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1. Introduction

These notes reflect the structure of the lectures given at the Kathmandu Summer School.

They are made of two parts: the first is intended to be an elementary (and standard)

introduction to conformal field theory, following the approach of Belavin, Polyakov and

Zamolodchikov [1], together with a short and biaised review of some significant results.

For the sake of brevity, I shall not provide detailed references in that part. The interested

reader is referred to the lecture notes of Cardy and Ginsparg [2] or to the collected reprints

of [3]. The second part presents some recent developments on some relations between c.f.t.

and classical integrable systems (of KdV type), the so-calledW -algebras and related results

on the structure of singular vectors.

Conformal field theory has been developed for application to two very different physical

situations:

∗ In string theory, if the metric is written as gab (x) = ρ (x) g
(0)
ab (x) , the conformal

factor ρ (x) must not play any role in the dynamics; the theory depends only on conformal

classes of metrics. Conformal invariance is then a constraint on the theory.

∗ In critical phenomena in two dimensions: Polyakov (1970) has shown that in arbi-

trary dimension, the dilatation invariance expected in critical phenomena implies conformal

invariance. This remark is particularly fruitful in two dimensions. In the next subsection,

we shall recall some basic facts on critical phenomena, and the reader is referred for ex-

ample to [4] for a thorough treatment of the question.

One should also add that c.f.t. is also now being studied for its own theoretical

interest, as a non-perturbative approach to two-dimensional field theory, and for all its

remarkable and fascinating connections with various topics in mathematics, topology and

knot theory, in particular.

1.1. A little reminder on critical phenomena.

We are interested in systems undergoing a second order i.e. continuous phase transition,

for example :

2



M = 0
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vapor

H
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c

liquid-vapor system ferromagnet

under Tc : two distinct phases; under Tc (Curie temperature), as H → 0,

the order parameter =ρliq−ρvap a spontaneous magnetization M appears;

vanishes continuously at Tc. this order parameter M vanishes at Tc.

Such critical systems exhibit a singular behavior at Tc: for example, the specific heat c

behaves as c ∼ |T − Tc|
−α

, the order parameter as M ∼ (Tc − T )
β

etc...; α, β etc... are

critical exponents.

At some arbitrary temperature, correlation functions of physical quantities decrease

exponentially :

〈ϕ(r)ϕ(o)〉 ∼ e−r/ξ ξ= correlation length (1.1)

What happens at Tc is that the correlation length diverges. (There may be several ξ for

the various physical quantities, and we assume that they all diverge in the same way) :

ξ ∼ |T − Tc|
−ν

(1.2)

This is the fundamental property of a second order phase transition. It implies that the

system has lost a scale ξ (or is massless : mass ∼ ξ−1). This means that in the critical

system, fluctuations occur at all scales : bubbles of one phase inside bubbles of the other

inside bubbles ... at all scales ranging between the distance of physical observation and

the microscopic scale. One has scale invariance. Just at Tc, the correlation functions have

a power law fall-off : 〈ϕ (r)ϕ (o)〉 ∼ r−η and one may regard 1
2
η as the scaling dimension

of ϕ : dimϕ = 1
2η .
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Following Wilson, one may use renormalization group (R.G.) ideas : if physics at scale

a is described by a theory with coupling(s) g , at scale λa, it is described by the same

theory with effective couplings g (λ). As λ→ ∞ , one assumes that g (λ) approaches some

fixed point g∗. In general, one may show that this fixed-point theory that describes the

critical system is a (massless) scale-invariant Euclidean field theory.

The concept of fixed point of the R.G. also explains the properties of universality :

modifications of microscopic interactions (that do not affect the symmetries of the problem)

do not change the critical behaviour (critical exponents etc...), although they may change

the value of the critical temperature. Classes of universality are sets of systems with

different microscopic physics but the same critical behaviour. Conformal field theory will

describe the universality classes only.

1.2. Example: Ising model.

The partition function of this spin ±1 ferromagnet reads:

Z =
∑

{σi=±1}

eβ
∑

bonds
σiσj (1.3)

In 2 dimensions, α = 0 (logarithmic singularity), β = 1
8
, η = 1

4
, etc... The addition of

a term γσiσjσkσℓ to the 2-spin interaction shouldn’t modify the exponents. Actually the

Ising model is also appropriate to describe the phase transition of a binary fluid system.

In d ≥ 2, Wilson and his followers have developed very powerful R.G. improved

perturbative techniques to compute critical exponents. The results fit very well with

experimental data. In d = 2 , however, conformal field theory will enable us to go farther

and:

- explain why rational exponents or exponents varying continuously occur so frequently in

statistical mechanical models,

- possibly achieve a classification of all universality classes,

- compute all the correlation functions at Tc , etc...
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2. General features of conformal field theories

2.1. Conformal transformations.

Conformal transformations are point transformations of the d-dimensional Euclidean space

which preserve the angles, i.e. they may be regarded as local dilatations. An infinitesimal

transformation xµ → x′µ = xµ + ǫµ with ǫµ satisfying

∂µǫν + ∂νǫµ =
2

d
∂ρǫ

ρδµν (2.1)

is such a local dilatation since

(
dx′µ

)2
=

(
1 +

2

d
∂ρǫ

ρ

)(
dxµ

)2
(2.2)

It leaves ratios of lengths i.e. angles unaffected and is thus a conformal transformation. In

any dimension d ≥ 3, the conformal group is made of

translations : δxµ = aµ (2.3a)

rotations : δxµ = ωµνx
ν , ωµν antisymmetric (2.3b)

dilatations : δxµ = γxµ (2.3c)

“special conformal transformation” : = inversion ∗ translation ∗ inversion :

δxµ = bµx
2 − 2xµ (b.x) (2.3d)

In d = 2, there are more conformal transformations, as we shall see below.

In a field theory with an action functional S(ϕ), the effect of a change of coordinates

is described by the energy-momentum tensor Tµν such that

δS =

∫
ddxTµν∂

µǫν (2.4)

Invariance under translations is implied by (2.4), whereas invariance under rotation and

dilatation follow from the symmetry and tracelessness of Tµν . It is then easy to see that

any transformation satisfying (2.1) leaves the action unchanged. Thus

translation
rotation

dilatation



 invariances imply conformal invariance.
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More precisely, let us write a Ward identity to describe the effect of a change of

coordinates. Consider some correlation function

〈A1 (1) ...An (n)〉 =

∫
Dϕe−S(ϕ)A1 (ϕ (1)) ...An (ϕ (n)) (2.5)

assumed to be given by some functional integral; A is a local function of the basic field(s)

ϕ . Perform a change of coordinates x → x′ = x + ǫ(x) : the form of the function A (x)

changes into A′ (x′) and

δA(x) = A′(x′) − A(x). (2.6)

Write that the physical quantity (the l.h.s.) is unaffected by this change of coordinates.

In the r.h.s., the measure Dϕe−S(ϕ) contributes a term linear in ∂µǫν (x):

0 =
∑

i

〈A1...δAi...An〉 +

∫
ddx 〈Tµν (x)A1...An〉 ∂

µǫν (x) (2.7)

which defines Tµν (or rather 〈TµνA1...An〉). Imposing rotation invariance and dilatation

invariance namely :

∑

i

〈A1...δAi...An〉 = 0 for rotations and dilatations (2.8)

shows that, up to total derivatives,

Tµνδω
µν = 0 Tµν symmetric

Tµνδ
µν = 0 Tµν traceless.

We assume that after possibly a suitable modification (”improvement”), Tµν is symmetric

and traceless. (One may show that this improvement is always possible in two dimensions,

which is the only case which will concern us here.)

Moreover, the variation δAi must be local in ǫ and its derivatives: taking a functional

derivative of the Ward identity with respect to ǫ (x) gives

∑

i

[
...δ (x− xi) + ...∇δ (x− xi) + ...

]
= ∂µ 〈Tµν (x)A1 (1) ...An (n)〉

Up to coinciding-point singularities, Tµν is conserved.
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2.2. In 2 dimensions (Euclidean plane) :

Two new features emerge in two dimensions:

1) One can use complex coordinates z = x+ iy z = x− iy and write

ds2 = dx2 + dy2 = dzdz (2.9)

as

ds2 = gabdξ
adξb ξa = {z, z}

= (gzz + gzz) dzdz (2.10)

hence gzz = gzz = 1
2 , gzz = gzz = 0 and the inverse tensor is gzz = 2 . The energy

momentum tensor satisfies Tzz = Tzz = 0 as a consequence of its tracelessness.

2) Any analytic (holomorphic) change of coordinates is a conformal transformation

z → z′ = f (z) ds2 → |f ′ (z)|
2
dzdz. (2.11)

This means that the (infinitesimal) conformal transformations form an infinite dimensional

algebra. As one can imagine, the existence of this huge symmetry algebra is very restrictive

and enables one to use non-perturbative techniques (mainly Lie algebraic) to study these

conformal theories. We give hereafter a brief account of this formalism.

Important : The transformations discussed before: translations, rotations, dilatations,

special conformal transformations form the group SL (2,C) of Moebius transformations:

z → az+b
cz+d

a, b, c, d ∈ C, ad − bc = 1. Those are the only conformal transformations

which are one-to-one on the Riemann sphere (completed plane).

2.3. Transformation of fields.

Dealing with complex coordinates enables one to define tensors of non-integer rank: A

primary field is by definition a
(
h, h

)
tensor, i.e. under z → z′:

A(z, z) = A′(z′, z′)

(
dz′

dz

)h(
dz′

dz

)h

(2.12)

where h, h are two arbitrary (real) numbers, called the conformal weights of A. We shall

soon interpret h+h as the scaling dimension of A and h−h as its spin. For example, a free
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Majorana-Weyl field ψ (z) has h = 1
2 , h = 0 (or vice versa, depending on the chirality).

The infinitesimal transformation of a primary field reads:

δz = ε (z) δz = ε (z) (2.13)

δA (z, z) = [ε (z) ∂z + hε′ (z)]A (z, z) +
[
ε (z) ∂z + hε′ (z)

]
A (z, z) .

This result is actually quite typical : the contribution of the z and z variables decouple,

which enables one to treat them as independent variables. In many respects, the conformal

field theory behaves as made of two one-dimensional components. Ultimately the “physical

world” is recovered by imposing that z = complex conjugate of z.

Important warning. Not all fields behave as primary fields. Compute for example the

transformation of ∂zA (z, z). Another important non primary field is T (z, z) as we shall

see below.

2.4. Two-dimensional conformal field theory

Let us assume Tzz = 0 (scale invariance) and return to the Ward identity. In 2 dimensions,

it reads, after a little change in the normalization, suited for what follows :

δ 〈A1(1)...An(n)〉 =
1

2πi

∫
dzdz ∂zε (z, z) 〈Tz,z (z, z)A1 (1) ...An (n)〉 + c.c. (2.14)

For the reason mentioned before (singularities for transformations which are not Moebius),

one cannot take ε (z, z) analytic right away. By the same argument as presented above, T

is conserved everywhere but at the points 1, 2, ...n :

∂zTzz = 0 ∂zTzz = 0 i.e. Tzz = T (z) is analytic and Tzz = T (z) is antianalytic

(2.15)

except at the points 1, 2...n. Take ε analytic in the vicinity of

z1, ..., zn and vanishing outside a compact domain ∆′. 〈TA1...An〉

is therefore analytic in a domain ∆ excluding the points z1, ..., zn

and using Stokes theorem one may write :

δ 〈A1...An〉 = −
1

2πi

∫

∂∆

dz ε (z, z) 〈Tzz (z, z)A1...An〉 + c.c.

=
∑

i

1

2πi

∮

zi

dz ε (z) 〈T (z) ...A (n)〉 + c.c. (2.16)
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because ε vanishes on the external border. One may then identify separately the analytic

and antianalytic contributions in ε on both sides of the equation. For a primary field, for

example:

∑

i

[ε(zi)∂zi
+ hiε

′(zi)] 〈A1(z1, z1) · · ·An(zn, zn)〉

=
1

2πi

∮
dz ε(z) 〈T (z) · · ·A(n)〉 (2.17)

where the contour encircles the points z1, ..., zn. Finally one uses Cauchy theorem to

interpret this as :

〈T (z)A1 (z1, z1) ...An (zn, zn)〉 =
∑

i

(
hi

(z − zi)
2 +

1

(z − zi)
∂zi

)
〈A1...An〉 (2.18)

(which is the unique solution vanishing as z → ∞ ). Notice that this expression of

〈T (z) ...An〉 is indeed holomorphic everywhere except at z1, ..., zn.

One may also rephrase this result in terms of the short distance expansion :

T (z)A1 (z1, z1) =
h1

(z − z1)
2A1 (z1, z1) +

1

(z − z1)
∂z1

A1 (z1, z1) + · · · (2.19)

where · · · means regular terms as z → z1. This expansion is to be understood as valid

when inserted into a correlation function, i.e. in the presence of spectator fields.

