des interactions individuelles des atomes qui la constituent (et vice versa). Il existe cependant des situations dans lesquelles intervient simultanément des échelles d'ordre de grandeur très variés ; ce sont les phénomènes critiques. L'example traditionnel est un système ferromagnétique à la température de Curie T_C, qui est la température au-dessous de laquelle le matériau est aimanté et au-dessus de laquelle l'aimantation est nulle. Rappelons que, dans un aimant, ce sont les petits moments magnétiques des atomes qui, par un effet coopératif, peuvent donner lieu à une aimantation macroscopique. A basse température, les moments magnétiques d'un matériau ferromagnétique ont tendance à s'orienter dans la même direction, et le système présente alors une aimantation spontanée. Quand la température augmente, des fluctuations apparaissent, c'est-à-dire des régions où les moments magnétiques s'alignent dans une autre direction, diminuant l'aimantation. Ces fluctuations de taille d'abord modeste croissent avec la température, tandis que d'autres fluctuations apparaissent en leur sein. Ces effets peuvent être étudiés avec le modèle d'Ising (à deux dimensions par exemple). Il s'agit d'un modèle simplifié de matériau ferromagnétique, conçu dans les années 1920, dans lequel les moments sont attachés aux points d'un réseau carré, ne peuvent prendre que deux orientations opposées dans une...
direction fixée et ne sont sensibles qu'à l'influence de leurs voisins immédiats (fig. 2). Au « point critique » \(T_c \), on est en présence de fluctuations à toutes les échelles imbriquées les unes dans les autres et le système prend un aspect auto-similaire (fig. 2E). Autrement dit, le grossissement d'une portion d'une configuration des moments constitue une autre configuration possible. Corrélativement, l'aimantation du système s'annule à la température \(T_c \), tandis que d'autres grandeurs macroscopiques du système, comme la chaleur spécifique, deviennent infinies. Au-dessus de \(T_c \), les moments sont complètement désordonnés et le système n'est plus aimanté.

Ce type de comportements critiques s'observe aussi dans une variété de situations : point critique d'un mélange liquide-vapeur ou d'un fluide binaire (système de deux fluides), où la distinction entre les deux phases disparaît, transition entre l'état fluide normal et l'état superficiel dans le hélium, etc. Dans tous ces cas, une grandeur thermodynamique non nulle au-dessous de la température critique (l'amplitude du corps ferromagnétique, la différence de densité des deux fluides, …), s'anule comme \((T_c - T)^{\gamma} \), tandis que la chaleur spécifique se comporte comme \((T - T_c)^{\delta} \), \(\gamma \) étant un exposant positif et \(\delta \) un signe de ou de l'autre.

Les systèmes macroscopiques étudiés en physique de l'état condensé (conducteurs, liquides, verres, corps ferromagnétiques, polymères, etc.) relèvent de la mécanique statistique. Ils impliquent en effet un nombre considérable de constituants (l'ordre de grandeur est de l'ordre de l'Avogadro, \(6.022 \times 10^{23} \)) et ne peuvent être tritournés que par des méthodes statistiques. Un corps ferromagnétique, par exemple, est décrit par un ensemble de probabilités : probabilité de trouver le moment magnétique d'un point donné orienté dans une certaine direction, mais aussi corrélations entre moments distants, c'est-à-dire probabilités de trouver des moments en des points donnés pointant dans des directions données. En général, toute l'information sur le système est contenue dans cet ensemble de « fonctions de corrélation ».

À une température différente de \(T_c \), la fonction de corrélation de deux moments décroît très vite (exponentiellement) avec leur distance. Cela exprime simplement le fait que des moments éloignés n'ont que peu d'influence mutuelle. La distance sur laquelle des influences mutuelles se font sentir s'appelle la longueur de corrélation et est notée \(L \). C'est l'échelle caractéristique du système mentionnée plus haut. Ainsi la taille typique des plus grandes fluctuations (fig. 2D et 2E) est donnée par \(L \). Au voisinnage de \(T_c \), la longueur de corrélation croît, pour devenir infinie à la température critique.

