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Foreword

The following notes cover the content of the course “Invariances in Physique and Group

Theory” given in the fall 2013. Additional lectures were given during the week of “prérentrée”

on the SO(3), SU(2), SL(2,C) groups, see below Chap. 0.

Chapters 1 to 5 also contain, in sections in smaller characters and Appendices, additional

details that are not treated in the oral course.
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Chapter 0

Some basic elements on the groups

SO(3), SU(2) and SL(2,C)

0.1 Rotations of R3, the groups SO(3) and SU(2)

0.1.1 The group SO(3), a 3-parameter group

Let us consider the rotation group in three-dimensional Euclidean space. These rotations leave

invariant the squared norm of any vector OM, OM2 = x2
1 + x2

2 + x2
3 = x2 + y2 + z2 1 and

preserve orientation. They are represented in an orthonormal bases by 3 ⇥ 3 orthogonal real

matrices, of determinant 1 : they form the “special orthogonal” group SO(3).

Olinde Rodrigues formula

Any rotation of SO(3) is a rotation by some angle  around an axis colinear to a unit vector

n, and the rotations associated with (n, ) and (�n,� ) are identical. We denote Rn( )

this rotation. In a very explicit way, one writes x = xk + x? = (x.n)n + (x � (x.n)n) and

x0 = xk + cos x? + sin n⇥ x?, whence Rodrigues formula

x0 = Rn( )x = cos x + (1� cos )(x.n)n + sin (n⇥ x) . (0.1)

As any unit vector n in R3 depends on two parameters, for example the angle ✓ it makes with

the Oz axis and the angle � of its projection in the Ox, Oy plane with the Ox axis (see Fig. 1)

an element of SO(3) is parametrized by 3 continuous variables. One takes

0  ✓  ⇡, 0  � < 2⇡, 0    ⇡ . (0.2)

But there remains an innocent-looking redundancy, Rn(⇡) = R�n(⇡), the consequences of which

we see later . . .

1In this chapter, we use alternately the notations (x, y, z) or (x
1

, x
2

, x
3

) to denote coordinates in an or-
thonormal frame.

September 2, 2013 J.-B. Z M2 ICFP/Physique Théorique 2012



2 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

SO(3) is thus a dimension 3 manifold. For the rotation of axis n colinear to the Oz axis,

we have the matrix

Rz( ) =

0

B

@

cos � sin 0

sin cos 0

0 0 1

1

C

A

(0.3)

whereas around the Ox and Oy axes

Rx( ) =

0

B

@

1 0 0

0 cos � sin 

0 sin cos 

1

C

A

Ry( ) =

0

B

@

cos 0 sin 

0 1 0

� sin 0 cos 

1

C

A

. (0.4)

Conjugation of Rn( ) by another rotation

A relation that we are going to use frequently reads

RRn( )R�1 = Rn0( ) (0.5)

where n0 is the transform of n by rotation R, n0 = Rn (check it!). Conversely any rotation

of angle  around a vector n0 can be cast under the form (0.5) : we’ll say later that the

“conjugation classes” of the group SO(3) are characterized by the angle  .

q

y

x

n

e

Fig. 1

z

v      (   ) y

Z=    (   )z =R  u
Y=    (   )ua =R  Z

y

z

x

_

a

`

Fig. 2
 =R  z _

`

Euler angles

Another description makes use of Euler angles : given an orthonormal frame (Ox, Oy, Oz),

any rotation around O that maps it onto another frame (OX, OY,OZ) may be regarded as

resulting from the composition of a rotation of angle ↵ around Oz, which brings the frame onto

(Ou, Ov, Oz), followed by a rotation of angle � around Ov bringing it on (Ou0, Ov,OZ), and

lastly, by a rotation of angle � around OZ bringing the frame onto (OX, OY,OZ), (see Fig.

2). One thus takes 0  ↵ < 2⇡, 0  �  ⇡, 0  � < 2⇡ and one writes

R(↵, �, �) = RZ(�)Rv(�)Rz(↵) (0.6)

but according to (0.5)

RZ(�) = Rv(�)Rz(�)R
�1
v (�) Rv(�) = Rz(↵)Ry(�)R�1

z (↵)

J.-B. Z M2 ICFP/Physique Théorique 2012 September 2, 2013



0.1. Rotations of R3, the groups SO(3) and SU(2) 3

thus, by inserting into (0.6)

R(↵, �, �) = Rz(↵)Ry(�)Rz(�) . (0.7)

where one used the fact that Rz(↵)Rz(�)R�1
z (↵) = Rz(�) since rotations around a given axis

commute (they form an abelian subgroup, isomorphic to SO(2)).
Exercise : using (0.5), write the expression of a matrix R which maps the unit vector z colinear to Oz to

the unit vector n, in terms of Rz(�) and Ry(✓) ; then write the expression of Rn( ) in terms of Ry and Rz.
Write the explicit expression of that matrix and of (0.7) and deduce the relations between ✓,�, and Euler
angles. (See also below, equ. (0.66).)

0.1.2 From SO(3) to SU(2)

Consider another parametrization of rotations. To the rotation Rn( ), we associate the unitary

4-vector u : (u0 = cos  
2
,u = n sin  

2
); we have u2 = u2

0 + u2 = 1, and u belongs to the unit

sphere S3 in the space R4. Changing the determination of  by an odd multiple of 2⇡ changes

u into �u. There is thus a bijection between Rn( ) and the pair (u,�u), i.e. between SO(3)

and S3/Z2, the sphere in which diametrically opposed points are identified. We shall say that

the sphere S3 is a “covering group” of SO(3). In which sense is this sphere a group? To answer

that question, introduce Pauli matrices �i, i = 1, 2, 3.

�1 =

 

0 1

1 0

!

�2 =

 

0 �i

i 0

!

�3 =

 

1 0

0 �1

!

. (0.8)

Together with the identity matrix I, they form a basis of the vector space of 2 ⇥ 2 Hermitian

matrices. They satisfy the identity

�i�j = �ijI + i✏ijk�k , (0.9)

with ✏ijk the completely antisymmetric tensor, ✏123 = +1, ✏ijk = the signature of permutation

(ijk).

From u a real unit 4-vector unitary (i.e. a point of S3), we form the matrix

U = u0I� iu.��� (0.10)

which is unitary and of determinant 1 (check it and also show the converse: any unimodular

(= of determinant 1) unitary 2⇥ 2 matrix is of the form (0.10), with u2 = 1). These matrices

form the special unitary group SU(2) which is thus isomorphic to S3. By a power expansion of

the exponential and making use of (n.���)2 = I, a consequence of (0.9), one may verify that

e�i 2 n.��� = cos
 

2
� i sin

 

2
n.��� . (0.11)

It is then suggested that the multiplication of matrices

Un( ) = e�i 2 n.��� = cos
 

2
� i sin

 

2
n.���, 0    2⇡, n 2 S2 (0.12)
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4 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

gives the desired group law in S3. Let us show indeed that to a matrix of SU(2) one may

associate a rotation of SO(3) and that to the product of two matrices of SU(2) corresponds the

product of the SO(3) rotations (this is the homomorphism property). To the point x of R3 of

coordinates x1, x2, x3, we associate the Hermitian matrix

X = x.��� =

 

x3 x1 � ix2

x1 + ix2 �x3

!

