

Mention Physique - L2 - Année 2010-2011 Licence de Sciences et Technologies

LP 207: Mathématiques pour physiciens 2

TD N°2 : Déterminants, matrices inverses

I. Calculs de déterminants

A) Calcul direct

Calculer les déterminants suivants en les développant

$$\begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} \qquad \begin{vmatrix} 1 & x \\ x & x^2 \end{vmatrix} \qquad \begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & -2 & 3 \\ 2 & 5 & -1 \end{vmatrix} \qquad \begin{vmatrix} 2 & 0 & 3 \\ -1 & 2 & 5 \\ 2 & -3 & -4 \end{vmatrix} \qquad \begin{vmatrix} 0 & 2 & 0 \\ 5 & -2 & 1 \\ 6 & 5 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 3 & 5 \\ 8 & -6x & 4 \\ x & 3 & 6 \end{vmatrix} \qquad \begin{vmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ x & x^2 & x^3 \end{vmatrix}$$

Dans la dernière ligne, on factorisera au mieux le polynôme en x; comment peut-on savoir à l'avance son degré? Commenter la forme factorisée du dernier, pouvait-on s'y attendre?

B) Combinaison de lignes et des colonnes et développement par rapport à une ligne ou une colonne. Méthode du pivot de Gauss.

(i) Calculer le plus simplement possib

(i) Calcular to place simplement possible
$$D_1 = \begin{vmatrix} 2 & -1 & 3 \\ 3 & -2 & 6 \\ -3 & 3 & 1 \end{vmatrix}. \qquad D_2 = \begin{vmatrix} 2 & -1 & 3 & 5 \\ 3 & 1 & -1 & 5 \\ 5 & -2 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{vmatrix}. \qquad D_3 = \begin{vmatrix} 1 & 3 & 0 & -4 \\ -2 & 3 & 2 & -5 \\ -1 & -2 & 0 & 4 \\ 9 & 3 & 0 & 3 \end{vmatrix}.$$
(ii) Montrer que
$$\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1^2 & 2^2 & 3^2 & 4^2 \end{vmatrix}$$
 est divisible par $(x - 1)^3$.

(iii) Calculer en le factorisant au mieux
$$\begin{vmatrix} a^2 & ab & ab & b^2 \\ ab & a^2 & b^2 & ab \\ ab & b^2 & a^2 & ab \\ b^2 & ab & ab & a^2 \end{vmatrix}$$
(iv) \star En combinant lignes et colonnes de $D = \begin{vmatrix} 0 & x & y & z \\ x & 0 & z & y \\ y & z & 0 & x \\ z & y & x & 0 \end{vmatrix}$ montrer que
$$= (x + y + z)(x - y - z)(y - z - x)(z - x - y).$$

D = (x + y + z)(x - y - z)(y - z - x)(z - x - y)

Quel est l'ensemble des points de l'espace \mathbb{R}^3 dont les coordonnées (x, y, z) satisfont D = 0?

(v) Calculer le déterminant de taille $n \times n$

$$D = \begin{vmatrix} 1 & n & \cdots & \cdots & n \\ n & 2 & n & \cdots & n \\ \vdots & & \ddots & \ddots & n \\ \vdots & & \ddots & n-1 & n \\ n & n & \cdots & n & n \end{vmatrix}$$

- C) Récurrence
- a) On se propose de calculer le déterminant de taille $n \times n$

$$D_n(x) = \begin{vmatrix} 1 - x & 1 & \cdots & 1 \\ 1 & 1 - x & 1 & \cdots \\ \vdots & & \ddots & \\ 1 & 1 & \cdots & 1 - x \end{vmatrix} = \det(J - xI)$$

où J est la matrice dont tous les éléments sont égaux à 1.