2.5. Transformation of T (z).

If one wants to consider variations of 〈T (z)A1...An〉 itself under changes of coordinates,

one needs the short distance expansion of T with itself. The expression:

T (z)T (w) =
c

2 (z − w)
4 +

2

(z − w)
2T (w) +

1

(z − w)
∂wT (w) + ... (2.20)

is the most general form consistent with dimensional counting. The energy momentum

tensor is a conserved current, hence has no anomalous dimension: its canonical dimension

is 2, and the second and third terms in the expression above are just the normal terms

expected for a primary field of dimension h = 2, h = 0. The first term, however, is

an anomalous term, allowed by dimensional analysis, hence generically present: c is the

“central charge”, a denomination to be justified soon.
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This short distance expansion of T.T corresponds to an infinitesimal transformation

of T of the form

δT (z) = [ε (z) ∂z + 2ε′ (z)]T (z) +
c

12
ε′′′ (z) (2.21)

It integrates for finite transformations to:

T (z) = T ′(z′)

(
dz′

dz

)2

+
c

12
S {z′, z} (2.22)

where the “schwarzian derivative” is

S {z′, z} =
d3z′

dz3

/
dz′

dz
−

3

2

[
d2z′

dz2

/
dz′

dz

]2
(2.23)

This integration to finite transformations is non trivial. One may show that S {z′, z} is

the unique term (up to a factor) satisfying :

- antisymmetry i.e. S {z′, z} = −S {z, z′}
(

dz′

dz

)2

- SL (2,C) invariance, i.e. if f is a Moebius transformation :

S {f(z′), z} = S {z′, z}

- cochain condition : changes of coordinates z → z′ → z′′ and z → z′′ are consistent

- dimension = 2 in units of [length]
−1

.

This transformation law will have important consequences when we use conformal trans-

formations to map some domain on some other. For example, map the punctured plane on

the cylinder by z = e2iπw and find that the relation between Tplane (z) and Tcyl (w) reads

Tcyl (w) = (2iπ)
2
[
z2Tplane (z) −

c

24

]
(2.24)

2.6. Descendants of a primary field

Only the first two terms in the “operator product expansion” (o.p.e.) of T (z) and of the

primary field A have been identified in the expression above. More generally, we write :

T (z)A(z1, z1) =
∞∑

k=0

(z − z1)
−2+k

A(−k)(z1, z1)

A(−k)(z1, z1) ≡ (L−kA) (z1, z1) (2.25)

=

∮
dz

2πi(z − z1)k−1
T (z)A(z1, z1)
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and by further multiplications by T and/or by T and expansions, define also

A(−k1,−k2)(z1, z1) = L−k2
A(−k1)(z1, z1)

A(−k1,−k1)(z1, z1) = L−k1
A(−k1)(z1, z1) (2.26)

etc... The family of fields A, A(−k1), ..., A(−k1,...,−k1,...), ... constitutes the set of descen-

dants of A, graded by theirs levels : |k| =
∑

ℓ ℓkℓ,
∣∣k
∣∣ =

∑
ℓ ℓkℓ.

2.7. Operator algebra

An axiom of conformal field theory is that a product of two primary fields may be expanded

on the (finite or infinite) set of primary fields and their descendants:

A (z, z)B (w,w) =
∑

C

{k},{k}

C
({k},{k})
ABC (z − w)

hC−hA−hB+|k|
×

× (z − w)
hC−hA−hB+|k|C({−k},{−k}) (w,w) (2.27)

where the sum runs over primary fields C. The coefficient C
({k},{k})
ABC may be determined by

use of the Ward identity, once the “structure constants” CABC pertaining to the primary

fields are known.

2.8. Two- and three-point functions

Using translation and dilatation invariance, show that the 2-point function of a primary

field reads:

〈A (z, z)A (w,w)〉 =
1

(z − w)
2hA (z − w)

2hA

(2.28)

(The residue 1 results from a choice of normalization). Using SL (2,C) invariance to map

the three points zA, zB and zC to 0, 1,∞ or any permutation thereof, show that (for A,B,C

primary):

〈A (zA, zA)B (zB , zB)C (zC , zC)〉 =
CABC

(zA − zB)
hA+hB−hC × perm. × c.c.

(2.29)

and that CABC is completely symmetric.

The form of the 2-point function above justifies our earlier statement : in radial

coordinates z − w = ρeiθ

〈A (z, z)A (w,w)〉 =
e−2(hA−hA)iθ

ρ2(hA+hA)
(2.30)

hA + hA is the scaling dimension of A, hA − hA its spin.
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2.9. Examples:

1) Free boson field.

Its action reads S = 1
4π

∫
d2x (∂µφ)

2
, whence the propagator 〈φ (z, z)φ (0)〉 = −1

2 logzz .

Caution ! φ is NOT a primary field (it has a logarithmic propagator!) but Oe (z, z) =

: expieφ (z, z) : is. This is the vertex operator in the language of string theory, the electric

or spin-wave operator in the context of statistical mechanics. Check that h = h = e2/4

using Wick theorem. Also using Wick theorem, check that T (z) = − (∂zφ)
2

has the right

o.p.e. with Oe (z, z) and from the o.p.e. T (z)T (w), determine the value of c.

2) Free Majorana-Weyl fermion.

The action S = 1
2π

∫
d2x ψ∂ψ corresponds to the propagator 〈ψ (z)ψ (w)〉 = 1

z−w
, hence

h = 1/2, h = 0 as announced above. Check that the o.p.e. with T (z) = −1
2ψ (z) ∂zψ (z)

is what it should be, and determine c.

2.10. Operator language. Virasoro algebra

We want now to reinterpret the previous correlation functions in an operator language, as

resulting from the vacuum expectation value of suitably ordered products of field operators:

〈A1(1) · · ·An(n)〉 =
〈
0
∣∣∣PÂ1(z1, z1) · · · Ân(zn, zn)

∣∣∣ 0
〉
. (2.31)

It turns out that the radial quantization, in which fields are ordered from right to left

according to growing values of |zi| is particularly well suited. It corresponds by the expo-

nential mapping to the standard quantization on a cylinder, where the time evolution along

the axis of the cylinder describes either the propagation of a closed string, or a statistical

mechanical system subject to a periodic boundary condition along the “space” direction.

All the short distance expansions found above must be regarded in this operator

formalism as applying to the P-ordered products. Expand T̂ (z) =
∑∞

n=−∞ Lnz
−n−2

hence Ln =
∮
0

dz
2iπ
zn+1T̂ (z) and compute the commutator:

[
Ln, Â (w)

]
=

(∮

|z|>|w|

−

∮

|z|<|w|

)
dz

2iπ
zn+1PT̂ (z)Â(w) (2.32)

The two w−contours may be then deformed into a single one circling around z. For a

primary field A or the energy momentum tensor, respectively, this leads to
[
Ln, Â(z)

]
= zn+1∂zÂ(z) + h(n+ 1)znÂ(z) (2.33a)

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (2.33b)
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The latter equation defines the Virasoro algebra. One may regard Ln as the quantum

realization of the differential operators ln = −zn+1 ∂
∂z , which generate the diffeomorphisms

of the circle, with an algebra :

[ln, lm] = (n−m) ln+m

The Virasoro algebra is therefore the “central extension” of the algebra of the diffeomor-

phisms of the circle by the c-number (Schwinger-term) c
12n

(
n2 − 1

)
δn+m,0. Notice that in

the plane, L−1, L0, L1 generate the SL (2,C) transformations δz = respectively ε, εz, εz2.

Together with their z counterparts, generating an isomorphic L algebra, they correspond

to respectively translations, rotations and dilatations, and special conformal transforma-

tions. Notice also that this subalgebra does not “see” the central term: this reflects the

fact that the Moebius transformations have a vanishing schwarzian derivative and are the

only true symmetries of the theory.

To summarize, in a conformal field theory, there is a natural action of two Virasoro

algebras, relative to the z and z coordinates (left-moving and right-moving components).

It is thus natural to wonder what are the...

2.11. Representations of the Virasoro algebra

In physics, the interesting representations are the so-called highest weight (h.w.) repre-

sentations: for reasons which will become clear soon, they correspond to systems whose

energy is bounded from below. Remember from the discussion of ordinary Lie algebras,

SU (2) say, the construction of h.w. representations. The generators of the algebra are

J+, J− and Jz. One chooses an eigenvector of Jz of eigenvalue j annihilated by J+ :

Jz |j〉 = j |j〉 J+ |j〉 = 0 (2.34)

Repeated action of J− builds a sequence of eigenvectors of Jz

Jz (J−)
m
|j〉 = (j −m)(J−)m |j〉 (2.35)

until (J−)
m
|j〉 = 0 which occurs for m = 2j + 1. Likewise, here, we start from a highest

weight state, eigenstate of L0 and annihilated by all Ln, n > 0 :

L0 |h〉 = h |h〉 Ln>0 |h〉 = 0 (2.36)
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The action of the Ln<0 then generates a representation space (“Verma module”) V (c, h)

of the Virasoro algebra: V (c, h) is generated by the combinations Lα1
−1...L

αk

−k |h〉. The h.w.

representation built on |h〉 is thus infinite-dimensional, (contrary to the case of SU (2)

recalled above). This is an important feature of c.f.t.’s: it means that non trivial theories

with an infinite number of degrees of freedom may be accommodated with a finite number

of representations of the Virasoro algebra. An example will be provided below by the Ising

model.

This representation V (c, h) is also graded : this means that the eigenvalues of L0 are

integrally spaced; as the Virasoro commutation relations show immediately:

L0L
α1
−1...L

αk

−k |h〉 =
(
h+

∑
jαj

)
Lα1
−1...L

αk

−k |h〉 (2.37)

and
∑
jαj is the level of the state |h〉 (“above” the highest weight 2). The actual states

of the theory are made of tensor products of representations of the left and right Virasoro

algebras:

H = ⊕hVh ⊗ Vh

Among these h.w. states, one plays a particular role : h = 0 :

Ln |0〉 = 0 for all n ≥ −1 (2.38)

and thus L1 |0〉 = L0 |0〉 = L−1|0〉 = 0, which expresses that |0〉 , the vacuum, is invariant

under SL(2,C) transformations.

There is a correspondence between the language of states and that of fields which create

these states out of the vacuum :

primary fields Ahh ↔ h.w. state
∣∣h, h

〉

descendant fields ↔ descendant states

through :

lim
z,z→0

Ahh (z, z) |0〉 =
∣∣h, h

〉
. (2.39)

Check using the commutator [Ln, A] that this state is indeed a h.w. state; one has similar

expressions for the descendants.

The important issue of irreducibility of these representations of the Virasoro algebra

will be examined below in sect.6. Suffice it to say here that when the Verma module is

2 The conventional denomination highest weight is clearly very unfortunate: “lowest state”

would be more appropriate.
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non irreducible, there is a way to quotient it by its reducible parts and to construct an

irreducible representation. We shall assume in the following that this has been done.

The important feature to be remembered is the structure of these representations as

infinite “towers” of states with integrally spaced eigenvalues of L0.

2.12. Conformal data and their consistency.

To summarize, a conformal field theory is fully specified by the following set of conformal

data: c, the central charge, {(hi, hi)}, the finite or infinite set of conformal weights of the

primary fields and {Cijk}, the set of structure constants of the operator algebra. These

data are sufficient in the sense that in principle and in practice, they determine everything

in the theory: correlation functions, etc... They are not independent, however, which opens

the route to a classification of c.f.t.’s. The constraints come either from the representation

theory, or from the consistency of the conformal theory (associativity of the operator

algebra, etc). We shall see an example of the latter type in sect. 3.2; as an example of the

former type, let us quote an important result on the constraints of unitarity.

Unitarity of a c.f.t. means that its Hilbert space may be given a positive definite norm

for which the adjoint of the Virasoro generators satisfy

L†
n = L−n (2.40)

One proves that a necessary and sufficient condition of unitarity is

either c ≥ 1 h ≥ 0

or c and h are quantized as follows

c = 1 −
6

m(m+ 1)
m ∈ IN, m ≥ 3 (2.41)

hrs =

(
r(m+ 1) − sm

)2
− 1

4m(m+ 1)
r, s ∈ IN, 1 ≤ r ≤ m− 1, 1 ≤ s ≤ m

Thus for a given c < 1, there is a finite number of possible values of h, h for the primary

fields.

An example is provided by the Ising model which corresponds tom = 3 in the previous

formulae, thus c = 1
2
, and for which the three spinless fields have (h, h) = (0, 0), the identity

operator, ( 1
2 ,

1
2 ), for the energy operator, which describes the response of the model to a

departure from the critical temperature, and ( 1
16
, 1

16
), for the spin (in agreement with the

value η = 1
4 quoted in sect. 1.2).
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Note that the condition of unitarity is not as compulsory in statistical mechanics as it

is in string theory: the critical regime of polymers, or the so-called Lee-Yang singularity,

i.e. the critical point of a ferromagnet in an imaginary magnetic field, are known to be

described by non unitary c.f.t.’s.

3. A sample of results.

3.1. Finite size effects.

Consider a critical system in a strip of finite width L. For definiteness, the boundary

conditions are assumed to be periodic, and the system is thus living on a cylinder, but the

following may be generalized to other types of boundary conditions. One may map the

cylinder on the complex plane through the exponential mapping z = exp
(
2iπw/L

)
. Using

the transformation law (2.12) of a primary field under change of coordinates, it is easy to

deduce the two-point function on the cylinder from that on the plane (2.28) :

〈A′(w1)A
′(w2)〉cyl =

(
∂z1
∂w1

)h(
∂z2
∂w2

)h
1

(z1 − z2)2h
× c.c.