, (0.13)

with conversely xi = 1
2
tr (X�i), and we let SU(2) act on that matrix according to

X 7! X 0 = UXU † , (0.14)

which defines a linear transform x 7! x0 = T x. One readily computes that

det X = �(x2
1 + x2

2 + x2
3) (0.15)

and as det X = det X 0, the linear transform x 7! x0 = T x is an isometry, hence det T = 1

or �1. To convince oneself that this is indeed a rotation, i.e. that the transformation has a

determinant 1, it su�ces to compute that determinant for U = I where T = the identity, hence

det T = 1, and then to invoke the connexity of the manifold SU(2)(⇠= S3) to conclude that the

continuous function det T (U) cannot jump to the value �1. In fact, using identity (0.9), the

explicit calculation of X 0 leads, after some algebra, to

X 0 = (cos
 

2
� in.��� sin

 

2
)X(cos

 

2
+ in.��� sin

 

2
)

=
�

cos x + (1� cos )(x.n)n + sin (n⇥ x)
�

.��� (0.16)

which is nothing else than the Rodrigues formula (0.1). We thus conclude that the transfor-

mation x 7! x0 performed by the matrices of SU(2) in (0.14) is indeed the rotation of angle  

around n. To the product Un0( 0)Un( ) in SU(2) corresponds in SO(3) the composition of the

two rotations Rn0( 0)Rn( ) of SO(3). There is thus a “homomorphism” of the group SU(2)

into SO(3). This homomorphism maps the two matrices U and �U onto one and the same

rotation of SO(3).

Let us summarize what we have learnt in this section. The group SU(2) is a covering group

(of order 2) of the group SO(3) (the precise topological meaning of which will be given in Chap.

1), and the 2-to-1 homomorphism from SU(2) to SO(3) is given by equations (0.12)-(0.14).

Exercise : prove that any matrix of SU(2) may be written as

 

a �b

b⇤ a⇤

!

with |a|2 + |b|2 = 1. What is the

connection with (0.10) ?

0.2 Infinitesimal generators. The su(2) Lie algebra

0.2.1 Infinitesimal generators of SO(3)

Rotations Rn( ) around a given axis n form a one-parameter subgroup, isomorphic to SO(2). In

this chapter, we follow the common use (among physicists) and write the infinitesimal generators
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0.2. Infinitesimal generators. The su(2) Lie algebra 5

of rotations as Hermitian operators J = J†. Thus

Rn(d ) = (I � id Jn) (0.17)

where Jn is the “generator” of these rotations, a Hermitian 3 ⇥ 3 matrix. Let us first show

that we may reconstruct the finite rotations from these infinitesimal generators. By the group

property,

Rn( + d ) = Rn(d )Rn( ) = (I � id Jn)Rn( ) , (0.18)

or equivalently
@Rn( )

@ 
= �iJnRn( ) (0.19)

which, on account of Rn(0) = I, may be integrated into

Rn( ) = e�i Jn . (0.20)

To be more explicit, introduce the three basic J1, J2 and J3 describing the infinitesimal

rotations around the corresponding axes2. From the infinitesimal version of (0.3) it follows that

J1 =

0

B

@

0 0 0

0 0 �i

0 i 0

1

C

A

J2 =

0

B

@

0 0 i

0 0 0

�i 0 0

1

C

A

J3 =

0

B

@

0 �i 0

i 0 0

0 0 0

1

C

A

(0.21)

which may be expressed by a unique formula

(Jk)ij = �i✏ijk (0.22)

with the completely antisymmetric tensor ✏ijk.

We now show that matrices (0.21) form a basis of infinitesimal generators and that Jn is

simply expressed as

Jn =
X

k

Jknk (0.23)

which allows us to rewrite (0.20) in the form

Rn( ) = e�i 
P

k

n
k

J
k . (0.24)

The expression (0.23) follows simply from the infinitesimal form of Rodrigues formula, Rn(d ) =

(I + d n⇥) hence �iJn = n⇥ or alternatively �i(Jn)ij = ✏ikjnk = nk(�iJk)ij, q.e.d. (Here

and in the following, we make use of the convention of summation over repeated indices:

✏ikjnk ⌘
P

k ✏ikjnk, etc.)

A comment about (0.24): it is obviously wrong to write in general Rn( ) = e�i 
P

k

n
k

J
k

?
=

Q3
k=1 e�i n

k

J
k because of the non commutativity of the J ’s. On the other hand, formula (0.7)

shows that any rotation of SO(3) may be written under the form

R(↵, �, �) = e�i↵J3e�i�J2e�i�J3 . (0.25)

2Do not confuse Jn labelled the unit vector n with Jk, k-th component of J. The relation between the two
will be explained shortly.
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6 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

The three matrices Ji, i = 1, 2, 3 satisfy the very important commutation relations

[Ji, Jj] = i✏ijkJk (0.26)

which follow from the identity (Jacobi) verified by the tensor ✏

✏iab✏bjc + ✏icb✏baj + ✏ijb✏bca = 0 . (0.27)

Exercise: note the structure of this identity (i is fixed, b summed over, cyclic permutation over

the three others) and check that it implies (0.26).
In view of the importance of relations (0.23–0.26), it may be useful to recover them by another route. Note

first that equation (0.5) implies that for any R

Re�i JnR�1 = e�i RJnR�1
= e�i Jn0 (0.28)

with n0 = Rn, whence

RJnR�1 = Jn0 . (0.29)

The tensor ✏ijk is invariant under rotations

✏lmnRilRjmRkn = ✏ijk detR = ✏ijk (0.30)

since the matrix R is of determinant 1. That matrix being also orthogonal, one may push one R to the
right-hand side

✏lmnRjmRkn = ✏ijkRil (0.31)

which thanks to (0.22) expresses that

Rjm(Jl)mnR�1

nk = (Ji)jkRil (0.32)

i.e. for any R and its matrix R,

RJlR
�1 = JiRil . (0.33)

Let R be a rotation which maps the unit vector z colinear to Oz on the vector n, thus nk = Rk3

and

Jn
(0.29)
= RJ

3

R�1

(0.33)
= JkRk3

= Jknk , (0.34)

which is just (0.23). Note that equations (0.33) and (0.34) are compatible with (0.29)

Jn0
(0.29)
= RJnR�1

(0.34)
= RJknkR�1

(0.33)
= JlRlknk = Jln

0
l .

As we shall see later in a more systematic way, the commutation relation (0.26) of infinitesimal generators
J encodes an infinitesimal version of the group law. Consider for example a rotation of infinitesimal angle d 

around Oy acting on J
1

R
2

(d )J
1

R�1

2

(d )
(0.33)
= Jk[R

2

(d )]k1

(0.35)

but to first order, R
2

(d ) = I� id J
2

, and thus the left hand side of (0.35) equals J
1

� id [J
2

, J
1

] while on the
right hand side, [R

2

(d )]k1

= �k1

� id (J
2

)k1

= �k1

� d �k3

by (0.22), whence i[J
1

, J
2

] = �J
3

, which is one of
the relations (0.26).

J.-B. Z M2 ICFP/Physique Théorique 2012 September 2, 2013



0.2. Infinitesimal generators. The su(2) Lie algebra 7

0.2.2 Infinitesimal generators of SU(2)

Let us examine now things from the point of view of SU(2). Any unitary matrix U (here 2⇥ 2)

may be diagonalized by a unitary change of basis U = V exp{i diag (�k)}V †, V unitary, and

hence written as

U = exp iH =
1
X

0

(iH)n

n!
(0.36)

with H Hermitian, H = V diag (�k) V †. The sum converges (for the norm ||M ||2 = tr MM †).