Cette « divergence » de la longueur de corrélation à \(T_c \) a des conséquences importantes. En un sens, le système ayant perdu son échelle caractéristique devient auto-similaire, c'est-à-dire invariant par dilatation (fig. 2E). On parle encore d'invariance de l'échelle. Par ailleurs, au point critique, les fonctions de corrélation ne décroissent plus exponentiellement avec la distance mais comme une puissance \(r^\xi \). Cette décroissance beaucoup plus lente exprime que les degrés de liberté (les moments magnétiques) sont plus fortement corrélés. À chaque type de fonction de corrélation est attachée une valeur d'un « exposant critique » \(\xi \) qui décrit cette loi de puissance. Or l'un des grands problèmes de la théorie des phénomènes critiques, résolu dans la décennie 1965-1975, a été de déterminer ces exposants critiques ainsi que ceux apparaissant dans le comportement de l'aimantation \((\alpha) \), de la chaleur spécifique \((\beta) \), etc., au voisinnage de \(T_c \). À titre d'exemple, les valeurs relatives au modèle d'Ising bidimensionnel sont \(\alpha = 0 \), \(\beta = 1/8 \) et, pour la fonction de corrélation entre moments, \(\gamma = 1/4 \).

Dans les « phénomènes critiques », le système physique n'a plus d'échelle de longueur caractéristique. Il en résulte une invariance conforme

On a constaté depuis longtemps que les exposants critiques sont « robustes »; en ce sens qu'une petite modification d'un système laisse ses exposants critiques inchangés ; la température critique, en revanche, est affectée par cette modification. Par exemple, deux corps ferromagnétiques différents représentent les mêmes exposants critiques. L'explication qualitative réussie à nouveau dans la divergence de la longueur de corrélation \(\xi \); ces deux systèmes diffèrent par des détails de leurs interactions à une échelle microscopique petite par rapport à \(\xi \). Quand \(\xi \) croît, ces différences deviennent de moins en moins importantes à l'échelle macroscopique où sont observés les systèmes critiques. Cela conduit à l'importante notion de classe d'universalité de phénomènes critiques, qui regroupe des systèmes différents ayant le même comportement critique, donc les mêmes ensembles d'exposants critiques. Par exemple, un fluide binaire et le modèle d'Ising tridimensionnel appartiennent à la même classe et leur comportement critique est décrit par les mêmes exposants. Une autre conséquence de la divergence de la longueur de corrélation est de donner d'éventuelles anisotropies de la physique microscopique. Le phénomène critique doit donc présenter les symétries de rotation et de translation, même si l'on est parti d'un système (par exemple sur réseau, comme notre modèle d'Ising) qui n'en était pas doté. Le mérite de la justification de ces idées qualitatives — de la construction de la théorie critique à partir du modèle microscopique et de l'élaboration d'une méthode de calcul systématique (la méthode du « groupe de renormalisation ») des exposants critiques — revient à l'Américain K. Wilson, de l'université Cornell, prix Nobel de physique en 1986 (voir « Une quête obstinée de l'universalité » dans *La Recherche* de décembre 1982). Les méthodes fondées sur l'invariance conforme dont il va être question ici ne remettent nullement en cause la validité et la puissance de cette méthode. Elles viennent plutôt la compléter dans le contexte des phénomènes critiques bidimensionnels par une voie radicalement différente, de nature essentiellement algébrique.