=
const.

(
sinπw1−w2

L

)2h
× c.c. (3.1)

For small separations, |w1 − w2| = r ≪ L, one recovers the universal singular behaviour

≈ r−4h (the field A is assumed spinless), but at large separations, r ≫ L, the 2-point

function has an exponential fall-off ≈ exp− r
ξL

, with a correlation length ξL = L/4πh.

This relation between h and ξL that had been observed empirically is thus justified by

simple considerations of conformal invariance.

3.2. Partition function with doubly periodic boundary conditions.

As an example of another finite size effect and a preparation of further considerations, let

us consider now our critical system in a box with doubly periodic boundary conditions,

i.e. on a domain with the topology of a torus. Alternatively, this torus T may be regarded

as the complex plane in which pairs of points differing by integral combinations of the

periods 1 and τ are identified z ∼ z + n1 + pτ or T = C/Λ where Λ is the lattice

Λ = ZZ ⊕ τZZ. (Thanks to scaling invariance, one of the periods may always be chosen

equal to 1, and moreover Imτ > 0 : τ is the modular parameter of the torus). Let us also
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define q = exp2iπτ, q its complex conjugate. A natural definition of the partition function

of the system consists in writing:

Z = tr eT τ+c.c. (3.2)

where T is the translation operator in the w-variable on the cylinder. Notice that the

segment of cylinder is closed into a torus by the trace operation.

Since T = Lcyl
−1 = 2iπ

(
Lplane

0 − c
24

)
as follows from the transformation of Tplane to

Tcyl computed in (2.24), we see that L0 + L0 plays the role of Hamiltonian: this justifies

our endeavour at restricting our attention to highest weight representations. Returning to

the partition function Z we can now write it as

Z = tr qL0−c/24qL0−c/24. (3.3)

It is important to realize that Z contains all the information about the operator

content of the theory: all the pairs of h.w. states, or equivalently all the pairs of conformal

weights of primary fields. More precisely, since we have by construction imposed periodic

boundary conditions along the “space” direction (period 1), only the states of the periodic

(untwisted) sector of the theory are encoded in Z ; stated differently only the integer spin

fields of the theory appear in Z . Other sectors of the theory, and the corresponding fields,

may be exposed by considering twisted (antiperiodic, etc...) boundary conditions. To

summarize, in the context of string theory, the spectrum of energies of the closed string is

encoded in Z; in the context of statistical mechanics, it is the set of conformal weights of

the theory, i.e. essentially its critical exponents.

To discuss the implications on finite size effects, choose for simplicity τ = iδ purely

imaginary, hence q = exp−2πδ real, and let δ → ∞ , q → 0. We can perform an expansion

of (3.3) in powers of q = q . In unitary theories, the leading contribution comes from the

identity operator h = h = 0 :

Z = (qq)
−c/24


1 + O (q, q) +

∑

h,h6=0

Nhhq
hqh (1 + O (q, q))


 ∼ exp +

πδc

6
[1 + ...] (3.4)

This has to be compared with the partition function expected for a system in a box L×T :

Z = expLTF (L) . (3.5)
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In the thermodynamic limit L, T → ∞ , F approaches a finite limit F0, the free energy per

unit volume. Implicitly, this F0 has been set equal to zero (at T = Tc) in our construction,

and the expression above, with δ = T/L , yields the finite size contribution to F :

F ∼ F0 +
πc

6L2
(3.6)

We conclude that the finite size contribution to the free energy is proportional to c, the

central charge. In other words, c controls the Casimir effect on the cylinder. Other types

of boundary conditions may modify the proportionality factor.

The subleading terms in the above expansion also contain an interesting information.

Compare with the expression of Z obtained for a lattice model using the transfer matrix

U , i.e. the discrete time evolution operator:

L

T
Z = trUT = λT

0

(
1 +

(
λ1

λ0

)T

+

(
λ2

λ0

)T

+ ...

)
(3.7)

if |λ0| > |λ1| > |λ2| ... are the ordered eigenvalues of U . In the thermodynamic limit

λT
0 = eLTF is the dominant contribution, but we may identify (for the lattice model close

to criticality) the successive ratios
(

λi

λ0

)T

with the terms of the q-expansion:

(
λi

λ0

)T

= exp − 2π
T

L

(
h+ h+ |n| + |n|

)
(3.8)

for some integers n and n . This is a method of practical importance. By numerical calcu-

lations of the eigenvalues of the transfer matrix, or by studies of the finite size corrections

to the Bethe Ansatz results whenever it is possible, one may “read” the values of
(
h, h

)
and

hence identify the conformal theory which describes a given statistical mechanical model.

Let us now return to the expression (3.3). The trace is to be taken on H, the Hilbert

space of states of the theory. The only information we have on H is that it decomposes
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into a (finite or infinite) sum of tensor products of irreducible representations of the left

and right Virasoro algebras, characterized by their highest weights h and h .

Z =
∑

Nhhχh(q)χh(q) (3.9)

where Nhh is the multiplicity of
(
h, h

)
, hence a non-negative integer. (In particular,

N0,0, the multiplicity of the vacuum, must be equal to one.) In (3.9), χh(q) denotes the

“character” of the representation labelled by h, i.e. the expression of trqL0−
c
24 evaluated

in that representation. Note that this character is essentially, up to an overall power of

q, a generating function of the number of states in the tower of states above the highest

weight h:

χh(q) = qh− c
24

∞∑

n=0

(dimension of space of level n) qn (3.10)

These characters have been studied and are explicitly known.

The important observation about Z is that it must be intrinsically attached to the

torus, and does not depend on the choice of periods which define Λ . In other words, Z

must be invariant under modular transformations:

τ →
aτ + b

cτ + d

a, b, cd ∈ ZZ

ad− bc = 1
(3.11)

(The condition ad− bc = 1 ensures the invertibility of the change of basis). The modular

group is actually generated by the two transformations

τ → τ + 1 and τ → −1/τ (3.12)

So it is necessary and sufficient to ensure that:

Z (τ) = Z (τ + 1) = Z (−1/τ) . (3.13)

This property of modular invariance, together with the general form (3.9) turns out to

be very restrictive and allows a classification of families of conformal field theories. This

program has been completed for a few families of c.f.t.’s, in particular for the “minimal

theories”, i.e. those that contain only a finite number of primary fields. (They have neces-

sarily c < 1 and contain as a subset the unitary c < 1 theories mentioned above). It turns

out that this classification may be related to another well-known classification in math-

ematics, that of simply laced algebras of type A, D, E. Thus this “ADE classification”

provides us with a complete list of all universality classes of critical phenomena involving

a finite number of primary fields.
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3.3. Other results at Tc: miscellaneous.

Let us list some other noticeable achievments of the formalism.

Correlation functions of all kinds are explicitly computed, and expressed through

integrable representations. This applies to n ≥ 4-point functions in the plane, or to all

functions in finite or semi-infinite geometries: half-plane, torus, etc...

It is perhaps not too surprising to see that most developments of c.f.t. may be

rephrased in the language of free fields: it had been advocated by Kadanoff some thir-

teen years ago that most two-dimensional critical systems may be expressed in terms of

the Gaussian model (or Coulomb gas). This is indeed the case of the 6-vertex, Ashkin-

Teller or XY models in their critical regimes, that may be represented by a free c = 1 free

boson field, compactified on a circle, i.e. regarded as an angular variable, or subject to fur-

ther identifications. Actually most (all?) known c.f.t.’s may be represented in terms of free

fields, with adequate modifications of the boundary conditions. In particular, the c < 1

minimal models discussed above may be obtained through the introduction of a “charge at

infinity” in the Coulomb gas picture. Generalizations to multicomponent Gaussian fields

seem capable to reproduce the existing c.f.t.’s.

Another way to reduce c.f.t.’s to a common ingredient is to emphasize the role played

by current (or Kac-Moody) algebras. A current algebra is yet another infinite dimensional

algebra based on a finite Lie algebra g. It has generators Ja(x) satisfying the commutation

relations of the type

[Ja(x), Jb(y)] =
(
fabcJc(x) +

k

2
δab∂x

)
δ(x− y) (3.14)

where the coefficient k of the central (Schwinger) term is a number. One develops the

theory of representations in a way similar to what has been sketched for the Virasoro

algebra. One finds that in unitary representations k is quantized as an integer and that for

SU(2), for example, the spin j of representations takes integer or half-integer values in the

range 0 ≤ j ≤ k/2. With such a current algebra, one may construct conformal theories,

i.e. the Virasoro generators are quadratic expressions in the J ’s. Moreover, by various

algebraic techniques, (coset construction, Hamiltonian reduction, ...), all “rational” c.f.t.’s

(see below) are expressible in terms of these current algebras. A final noteworthy feature is

the growing apparent role of these current algebras in condensed matter physics: quantum

Hall effect [5][6], Kondo problem [7]...
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There is a vast zoo of known c.f.t.’s. The previously discussed minimal or c = 1

theories are in many respects the simplest and have to do (in the sense of current algebras)

with SU(2) at level 1. It is thus very natural to generalize them using higher rank algebras

and/or higher level. Many of the resulting theories appear to be built out of representations

of an algebra larger than the Virasoro algebra, a so-called extended algebra. Examples of

such larger algebras are provided by the current algebras themselves, or by superconformal

algebras, or also by the so-called W -algebras. The latter are generated by the energy-

momentum tensor T (z) together with other fields of integer spin. The first non-trivial

example is provided by the critical 3-state Potts model (c = 4/5) which exhibits a W3

algebra generated by T and W of spin 3. The study of these extended W -algebras, of their

geometric meaning and of their representations is a very active current domain of research,

and we shall see in Sect. 5 how their classical version appears naturally in connection with

certain integrable systems. Those c.f.t.’s that involve a finite number of representations of

some extended algebra are said to be rational: they are the natural generalizations of the

minimal theories.

Finally, another interesting feature common to many of these c.f.t.’s is the appearance

of parafermions, i.e. of fields with fractional statistics.

3.4. Away from the critical point.

So far, all results derived from conformal theory have concerned the critical point proper.

It would, however, be extremely interesting to extract some information about the vicinity

of the critical point, where universality still holds, and to derive the values of critical ratios

of amplitudes, for example, for the specific heat, limt→0 c(Tc+t)/c(Tc−t), or the expression

of the two-point function in the critical regime T → Tc, r/ξ = x fixed. One may develop

perturbative techniques, perturbative expansions, R.G. flows, etc... about the conformal

theories, but these are still unable to answer these questions.

A remarkable result of non-perturbative nature has been obtained by Zamolodchikov

about the possible flow of a theory away from its critical point under the influence of a

“relevant” perturbation. Assume that a conformal theory of central charge c1 is perturbed

by a relevant operator. The theory looses its conformal invariance and develops a mass

scale; at large distances, this massive theory may reach another fixed point of the R.G.,

described by another c.f.t. of central charge c2. Then the theorem asserts that c1 > c2, and

that there exists a function c(t) monotonously decreasing along the flow line interpolating

between c1 and c2. Somehow, c is a measure of the number of degrees of freedom of the

system, and the decrease of c reflects the loss of information in the R.G. flow.
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3.5. Connections with integrable models.

One fascinating feature of c.f.t. is the existence of many connections with the a priori

distinct area of integrable systems, i.e. systems with an infinite number of conservation

laws. In fact, there are relations with various types of such integrable systems:

* lattice integrable models, i.e. solutions of the Yang-Baxter equation. Not only, it

seems that every known c.f.t. has a lattice integrable representative, but both families of

systems share many algebraic properties: in both, the quantum group and Kac-Moody

algebras play prominent roles, although in different guises. We refer the reader to [8] for

example for a discussion of the first feature.

* integrable massive field theories: when a c.f.t. is perturbed into a massive theory as

explained in the previous section, it may happen that the resulting theory retains some of

its integrability. This gives the possibility to compute the S matrix and other scattering

data [9], and also possibly off-shell quantities: form factors and correlation functions.

* classical field theories: as will be shown in the next section, there is a precursor

of these relations at a classical level: a classical (Poisson bracket) version of the Virasoro

algebra is present in classical integrable systems of the KdV type (or sine-Gordon, Toda...).

Upon quantization [10], one learns a lot about c.f.t.’s, their free field representation and

the role of the quantum group.

4. The KdV equation and hierarchy and their generalization.

We now turn to an apparently very different topic, namely the integrable systems of KdV

type. There is a huge literature and lore on the KdV equation, its hierarchy and its

generalizations [11][12][13]. I focus on some aspects that are useful in relation with my

concern, namely the Hamiltonian structures that are associated with these hierarchies and

which turn out to be the classical analogues of the Virasoro algebra and its extensions,

the so-called W -algebras (sect. 4.1-3). I also discuss the matrix formalism of Drinfeld and

Sokolov (sect. 4.4), which is a natural and useful way to recast differential operators in a

matrix form. In sect. 5, covariance properties of differential operators and their possible

deformations are studied: this introduces the classical version of W -algebras. Finally in

sect. 6, we return to the study of representations of the Virasoro algebra. It appears that

there are actually unexpected connections between the two subjects, and a general method

to determine singular vectors based on fusion is discussed.
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4.1. The KdV equation.