The unimodularity condition 1 = det U = exp itr H is ensured if tr H = 0. The set of such

Hermitian traceless matrices forms a vector space V of dimension 3 over R, with a basis given

by the three Pauli matrices

H =
3
X

k=1

⌘k
�k

2
, (0.37)

which may be inserted back into (0.36). (In fact we already observed that any unitary 2 ⇥ 2

matrix may be written in the form (0.11)). Comparing that form with (0.24), or else comparing

its infinitesimal version Un(d ) = (I � i d n.���
2
) with (0.17), we see that matrices 1

2
�j play in

SU(2) the role played by infinitesimal generators Jj in SO(3). But these matrices 1
2
�. verify

the same commutation relations
h�i

2
,
�j

2

i

= i✏ijk
�k

2
(0.38)

with the same structure constants ✏ijk as in (0.26). In other words, we have just discovered that

infinitesimal generators Ji (eq. (0.21) of SO(3) and 1
2
�i of SU(2) satisfy the same commutation

relations (we shall say later that they are the bases of two di↵erent representations of the same

Lie algebra su(2) = so(3)). This has the consequence that calculations carried out with the 1
2
~�

and making only use of commutation relations are also valid with the ~J , and vice versa. For

instance, from (0.33), for example R2(�)JkR
�1
2 (�) = JlRy(�)lk, it follows immediately, with no

further calculation, that for Pauli matrices, we have

e�i�2 �2�ke
i�2 �2 = �lRy(�)lk (0.39)

where the matrix elements Ry are read o↵ (0.4). Indeed there is a general identity stating that

eABe�A = B +
P1

n=1
1
n!

[A[A, [· · · , [A, B] · · · ]]]
| {z }

n commutators

, see Chap. 1, eq. (1.29), and that computation

thus involves only commutators. On the other hand, the relation

�i�j = �ij + i✏ijk�k

(which does not involve only commutators) is specific to the dimension 2 representation of the

su(2) algebra.

0.2.3 Lie algebra su(2)

Let us recapitulate: we have just introduced the commutation algebra (or Lie algebra) of

infinitesimal generators of the group SU(2) (or SO(3)), denoted su(2) or so(3). It is defined by
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8 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

relations (0.26), that we write once again

[Ji, Jj] = i✏ijkJk . (0.26)

We shall also make frequent use of the three combinations

Jz ⌘ J3, J+ = J1 + iJ2, J� = J1 � iJ2 . (0.40)

It is then immediate to compute

[J3, J+] = J+

[J3, J�] = �J� (0.41)

[J+, J�] = 2J3 .

One also verifies that the Casimir operator defined as

J2 = J2
1 + J2

2 + J2
3 = J2

3 + J3 + J�J+ (0.42)

commutes with all the J ’s

[J2, J.] = 0 , (0.43)

which means that it is invariant under rotations.

Anticipating a little on the following, we shall be mostly interested in “unitary representa-

tions”, where the generators Ji, i = 1, 2, 3 are Hermitian, hence

J†
i = Ji, i = 1, 2, 3 J†

± = J⌥ . (0.44)

Let us finally mention an interpretation of the Ji as di↵erential operators acting on di↵erentiable functions
of coordinates in the space R3. In that space R3, an infinitesimal rotation acting on the vector x changes it into

x0 = Rx = x + � n⇥ x

hence a scalar function of x, f(x), is changed into f 0(x0) = f(x) or

f 0(x) = f
�

R�1x
�

= f(x� � n⇥ x)

= (1� � n.x⇥r) f(x) (0.45)

= (1� i� n.J)f(x) .

We thus identify

J = �ix⇥r, Ji = �i✏ijkxj
@

@xk
(0.46)

which allows us to compute it in arbitrary coordinates, for example spherical, see Appendix 0. (Compare also
(0.46) with the expression of (orbital) angular momentum in Quantum Mechanics Li = ~

i ✏ijkxj
@
@xk

). Exercise:
check that these di↵erential operators do satisfy the commutation relations (0.26).

Among the combinations of J that one may construct, there is one that must play a particular role,
namely the Laplacian on the sphere S2, a second order di↵erential operator which is invariant under changes
of coordinates (see Appendix 0). It is in particular rotation invariant, of degree 2 in the J., this may only be
the Casimir operator J2 (up to a factor). In fact the Laplacian in R3 reads in spherical coordinates

�
3

=
1
r

@2

@r2

r � J2

r2

=
1
r

@2

@r2

r +
�

sphere S2

r2

. (0.47)
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0.3. Representations of SU(2) 9

For the sake of simplicity we have restricted this discussion to scalar functions, but one might more generally
consider the transformation of a collection of functions “forming a representation” of SO(3), i.e. transforming
linearly among themselves under the action of that group

A0(x0) = D(R)A(x)

or else
A0(x) = D(R)A

�

R�1x
�

,

for example a vector field transforming as

A0(x) = RA(R�1x) .

What are now the infinitesimal generators for such objects ? Show that they now have two contributions, one
given by (0.46) and the other coming from the infinitesimal form of R; in physical terms, these two contributions
correspond to the orbital and to the intrinsic (spin) angular momenta.

0.3 Representations of SU(2)

0.3.1 Representations of the groups SO(3) and SU(2)

We are familiar with the notions of vectors or tensors in the geometry of the space R3. They

are objects that transform linearly under rotations

Vi 7! Rii0Vi0 (V ⌦W )ij = ViWj 7! Rii0Rjj0(V ⌦W )i0j0 = Rii0Rjj0Vi0Wj0 etc.

More generally we call representation of a group G in a vector space E a homomorphism of

G into the group GL(E) of linear transformations of E (see Chap. 2). Thus, as we just

saw, the group SO(3) admits a representation in the space R3 (the vectors V of the above

example), another representation in the space of rank 2 tensors, etc. We now want to build the

general representations of SO(3) and SU(2). For the needs of physics, in particular of quantum

mechanics, we are mostly interested in unitary representations, in which the representation

matrices are unitary. In fact, as we’ll see, it is enough to study the representations of SU(2) to

also get those of SO(3), and even better, it is enough to study the way the group elements close

to the identity are represented, i.e. to find the representations of the infinitesimal generators

of SU(2) (and SO(3)).

To summarize : to find all the unitary representations of the group SU(2), it is thus su�cient

to find the representations by Hermitian matrices of its Lie algebra su(2), that is, Hermitian

operators satisfying the commutation relations (0.26).

0.3.2 Representations of the algebra su(2)

We now proceed to the classical construction of representations of the algebra su(2). As above,

J± and Jz denote the representatives of infinitesimal generators in a certain representation.

They thus satisfy the commutation relations (0.41) and hermiticity (0.44). Commutation of

operators Jz and J2 ensures that one may find common eigenvectors. The eigenvalues of these
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10 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

Hermitian operators are real, and moreover, J2 being semi-definite positive, one may always

write its eigenvalues in the form j(j+1), j real non negative (i.e. j � 0), and one thus considers

a common eigenvector |j m i

J2|j m i = j(j + 1)|j m i
Jz|j m i = m|j m i , (0.48)

with m a real number, a priori arbitrary at this stage. By a small abuse of language, we call

|jm i an “eigenvector of eigenvalues (j,m)”.

(i) Act with J+ and J� = J†
+ on |j m i. Using the relation J±J⌥ = J2� J2

z ± Jz (a consequence

of (0.41)), the squared norm of J±|j m i is computed to be:

h j m|J�J+|j m i = (j(j + 1)�m(m + 1)) h j m|j m i
= (j �m)(j + m + 1)h j m|j m i (0.49)

h j m|J+J�|j m i = (j(j + 1)�m(m� 1)) h j m|j m i
= (j + m)(j �m + 1)h j m|j m i .

These squared norms cannot be negative and thus

(j �m)(j + m + 1) � 0 : �j � 1  m  j

(j + m)(j �m + 1) � 0 : �j  m  j + 1 (0.50)

which implies

� j  m  j . (0.51)

Moreover J+|j m i = 0 i↵ m = j and J�|j m i = 0 i↵ m = �j

J+|j j i = 0 J�|j � j i = 0 . (0.52)

(ii) If m 6= j, J+|j m i is non vanishing, hence is an eigenvector of eigenvalues (j, m+1). Indeed

J2J+|j m i = J+J2|j m i = j(j + 1)J+|j m i
JzJ+|j m i = J+(Jz + 1)|j m i = (m + 1)J+|j m i . (0.53)

Likewise if m 6= �j, J�|j m i is a (non vanishing) eigenvector of eigenvalues (j, m� 1).