Comment l'invariance conforme intervient-elle dans les phénomènes critiques ? Il découle de ce qui précède que le caractère éventuellement discontinu du système à petite échelle ne joue pas de rôle dans l'étude des propriétés critiques. On peut donc considérer l'espace comme continu ; cela a l'avantage de permettre d'utiliser le formalisme élaboré mais puissant de la théorie quantique des champs. Ce terme désigne l'appareil théorique à la base de la physique des particules élémentaires, domaine où les effets relativistes (vitesses proches de celle de la lumière) et quantiques (fluctuations, en particulier création et annihilation de particules) sont importants. Une théorie quantique des champs revient à considérer une particule comme un quantum d'un certain champ défini en tout point de l'espace et du temps. Par exemple, en électrodynamique quantique, le photon est le quantum du champ électromagnétique. Il est étonnant de voir ce formalisme jouer un rôle dans la théorie des phénomènes critiques, qui semblent n'avoir rien de relativiste et peuvent apparaître dans des systèmes non quantiques (comme le modèle d'Ising). En fait, il existe une forte similitude mathématique entre le formalisme de la mécanique statistique et celui de la théorie quantique des champs. C'est cette ressemblance qui, moyennant une étude détaillée, permet de construire la théorie quantitative...
Les transformations conformes et leur algèbre

En dimension supérieure ou égale à trois, les transformations conformes, transformations ponctuelles conservant les angles, sont obtenues en compençant des déplacements (rotations et translations), des dilatations et des transformations conformes spéciales. Pour ces dernières, on effectue successivement une inversion par rapport à l'origine qui change le point repéré par le vecteur f en $1/f^2$, une translation par un vecteur a puis à nouveau l'inversion : le vecteur obtenu est $f'= (f^2 + a f)/(1 + 2 f^2 a f + a^2 f^2)$.

Les transformations conformes et leurs généralisations sont en partie dérivées de trois générateurs J_+, J_- et J_0, qui expriment que toute rotation peut être obtenue par une succession de rotations autour des axes Oz, Oy et Ox. Ils ne commutent pas, ce qui reflète le fait que le groupe des deux rotations dépend de leur ordre ; cela est codé dans les relations de commutation $J_+ J_- - J_- J_+ = 2 J_0$, etc. Les représentations du groupe des rotations, dont l'étude se fonde sur ces relations de commutation, sont complètement caractérisées par un nombre entier ou demi-entier, le spin.

En deux dimensions, il est commode de repérer un point du plan par un nombre complexe z. Les transformations conformes mentionnées précédemment ne sont autres que les transformations homographiques $z \rightarrow (az + b)/(cz + d)$, mais plus généralement, toute application analytique $z \rightarrow w = f(z)$ est conforme. Au voisinage d’un point z_0, un petit vecteur représenté par dz est changé en $dw = f'(z_0) dz$, donc dilaté par le module de $f'(z_0)$ et tourné de l’argument de $f'(z_0)$ si $f'(z_0) \neq 0$, on est en présence d’une rotation-dilatation locale qui préserve les angles orientés. Sur la figure ci-contre, on a représenté l’effet de la transformation $z \rightarrow z + z^2/10$: les droites du réseau sont transformées en deux faisceaux de paraboles orthogonales. L’étude d’un groupe continu, comme celui des rotations, commence par celle des transformations infinitésimales et de leurs généralisations, dont la théorie est liée à la divergence de longueur et à la propriété d’auto-similarité qui en résulterait.

Comme conséquence remarquable du formalisme de la théorie des champs sujet à ces conditions, le physicien russe A. Polyakov a démontré en 1970 qu’une symétrie d’ordre plus grand apparaît nécessairement. L’invariance sous les translations, rotations et dilatations implique l’invariance plus générale sous l’effet de transformations conformes. Quand la dimension de l’espace-temps est supérieure ou égale à trois, un théorème classique de géométrie dû à Liouville affirme que les transformations conformes sont composées de déplacements, de dilatations et de certaines transformations spéciales (voir l’encadré). Mais en fait, dans cette théorie, l’invariance conforme des phénomènes critiques ne nous apparaît pas d’un seul de neuf.