- (i) Pourquoi $D_n(x)$ s'annule-t-il en x=0?
- (ii) En simplifiant de façon adéquate l'expression de D_n , démontrer la relation de récurrence $D_n(x) = -xD_{n-1}(x) + (-x)^{n-1}$.
- (iii) Calculer explicitement les expressions de D_1 , D_2 et D_3 et montrer que cela suggère une expression possible de $D_n(x)$; démontrer que cette expression satisfait bien la relation de récurrence, ce qui fournit la réponse.
 - b) \star Soit le déterminant D_n qui n'a que trois diagonales non nulles

$$D_n = \begin{vmatrix} 1 & -a & 0 & 0 & \cdots & 0 \\ -a & 1 & -a & 0 & \cdots & 0 \\ 0 & -a & 1 & -a & \cdots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & & \cdots & -a & 1 & -a \\ 0 & 0 & & \cdots & -a & 1 \end{vmatrix}$$

- Calculer D_1 et D_2 .
- Montrer que D_n satisfait une relation de récurrence de la forme $D_n = AD_{n-1} + BD_{n-2}$ avec A et B deux constantes indépendantes de n qu'on déterminera. Quelle valeur de D_0 est compatible avec cette relation ?
- Résoudre cette récurrence en fonction des "conditions initiales" D_0 et D_1 et en tirer l'expression de D_n .
- c) \star Calcul du déterminant de Vandermonde. On considère le déterminant

$$D_n(x_1, \dots, x_n) = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ x_1 & x_2 & x_3 & \dots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_n^2 \\ \vdots & & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \dots & x_n^{n-1} \end{vmatrix}$$

2

- (i) Quel est le degré du polynôme $D_n(x_1, \dots, x_n)$?
- (ii) Calculer et factoriser D_2 et D_3 .
- (iii) Montrer que D_n s'annule chaque fois deux x coïncident, $x_i = x_j$.
- (iv) Que peut-on en conclure sur les facteurs de D_n , et finalement sur l'expression de D_n ?
 - D) Freestyle! Calculer et factoriser les déterminants suivants

$$\begin{vmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{vmatrix}, \quad \begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}, \quad \begin{vmatrix} 1 & \cos x & \cos 2x \\ 1 & \cos y & \cos 2y \\ 1 & \cos z & \cos 2z \end{vmatrix}, \quad \begin{vmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{vmatrix}.$$

En quoi l'exercice C c) précédent permet-il de simplifier le 3ème de ces déterminants ?

II. Indépendance de vecteurs

A) Les vecteurs suivants sont-ils indépendants ? Comparez avec le même exercice du TD 1.

- B) Pour quelles valeurs de x les vecteurs $(1,x,x^2),(2x,3,4x),(5,6x,7)$ sont-ils linéairement dépendants ?
- C) Dans l'espace \mathbb{R}^3 , écrire l'équation du plan passant par les trois points M_1, M_2, M_3 de coordonnées suivantes, puis le dessiner sommairement

(a)
$$M_1: (1,1,0)$$
 $M_2: (0,1,1)$ $M_3: (1,0,1)$ (b) $M_1: (1,1,0)$ $M_2: (0,1,1)$ $M_3: (1,1,1)$

- D) * Wronskien
- a) Soient deux fonctions $f_1(x)$ et $f_2(x)$ supposées dérivables. On définit leur $wronskien\ W(f_1, f_2) = f'_1(x)f_2(x) f'_2(x)f_1(x)$. Montrer que ces deux fonctions sont linéairement dépendantes seulement si W est identiquement nul, c'est-à-dire nul pour **tout** x. Réciproquement que peut-on dire si $W(f_1, f_2) = 0$?
- b) Plus généralement, on définit le wronskien de n fonctions $f_i(x)$, $i = 1, \dots, n$, supposées (n-1) fois dérivables comme le déterminant

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ f''_1(x) & f''_2(x) & \cdots & f''_n(x) \\ \vdots & & & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}$$

Montrer que si les fonctions f_i sont linéairement dépendantes, W est nul pour tout x.

c) Montrer qu'inversement il suffit que le wronskien W(x) soit non nul en un point x_0 pour qu'on puisse conclure que les fonctions f_i sont linéairement **in**dépendantes.