(iii) Consider now the sequence of vectors

|j m i, J�|j m i, J2
�|j m i, · · · , Jp

�|j m i · · ·

If non vanishing, they are eigenvectors of Jz of eigenvalues m, m� 1, m� 2, · · · , m� p · · · . As

the allowed eigenvalues of Jz are bound by (0.51), this sequence must stop after a finite number

of steps. Let p be the integer such that Jp
�|j m i 6= 0, Jp+1

� |j m i = 0. By (0.52), Jp
�|j m i is an

eigenvector of eigenvalues (j,�j) hence m� p = �j, i.e.

(j + m) is a non negative integer . (0.54)
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Acting likewise with J+, J2
+, · · · sur |j m i, we are led to the conclusion that

(j �m) is a non negative integer . (0.55)

and thus j and m are simultaneously integers or half-integers. For each value of j

j = 0,
1

2
, 1,

3

2
, 2, · · ·

m may take the 2j + 1 values 3

m = �j,�j + 1, · · · , j � 1, j . (0.56)

Starting from the vector |j m = j i, (“highest weight vector”), now chosen of norm 1, we

construct the orthonormal basis |j m i by iterated application of J� and we have

J+|j m i =
p

j(j + 1)�m(m + 1)|j m + 1 i
J�|j m i =

p

j(j + 1)�m(m� 1)|j m� 1 i (0.57)

Jz|j m i = m|j m i .

These 2j + 1 vectors form a basis of the “spin j representation” of the su(2) algebra.

In fact this representation of the algebra su(2) extends to a representation of the group

SU(2), as we now show.
Remark. The previous discussion has given a central role to the unitarity of the representation and hence

to the hermiticity of infinitesimal generators, hence to positivity: ||J±|j m i||2 � 0 =) �j  m  j, etc, which
allowed us to conclude that the representation is necessarily of finite dimension. Conversely one may insist on
the latter condition, and show that it su�ces to ensure the previous conditions on j and m. Starting from
an eigenvector | i of Jz, the sequence Jp

+

| i yields eigenvectors of Jz of increasing eigenvalue, hence linearly
independent, as long as they do not vanish. If by hypothesis the representation is of finite dimension, this
sequence is finite, and there exists a vector denoted |j i such that J

+

|j i = 0, Jz|j i = j|j i. By the relation
J2 = J�J

+

+ Jz(Jz + 1), it is also an eigenvector of eigenvalue j(j + 1) of J2. It thus identifies with the highest
weight vector denoted previously |j j i, a notation that we thus adopt in the rest of this discussion. Starting
from this vector, the Jp

�|j j i form a sequence that must also be finite

9q Jq�1

� |j j i 6= 0 Jq
�|j j i = 0 . (0.58)

One easily shows by induction that

J
+

Jq
�|j j i = [J

+

, Jq
�]|j j i = q(2j + 1� q)Jq�1

� |j j i = 0 (0.59)

hence q = 2j + 1. The number j is thus integer or half-integer, the vectors of the representation built in that
way are eigenvectors of J2 of eigenvalue j(j + 1) and of Jz of eigenvalue m satisfying (0.56). We have recovered
all the previous results. In this form, the construction of these “highest weight representations” generalizes to
other Lie algebras, (even of infinite dimension, such as the Virasoro algebra, see Chap. 1, § 1.3.6).

The matrices Dj of the spin j representation are such that under the action of the rotation

U 2 SU(2)

|j m i 7! Dj(U)|j m i = |j m0 iDj
m0m(U) . (0.60)

3In fact, we have just found a necessary condition on the j,m. That all these j give indeed rise to represen-
tations will be verified in the next subsection.
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12 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

Depending on the parametrization ((n, ), angles d’Euler, . . . ), we writeDj
m0m(n, ), Dj

m0m(↵, �, �),

etc. By (0.7), we thus have

Dj
m0m(↵, �, �) = h j m0|D(↵, �, �)|j m i

= h j m0|e�i↵J
ze�i�J

ye�i�J
z |j m i (0.61)

= e�i↵m0
dj

m0m(�)e�i�m

where the Wigner matrix dj is defined by

dj
m0m(�) = h j m0|e�i�J

y |j m i . (0.62)

An explicit formula for dj will be given in the next subsection. We also have

Dj
m0m(z, ) = e�i m�mm0

Dj
m0m(y, ) = dj

m0m( ) . (0.63)

Exercise : Compute Dj(x, ). (Hint : use (0.5).)

One notices that Dj(z, 2⇡) = (�1)2jI, since (�1)2m = (�1)2j using (0.55), and this holds

true for any axis n by the conjugation (0.5)

Dj(n, 2⇡) = (�1)2jI . (0.64)

This shows that a 2⇡ rotation in SO(3) is represented by �I in a half-integer-spin representation

of SU(2). Half-integer-spin representations of SU(2) are said to be “projective”, (i.e. here,

up to a sign), representations of SO(3); we return in Chap. 2 to this notion of projective

representation.

We also verify the unimodularity of matrices Dj (or equivalently, the fact that representatives

of infinitesimal generators are traceless). If n = Rz, D(n, ) = D(R)D(z, )D�1(R), hence

detD(n, ) = detD(z, ) = det e�i J
z =

j
Y

m=�j

e�im = 1 . (0.65)

It may be useful to write explicitly these matrices in the cases j = 1
2

and j = 1. The case

of j = 1
2

is very simple, since

D 1
2 (U) = U = e�i 1

2 n.��� =

 

cos  
2
� i cos ✓ sin  

2
�i sin  

2
sin ✓ e�i�

�i sin  
2

sin ✓ ei� cos  
2

+ i cos ✓ sin  
2

!

= e�i↵2 �3e�i�2 �2e�i �2 �3 =

 

cos �
2
e�

i

2 (↵+�) � sin �
2
e�

i

2 (↵��)

sin �
2
e

i

2 (↵��) cos �
2
e

i

2 (↵+�)

!

(0.66)

an expected result since the matrices U of the group form obviously a representation. (As a

by-product, we have derived relations between the two parametrizations, (n, ) = (✓,�, ) and

Euler angles (↵, �, �).) For j = 1, in the basis |1, 1 i, |1, 0 i and |1,�1 i where Jz is diagonal

(which is not the basis (0.21) !)

Jz =

0

B

@

1 0 0

0 0 0

0 0 �1

1

C

A

J+ =
p

2

0

B

@

0 1 0

0 0 1

0 0 0

1

C

A

J� =
p

2

0

B

@

0 0 0

1 0 0

0 1 0

1

C

A

(0.67)
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whence

d1(�) = e�i�J
y =

0

B

@

1+cos�
2

� sin�p
2

1�cos�
2

sin�p
2

cos � � sin�p
2

1�cos�
2

sin�p
2

1+cos�
2

1

C

A

(0.68)

as the reader may check.

In the following subsection, we write more explicitly these representation matrices of the

group SU(2), and in Appendix E of Chap. 2, give more details on the di↵erential equations they

satisfy and on their relations with “special functions”, orthogonal polynomials and spherical

harmonics. . .

Irreductibility

A central notion in the study of representations is that of irreducibility. A representation is

irreducible if it has no invariant subspace. Let us show that the spin j representation of SU(2)

that we have just built is irreducible. We show below in Chap. 2 that, as the representation is

unitary, it is either irreducible or “completely reducible” (there exists an invariant subspace and

its supplementary space is also invariant) ; in the latter case, there would exist block-diagonal

operators, di↵erent from the identity and commuting the matrices of the representation, in

particulier with the generators Ji. But in the basis (0.5) any matrix M that commutes with Jz

is diagonal, Mmm0 = µm�mm0 , (check it !), and commutation with J+ forces all µm to be equal:

the matrix M is a multiple of the identity and the representation is indeed irreducible.