La situation est tout autre en deux dimensions, où il existe une variété infinie de transformations conformes. En effet, si l’on choisit de repérer un point du plan par un nombre complexe z, alors toute fonction (analytique) $f(z)$ s’interprète comme une transformation conforme (voir l’encadré). Selon la stratégie évoquée plus haut, on doit étudier ce que sont les transformations de ce groupe de transformations pour exploiter l’invariance conforme d’un système critique bidimensionnel. Pour cela, on étudie d’abord les transformations conformes (finies) comme le groupe des rotations) et n’a abouti qu’il y a dix ou douze ans, avec les travaux des mathématiciens russes V. Kac, B. Feigin et D. Fuchs.
Cela a permis en 1984 à A. Belavin, A. Polyakov et A. Zamolodchikov, de l'Institut Landau à Moscou, de formuler de façon précise le cadre d'une théorie des champs invariante conforme. Il est malheureusement impossible d'exposer ou même de résumer ici ces travaux abstraits mais d'une grande élégance. Nous retiendrons seulement qu'il apparaît, dans une théorie conforme quantique, un paramètre noté c dont l'existence était insoupçonnée : la charge centrale. Cette charge (qui n'a rien d'électrique) correspond à une anomalie d'origine quantique dans la façon dont l'invariance conforme est réalisée. Elle est propre aux systèmes critiques à deux dimensions. A priori, elle peut prendre toute valeur positive ou nulle (dans une théorie physiquement raisonnable) ; nous verrons que ses valeurs sont en fait restreintes.

Donnons un aperçu de quelques résultats saillants obtenus dans cette façon d'aborder les phénomènes critiques bidimensionnels. Une des premières applications est de relier des systèmes critiques de géométries différentes. Par exemple, la projection stéréographique (fig. 1) identifie la sphère et le plan : de même, un cylindre infini et un plan privé d'un point peuvent être identifiés par une transformation conforme. L'intérêt est de relier ainsi une configuration dotée d'une longueur intrinsèque (le diamètre du cylindre) à une autre qui n'en a pas (le plan trouvé), ce qui permet d'étudier les effets dus à la taille du système critique. Or le contrôle de ces effets est important pour comparer la théorie soit aux expériences en laboratoire, soit aux simulations sur ordinateur, les unes et les autres portant par la force des choses sur des objets d'extension finie. Ces considérations permettent aussi de répondre à une question d'une autre nature. Comme on l'a dit, l'algèbre de Virasoro qui est attachée aux transformations conformes infinitésimales fait apparaître un nouveau paramètre, la charge centrale. Fait remarquable, celle-ci est mesurable dans l'étude des effets de taille finie, comme l'ont montré H. Blöte, J. Cardy, M. Nightingale et I. Affleck en 1985. Imaginons le système critique placé sur un cylindre très long de diamètre L ; alors, par rapport à la limite où L est infini, certaines grandeurs thermodynamiques du système, telles que son « énergie libre », subissent une correction proportionnelle à c/L^2. Cet effet n'a pas encore été mesuré dans des systèmes physiques réels, mais il est couramment utilisé dans les études sur ordinateur de modèles critiques afin d'identifier leur charge centrale.

C'EST DANS LES SYSTÈMES CRITIQUES BIDIMENSIONNELS QUE LA SYMÉTRIE PAR RAPPORT AUX TRANSFORMATIONS CONFORMES SE RÉVÈLE UTILE

Plus généralement, le formalisme de l'invariance conforme met en évidence l'origine algébrique des exposants critiques à deux dimensions, et explique qu'apparaissent souvent des valeurs fractionnaires simples (comme l'exposant $\beta = 1/8$ du modèle d'Ising). D. Friedan, Z. Qiu et S. Shenker, alors à l'université de Chicago, ont pu prouver en 1984 que les exposants critiques des théories conformes de charge centrale $c<1$ sont à choisir dans une liste infinie mais discrète : $c = 1 - 6/(m+1)$, où m est un entier supérieur à 2, et pour chaque valeur de m, seul un nombre fini d'exposants, tous fractionnaires, sont possibles.