III. Mineurs, cofacteurs. Inverses de matrices

- A) Soit A une matrice $n \times n$ antisymétrique, $A^T = -A$.
- a) Montrer que si n est impair, $\det A = 0$.

b) Calculer det A pour $A = \begin{pmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{pmatrix}$ et montrer qu'on peut l'écrire sous la forme

d'un carré $P(a, b, \dots, f)^2$ d'un polynôme en a, \dots, f .

- c) En général, on peut démontrer (et on admettra) que le déterminant de toute matrice antisymétrique de taille paire n=2m est le carré d'un polynôme des éléments de la matrice A, appelé pfaffien. Quel doit être le degré de ce polynôme pfaffien?
- B) Soit A une matrice $p \times p$, Cof A sa comatrice. Montrer que det Cof $A = (\det A)^q$, avec une puissance q qu'on déterminera.
- C) \star Soit $A = (a_{ij})$ une matrice $n \times n$, $B = \text{Cof } A = (A_{ij})$ sa comatrice. On rappelle que $A.\operatorname{Cof} A^T = (\det A)I.$
- (i) Montrer que si A est de rang n-1, Cof A est de rang 1;
- (ii) si A est de rang inférieur ou égal à n-2, Cof A est nulle. (On étudiera la noyau de Cof A.)
- D) Calculer les inverses A^{-1} des matrices A suivantes, s'ils existent, et vérifier en calculant

$$A_1 = \begin{pmatrix} \sin t & -\cos t \\ \cos t & \sin t \end{pmatrix}, A_2 = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t - \frac{1}{\cosh t} \end{pmatrix}, A_3 = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}, A_4 = \begin{pmatrix} \sinh t & \cosh t \\ \cosh t & \sinh t \end{pmatrix}$$

$$A_5 = \begin{pmatrix} -3 & 2 & -1 \\ 2 & 0 & 1 \\ -1 & 2 & 1 \end{pmatrix}, A_6 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & i\sqrt{2} & -i\sqrt{2} \\ 1 & -1 & -1 \end{pmatrix}, A_7 = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 0 & 3 \\ 4 & 0 & 2 \end{pmatrix}, \star A_8 = \begin{pmatrix} 0 & a & b & c \\ a & 0 & c & b \\ b & c & 0 & a \\ c & b & a & 0 \end{pmatrix}.$$

IV. Jacobiens, orientation

A) On rappelle que le jacobien d'un changement de coordonnées $\vec{x} \to \vec{y}$ est $J = \det(\frac{\partial y_i}{\partial x_i})$ si bien que

$$d^n y = |J|d^n x$$

Rappeler l'expression des coordonnées sphériques et cylindriques à trois dimensions.

Calculer le jacobien dans les deux changements de coordonnées suivants

- coordonnées cylindriques : $\vec{x} \rightarrow (z, r, \theta)$
- coordonnées sphériques : $\vec{x} \rightarrow (r, \theta, \phi)$
 - B) Orientation d'un trièdre.

Soit un système de trois vecteurs indépendants dans l'espace \mathbb{R}^3 , $(\vec{a}, \vec{b}, \vec{c})$, appelé trièdre. Le déterminant de ces trois vecteurs est défini par $\det(\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$.

- (i) Soit T la matrice de vecteurs colonnes \vec{a} , \vec{b} , \vec{c} . Montrer que $\det(\vec{a}, \vec{b}, \vec{c}) = \det T$.
- (ii) Une application linéaire A transforme les trois vecteurs du trièdre en $(\vec{a}', \vec{b}', \vec{c}')$ = $(A\vec{a}, A\vec{b}, A\vec{c})$. Montrer que $\det(\vec{a}', \vec{b}', \vec{c}') = \det A \det(\vec{a}, \vec{b}, \vec{c})$.
 - (iii) On définit l'orientation d'un trièdre $(\vec{a}, \vec{b}, \vec{c})$ comme le signe du déterminant $\det(\vec{a}, \vec{b}, \vec{c})$.
- Déduire de la question précédente que les applications qui préservent l'orientation des repères sont celles qui ont $\det A > 0$.
- Que se passe-t-il si $\det A = 0$?
- Donner un exemple de chaque cas det A > 0, det A < 0 et det A = 0.