One may also wonder why the study of finite dimensional representations that we just car-

ried out su�ces to the physicist’s needs, for instance in quantum mechanics, where the scene

usually takes place in an infinite dimensional Hilbert space. We show below (Chap. 2) that

Any representation of SU(2) or SO(3) in a Hilbert space is equivalent to a unitary representa-

tion, and is completely reducible to a (finite or infinite) sum of finite dimensional irreducible

representations.

0.3.3 Explicit construction

Let ⇠ and ⌘ be two complex variables on which matrices U =

 

a b

c d

!

of SU(2) act according

to ⇠0 = a⇠+ c⌘, ⌘0 = b⇠+d⌘. In other terms, ⇠ and ⌘ are the basis vectors of the representation

of dimension 2 (representation of spin 1
2
) of SU(2). An explicit construction of the previous

representations is then obtained by considering homogenous polynomials of degree 2j in the

two variables ⇠ and ⌘, a basis of which is given by the 2j + 1 polynomials

Pjm =
⇠j+m⌘j�m

p

(j + m)!(j �m)!
m = �j, · · · j . (0.69)

(In fact, the following considerations also apply if U is an arbitrary matrix of the group GL(2,C)

and provide a representation of that group.) Under the action of U on ⇠ and ⌘, the Pjm(⇠, ⌘)

transform into Pjm(⇠0, ⌘0), also homogenous of degree 2j in ⇠ and ⌘, which may thus be expanded

on the Pjm(⇠, ⌘). The latter thus span a dimension 2j + 1 representation of SU(2) (or of
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14 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

GL(2,C)), which is nothing else than the previous spin j representation. This enables us to

write quite explicit formulae for the Dj

Pjm(⇠0, ⌘0) =
X

m0

Pjm0(⇠, ⌘)Dj
m0m(U) . (0.70)

We find explicitly

Dj
m0m(U) =

�

(j + m)!(j �m)!(j + m0)!(j �m0)!
�

1
2

X

n1,n2,n3,n4�0
n1+n2=j+m

0; n3+n4=j�m

0
n1+n3=j+m; n2+n4=j�m

an1bn2cn3dn4

n1!n2!n3!n4!
. (0.71)

For U = �I, one may check once again that Dj(�I) = (�1)2jI. In the particular case of

U = e�i 
�2
2 = cos  

2
I� i sin  

2
�2, we thus have

dj
m0m( ) =

�

(j + m)!(j �m)!(j + m0)!(j �m0)!
�

1
2
X

k�0

(�1)k+j�m cos  
2

2k+m+m0

sin  
2

2j�2k�m�m0

(m + m0 + k)!(j �m� k)!(j �m0 � k)!k!

(0.72)

where the sum runs over k 2 [inf(0,�m � m0), sup(j � m, j � m0)]. The expression of the

infinitesimal generators acting on polynomials Pjm is obtained by considering U close to the

identity. One finds

J+ = ⇠
@

@⌘
J� = ⌘

@

@⇠
Jz =

1

2

✓

⇠
@

@⇠
� ⌘

@

@⌘

◆

(0.73)

on which it is easy to check commutation relations as well as the action on the Pjm in accordance

with (0.57). This completes the identification of (0.69) with the spin j representation.
Remarks
1. Repeat the proof of irreducibility of the spin j representation in that new form.
2. Notice that the space of the homogenous polynomials of degree 2j in the variables ⇠ and ⌘ is nothing

else than the symmetrized 2j-th tensor power of the representation of dimension 2 (see the definition below).

0.4 Direct product of representations of SU(2)

0.4.1 Direct product of representations and the “addition of angular

momenta”

Consider the direct (or tensor) product of two representations of spin j1 and j2 and their

decomposition on vectors of given total spin (“decomposition into irreducible representations”).

We start with the product representation spanned by the vectors

|j1 m1 i ⌦ |j2 m2 i ⌘ |j1 m1; j2 m2 i written in short as |m1 m2 i (0.74)

on which the infinitesimal generators act as

J = J(1) ⌦ I(2) + I(1) ⌦ J(2) . (0.75)
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0.4. Direct product of representations of SU(2) 15

The upper index indicates on which space the operators act. By an abuse of notation, one

frequently writes, instead of (0.75)

J = J(1) + J(2) (0.750)

and (in Quantum Mechanics) one refers to the “addition of angular momenta” J(1) and J(2).

The problem is thus to decompose the vectors (0.74) onto a basis of eigenvectors of J and

Jz. As J(1)2 and J(2)2 commute with one another and with J2 and Jz, one may seek common

eigenvectors that we denote

|(j1 j2) J M i or more simply |J M i (0.76)

where it is understood that the value of j1 and j2 is fixed. The question is thus twofold: which

values can J and M take; and what is the matrix of the change of basis |m1 m2 i ! |J M i? In

other words, what is the (Clebsch-Gordan) decomposition and what are the Clebsch-Gordan

coe�cients?

The possible values of M , eigenvalue of Jz = J (1)
z + J (2)

z , are readily found

hm1 m2|Jz|J M i = (m1 + m2)hm1 m2|J M i
= Mhm1 m2|J M i (0.77)

and the only value of M such that hm1 m2|J M i 6= 0 is thus

M = m1 + m2 . (0.78)

For j1, j2 and M fixed, there are as many independent vectors with that eigenvalue of M as

there are couples (m1, m2) satisfying (0.78), thus

n(M) =

8

>

>

>

<

>

>

>

:

0 if |M | > j1 + j2

j1 + j2 + 1� |M | if |j1 � j2|  |M |  j1 + j2

2inf(j1, j2) + 1 if 0  |M |  |j1 � j2|
(0.79)

(see the left Fig. 3 in which j1 = 5/2 and j2 = 1). Let NJ be the number of times the

representation of spin J appears in the decomposition of the representations of spin j1 et j2.

The n(M) vectors of eigenvalue M for Jz may also be regarded as coming from the NJ vectors

|J M i for the di↵erent values of J compatible with that value of M

n(M) =
X

J�|M |

NJ (0.80)

hence, by subtracting two such relations

NJ = n(J)� n(J + 1)

= 1 i↵ si |j1 � j2|  J  j1 + j2 (0.81)

= 0 otherwise.
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16 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

M=j + j 21

m

m

21 j  ï j j + j  +11
M

M = j  ï j21

1

2 n(M)

Fig. 3

2

To summarize, we have just shown that the (2j1 + 1)(2j2 + 1) vectors (0.74) (with j1 and

j2 fixed) may be reexpressed in terms of vectors |J M i with

J = |j1 � j2|, |j1 � j2|+ 1, · · · , j1 + j2

M = �J,�J + 1, · · · , J . (0.82)

Note that multiplicities NJ take the value 0 or 1 ; it is a pecularity of SU(2) that multi-

plicities larger than 1 do not occur in the decomposition of the tensor product of irreducible

representations, i.e. here of fixed spin.