Par exemple, l'analyse révèle que le modèle d'Ising correspond à $m = 3$, donc $c = 1/2$.

On peut aller plus loin dans cette voie et classifier les théories conformes possibles, sujettes à certaines contraintes, par exemple $c<1$. Le simple fait qu'on puisse recenser les théories conformes, c'est-à-dire les classes d'universalité des phénomènes critiques, est en soi remarquable et sans doute propre à deux dimensions. La classification des théories à $c<1$, que nous avons menée à bien en 1987 avec A. Cappelli et C. Itzykson au Service de physique théorique de Saclay, fait apparaître elle-même une beauté inattendue : elle s'effectue essentiellement en deux familles infinies et trois cas exceptionnels, selon un schéma qu'on retrouve aux quatre coins des mathématiques sous le sigle ADE. Ainsi, les sous-groupes fins du groupe des rotations se classent selon ce même schéma (fig. 3).

Mais la raison profonde de la classification ADE des classes d'universalité à $c<1$ reste imprégnée de mystère. Au-delà de ces catalogues, la propriété majeure des théories conformes est d'être complètement résolubles : en particulier, toutes les fonctions de corrélation peuvent être déterminées exactement au point critique. Là encore, cette situation est exceptionnelle en théorie des champs, où les résultats exacts sont rares et où l'on doit habilement faire appel à des méthodes...
conservées au cours de l'évolution dans le temps (énergie, charges, ...) pour une certaine évolution soit complètement déterminée par ces quantités. De tels systèmes apparaissent dans toutes les branches de la physique, et particulièrement en basse dimension. Un exemple simple est celui d'un pendule n'oscillant pas nécessairement dans un plan, dont la position est donc déterminée par deux angles ; l'énergie totale (cinétique plus potentiel) est conservée et ainsi la composante verticale du moment cinétique et le mouvement du pendule est complètement fixé par la donnée de ces quantités et de sa position initiale. Des cas plus intéressants concernent des systèmes ayant un nombre infini de degrés de liberté (fluide, théorie de champ), pour lesquels un nombre infini de lois de conservation est requis. On peut citer certains modèles de propagation d'ondes dans un milieu à une ou calculables exactement.\(^{(11)}\) Cet inventaire peut paraître fort disparat, mais ces différents modes d'intégrabilité ont tous à voir avec les théories conformes. Dans ces questions, un certain type de déformation de la structure de groupe, auquel on a donné le nom de groupe quantique, joue un rôle central. C'est de l'étude de ces nouvelles structures qu'on peut attendre la résolution du problème des forces répulsives.

Cette belle construction théorique a-t-elle quelque application à des systèmes physiques réels ? Il est clair que la restriction à deux dimensions complique singulièrement la tâche. Il existe bien des systèmes pratiquement bidimensionnels, films de gaz ou de liquides sur un substrat, interfaces entre deux phases, films de polymères, etc. dont les propriétés critiques sont du ressort de la théorie conforme. Mais ces systèmes sont toujours placés dans l'espace à trois dimensions, et les inter-

\(\text{LA RECHERCHE 231 FÉVRIER 1993 VOLUME 24 PAGE 149}\)

\(\text{16) L. Affleck et A. Ludwig, Nucl. Phys., 8360, 641, 1991.}\)
\(\text{17) D.J. Gross et al. (eds.), Two dimensional quantum gravity and random surfaces, World Scientific, 1992.}\)
\(\text{18) E. Witten, Comm. Math. Phys., 121, 351, 1989.}\)
des sites privilégiés du substrat qui forment un réseau ; en variant la température à concentration fixée, on est en mesure d’atteindre un régime critique (fig. 4). Par des expériences de calorimétrie, on mesure la chaleur spécifique, tandis que des expériences de diffusion d’électrons permettent d’accéder à la fonction de corrélation entre deux atomes adsorbés. On peut ainsi aujourd’hui observer différents types de comportement critique, se manifestant par des exposants critiques qui reproduisent les valeurs du modèle d’Ising et de quelques autres modèles(12). Malheureusement, il semble encore difficile de mesurer des effets plus fins prédits par l’invariance conforme, tels que la valeur des fonctions de corrélation entre plus de deux sites.