The Korteweg-de Vries equation is the non linear partial differential equation satisfied by

a function u(x, t):

ut = u′′′ + 6uu′ (4.1)

where the prime denotes differentiation with respect to the variable x and the subscript t

stands for ∂/∂t. This equation is known to describe the propagation of waves in shallow

water [14]. It possesses solutions of soliton type, i.e. that scatter while conserving their

identity (see [11], and [15] for a beautiful visual evidence). This actually follows from the

existence of an infinite number of conservation laws. I list hereafter the first conserved

quantities, but we shall see later what is the systematic way of generating them 3.

I0 = 2

∫
udx I1 =

∫
u2dx,

I2 =

∫
(u3 −

u′2

2
)dx I3 =

1

4

∫
(u′′2 + 5u2u′′ + 5u4)dx etc... (4.2)

The equation (4.1) is bi-hamiltonian, which means that it admits two hamiltonian descrip-

tions, with two Hamiltonians and two Poisson brackets:

ut(x) = D(i) δH
(i)

δu(x)
or equivalently ut = {H(i), u}(i), i = 1, 2 (4.3)

with

{u(x, t), u(y, t)}(i) = −D(i)
x δ(x− y)

for two choices of D and H:

D(1) =d, H(1) = I2, {u(x), u(y)}(1) = −δ′(x− y) (4.4a)

D(2) =
1

2
(d3 + 4ud + 2u′), H(2) = I1, (4.4b)

{u(x), u(y)}(2) = −
1

2
δ′′′(x− y) − (u(x) + u(y))δ′(x− y)

3 These conserved quantities are also related to the coefficients of the expansion of the resolvent

of the operator d2 − f [12]:

〈x|
1

−d2 + f + ξ
|x〉 =

∞∑

l=0

Rl[f ]

ξl+ 1
2

by δIl/δu(x) = 2l+2Rl[−u]. These Rl appear in the generalized Painlevé equations: x = Rl[f ]

[16].
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Here and in the following, d denotes the differential operator d
dx . In fact, the conserved

quantities are in involution, {Ij , Ik} = 0, (for either Poisson bracket), and satisfy in general

{Ik, u}
(1) = {Ik−1, u}

(2) (4.5)

This enables one to construct them recursively, by one quadrature and one functional

integration:
d

dx

( δ

δu(x)
Ik

)
=

1

2

(
d3 + 4u(x)d + 2u′(x)

)δIk−1

δu(x)
(4.6)

The common value (4.5) may be regarded as defining another partial differential equation

δku ≡ ∂
∂tk

u = {Ik, u}
(1) = {Ik−1, u}

(2), which is thus also integrable since it has the same

set of conservation laws. These new integrable equations are called “higher KdV” and they

form the KdV hierarchy.

The remarkable feature that we want to explore is that the second hamiltonian struc-

ture is nothing but the classical (Poisson) version of the Virasoro algebra [17]. This means

that if the function u(x) is a periodic function on [0, 2π], say, its Fourier modes un

un =

∫ 2π

0

dx

2π
u(x)e−inx −

1

4
δn0 (4.7)

satisfy

−2πi{un, um}(2) = −(n−m)un+m +
1

2
n(n2 − 1)δn+m,0 (4.8)

and upon changing −2iπ 6
c
{. , .}(2) → [. , .], − c

6
un → Ln, we recover the familiar Virasoro

algebra (2.33b): in this “quantization”, 6
c

plays the role of h̄ [17].

The KdV equation has one more property important for our purpose: it admits a

representation in terms of commutators of differential operators (Lax equation). Let us

introduce the differential operator D = d2 + u. Then, there exists a differential operator

Q such that

∂tD = [Q,D] (4.9)

The explicit form of Q reads

Q = d3 +
3

2
ud +

3

4
u′ (4.10)

We shall see later what is the way to generate this expression from D, but let’s note

immediately that the existence of this Q implies that the KdV equation describes an
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isospectral deformation (or flow) of the differential operator D. Considered as a function

of time, D(t) remains similar to itself:

D(t) = S(t)D(0)S−1(t) (4.11)

where S(t) satisfies

∂tSS
−1 = Q(t), i.e. S(t) = T

∫ t

expQ(t′)dt′. (4.12)

The spectrum of the operator D is thus left invariant.

To transform these observations into something more systematic and coherent, we

need to introduce the rules of pseudodifferential calculus [12][13].

4.2. Pseudodifferential operators.

The differential operator d is such that for any function a(x), the commutator [d, a] = a′.

Let us introduce the formal inverse d−1 of d, such that

dd−1 = d−1d = 1 (4.13)

The commutation properties with a function are easy to derive:

[a, d−1] = ad−1 − d−1a = d−1(da− ad)d−1 = d−1a′d−1

= a′d−2 − [a′, d−1]d−1 = a′d−2 − a′′d−3 · · ·

More generally, one has the Leibniz rule:

[dp, a] =

∞∑

k=1

(
p

k

)
a(k)dp−k (4.15)

with binomial coefficients extended to p>
<0

(
p

k

)
=
p(p− 1) · · · (p− k + 1)

k!
(4.16)

We call valuation of a differential or pseudodifferential operator the lowest power of d that

appears in it, if it is finite, when one chooses an ordering of the operator in which the

powers of d are pulled to the right.
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This formalism enables us to associate with every linear differential (or even pseu-

dodifferential) operator of order n, normalized so as to have the coefficient of the leading

power of d equal to one (“monic” differential operator)

∆ = dn +
∑

j≥1

ajd
n−j (4.17)

its inverse ∆−1, its n-th root L = ∆
1
n and more generally, its fractional powers ∆

k
n . They

are the unique pseudodifferential operators satisfying

∆∆−1 =∆−1∆ = 1

Ln =∆ (4.18)

∆
k
n =Lk

[∆
k
n ,∆

ℓ
n ] =[Lk, Lℓ] = 0

Indeed if the operator ∆ reads as in (4.17) we write

L = ∆
1
n = d +

∑

k≥0

αkd−k (4.19)

and we determine recursively and uniquely the coefficients αk by identifying ∆ and Ln:

nαk + differential polynomial in (α1, · · · , αk−1) = coefficient of dn−1−k in ∆. (4.20)

If a1 ≡ 0, the first terms read

L = d+
1

n
a2d

−1 +
(a3

n
−
n− 1

2n
a′2
)
d−2+

(a4

n
+
n2 − 1

12n
a′′2 −

n− 1

2n
(a2

2+a′3)
)
d−3 + · · · (4.21)

The existence and unicity of the inverse ∆−1 follow from similar considerations:

∆−1 = d−n − a1d
−n−1 + (na′1 − a2 + a2

1)d
−n−2 + · · · (4.22)

Given a pseudodifferential operator ∆ = dn+
∑

j>0 ajd
n−j , we denote ∆+ its ordinary

differential part

∆+ = dn +

n∑

j=1

ajd
n−j (4.23)

and ∆− the complement

∆− = ∆ − ∆+. (4.24)

26



The “residue” of ∆ is the coefficient of the d−1 term

res ∆ = an+1(x) (4.25)

A simple lemma states that the residue of a commutator is a total derivative. This is easily

established by linearity, considering two monomials A = adk and B = bdℓ. Then from

(4.15), resAB =
(

k
k+l+1

)
ab(k+l+1) (i.e. zero if k + l + 1 < 0) and

res [A,B] =
k(k − 1) · · · (−l)

(k + l + 1)!

(
ab(k+l+1) − (−1)k+l+1a(k+l+1)b

)

=
k(k − 1) · · · (−l)

(k + l + 1)!

k+l∑

i=0

(−1)id
(
a(i)b(k+l−i)

)
. (4.26)

We shall also make use of the ZZ2 involution, a conjugation that leaves the functions

unchanged, acts on d as d∗ = −d and on products of arbitrary pseudodifferential operators

according to (AB)∗ = B∗A∗.

So far we have used only algebraic manipulations and didn’t have to make explicit

the class of functions on which we are working. To proceed, we need the concept of

integration over a non trivial cycle C. We shall thus consider functions a(x) belonging to

either smooth periodic functions of one real variable on C = [0, 1] say, or smooth functions

of one real variable vanishing fast enough at infinity (C = IR), or else analytic functions of

a complex variable in C−{0} (and then C is any cycle encircling the origin). The trace of

a pseudodifferential operator is then defined as the integral over this cycle C of the residue

TrA =

∮

C

resA. (4.27)

The above lemma on the residue of a commutator guarantees that

TrAB = TrBA. (4.28)

4.3. Generalizations of the KdV equation.

We are now well equipped to return to the study of the KdV equation and of its general-

izations. We consider a monic differential operator of order n:

D = dn + a1d
n−1 + · · ·+ an. (4.29)

One can prove the following properties
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(i): The set of differential operators ∆ such that [∆, D] be of order less or equal to n− 1

is generated as a linear space by the functions and the operators (Dk/n)+, k ∈ IN.

Elements of proof (for a more detailed discussion, see [13], pages 1984-1985):

One first shows that the space of pseudodifferential operators B that commute with D is

generated by the D
k
n : if B = bpd

p + · · ·, then [B,D] = 0 implies that b′p = 0, thus bp is a

constant and B(1) = B − bpD
p
n also commutes with D but is of a degree one less than B.

By iteration, the property follows. Notice that [B,D] = 0 implies that [B+, D] = −[B−, D]

is of degree less or equal to n − 2. Now if A = apd
p + · · · + a0 is such that [A,D] is of

degree ≤ n − 1, the coefficient of dn+p−1 in [A,D] is nα′
p = 0, thus αp is a constant and

one repeats again the argument with the operator A(1) = A − αp(D
p
n )+. After a finite

number of steps, one is led to (i).

Property (i) means that, for any k not a multiple of n, one may consider the flow

δkD =
[(
D

k
n

)
+
, D
]

(4.30)

(Obviously the flows
(
D

k
n

)
+

for k ∈ nIN are trivial.) The flow associated with functions

δφD = [φ,D] (4.31)

simply corresponds to an infinitesimal change of the functions on which D acts

f → (1 − φ)f (4.32)

D → (1 + φ)D(1 − φ) = D + [φ,D] + · · ·

It may be used to bring D to a canonical form with no dn−1 term: φ = exp− 1
n

∫ x
a1(x

′)dx′

⇒ a1 → 0. We shall assume it in the following

D = dn + a2d
n−2 + · · ·+ an. (4.33)

The other flows respect this form.
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Example

For n = 3, k = 2, one gets D = d3 + ud + v,
(
D

2
3

)
+

= d2 + u, and δu = ut = 2v′ − u′′,

δv = vt = v′′ − 2
3 (uu′ + u′′′). Eliminating v one finds the Boussinesq equation

utt = −
1

3
(4uu′′ + 4u′2 + u′′′′). (4.34)

(ii): All these flows are isospectral and commute.

The first part is a trivial consequence of the commutator form of the flow equation,

as shown above in (4.11). For the second part, one first shows (see [13], page 1985) that if

δD = [A,D], then δD
k
n = [A,D

k
n ], hence δ

(
D

k
n

)
+

=
([
A,D

k
n

])
+
. Then using the Jacobi

identity, one derives after some algebra

[δk, δℓ]D =
[
[(D

k
n )+, (D

ℓ
n )+], D

]
= 0. (4.35)

(iii): The traces Iℓ = Tr (D
ℓ
n ) form an infinite set of conserved quantities.

As stated above, δkD
ℓ
n =

[(
D

k
n

)
+
, D

ℓ
n

]
. Thus its trace vanishes (see lemma (4.28)).

Thus with any differential operatorD one may associate a hierarchy of integrable flows

δkD, generalizing the KdV case where D = d2 +u. We shall see now that these hierarchies

have also an interesting Hamiltonian interpretation: this will provide generalizations of

the (classical) Virasoro algebra encountered for n = 2.

(iv): There exist two Hamiltonian structures reproducing the flows δkD.

The Hamiltonian structures are first defined through their action on linear function-

als of the coefficients a2, · · · , an of D and then extended by differentiation to arbitrary

polynomial functionals. Let lU (D) be a linear functional.

lU (D) =

∫
dx

n∑

i=2

ui(x)ai(x)

=Tr (dn + a2d
n−2 + · · ·+ an)(d1−nu2 + d2−nu3 + · · · + d−1un)

=TrDU (4.36)

where U denotes the expression in brackets. Since a1 vanishes one can freely add to U a

term of the form d−nu1. The two Hamiltonian structures discussed in [18][19][12][13] read

{lU (D), lV (D)}(1) =Tr
(
D[U, V ]

)
= lV (DU − UD) (4.37a)

{lU (D), lV (D)}(2) =Tr
(
(DU)+(DV ) − (V D)(UD)+

)
(4.37b)

=lV
(
(DU)+D −D(UD)+

)
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We want to use these Hamiltonian structures to define deformations of the linear functional

lV (D), hence of D itself through δlV (D) = {H, lV }, for some H (taken for the time

being as the functional lU (D)). Some care has to be exercised, however, when using the

second Poisson bracket on differential operators D with a vanishing coefficient a1. It is

not generally true that the expression
(
(DU)+D −D(UD)+

)
respects this property. One

may cure this by adding a further term to U [19] :

Û = U + d−nu1 (4.38)

which does not affect lU (D) but does modify the second Hamiltonian structure. Adjusting

the value of u1 to

u1 =
1

n

∫ x

Res [U,D] (4.39)

is essential to remove the unwanted term of order n− 1 in
(
(DU)+D −D(UD)+

)
.