0.4.2 Clebsch-Gordan coe�cients, 3-j and 6-j symbols. . .

The change of orthonormal basis |j1 m1; j2 m2 i ! |(j1 j2) J M i is carried out by the Clebsch-

Gordan coe�cients (C.G.) h (j1 j2); J M |j1 m1; j2 m2 i which form a unitary matrix

|j1 m1; j2 m2 i =
j1+j2
X

J=|j1�j2|

J
X

M=�J

h (j1 j2) J M |j1 m1; j2 m2 i|(j1 j2) J M i (0.83)

|j1 j2; J M i =
j1
X

m1=�j1

j2
X

m2=�j2

h (j1 j2) J M |j1 m1; j2 m2 i⇤|j1 m1; j2 m2 i . (0.84)

Note that in the first line, M is fixed in terms of m1 and m2; and that in the second one, m2 is

fixed in terms of m1, for given M . Each relation thus implies only one summation. The value

of these C.G. depends in fact on a choice of a relative phase between vectors (0.74) and (0.76);

the usual convention is that for each value of J , one chooses

h J M = J | j1 m1 = j1; j2 m2 = J � j1 i real . (0.85)

The other vectors are then unambiguously defined by (0.57) and we shall now show that all

C.G. are real. C.G. satisfy recursion relations that are consequences of (0.57). Applying indeed

J± to the two sides of (0.83), one gets

p

J(J + 1)�M(M ± 1) h (j1 j2) J M |j1 m1; j2 m2 i (0.86)

=
p

j1(j1 + 1)�m1(m1 ± 1)h (j1 j2) J M ± 1|j1 m1 ± 1; j2 m2 i
+

p

j2(j2 + 1)�m2(m2 ± 1)h (j1 j2) J M ± 1|j1 m1; j2 m2 ± 1 i

which, together with the normalization
P

m1,m2
|h j1 m1; j2 m2|(j1 j2) J M i|2 = 1 and the con-

vention (0.85), allows one to determine all the C.G. As stated before, they are clearly all real.
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0.4. Direct product of representations of SU(2) 17

The C.G. of the group SU(2), which describe a change of orthonormal basis, form a unitary

matrix and thus satisfy orthogonality and completeness properties

j1
X

m1=�j1

h j1 m1; j2 m2|(j1 j2) J M ih j1 m1; j2 m2|(j1 j2) J 0 M 0 i = �JJ 0�MM 0 if |j1 � j2|  J  j1 + j2

(0.87)
j1+j2
X

J=|j1�j2|

h j1 m1; j2 m2|(j1 j2) J M ih j1 m0
1; j2 m0

2|(j1 j2) J M i = �m1m0
1
�m2m0

2
if |m1|  j1, |m2|  j2 .

Once again, each relation implies only one non trivial summation.
Rather than the C.G. coe�cients, one may consider another set of equivalent coe�cients, called 3-j symbols.

They are defined through
 

j
1

j
2

J

m
1

m
2

�M

!

=
(�1)j1�j2+M

p
2J + 1

h j
1

m
1

; j
2

m
2

|(j
1

j
2

)J M i (0.88)

and they enjoy simple symmetry properties:
 

j
1

j
2

j
3

m
1

m
2

m
3

!

is invariant under cyclic permutation of its three columns, and changes by the sign (�1)j1+j2+j3 when two
columns are interchanged or when the signs of m

1

, m
2

and m
3

are reversed. The reader will find a multitude
of tables and explicit formulas of the C.G. and 3j coe�cients in the literature.

Let us just give some values of C.G. for low spins

1

2
⌦ 1

2
:

|(1
2
, 1

2
)1, 1 i = |1

2
, 1

2
; 1

2
, 1

2
i

|(1
2
, 1

2
)1, 0 i = 1p

2

�|1
2
, 1

2
; 1

2
,�1

2
i+ |1

2
,�1

2
; 1

2
, 1

2
i�

|(1
2
, 1

2
)0, 0 i = 1p

2

�|1
2
, 1

2
; 1

2
,�1

2
i � |1

2
,�1

2
; 1

2
, 1

2
i�

|(1
2
, 1

2
)1,�1 i = |1

2
,�1

2
; 1

2
,�1

2
i

(0.89)

and

1

2
⌦ 1 :

|(1
2
, 1)3

2
, 3

2
i = |1

2
, 1

2
; 1, 1 i

|(1
2
, 1)3

2
, 1

2
i = 1p

3

�

p
2|1

2
, 1

2
; 1, 0 i+ |1

2
,�1

2
; 1, 1 i�

|(1
2
, 1)3

2
,�1

2
i = 1p

3

�|1
2
, 1

2
; 1,�1 i+

p
2|1

2
,�1

2
; 1, 0 i�

|(1
2
, 1)3

2
,�3

2
i = |1

2
,�1

2
; 1,�1 i

|(1
2
, 1)1

2
, 1

2
i = 1p

3

��|1
2
, 1

2
; 1, 0 i+

p
2|1

2
,�1

2
; 1, 1 i�

|(1
2
, 1)1

2
,�1

2
i = 1p

3

��p2|1
2
, 1

2
; 1,�1 i+ |1

2
,�1

2
; 1, 0 i�

(0.90)

One notices on the case 1
2
⌦ 1

2
the property that vectors of total spin j = 1 are symmetric

under the exchange of the two spins, while those of spin 0 are antisymmetric. This is a general

property: in the decomposition of the tensor product of two representations of spin j1 =

j2, vectors of spin j = 2j1, 2j1 � 2, · · · are symmetric, those of spin 2j1 � 1, 2j1 � 3, · · · are

antisymmetric.
This is apparent on the expression (0.88) above, given the announced properties of the 3-j symbols.

In the same circle of ideas, consider the completely antisymmetric product of 2j+1 copies of
a spin j representation. One may show that this representation is of spin 0 (following exercise).
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18 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

(This has consequences in atomic physics, in the filling of electronic orbitals: a complete shell
has a total orbital momentum and a total spin that are both vanishing, hence also a vanishing
total angular momentum.)
Exercise. Consider the completely antisymmetric tensor product of N = 2j + 1 representations of spin j. Show
that this representation is spanned by the vector ✏m1m2···mN |j m

1

, j m
2

, · · · , j mN i, that it is invariant under
the action of SU(2) and thus that the corresponding representation has spin J = 0.

One also introduces the 6-j symbols that describe the two possible recombinations of 3 representations of
spins j

1

, j
2

and j
3

j

J

2

2
j3

J1

J

j1

Fig. 4

|j
1

m
1

; j
2

m
2

; j
3

m
3

i =
Ph (j

1

j
2

) J
1

M
1

|j
1

m
1

; j
2

m
2

ih (J
1

j
3

) J M |J
1

M
1

; j
3

m
3

i|(j
1

j
2

)j
3

;J M i
=
Ph (j

2

j
3

) J
2

M
2

|j
2

m
2

; j
3

m
3

ih (j
1

J
2

)J 0 M 0|j
1

m
1

; J
2

M
2

i|j
1

(j
2

j
3

);J 0 M 0 i (0.91)

depending on whether one composes first j
1

and j
2

into J
1

and then J
1

and j
3

into J , or first j
2

and j
3

into J
2

and then j
1

and J
2

into J 0. The matrix of the change of basis is denoted

h j
1

(j
2

j
3

);J M |(j
1

j
2

)j
3

;J 0 M 0 i = �JJ 0�MM 0
p

(2J
1

+ 1)(2J
2

+ 1)(�1)j1+j2+j3+J

(

j
1

j
2

J
1

j
3

J J
2

)

. (0.92)

and the { } are the 6-j symbols. One may visualise this operation of “addition” of the three spins by a
tetrahedron (see Fig. 4) the edges of which carry j

1

, j
2

, j
3

, J
1

, J
2

and J and the symbol is such that two spins
carried by a pair of opposed edges lie in the same column. These symbols are tabulated in the literature.

0.5 A physical application: isospin

The group SU(2) appears in physics in several contexts, not only as related to the rotation

group of the 3-dimensional Euclidian space. We shall now illustrate another of its avatars by

the isospin symmetry.