Les films de polymères fournissent un autre système proche aux tests expérimentaux. De longues chaînes de polymères manifestent un comportement d’échelle avec des exposants universels ; par exemple, la distance moyenne R entre les extrémités de la chaîne croît comme une puissance fractionnaire du nombre de ses mailles : R ∼ N1/3 (fig. 5). Il s’agit là d’un domaine où l’école française s’est illustrée de longue date(13). Pour tester le comportement de ce système critique à deux dimensions, décrit par une théorie conforme avec c = 0, on étudie des couches minces du polymère sur une interface eau-air et la mesure de la pression osmotique de surface en fonction de la concentration détermine l’exposant ν en bon accord avec la valeur théorique 3/4. Une méthode ingénieuse, qui simule une variation de la température en modifiant chimiquement la conformations des chaînes du polymère (la « tactilité »), permet d’atteindre d’autres régimes critiques dotés d’exposants différents(14).

Plus généralement, il existe une classe de problèmes dans la physique de l’état condensé qui, sans concerner des systèmes critiques au sens où on l’a introduit plus haut, partagent avec eux la propriété d’avoir des corrélations à grande portée. Le comportement à grande distance de ces systèmes peut être assimilé à un comportement critique, et s’il a lieu à deux dimensions, relève des méthodes de l’invariance conforme. Ainsi, une grande activité entoure en ce moment l’application possible de ces méthodes à l’effet Hall quantique (voir « La renaissance d’un effet centenaire » dans La Recherche de décembre 1985) et, de façon sans doute plus spéculative, à des modèles de supraconducteur à haute température.

De façon inattendue, une application détaillée des méthodes et résultats de l’invariance conforme vient d’être effectuée dans un problème tridimensionnel. Il s’agit de l’effet Kondo, effet d’impuretés magnétiques diluées sur les propriétés de conductivité électrique d’un métal non magnétique (le cuivre par exemple). Quand la température diminue, on observe que cette conductivité décroit après être passée par un maximum. Ce comportement de base température a donné du fil à retordre à des générations de théoriciens avant de recevoir vers 1974 une solution numérique par K. Wilson, fondée sur sa méthode mentionnée plus haut. Il en a été ainsi compris depuis longtemps que ce problème est critique au sens élargi :

les électrons de conduction sont responsables de corrélations à longue portée(15). Selon une méthode proposée en 1991 par J. Affleck et A. Ludwig, de l’université de Vancouver, le problème est réduit à deux dimensions (une dimension radiale et un temps) et l’invariance conforme peut lui être appliquée(16). Des résultats nouveaux et détaillés, portant en particulier sur des fonctions de corrélation à temps différents, ont pu être ainsi obtenus et des tests expérimentaux sont en cours. Cela parait une direction prometteuse pour l’invariance conforme : il fait peu de doute que d’autres systèmes non strictement bidimensionnels attendent un traitement analogue les rameçnt à un problème effectif à deux dimensions.

Dans cet article, l’accent a été mis sur l’application de l’invariance conforme aux phénomènes critiques. L’autre contexte dans lequel le sujet s’est développé dans les années 1970 (avec l’Argentin M. Virasoro et ses collaborateurs) est celui de la théorie des cordes, ou plutôt ce qu’on appelait à l’époque les « modèles duaux » (voir « L’Uni-
vers est-il fait de cordes ? » dans La Recherche de janvier 1986). Les travaux menés alors par de nombreuses équipes de physiciens ont servi de base aux résultats mathématiques rigoureux cités plus haut.