One may then extend these formulae to Poisson brackets between a linear functional

lU (D) and an arbitrary polynomial functional Ψ(D) as follows

{Ψ(D), lU (D)} = {lVΨ
(D), lU(D)} (4.40)

where

VΨ =

n−1∑

i=1

d−i δΨ(D)

δan−i+1
(4.41)

and δ
δaj

is a short-hand notation for
∑

k(−d)k δ

δa
(k)
j

. Note that we are extending the

application of (4.37) to the functional lVΨ
(D) = Tr (VΨD) which is not linear. Finally one

may verify [13] that these hamiltonian structures reproduce the flows as

δkD = {Ik, D}(1) = {Ik−1, D}(2) (4.42)

The form of these two Hamiltonian structures looks at this stage fairly mysterious.

That they satisfy the Jacobi identity, (or even antisymmetry for the second one) is far from

obvious. (They are also “coordinated”, meaning that any linear combination of them is

an acceptable Poisson bracket [13], p. 1982). We shall now show that one may reproduce

in a natural way these structures, starting from a matrix representation of the differential

operators.
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4.4. Drinfeld-Sokolov formalism.

Following Drinfeld and Sokolov [13], we substitute for D a n × n first order differential

operator,

D̂ =




d a2 a3 · · · an

−1 d 0 · · · 0
0 −1 d · · · 0
...

. . .
. . .

...
0 · · · −1 d




(4.43)

i.e. D̂ = d + A where the matrix A may be regarded as belonging to the Lie algebra

An−1 = sl(n). This is the basis of an extension of all our considerations to general Lie

algebras, a task that we shall not pursue in this presentation (see [13][20][21]). The operator

(4.43) is equivalent to the original D in (4.29) in the sense that their kernels are in one-

to-one correspondence. If f ∈ ker D̂, its last component belongs to kerD and conversely

from an element in kerD we can construct one in ker D̂.

As emphasized in [13], the above form is by no means unique. There is covariance

under gauge transformations of the type

D̂ → N−1D̂N (4.44)

where N is a x-dependent element of T , the group of upper triangular matrices with 1’s

on the diagonal (its nilpotent Lie algebra of strictly upper triangular matrices is denoted

by T ). The above transformation does not affect the lowest component of the vector f

and makes linear combinations of its other components, thus preserves the isomorphism

between kerD and ker D̂. To be more explicit let

J− =




0 0 · · · 0
1 0 0
0 1 0
...

. . .
. . .

...
0 · · · 1 0




A =




0 a2 a3 · · · an

0 0 · · · · · · 0
...

...
...

...
0 0 · · · · · · 0




D̂ = −J− + d + A (4.45)

Under the action of N

D̂ → −J− + d +
{
N−1AN +N−1

(
dN + [N, J−]

)}
(4.46)
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where the matrix in curly brackets is again upper triangular, but not confined to the first

row any more. Conversely, given a matrix operator of the form d− J− +A, with A upper

triangular, it has a unique representative of the form (4.43) in the orbit under T .

We want to define Poisson brackets on gauge invariant functionals of these matrix

differential operators, i.e. functionals s(A) of the sl(n)-valued matrix A(x) invariant under

(4.46). (Notice the problem may be regarded as originating from one with an arbitrary

differential operator d1 + A, where A ∈ sl(n) is constrained by the requirements of equ.

(4.43). As usual, the constraints have to be accompanied by a gauge fixing procedure. See

[22][20] for a further discussion of this “Hamiltonian reduction”.) If we were dealing with

the case n = 1, (ordinary functions a(x)), a natural Poisson bracket would be

{a(x), a(y)} = ∂xδ(x− y) (4.47)

i.e. for two functionals s1(a) and s2(a):

{s1, s2} =

∮
dxdy

δs1
δa(x)

δs2
δa(y)

∂xδ(x− y)

=

∮
dx

δs1
δa(x)

∂x
δs2
δa(x)

(4.48)

which is antisymmetric and satisfies the Jacobi identity. In the matrix case n > 1, it is

very natural to generalize this to

{s1, s2}
(1) =

∮
dx tr

( δs1
δA(x)

[B,
δs2
δA(x)

]
)

(4.49a)

{s1, s2}
(2) =

∮
dx tr

( δs1
δA(x)

[d + A(x),
δs2
δA(x)

]
)

(4.49b)

where δs
δA(x)

is the functional derivative (denoted gradAs in [13]):

s(A + δA) ≈ s(A) +

∮
dx tr

( δs

δA(x)
δA(x)

)
. (4.50)

Note that δs
δA

is in fact defined modulo T if the only allowed δA are upper triangular. In

(4.49a) B denotes a constant matrix taken to be

B =




0 · · · 1
0 · · · 0

· · ·
0 · · · 0


 (4.51)
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This gives rise to two “coordinated” Hamiltonian structures: the antisymmetry is obvious,

and it is sufficient to verify the Jacobi identity on linear functionals.

One has actually to verify the consistency of the definition (4.49), namely its inde-

pendence with respect to the indeterminacy of δs
δA

modT , and its gauge invariance. Both

are simple consequences of the gauge invariance of the functionals s1(A) and s2(A) and

of the commutation of B with matrices in T . Finally after a painstaking calculation ([13]

p. 1996, see also [23]), one finds that these Hamiltonian structures reduce to (4.37) when

reexpressed in terms of the original differential operator D. In the following, we shall be

only concerned with the second one, because of its remarkable connection with the Virasoro

algebra or its extensions.

5. Covariant differential operators and W -algebras.

5.1. Covariance properties.

We return to the linear differential operators of the form

D = dn +
n∑

j=2

aj dn−j (5.1)

acting on functions f(x). We are interested to study how D and its coefficients aj(x),

j = 2, · · · , n, transform under changes of variables x → x̃. Let Fh denote the space of

functions that transform as h-differentials (conformal weight h), i.e. such that in two

coordinates x and x̃ they are represented by f and f̃ with

f̃(x̃) dx̃h = f(x)dxh. (5.2)

We claim that there exists a natural transformation of the functions a2, · · · , an such that

the operator D maps the space F−n−1
2

into the space Fn+1
2

. To show this, let f1, f2, · · · , fn

be n linearly independent functions in the kernel of D. Since a1, the logarithmic derivative

of their wronskian W vanishes, W is a constant and by a change of normalization of the

f ′s, can be set equal to 1

W (f1, f2, · · · , fn) =

∣∣∣∣∣∣∣∣∣

f
(n−1)
1 . . . f

(n−1)
n

f
(n−2)
1 . . . f

(n−2)
n

...
. . .

...
f1 . . . fn

∣∣∣∣∣∣∣∣∣
= 1. (5.3)
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The differential operator D may then be defined by its action on the function f according

to

[Df ] =

∣∣∣∣∣∣∣∣∣

f (n) f
(n)
1 . . . f

(n)
n

f (n−1) f
(n−1)
1 . . . f

(n−1)
n

...
...

. . .
...

f f1 . . . fn

∣∣∣∣∣∣∣∣∣
. (5.4)

D is clearly of the form (5.1), and it is a simple lemma [24] that if f1, f2, · · · , fn and f

belong to Fh, then W (f1, f2, · · · , fn) belongs to F
nh+

n(n−1)
2

and [Df ] to F
(n+1)h+

n(n+1)
2

. The choice of h = −n−1
2 preserves the condition (5.3). (It also makes fDf a density,

i.e.
∫
dxfDf invariant under changes of coordinate). By identification of the coefficients

a2, a3, · · · , an with minors of the determinant (5.4), one finds their transformation law, and

the previous assertion follows.

In particular, a2 does not transform as a 2-differential but has an “anomalous term”

proportional to the schwarzian derivative S{x, x̃} of the change of variable

ã2(x̃) =a2(x)
(dx
dx̃

)2
+
n(n2 − 1)

12
S{x, x̃} (5.5)

S{x, x̃} =
x′′′

x′
−

3

2

(x′′
x′

)2

where primes on x denote derivatives with respect to x̃. This is reminiscent of the transfor-

mation (2.22) law of the energy-momentum “tensor”: it is not an accident, and is related

to the Poisson structure of (4.4b) as we shall see below. We recall that under composition

of changes of variable, u→ x→ x̃, the schwarzian derivatives transform according to:

S{u, x̃} = S{u, x}
(dx
dx̃

)2
+ S{x, x̃} (5.6)

which implies the consistency of (5.5) and shows that a2(x) transforms as n(n2−1)
12 S{u, x},

with u a fixed coordinate for which a2 vanishes. The other coefficients a3, · · · , an of (5.1)

have more complicated transformations involving higher and higher derivatives of the ja-

cobian dx

dx̃
. One may prove, however, that there exists an invertible transformation to

differential polynomials wk ∈ Fk, 3 ≤ k ≤ n, i.e. polynomials of ak, ak−1, · · · , a2 and their

derivatives that transform as k-differentials. This transformation ak → wk is non unique.

The choice made in [21] is to take the wk, k ≥ 3 to be linear functionals of al, 3 ≤ l ≤ k.

This is achieved by a splitting of the differential operator in pieces ∆
(n)
k that are separately
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covariant i.e. map F 1−n
2

into F 1+n
2

and depend on wk (k ≥ 3) (and its derivatives) in a

linear way:

D = ∆
(n)
2 (a2) + ∆

(n)
3 (w3, a2) + ∆

(n)
4 (w4, a2) + · · · (5.7)

The key idea of the proof is to choose the special coordinate u in which a2(u) ≡ 0. This

requires solving the differential equation b′(x)− 1
2b

2(x) = 12a2(x)/n(n2 − 1) where b(x) is

the logarithmic derivative φ′/φ of the jacobian φ(x) = du/dx. In this special coordinate,

∆
(n)
2 (0) = dn

u and by covariance in the generic variable x it must read

∆2(a2) =φ
n+1
2

(
φ−1d

)n
φ

n−1
2

=(d − jb)(d− (j − 1)b) · · · (d + jb). (5.8)

where we have set n = 2j+1. For the consistency of this argument, we have to prove that

the expression (5.8) depends upon b only through the schwarzian derivative s = b′ − 1
2b

2

(and its derivatives) proportional to a2.

Proof: ∆2 is a differential operator with coefficients that are polynomials in b and

its derivatives and may be expressed as polynomials in b, s and derivatives of s. The

proof amounts to showing that these polynomials reduce to their term independent of b.

To see this, in the expression (5.8) we change b into b + δb, keeping s = b′ − 1
2
b2 fixed.

This implies that δb satisfies the equation δb′ − bδb = 0, or equivalently the commutation

relation between differential operators

(d − (k + 1)b)δb = δb(d − kb) (5.9)

for any k. The change of ∆2 is thus

δ∆2 =

j∑

k=−j

(d − jb) · · · (d − (k + 1)b)(−kδb)(d− (k − 1)b) · · · (d + jb)

=

(
−

j∑

−j

k

)
δb (d− (j − 1)b) · · · (d + jb) (5.10)

=0.

Under a change of variable, the operator ∆2 transforms covariantly, thanks to the trans-

formation properties of the schwarzian derivative (5.6).
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The same method applies to the other operators ∆k(wk, a2), but now in a constructive

way. A general expression is written for ∆k(wk, a2 = 0) , k ≥ 3 of the form

∆k(wk, 0) =

n−k∑

l=0

αklw
(l)
k dn−k−l

and the coefficients αkl will be determined by requiring that in a generic coordinate ∆k

transforms covariantly and depends only on a2

∆k(wk(x), a2(x)) =φ
n+1
2

n−k∑

l=0

αkl

[(
φ−1d

)l
φ−kwk

] (
φ−1d

)n−k−l
φ

n−1
2

=

n−k∑

l=0

αkl

[
Dlwk

]
Dn−k−l. (5.11)

We have introduced the covariant derivative taking h-differentials to h+ 1-differentials:

Df = (d − hb)f (5.12)

thus, Dwk = (d − kb)wk, D2wk = (d − (k + 1)b)(d − kb)wk, etc... and Dn−k−l in (5.11)

maps F−n−1
2

into Fn+1
2 −k−l. The square brackets in

[
Dlwk

]
mean that Dl does not act

further to the right. By differentiating w.r.t. b with a2 fixed as above, one finds that the

coefficients αkl are uniquely determined to be

k ≥ 3 αkl =

(
k+l−1

l

)(
n−k

l

)
(
2k+l−1

l

) (5.13)

(with the normalization αk,0 = 1). Finally, the identification of the operator D with

the sum (5.7) provides the expression of wk as a (linear) functional of a3, · · · , ak. In the

coordinate u where a2 ≡ 0

wk(u) =

k∑

l=3

(−1)k−l

(
k−1
k−l

)(
n−l
k−l

)
(
2k−2
k−l

) a
(k−l)
l (u) (5.14)

and from this the general expression may be restored by the same method.