There exists in nature elementary particles subject to nuclear forces, or more precisely

to “strong interactions”, and thus called hadrons. Some of those particles present similar

properties but have di↵erent electric charges. This is the case with the two “nucleons”,

i.e. the proton and the neutron, of respective masses Mp =938,28 MeV/c2 and Mn =939,57

MeV/c2, and also with the “triplet” of pi mesons, ⇡0 (mass 134,96 MeV/c2) and ⇡± (139,57

MeV/c2), with K mesons etc. According to a great idea of Heisenberg these similarities are

the manifestation of a symmetry broken by electromagnetic interactions. In the absence of

electromagnetic interactions proton and neutron on the one hand, the three ⇡ mesons on the

other, etc, would have the same mass, di↵ering only by an “internal” quantum number, in
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0.5. A physical application: isospin 19

the same way as the two spin states of an electron in the absence of a magnetic field. In fact

the group behind that symmetry is also SU(2), but a SU(2) group acting in an abstract space

di↵ering from the usual space. One gave the name isotopic spin or in short, isospin, to the

corresponding quantum number. To summarize, the idea is that there exists a SU(2) group of

symmetry of strong interactions, and that di↵erent particles subject to these strong interactions

(hadrons) form representations of SU(2) : representation of isospin I = 1
2

for the nucleon (proton

Iz = +1
2
, neutron Iz = �1

2
), isospin I = 1 pour the pions (⇡± : Iz = ±1, ⇡0 : Iz = 0) etc. The

isospin is thus a “good quantum number”, conserved in these interactions. Thus the “o↵-shell”

process N ! N + ⇡, (N for nucleon) important in nuclear physics, is consistent with addition

rules of isospins (1
2
⌦1 “contains” 1

2
). The di↵erent scattering reactions N +⇡ ! N +⇡ allowed

by conservation of electric charge

p + ⇡+ ! p + ⇡+ Iz = 3
2

p + ⇡0 ! p + ⇡0 Iz = 1
2

! n + ⇡+ 00

p + ⇡� ! p + ⇡� Iz = �1
2

! n + ⇡0 00

n + ⇡� ! n + ⇡� Iz = �3
2

also conserve total isospin I and its Iz component but the hypothesis of SU(2) isospin invariance

tells us more. The matrix elements of the transition operator responsible for the two reactions

in the channel Iz = 1
2
, for example, must be related by addition rules of isospin. Inverting the

relations (0.90), one gets

|p, ⇡� i =

r

1

3
|I =

3

2
, Iz = �1

2
i �

r

2

3
|I =

1

2
, Iz = �1

2
i

|n, ⇡0 i =

r

2

3
|I =

3

2
, Iz = �1

2
i+

r

1

3
|I =

1

2
, Iz = �1

2
i

whereas for Iz = 3/2

|p, ⇡+ i = |I =
3

2
, Iz =

3

2
i .

Isospin invariance implies that h I Iz |T |I 0 I 0z i = TI�II0�I
z

I0
z

, as we shall see later (Schur lemma

or Wigner–Eckart theorem, Chap. 2): not only are I and Iz conserved, but the resulting

amplitude depends only on I, not Iz. Calculating then the matrix elements of the transition

operator T between the di↵erent states,

h p⇡+|T |p⇡+ i = T3/2

h p⇡�|T |p⇡� i =
1

3

�T3/2 + 2T1/2

�

(0.93)

hn⇡0|T |p⇡� i =

p
2

3

�T3/2 � T1/2

�

one finds that amplitudes satisfy a relation

p
2hn, ⇡0|T |p, ⇡� i+ h p, ⇡�|T |p, ⇡� i = h p, ⇡+|T |p, ⇡+ i = T3/2
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a non trivial consequence of isospin invariance, which implies triangular inequalities between

squared modules of these amplitudes and hence between cross-sections of the reactions

[
p

�(⇡�p ! ⇡�p) �
p

2�(⇡�p ! ⇡0n)]2  �(⇡+p ! ⇡+p) 
 [

p

�(⇡�p ! ⇡�p) +
p

2�(⇡�p ! ⇡0n)]2

which are experimentally well verified. Even better, one finds experimentally that at a certain

energy of about 180 MeV, cross sections (proportional to squares of amplitudes) are in the

ratios

�(⇡+p ! ⇡+p) : �(⇡�p ! ⇡0n) : �(⇡�p ! ⇡�p) = 9 : 2 : 1

which is what one would get from (0.93) if T 1
2

were vanishing. This indicates that at that

energy, scattering in the channel I = 3/2 is dominant. In fact, this signals the existence of an

intermediate ⇡N state, a very unstable particle called “resonance”, denoted �, of isospin 3/2

and hence with four states of charge

�++, �+, �0, �� ,

the contribution of which dominates the scattering amplitude. This particle has a spin 3/2 and

a mass M(�) ⇡ 1230 MeV/c2.

In some cases one may obtain more precise predictions. This is for instance the case with the reactions

2H p ! 3He⇡0 and 2H p ! 3H⇡+

which involve nuclei of deuterium 2H, of tritium 3H and of helium 3He. To these nuclei too, one may assign an
isospin, 0 to the deuteron which is made of a proton and a neutron in an antisymmetric state of their isospins
(so that the wave function of these two fermions, symmetric in space and in spin, be antisymmetric), Iz = � 1

2

to 3H and Iz = 1

2

to 3He which form an isospin 1

2

representation. Notice that in all cases, the electric charge is
related to the Iz component of isospin by the relation Q = 1

2

B + Iz, with B the baryonic charge, equal here to
the number of nucleons (protons or neutrons).
Exercise: show that the ratio of cross-sections �(2H p ! 3He⇡0)/�(2H p ! 3H⇡+) is 1

2

.
Remark : invariance under isospin SU(2) that we just discussed is a symmetry of strong interactions. There

exists also in the framework of the Standard Model a notion of “weak isospin”, a symmetry of electroweak
interactions, to which we return in Chap. 5.

0.6 Representations of SO(3,1) and SL(2,C)

0.6.1 A short reminder on the Lorentz group

Minkowki space is a R4 space endowed with a pseudo-Euclidean metric of signature (+,�,�,�).

In an orthonormal basis with coordinates (x0 = ct, x1, x2, x3), the metric is diagonal

gµ⌫ = diag (1,�1,�1,�1)

and thus the squared norm of a 4-vector reads

x.x = xµgµ⌫x
⌫ = (x0)2 � (x1)2 � (x2)2 � (x3)2 .
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The isometry group of that quadratic form, called O(1,3) or the Lorentz group L, is such that

⇤ 2 O(1, 3) x0 = ⇤x : x0.x0 = ⇤µ
⇢x

⇢gµ⌫⇤
⌫
�x

� = x⇢g⇢�x
�

i.e.

⇤µ
⇢gµ⌫⇤

⌫
� = g⇢� or ⇤T g⇤ = g . (0.94)

These pseudo-orthogonal matrices satisfy (det ⇤)2 = 1 and (by taking the 00 matrix element

of (0.94)) (⇤0
0)

2 = 1 +
P3

i=1(⇤
0
i)

2 � 1 and thus L ⌘ O(1,3) has four connected components

(or “sheets”) depending on whether det ⇤ = ±1 and ⇤0
0 � 1 or  �1. The subgroup of

proper orthochronous transformations satisfying det ⇤ = 1 and ⇤0
0 � 1 is denoted L"+. Any

transformation of L"+ may be written as the product of an “ordinary” rotation of SO(3) and a

“special Lorentz transformation” or “boost”.

A major di↵erence between the SO(3) and the L"+ groups is that the former is compact (the

range of parameters is bounded and closed, see (0.2)), whereas the latter is not : in a boost

along the 1 direction, say, x01 = �(x1 � vx0/c), x00 = �(x0 � vx1/c), with � = (1� v2/c2)�
1
2 , the

velocity |v| < c does not belong to a compact domain (or alternatively, the “rapidity” variable

�, defined by cosh � = � can run to infinity). This compactness/non-compactness has very

important implications on the nature and properties of representations, as we shall see.

The Poincaré group, or inhomogeneous Lorentz group, is generated by Lorentz transforma-

tions ⇤ 2 L and space-time translations; generic elements denoted (a, ⇤) have an action on a

vector x and a composition law given by

(a, ⇤) : x 7! x0 = ⇤x + a

(a0, ⇤0)(a, ⇤) = (a0 + ⇤0a, ⇤0⇤) ; (0.95)

the inverse of (a, ⇤) is (�⇤�1a, ⇤�1) (check it !).