L'idée originale des théories des cordes, aujourd'hui candidates à l'édification d'une théorie quantique unifiant la gravitation et les autres forces fondamentales, est que les objets microscopiques fondamentaux ne sont pas pointus (particules telles qu'électrons, quarks, etc.) mais unidimensionnels comme de petits morceaux de corde (fig. 6). Au cours de leurs évolutions, ces cordes balayaient des surfaces, et l'invariance conforme apparaît dans le fait que les quantités physiques doivent être insensibles au système de coordonnées choisi pour représenter ces surfaces bidimensionnelles. Il est remarquable que le même formalisme de l'invariance conforme se soit développé en parallèle dans deux contextes physiques très différents : phénomènes critiques et théories de cordes, et que les théories conformes qui décrivent telle ou telle classe d'universalité puissent aussi servir à la construction de théories de cordes.

FILMS DE POLYMÈRES, THÉORIE DES CORDES, GRAVITATION QUANTIQUE, MATHÉMATIQUES DES NŒUDS, ETC. : L'INVARINANCE CONFORME INTERVIENT DANS DE NOMBREUX DOMAINES

Une autre application de l'invariance conforme a trait aux systèmes désordonnés, en particulier aux systèmes critiques couplés à une géométrie fluctuante. On rencontre cette situation quand on place le modèle d'Ising sur un maillage arbitraire au lieu d'un réseau régulier et qu'on prend la moyenne sur des choix aléatoires de tels maillages. Le comportement critique fait apparaître de nouvelles valeurs des exposants. Curiellement, les calculs sont souvent beaucoup plus simples que pour le système initial, au réseau régulier, et on sait extraire les nouveaux exposants critiques. A nouveau, ce problème admet une autre interprétation dans l'esprit de la théorie des cordes et d'une théorie quantique de la gravité. On sait que, selon Einstein, la gravité n'est que le reflet de la géométrie de l'espace-temps, plus précisément de sa courbure. Dans le problème qui nous occupe, les maillages fluctuants peuvent être interprétés comme une version discrète de fluctuations quantiques de la géométrie d'un espace-temps à deux dimensions. Ce sont donc des modèles de gravité quantique bidimensionnelle qu'on construit ainsi et qu'il s'agit là encore d'un domaine en pleine effervescence.

Les théories conformes établissent une variété de relations avec des sujets très divers. Les travaux du physicien E. Witten, de l'Institute for Advanced Studies de Princeton, un des lauréats de la médaille Fields 1990, ont en particulier constitué une ouverture vers les mathématiques pures. En cherchant à caractériser la topologie des « variétés » (objets mathématiques que l'on appelait en langage profane « corps continûment déformables »), Witten a été conduit à introduire des théories champs en trois dimensions dotées de propriétés remarquables et intimement liées à des théories bidimensionnelles invariantes conformes. Dans le même domaine, on a placé les travaux du mathématicien V. Jones de l'université de Berkeley, autre lauréat Fields 1990, sur la théorie des nœuds et leur relation avec les modèles intégrables. On assiste donc en ce moment à un bouillonnement d'idées nouvelles et de développements théoriques, où le thème de l'invariance conforme revient avec insistance, conjugué avec celui d'intégrabilité complète. Des sujets qui semblaient éloignés apparaissent finalement comme des facettes différentes d'un même problème. Il ne paraît pas excessif de dire que le domaine de la mécanique statistique et de la théorie des champs à deux dimensions est en train de connaître une refonte complète à la lueur de ces idées. Ces travaux ont occasionné un rapprochement marqué de certaines branches de la physique théorique et des mathématiques. De façon assez caractéristique, ces développements ont été menés par la plupart des théoriciens sans souci d'applications immédiates à la physique du laboratoire, mais avec la conviction très forte qu'une si belle théorie ne pouvait rester inutilisée par la nature. Les résultats récents commencent à leur donner raison.

POUR EN SAVOIR PLUS

- La plupart des références antérieures à 1988 sont reproduites dans :