One may wonder what is the general expression of the polynomials in the ak’s and

their derivatives that transform as r-differentials, with r integer larger than 2. Their form

may be obtained following the same method as used above to construct the w’s: write the

expression in the coordinate where a2 = 0 as a differential polynomial in the w’s; return to
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the generic coordinate, transforming the derivatives into covariant derivatives; derive the

conditions on the coefficients that enable one to reconstruct a r-differential depending only

on a2. For example, kw′
lwk − lwlw

′
k is a (k+l+1)-differential. It is not difficult to compute

the dimension N(r) of the space of these r-differentials. One finds [25] that a generating

function of the N ’s is

∑

r≥3

N(r)qr = q +
1 − q∏n

h=3

∏
l≥0

(
1 − qh+l

) . (5.15)

The first N(r) are given in the following Table:

r 3 4 5 6 7 8 9 10

N(r) 1 1 1 2 2 4 6 11

Let us return to the matrix form (4.43) of the differential operator (with a1 ≡ 0). We

can use the gauge freedom to bring the matrix D̂ into another form, exhibiting another

basis of differentials w’s. The matrix −J− + A ≡ A belongs to the Lie algebra An−1 of

traceless matrices graded according to

grade(Aij) = j − i (5.16)

so that grade(J−) = −1. In the nilpotent algebra T of strictly upper triangular matrices

graded as in (5.16)

T = ⊕n−1
k=1T

(k). (5.17)

the operator adJ− induces an injective map

ad J− : T (k) → T (k−1) 2 ≤ k ≤ n− 1 (5.18)

and maps T (1) on the Cartan subalgebra (traceless diagonal matrices). Since T (k) has

dimension n− k, we have

dim
(
T (k)/ad J−(T (k+1))

)
= 1. (5.19)

Thus if one chooses in T (k) a representative Rk of T (k)mod ad J−(T (k+1))

T (k) ∼ CRk ⊕ adJ−(T (k+1)) (5.20)
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one may use the gauge transformations (4.46) to bring A in the form

A(x) =

n−1∑

k=1

rk(x)Rk. (5.21)

The initial choice was to take for Rk the matrix which has a unique non zero entry 1 in

the first row, column k + 1. Since an element in adJ−(T (k+1)) ⊂ T (k) is characterized by

the fact that the sum of its entries in the grade k principal diagonal vanishes, this choice

is perfectly justified.

However there is another appealing possibility. The n-dimensional vector space carries

also an irreducible representation of sl(2) of spin j = n−1
2 . The Lie algebra is spanned by

J− as in (4.45), and J0, J+

J+ =




0 (n− 1).1 0 · · · 0
0 0 (n− 2).2 · · · 0
...

. . .
...

0 · · · 0 1.(n− 1)
0 · · · 0




J0 =




j 0 · · · 0
0 j − 1 · · · 0
...

...
...

. . .
...

0 0 · · · −j




(5.22)

satisfying the usual commutation properties:

[J+, J−] = 2J0 [J0, J±] = ±J±. (5.23)

Thus

Jk
+ ∈ T (k). (5.24)

The sum of entries of Jk
+

σk =
n−k∑

i=1

i(n− i)(i+ 1)(n− i− 1) · · · (i+ k − 1)(n− i− k + 1)

= k!2
(
n+ k

2k + 1

)
=

k!2

(2k + 1)!
n(n2 − 1) · · · (n2 − k2) (5.25)
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is non vanishing; for a proof of this formula, see [26]. Therefore we can choose Jk
+ as the

element Rk above. We then write, and this defines the W ’s [20][27]:

D̂ = −J− + d +

n−1∑

k=1

Wk+1J
k
+. (5.26)

Let D be the corresponding n-th order operator. As the notation suggests, the Wk’s are

an alternative basis of k-differentials (k > 2). In other words,

(i) for 3 ≤ k ≤ n, Wk ∈ Fk, i.e. in a change of coordinate x→ x̃:

W̃k(x̃)dx̃k = Wk(x)dxk

(ii) a2 = σ1W2 = n(n2−1)
6 W2, hence

W̃2(x̃)dx̃
2 = W2(x)dx

2 +
1

2
{x, x̃}dx̃2

(iii) The Wk, 3 ≤ k ≤ n generate the graded ring R of r-differentials, r integral ≥ 3.

To prove this, a simple possibility is to consider the operator

Ď = −J− + (d − bJ0) +

n−1∑

k=2

Wk+1J
k
+ (5.27)

where the Wk’s are assumed to be k-differentials. We shall show that this Ď is gauge equiv-

alent to D̂. Define the n-dimensional vectors f̌ = (f̌j , · · · , f̌−j)
T and F̌ = (F̌ , 0, · · · , 0)T ,

where f̌−j is a −j-differential, and the other f̌k are determined by the relation F̌ = Ďf̌ .

Then one proves by induction that f̌k is a k-differential, and d − bJ0 acts as covariant

derivative on f̌ , so that F̌ is a j + 1-differential. The operator D̂ of eq. (5.26) is then

obtained from Ď by the gauge transformation

D̂ = e−
b
2 J+Ďe

b
2 J+ (5.28)

provided W2 = b′

2 − b2

4 . This gauge transformation does not affect the components f̌−j

and F̌ and makes thus D a covariant operator from F 1−n
2

to F 1+n
2

, which completes the

proof of the statement.

How are these two bases of k-differentials thus constructed, the w’s and the W ’s,

related? The lowest ones differ just by a change of normalization but for k large enough,

the relation is non linear:

wk = σk−1Wk 2 ≤ k ≤ 5 (5.29)

whereas for k ≥ 6 and for instance for n = 6

w6 = 5!2(W6 +
1

9
W 2

3 ) (5.30)

See [26] for additional formulae.
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5.2. Infinitesimal deformations of the differential operator

In its infinitesimal form, the previous analysis is a particular case of the following problem:

find two infinitesimal differential operators X and Y mapping F−n−1
2

resp. Fn+1
2

onto

themselves, such that after a change of functions: g = (1 +X)f and G = (1 + Y )F , the

equation F = Df takes the form G = (D+ δD)g, with D+ δD still of the form (5.1). The

variation of D is thus given by:

δD = Y D −DX (5.31)

The particular case X = Y = D
k
n would correspond to the k-th KdV flow discussed in

sect. 2.3, for which the variations δk all commute. In the general situation considered here,

they do not. And indeed we are dealing here with a different kind of deformations of the

differential operator, that preserve its covariance properties. The KdV flows, on the other

hand, are isospectral flows, a concept that is at odds with the one of covariance: since the

operator maps a space F−n−1
2

into a different one Fn+1
2

, the concepts of eigenvalue and of

isospectrality are non invariant under changes of coordinates.

As mentionned above, the infinitesimal changes of coordinates offer us the first ex-

ample of such pairs of operators X1 and Y1 of order one. The changes of the variable

x→ x+ ǫ(x) are generated on F−n−1
2

resp Fn+1
2

by:

X1 = ǫd −
n− 1

2
ǫ′ (5.32a)

Y1 = ǫd +
n+ 1

2
ǫ′ (5.32b)

implying:

δ1D = Y1D −DX1 (5.33)

which summarizes the transformations of the coefficients of D under a change of variable.

More generally we look for deformations (5.31) generated by higher degree differ-

ential operators X and Y . Multiplying (5.31) by D−1 on the right, one finds Y =

DXD−1 + δDD−1. One may take the differential part showing that Y = (DXD−1)+

is completely determined by X and of the same order. Also, taking the residue one finds

that resDXD−1 = 0, hence the term of order zero x0 in X = X̃ + x0 is not independent:

resDX̃D−1 = −nx′0. This may be integrated to

X = X̃ −
1

n

∫ x

res [D, X̃D−1] (5.34)
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We conclude that the most general variation of the form (5.31) is built from an arbitrary

differential operator X̃. If we add to X any multiple ZD of D and add DZ to Y , δD is

unaffected. By use of the Euclidean division algorithm, this implies that there is no loss

of generality to restrict X and Y to be of order less or equal to n− 1. The most general

variation δD thus depends on n− 1 independent functions. Note that the number n− 1 is

nothing else than the rank of sl(n). We shall denote δXD the variation (5.31) acting on

D.

The commutators of δ’s follow from the definition (5.31):

[δX , δX′ ] = δ[X,X′]+δX′X−δXX′ (5.35)

where δXX
′ for example denotes the variation δX of X ′ which may be a functional of D.

We now want to define a basis δk(η) = δXk(η) such that:

[δ1(ǫ), δk(η)] = δk(ǫη′ − kηǫ′) (5.36)

which amounts to saying that η transforms as a −k-differential under changes of variable.

The corresponding Xk and Yk are covariant operators mapping F−n−1
2

, resp. Fn+1
2

into

themselves, and could be constructed by a method similar to that of the previous section.

We shall rather determine them by using a Hamiltonian language. The variations δk may

be generated by Hamiltonians of the form Hk =
∫
dx η(x)wk+1(x), through the second

Poisson structure studied in sect. 2. (Notice that the fact that η is a −k-differential

guarantees the invariance of the former integral.)

5.3. Explicit formulae for the Xk and Yk.

The comparison of (5.31) with (4.37b) suggests that we can identify the expressions of Xk

and Yk from the one of wk+1. Taking Ψ(D) = Hk =
∫
dx ǫwk+1, we get:

δklU (D) =

{∫
dx ǫwk+1, lU(D)

}(2)

=lU (δkD) (5.37)

δkD =
(
DVk

)
+
D −D

(
VkD

)
+

41



where Vk ≡ V̂Hk
with the notations of (4.38)-(4.41). It is now easy to identifyXk = (VkD)+

and Yk = (DVk)+. Knowing wk+1, this gives compact expressions for the parts X̃k and Ỹk

of valuation one of Xk and Yk,

X̃k =

(( n−1∑

i=1

d−i δHk

δan−i+1

)(
dn +

n∑

j=2

ajd
n−j
))

++

(5.38a)

Ỹk =

((
dn +

n∑

j=2

ajd
n−j
)( n−1∑

i=1

d−i ∆Hk

∆an−i+1

))

++

(5.38b)

The ++ subscript means that we keep only the contribution of valuation one. From (5.38)

the full expression of Xk and Yk may be reconstructed as explained in (5.34).

Table II: The generators Xk and Yk, SU(n) case

X1 =ǫd −
n− 1

2
ǫ′

X2 =ǫd2 −
n− 2

2
ǫ′d +

{ 2

n
ǫa2 +

1

12
(n− 1)(n− 2)ǫ′′

}

X3 =ǫd3 −
n− 3

2
ǫ′d2 +

{ (n− 2)(n− 3)

10
ǫ′′ +

6

5

3n2 − 7

n(n2 − 1)
a2ǫ
}
d

+
{ 3

n
w3ǫ−

3(n+ 2)(n− 7)

10n(n+ 1)
a′2ǫ−

(n− 3)(4n+ 7)

5n(n+ 1)
a2ǫ

′

−
(n− 1)(n− 2)(n− 3)

5!
ǫ′′′
}

A sample of the first Xk is displayed in Table II; the expression of the corresponding

Y ’s is simply obtained by conjugation: Yk = (−1)kX∗
k . For ǫ x-independent and k = 1, 2,

Xk = Yk coincide withD
k
n of the KdV flows (and accordingly, the generators wk+1, k = 1, 2

coincide with res
(
D

k
n

)
+
). It would thus appear that the W -flows are a sort of local (x-

dependent) extension of the KdV flows. For general reasons explained at the beginning of

this section, this is not so in general.

5.4. W−algebra.

With the explicit expressions of the w’s, the X ’s and the Y ’s at our disposal, we can now

form the Poisson brackets of the w’s among themselves. In general {wk(x), wl(y)} is by
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construction a sum of monomials in the w’s and their derivatives times a derivative of

δ(x − y). The set of Poisson brackets {wk, wl}, k, l = 2, · · · , n defines the W -algebra (of

type An−1). It always contains the (classical) Virasoro algebra generated by a2 and the

relations expressing that the wk, k ≥ 3, transform as k-differentials:

{a2(y), a2(x)} =
(
a′2(x) + 2a2(x)d + cnd3

)
δ(x− y) (5.39a)

{a2(y), wk(x)} =
(
w′

k(x) + kwk(x)d
)
δ(x− y) (5.39b)

As for the other brackets {wk, wl}, k, l ≥ 3, it is easier to compute and tabulate them

again in the coordinate u where a2 vanishes. According to an argument used repeatedly

in these notes, if

{wk(u), wl(v)}|a2=0 = ∆(wj , du)δ(u− v) (5.40)

with ∆ some differential operator, then in the generic coordinate

{wk(x), wl(y)} = φk∆(φ−jwj , φ
−1d)φl−1δ(x− y). (5.41)

(The δ-function has contributed an extra φ−1). The operator ∆ must satisfy certain

constraints in order that the r.h.s. of (5.41) depends only on the schwarzian derivative

of the change of coordinate. Let us illustrate these considerations on the set of Poisson

brackets {wk, wl}, k, l = 3, 4, for generic n.

{w3(v),w3(u)}|a2=0 =

(
2[w4, d]+

−
(n− 2)(n− 1)n(n+ 1)(n+ 2)

6!
d5

)
δ(u− v) (5.42)

{w3(v),w4(u)}|a2=0 =

(
5w5d + 2w′

5

−
(n− 3)(n+ 3)

70
(14w3d

3 + 14w′
3d

2 + 6w′′
3d + w′′′

3 )

)
δ(u− v)

{w4(v),w4(u)}|a2=0 =

(
3[w6, d]

+
−
n2 − 19

30
(3[w4, d

3]
+
− 2[w′′

4 , d]
+
)

−3
n− 3

n
w3dw3 +

(n− 3)(n− 2)(n− 1)n(n+ 1)(n+ 2)(n+ 3)

20.7!
d7

)
δ(u− v)

where all the w’s on the r.h.s. are evaluated at u and d stands for d/du. Notice that even

for a2 = 0, non linearities in the w’s appear.
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One general feature of the W -algebra which is provided by our approach is the form

of the central term. One finds [21]

{wk(y), wl(x)}|central term = (5.43)

(n− k + 1)(n− k + 2) · · · (n+ k − 1)
(−1)k

(
(k − 1)!

)2

(2k − 2)!(2k − 1)!
δk,ld

k+l−1δ(x− y).

All these formulae have been written explicitly in the basis provided by the w’s. One

could of course also list the corresponding Poisson brackets obtained using the basis W

of sect. 3.1 [27]. The formulae would look slightly different, but the intrinsic algebra of

deformations of the differential operators D generated by this other basis would be the

same.

Let us finish this section with two comments on W -algebras.

W -algebras were originally introduced by Zamolodchikov [28] as extensions of the Virasoro

algebra by higher spin generators. It was later suggested that the classical (Poisson bracket)

version of these algebras must have to do with the KdV or Liouville-Toda hierarchies and

may be obtained by the procedure of Hamiltonian reduction (see [20]-[22] for references).

What we have been doing here was to identify precisely the generators of these classical

algebras that transform as primary fields. There is another way to generate these W -

algebras from Kac-Moody algebras, for values of the level opposite to the Coxeter number

[29]. That these two constructions produce equivalent results is quite non trivial.

Another point that remains elusive is the geometric meaning of these W -transformations.

We have seen that they may be regarded as describing deformations of differential operators

that preserve their covariance, and the simplest case corresponds simply to changes of

coordinates, but what is the meaning in more geometric terms? I refer the reader to

[30][23][31] for attempts in this direction.

6. Singular vectors in representations of the Virasoro algebra.

6.1. Some basic properties of Verma modules of the Virasoro algebra.

We now return to the “quantum” Virasoro algebra (2.33b). We change slightly the nota-

tions of sect. 2 and denote f a highest weight vector:

L0f =hf

Lmf =0 m > 0 (6.1)
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and use a shorthand for its descendants

f{p} = L−{p}f ≡ L−p1
L−p2

· · ·L−pk
f (6.2)

where {p} is the multi-index (p1, p2, · · · , pk), 1 ≤ p1 ≤ p2 ≤ · · · ≤ pk. Let |{p}| =
∑
pi

be the “level” of this vector. If L{q} ≡ Lq1
Lq2

· · ·Lql
, with |{p}| = |{q}|, the vector

L{q}L−{p}f is of level zero, hence proportional to the highest weight vector f . This defines

the matrix elements of the contravariant form:

M{q},{p}f = L{q}L−{p}f (6.3)

on the p(n)-dimensional vector space of level n (p(n) denotes the number of partitions of

the integer n).

An important issue is the reducibility or irreducibility of this representation of the

Virasoro algebra. One proves that V (c, h) is reducible if and only if one of the three

equivalent properties is satisfied:

(i) there exists in V (c, h) at some level n a “singular” (or “null”) vector F

F =
∑

|{p}|=n

C{p}f{p} = φ(L−1, L−2, · · ·)f (6.4)

satisfying the same properties as a highest weight vector:

L0F =(h+ n)F

LmF =0 m > 0 (6.5)

It is indeed clear that such a vector, if it exists, carries its own Verma module V (c, h+ n)

which is an invariant submodule of V (c, h).

(ii) the form M at level n is degenerate: detM = 0.

(iii) if one parametrizes c, h as follows

c =1 −
6

m(m+ 1)
m ∈ C (6.6)

h =
(r(m+ 1) − sm)2 − 1

4m(m+ 1)
r, s ∈ IN

then there exists a singular vector at level n = rs. Beware! In contrast with the proposition

on unitary representations in (2.41), here m ∈ C and there is no restriction on the positive

integers r and s.
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Only the third part is (highly) non-trivial [32][24][33]. For a given c it asserts that

the set of h giving reducible modules is discrete. Also for a given h there may be several

pairs (r, s) such that one may write (6.6). The theorem implies the existence of a singular

vector for each such pair. (Notice that this may happen only for m ∈ Q).

In the following we shall find it useful to write the labels r = 2j′ + 1 and s = 2j + 1,

in a way suggesting a connection with spins of SU(2), and to introduce the notations

t = −
m

m+ 1
= θ2. (6.7)

The above formulae then read

c =1 + 6(θ + θ−1)2

h =hj′,j = −(jθ + j′θ−1)
(
(j + 1)θ + (j′ + 1)θ−1

)
(6.8)

n =(2j + 1)(2j′ + 1)

If V (c, h) turns out to be reducible, then the irreducible part of V is constructed by

modding out the singular vectors and their descendants:

M(c, h) = V (c, h)/maximal invariant submodule

This is what is usually done in conformal field theory [1] where the singular fields and their

descendants are set equal to zero (whence the name “null”). It has important consequences

as it leads to differential equations satisfied by the correlation functions of the theory.

It has been a long-standing problem in the representation theory of the Virasoro

algebra to give an explicit expression of singular vectors, namely of the polynomial

φ(L−1, L−2, · · ·) in (6.4), normalized by φ = Ln
−1 + · · ·. For small values of j, j′, one

can obtain such expressions by direct calculation. For example, for n = 2, r = 1, s = 2,

F =
(
L2
−1 −

m

m+ 1
L−2

)
f. (6.9)

The goal is however to obtain universal formulas. Let us recall that, beside being important

for the study of Verma modules, these null states plays an important role in conformal

field theory. The condition that their correlation function 〈Ff1 · · ·〉 with other highest

weight (primary) fields vanishes is transformed through the conformal Ward identities into

partial differential equations satisfied by 〈ff1 · · ·〉. Their explicit form is thus important

in connection with the determination of correlation functions. In fact explicit expressions

for these correlation functions have been obtained by the “Coulomb gas” (or free field)

representation [34][35]. One should in principle be able to recover the differential equation,

hence the null vector, from this information. We shall, however, propose a more direct

route.
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6.2. A subfamily of singular vectors

In fact there is a subfamily of singular vectors that have been known for some time [36].

They correspond to either r or s equal to one, i.e. in our alternative notations, to either

j′ or j vanishing. As we shall see, they have a (not totally unexpected) connection with

the considerations of the previous sections.

The formula given in [36] reads for r = 1, s = 2j + 1 = n

φ =
∑

partitions of n
n=p1+···+pr,pi≥1

tn−r (n− 1)!2
∏r−1

i=1 (p1 + · · · + pi)(n− p1 − · · · − pi)
L−p1

· · ·L−pr

(6.10)

where t has been defined in (6.7). There is an analogous formula in the case r = n, s = 1,

obtained by changing t into t−1.

The case j′ = 0 has the virtue that the h0j are the only values in (6.8) to have a

limit as m → 0 (hence c → ∞) (“classical limit”, see above in (4.8)). This limiting value

is h = −(n − 1)/2, i.e. the conformal weight of functions f studied in sect. 3. The

operator φ in this limit is expected [17] to reduce to an ordinary differential operator with

covariance properties, since it maps a highest weight (i.e. a h-differential) onto another

one (a h+ n-differential). The matching is provided by the following identification

L−1 →d

−mL−k →
a
(k−2)
2

(k − 2)!σ1
(6.11)

where σ1 = n(n2−1)/6 is the coefficient introduced in section 3. The form of the operator

φ is thus known in this limit: φ = ∆
(n)
2 (a2) and this suggests to recast the form of φ using

the matrix formalism of section 3. Unexpectedly, but very fortunately, this matrix turns

out to embody the whole form of φ0j — beyond the limit m → 0 — and enables one to

reproduce the results of [36].

Let us concentrate on the case r = 1, n = s = 2j + 1 for definiteness. Then (6.8)

reduces to

c =13 + 6(t+ t−1)

h = − j − tj(j + 1) (6.12)

n =2j + 1
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where j = 1
2 , 1,

3
2 , · · ·. In V (c, h) we introduce a sequence of elements denoted

f = f−j , f−j+1, · · · , fj , fj+1 = F (6.13)

where f−j is the highest weight state f , fj+1 is the singular vector F and fM (j + M a

non negative integer) satisfies

L0fM = (h+ j +M)fM (6.14)

We define the n-dimensional vectors

f =(fj , fj−1, · · · , f−j)
T

F =(F, 0, · · · , 0)T (6.15)

We also use the notations J±, J0 introduced in section 3. Now the claim is that the set of

equations embodied in the linear system

F =
(
− J− +

n−1∑

k=0

L−k−1(tJ+)k
)
f (6.16)

defines F = fj+1 as a non vanishing singular state at level n in V (c, h). Moreover the

successive components of f satisfy the relations

p > 0 Lpf =
[(
J0 −

3p+ 1

2

)
− t−1 3p+ 1

4

]
(tJ+)pf. (6.17)

proved by induction on the label M of the components of f starting from the last one,

for which both sides of (6.17) vanish as a consequence of the highest weight property.

Equation (6.17) for p = 1, 2 implies it for higher p by commutation. It also extends to

M = j + 1 for which it means that F is annihilated by the Lp, p > 0, i.e. F satisfies the

axioms of a singular vector, q.e.d.

Remarks.

(1) The case r = 2j′ + 1, s = 1 is simply obtained by changing j → j′, t→ t−1.

(2) Eliminating all components fj , −j + 1 ≤ k ≤ j one finds the explicit form of the

operator φ : f ≡ f−j → F given in (6.10).

What is very striking, and remains slightly mysterious today, is the similarity between

the operator φ found here in a matrix form in (6.16) and the matrix differential operator

(5.26). The substitution

L−1 →
d

dx
tkL−k−1 →Wk+1 (6.18)
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in (6.16) reproduces the n× n differential operator (5.26).

To obtain the general form of the singular vectors for both j′ and j different from

zero, we shall now appeal to the operation of fusion. It is indeed part of the standard

lore of c.f.t. (and it will be justified below) that fusion of (j′, 0) and (0, j) highest weight

representations yields the one labelled by (j′, j). It is thus expected that the relevant

information about the general singular vectors is somehow encoded in the previous cases.

In order to transform this qualitative remark into something operative, we need reexamine

first the precise meaning and use of fusion.

6.3. Fusion revisited.

We now adopt the language of conformal field theory. To each point x of the Riemann

sphere, we attach a “primary” field fh(x) and its descendants L−{p}fh(x) which form

a highest weight module of a copy of the Virasoro algebra at this point. Moreover the

interpretation of the Virasoro generator Ln is that it carries out the infinitesimal changes

of coordinates: δx = −xn+1. In this respect the highest weight vector fh(x) is a h−

differential: fh ∈ Fh, and this is the meaning of “primary”.

Lnfh(x) = xn+1 d

dx
fh(x) + h(n+ 1)fh(x) (6.19)

The action of the Virasoro algebra on fh is also nicely encoded in the short distance

expansion of fh(x) with the energy-momentum tensor

T (ξ) =
∑

p∈ZZ

(ξ − x)−p−2L(x)
p (6.20a)

i.e. T (ξ)f(x) =
∑

p≥0

(ξ − x)p−2
(
L−pf

)
(x) etc... (6.20b)

or conversely L−pfh(x) =

∮
dξ

2πi
(ξ − x)−p+1T (ξ)fh(x) (6.20c)

In conformal field theory, we have seen in sect. 2.7 that an important axiom is that

a product of two fields may be expressed in a short distance expansion in terms of other

conformal fields. In the present context, we write

f0(x0)f1(x1) ∼
∑

h

{
g(h0, h1, h)

zh0+h1−h

∑

n≥0

znf
(n)
h (x1)

}
. (6.21)

The notations are as follows: z = x0−x1 is the formal expansion parameter, g(h0, h1, h) is

the coupling between the three fields f0, f1 and fh, and f
(n)
h denotes a descendant of level
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n of fh. Whenever a coupling g(h0, h1, h) is non vanishing, we say that there is possible

fusion of f0 × f1 → fh. We shall find later a necessary condition for this to occur, in the

cases relevant for our discussion. As the notations suggest and as we shall justify below,

the leading term f
(0)
h in (6.21) is a primary field, a property of crucial importance in the

our forthcoming construction 4.

We can now use equ. (6.20c) to derive explicit formulae for the fusion of descendant

fields of f0 with a primary field f1. We start from
(
L−pf0(x0)

)
f1(x1) =

∮

C0

dξ

2πi
(ξ − x0)

−p+1T (ξ)f0(x0)f1(x1)

=
{∮

C

−

∮

C1

}[ dξ
2πi

(ξ − x0)
−p+1T (ξ)f0(x0)f1(x1)

]
(6.22)

the contours C0, C1 and C are depicted on the Figure. The

contribution of C1 is readily evaluated using (6.20b)
∮

C1

dξ

2πi
(ξ − x0)

−p+1T (ξ)f0(x0)f1(x1)

=

∮

C1

dξ

2πi
(ξ − x0)

−p+1
( h1

(ξ − x1)2
+

∂x1

(ξ − x1)

)
f0(x0)f1(x1)

= −

(
−

1

z

)p(
(p− 1)h1 + z∂x1

)
f0(x0)f1(x1) (6.23)

whereas the contribution of the other contour is expanded for x0 ∼ x1 in the form
∮

C

dξ

2πi
(ξ − x0)

−p+1T (ξ)f0(x0)f1(x1)

=

∮

C

dξ

2πi
(ξ − x1 − z)−p+1T (ξ)f0(x0)f1(x1)

=
∑

k≥0

zk

(
p+ k − 2

k

)∮

C

dξ

2πi
(ξ − x1)

−p+1
(
T (ξ)f0(x0)f1(x1)

)

=
∑

k≥0

zk

(
p+ k − 2

k

)
L−p−k

(
f0(x0)f1(x1)

)
(6.24)

Thus the action of L−p ⊗ 1 on f0(x0)f1(x1) may be reexpressed in terms on the action of

the L’s on the field fh and its descendants

L−p ⊗ 1 =
(−1)p

zp

[
h1(p− 1) + zL−1 − z

d

dz

]
+
∑

k≥0

zk

(
k + p− 2

k

)
L−p−k. (6.25)

4 This is to be contrasted with the case of extended W -algebras where this property is not

generally true; for example in the 3-state Potts model, the fusion of the “energy operator” ǫ ((2,1)

in the Kac table) with itself produces the (3,1) operator, which is a W3-descendant of ǫ [37]
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The reader should not be misled by the slightly abusive notations: in the l.h.s., the Virasoro

generator L acts in the module V (c, h0), on the r.h.s., the same symbol denotes the action

in V (c, h). In this derivation, we have used the fact that f1, not f0 is a primary field:

it may thus be iterated for products of descendants of f0 with f1. There exist of course

analogous formulae for the action of the Virasoro generators on f1, i.e. expressing 1 ⊗ L

in terms of L’s acting in V (c, h).

In the literature, the precise definition of fusion has been the object of much attention.

In particular, the action of Virasoro on the fused field has been given as a “coproduct”

expressing the action of L in terms of linear combinations L⊗ 1 and 1⊗L [38][39]. (Note

that the näıve coproduct Ln = Ln ⊗ 1 + 1 ⊗ Ln cannot be correct as it would lead to a

central charge 2c for the fused representation.) We shall not elaborate on this subject but

just observe that the previous equations are inverse formulae expressing Ln ⊗ 1 in terms

of the coproducts Lp.

Let us now turn to the determination of the descendants that appear in (6.21). We

require that the two sides of that equation transform in a consistent way under a change

of variable x→ x̃.

1

zh0+h1−h

∑

n

znf (n)(x1) = (6.26)

=

(
dx̃0

dx0

)h0
(
dx̃1

dx1

)h1 1

(x̃0 − x̃1)h0+h1−h

∑

n

(x̃0 − x̃1)
nf̃ (n)(x̃1)

The easiest way is to apply the above formula in infinitesimal form. Set

x̃ = x− ǫ(x− x1)
k+1 (6.27)

so that

δǫf
(n)(x) = ǫLkf

(n)(x) (6.28)

The covariance condition becomes, with k ≥ −1
[
Lk −

(
h0(k + 1)zk + zk+1∂z

)] 1

zh0+h1−h

∑

p≥0

zpf (p) = 0. (6.29)

Since L1 and L2 generate by commutators the complete algebra of Lk’s, k ≥ 1, it is

sufficient to impose the two relations pertaining to k = 1 and k = 2. The above translates

into the conditions

L1f
(n) =(n− 1 + h+ h0 − h1)f

(n−1) (6.30a)

L2f
(n) =(n− 2 + h+ 2h0 − h1)f

(n−2) (6.30b)
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which imply

Lpf
(n) = (n− p+ h+ ph0 − h1)f

(n−p). (6.31)

It is understood that f (q) vanishes if q < 0. As a consequence we recover the fact that

f (0) ≡ f is a highest weight state (or primary field) as already claimed. Let us exemplify

on the first few values of n how these equations determine recursively the f (q)’s.

With f (1) = β1L−1f the first equation gives

2hβ1 = h+ h0 − h1 ⇒ β1 =
1

2h
(h+ h0 − h1) if h 6= 0. (6.32)

For n = 2,

f (2) =
(
β1,1L

2
−1 + β2L−2

)
f (6.33)

we get from (6.30a)

4h(2h+ 1)β1,1 + 6hβ2 = (h+ 1 + h0 − h1)(h+ h0 − h1) (6.34)

while (6.30b) yields

6hβ1,1 +
(
4h+

c

2

)
β2 = h+ 2h0 − h1 (6.35)

Provided the determinant

K2 = h
(
16h2 + 2h(c− 5) + c

)
(6.36)

is different from zero, we obtain

β1,1 =
(h+ 1 + h0 − h1)(h+ h0 − h1)(8h+ c) − 12h(h+ 2h0 − h1)

4h[16h2 + 2h(c− 5) + c]
(6.37a)

β2 =
h2 + h

(
2(h0 + h1) − 1

)
+ h0 + h1 − 3(h0 − h1)

2

16h2 + 2h(c− 5) + c
(6.37b)

The moral of these sample calculations is clear: the linear system (6.30) has a unique

solution if and only if there is no singular vector at level n. The determinant of this system

is indeed a polynomial, factor of the Kac determinant at that level. Thus the operation

of fusion that we are using is actually only well defined when restricted to the irreducible

target module M(c, h).
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6.4. General singular vectors.

We now want to obtain singular vectors in a Verma module V
(
c, hj′,j

)
from fusion, using

the explicit expressions of sect. 4.2 for the particular cases hj′,0 and h0,j . Let us look at the

implications in the fusion process when V (c, h0) or V (c, h1) or both possess singular vectors.

Suppose we started by “fusing” f0(x0) and f1(x1) and assume that F0(x0) = φ0f0(x0) is

again a primary field of weight h0 + n0. Starting from (f (0) ≡ f)

f0(x0)f1(x1) →
1

zh0+h1−h

∑

r

zrf (r)(x1) (6.38)

where the arrow denotes the fusion map, we would derive

F0(x0)f1(x1) =
(
φ0f0

)
(x0)f1(x1) →

1

zh0+h1−h+n0

∑

r

zrψ(r)(x1) (6.39)

with ψ(r)(x) some descendant of level r of f . I shall first present a qualitative sketch of the

method. I want to argue that the coefficient of the leading term vanishes. This must be

indeed be so if fusion is consistent with the quotient of V (c, h0) by its singular vectors: in

that operation, the left hand side of (6.39) vanishes, and so must do the r.h.s. On the other

hand we have seen above that the first non vanishing term in the fusion of the primary

fields F0 and f1 must be a primary: this ensures that together with ψ(0), all the further

ψ(r) must vanish until we reach another primary field among the descendants, which may

be nothing else than the desired singular field in V (c, h)!

Let us now give a rigorous argument to the effect that ψ(0) vanishes. It is easy to see

that the coefficient of the leading term is given by

ψ(0) =
{
(−1)n0zh0+h1−h+n0φ0

(
L−k →

1

zk

[
h1(k − 1) − z

d

dz

]) 1

zh0+h1−h

}
f (6.40)

where in φ0, ordinary differential operators acting on 1
zh0+h1−h have been substituted for

the Virasoro operators. It turns out that the result of this action is known and takes a

quite explicit form [40]. In general, let us consider

l−k = −
1

zk

[
λ(k − 1) + z

d

dz

]
(6.41)

acting on the basis z−p−µ. The effect of substituting l−k for L−k in φj′
0,j0 ≡ φ0 is described

by the following formulae

φj′,j(l−1, l−2, · · ·)
1

zµ
= ϕj′,j(λ, µ)

1

zµ+n0
λ = −h1, µ = h0 + h1 − h, (6.42)
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ϕ2
j′,j(λ, µ) =

∏

−j≤M≤j

−j′≤M′≤j′

[
(
µ+A(M,M ′)

)(
µ+A(−M,−M ′)

)
− 4λ(Mθ +M ′θ−1)2] (6.43)

where

A(M,M ′) = [(j +M)θ + (j′ +M ′)θ−1][(j + 1 −M)θ + (j′ + 1 −M ′)θ−1]. (6.44)

Note that the right hand side of (6.43) is a perfect square: if the pair (M,M ′) = (0, 0)

is allowed it corresponds to a square. Otherwise (M,M ′) and (−M,−M ′) give identical

factors. For a direct proof of formula (6.43) in the case where j or j′ vanishes, (which is

sufficient for our purpose), see [26], end of sect. 3.

Using these explicit formulae, it is easy to see that ψ(0) indeed vanishes whenever fusion

f0f1 → f takes place, in particular for h0 = hj′,0, h1 = h0,j and h = hj′,j . Conversely,

this vanishing gives us a necessary condition for fusion.

To illustrate the procedure, let us show how to recover the singular vectors of type

(0, j) studied in sect. 4.2. Let h0 ≡ h 1
2 ,0 = −1

2 − 3
4t , h = h0,j = −j − tj(j + 1) and

λ = −h1, µ = h0 + h1 − h as above. Then

ϕ 1
2 ,0(λ, µ) = µ

(
µ+ 1 +

1

t

)
−
λ

t

is quadratic in h1 and vanishes for

h1 ≡ h 1
2 ,j = −

3

4t
−

1

2
− 2j − j(j + 1)t (6.45)

(and the Verma module is degenerate at level 2(2j + 1)) but also for

h1 =
1

2
+

1

4t
− j(j + 1)t. (6.46)

Using the general formula (6.8) for singular vectors, the latter value can be interpreted as

h− 1
2 ,j , which has a negative label, i.e. for generic t, is not the weight of a singular vector.

Let us choose this second value and consider the fusion symbolically written as
(

1
2 , 0
)
⊗ “

(
− 1

2 , j
)
”→ (0, j)

We know that on f0:

φ 1
2 ,0 = L2

−1 +
1

t
L−2 (6.47)

In the fusion, each of these L’s is to be interpreted as L⊗ 1, i.e. using (6.25)

L−1 ⊗ 1 =∂z

L−2 ⊗ 1 =
h1

z2
−

1

z
∂z +

∞∑

k=1

zk−2L−k (6.48)
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Thus imposing the vanishing of the singular vector F0 in V (c, h0), we find that

{
∂2

z +
1

t

(h1

z2
−

1

z
∂z +

∞∑

k=1

zk−2L−k

)} 1

zh0+h1−h

∑

p≥0

zpf (p) = 0 (6.49)

which gives a recursive procedure to compute the sequence f (p). Since h0 +h1−h = j− 1
2t ,

(6.49) reads

p
(
(2j + 1) − p

)
f (p) =

1

t

∑

k≥1

L−kf
(p−k) (6.50)

The f (p) computed from this relation agree with the values obtained from conditions

(6.30a, b). The above recursion relation is nothing else than our previous matrix equa-

tion (6.16) for the singular vector if we relabel and rescale the intermediate components

according to

f (j+M) ≡ t−j−MfM f−j ≡ f

and make use of a representation where the generators of angular momentum read (with

J0 unchanged, n = 2j + 1)

J− =




0
1(n− 1) 0

2(n− 2) 0
. . .

(n− 1)1 0




J+ =




0 1
0 1

. . .

1
0




(6.51)

We have thus recovered by fusion the special case of Benoit and Saint-Aubin. Moreover the

“descent equations” (6.17) find a natural explanation as they coincide with the covariance

equations (6.30).

In a similar way, we now study the general case (j′, j) by the fusion:
(
j′ + 1

2
, 0
)
⊗ “

(
− 1

2
, j
)
”→ (j′, j)

where

h0 = −
(
j′ +

1

2

)[
1 +

j′ + 1 + 1
2

t

]
(6.52)

and we use the same abusive notation for

h1 = h− 1
2 ,j =

1

4t
+

1

2
− tj(j + 1) (6.53)
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which again for generic t corresponds to an irreducible Verma module, while

h ≡ −
[
tj(j + 1) + j + j′ + 2jj′ +

j′(j′ + 1)

t

]
. (6.54)

Using the formula (6.43) above, we check that the factor ϕ indeed vanishes. Therefore we

obtain the singular vector in the module V (c, h) by requiring that φ0f0 × f1 vanishes. Let

φ = φj′+ 1
2 ,0

(
L−p →

(−1)p

zp
[h1(p− 1) + z(L−1 − ∂z)] +

∑

k≥0

zk

(
k + p− 2

k

)
L−p−k

)

then the equation

φ
1

zh0+h1−h

∑

k

zkf (k) = 0

determines recursively f (k) for 0 < k < n = (2j + 1)(2j′ + 1) in terms of f and yields at

level n

φj′,jf = 0

up to a non vanishing factor. Moreover the intermediate coefficients f (k) , 0 ≤ k ≤ n

satisfy “descent equations” given in (6.30a, b).

The interested reader will find an ample collection of examples and detailed calcula-

tions in [26].

To conclude, it is expected that the methods used here for the Virasoro algebra will

also be useful in the case of other infinite dimensional algebras, and one may also hope that

the connections between classical integrable systems and conformal theories will appear in

other contexts.
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