0.6.2 Lie algebra of the Lorentz and Poincaré groups

An infinitesimal Poincaré transformation reads (↵µ, ⇤µ
⌫ = �µ

⌫ +!µ
⌫). By taking the infinitesimal

form of (0.94), one easily sees that the tensor !⇢⌫ = !µ
⌫g⇢µ has to be antisymmetric: !⌫⇢+!⇢⌫ =

0. This leaves 6 real parameters: the Lorentz group is a 6-dimensional group, and the Poincaré

group is 10-dimensional.

To find the Lie algebra of the generators, let us proceed like in § 0.2.3: look at the Lie

algebra generated by di↵erential operators acting on functions of space-time coordinates; if

x0� = x�+�x� = x�+↵�+!�⌫x⌫ , �f(x) = f(xµ�↵��!�⌫x⌫)�f(x) = (I�i↵µPµ� i
2
!µ⌫Jµ⌫)f(x),

(see (0.45)), thus

Jµ⌫ = i(xµ@⌫ � x⌫@µ) Pµ = �i@µ (0.96)

the commutators of which are then easily computed

[Jµ⌫ , P⇢] = i (g⌫⇢Pµ � gµ⇢P⌫)

[Jµ⌫ , J⇢�] = i (g⌫⇢Jµ� � gµ⇢J⌫� + gµ�J⌫⇢ � g⌫�Jµ⇢) (0.97)

[Pµ, P⌫ ] = 0 .

September 2, 2013 J.-B. Z M2 ICFP/Physique Théorique 2012
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Note the structure of these relations: antisymmetry in µ $ ⌫ of the first one, in µ $ ⌫, in ⇢ $ � and in
(µ, ⌫) $ (⇢,�) of the second one; the first one shows how a vector (here P⇢) transforms under the infinitesimal
transformation by Jµ⌫ , and the second then has the same pattern in the indices ⇢ and �, expressing that J⇢� is
a 2-tensor.

Generators that commute with P0 (which is the generator of time translations, hence the

Hamiltonian) are the Pµ and the Jij but not the J0j : i[P0, J0j] = Pj.

Set

Jij = ✏ijkJ
k Ki = J0i . (0.98)

Then

[J i, J j] = i✏ijkJ
k

[J i, Kj] = i✏ijkK
k (0.99)

[Ki, Kj] = �i✏ijkJ
k

and also

[J i, P j] = i✏ijkP
k [Ki, P j] = iP 0�ij

[J i, P 0] = 0 [Ki, P 0] = iP i . (0.100)

Remark. The first two relations (0.99) and the first one of (0.100) express that, as expected,

J = {J j}, K = {Kj} and P = {P j} transform like vectors under rotations of R3. Now form

the combinations

M j =
1

2
(J j + iKj) N j =

1

2
(J j � iKj) (0.101)

which have the following commutation relations

[M i, M j] = i✏ijkM
k

[N i, N j] = i✏ijkN
k (0.102)

[M i, N j] = 0 .

By considering the complex combinations M and N of its generators, one thus sees that the

Lie algebra of L = O(1, 3) is isomorphic to su(2) � su(2). The introduction of ±i, however,

implies that unitary representations of L do not follow in a simple way from those of SU(2)⇥
SU(2). On the other hand, representations of finite dimension of L, which are non unitary, are

labelled by a pair (j1, j2) of integers or half-integers.

Exercise. Show that this algebra admits two independent quadratic Casimir operators, and

express them in terms of M and N first, and then in terms of J and K.

0.6.3 Covering groups of L"+ and P"+
We have seen that the study of SO(3) led us to SU(2), its “covering group” (the deep reasons

of which will be explained in Chap. 1 and 2). Likewise in the case of the Lorentz group its

“covering group” turns out to be SL(2,C).
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There is a simple way to see how SL(2,C) and L"+ are related, which is a 4-dimensional

extension of the method followed in § 0.1.2. One considers matrices �µ made of �0 = I and of

the three familiar Pauli matrices. Note that

tr�µ�⌫ = 2�µ⌫ �2
µ = I with no summation over the index µ .

With any real vector x 2 R4, associate the Hermitian matrix

X = xµ�µ xµ =
1

2
tr (X�µ) det X = x2 = (x0)2 � x2 . (0.103)

A matrix A 2 SL(2, C) acts on X according to

X 7! X 0 = AXA† (0.104)

which is indeed Hermitian and thus defines a real x
0µ = 1

2
tr (X 0�µ), with det X 0 = det X, hence

x2 = x
02. This is a linear transformation of R4 that preserves the Minkowski norm x2, and thus

a Lorentz transformation, and one checks by an argument of continuity that it belongs to L"+
and that A ! ⇤ is a homomorphism of SL(2, C) into L"+. In the following we denote x0 = A.x

if X 0 = AXA†.

As is familiar from the case of SU(2), the transformations A and �A 2 SL(2, C) give the

same transformation of L"+ : SL(2, C) is a covering of order 2 of L"+. For the Poincaré group,

likewise, its covering is the (“semi-direct”) product of the translation group by SL(2, C). If one

denotes a := aµ�µ, then

(a, A)(a0, A0) = (a + Aa0A†, AA0) (0.105)

and one sometimes refers to it as the “inhomogeneous SL(2, C) group” or ISL(2, C)).

0.6.4 Irreducible finite-dimensional representations of SL(2, C)

The construction of § 0.3.3 yields an explicit representation of GL(2,C) and hence of SL(2,C).

For A =

 

a b

c d

!

2 SL(2, C), (0.71) gives the following expression for Dj
mm0(A) :

Dj
mm0(A) = [(j + m)!(j �m)!(j + m0)!(j �m0)!]

1
2

X

n1,n2,n3,n4�0
n1+n2=j+m ; n3+n4=j�m

0
n1+n3=j+m ; n2+n4=j�m

an1bn2cn3dn4

n1!n2!n3!n4!
(0.71)

Note that DT (A) = D(AT ) (since exchanging m $ m0 amounts to n
2

$ n
3

, hence to b $ c) and
(D(A))⇤ = D(A⇤) (since the numerical coe�cients in (0.71) are real) thus D†(A) = D(A†).

This representation is called (j, 0), it is of dimension 2j + 1. There exists another one of

dimension 2j +1, which is non equivalent, denoted (0, j), this is the “contragredient conjugate”

representation (in the sense of Chap 2. § 2.1.3.b) Dj(A†�1). Replacing A by A†�1 may be

interpreted in the construction of § 0.6.3 if instead of associating X = xµ�µ with x, one

associates eX = x0�0�x.���. Notice that �2(�i)T�2 = ��i for i = 1, 2, 3 hence eX = �2XT�2. For

the transformation A : X 7! X 0 = AXA† , we have

eX 0 = �2(X
0)T�2 = �2(AXA†)T�2 = (�2A

T�2)
†
eX(�2A

T�2) .
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Any matrix A of SL(2, C) may itself be written as A = aµ�µ, with (aµ) 2 C4, and as det A =

(a0)2 � a2 = 1 (the “S” of SL(2, C)), one verifies immediately that A�1 = a0�0 � a.���, donc

�2A
T�2 = A�1 . (0.106)

Finally

X 0 = AXA† () eX 0 = (A�1)† eXA�1 . (0.107)

Remark. The two representations (j, 0) and (0, j) are inequivalent on SL(2, C), but equiva-

lent on SU(2). Indeed in SU(2), A = U = (U †)�1.

Finally, one proves that any finite-dimensional representation of SL(2, C) is completely

reducible and may be written as a direct sum of irreducible representations. The most general

finite-dimensional irreducible representation of SL(2, C) is denoted (j1, j2), with j1 and j2 � 0

integers or half-integers; it is defined by

(j1, j2) = (j1, 0)⌦ (0, j2) . (0.108)

All these representations may be obtained from the representations (1
2
, 0) and (0, 1

2
) by tensor-

ing: (j1, 0) and (0, j2) are obtained by symmetrized tensor product of representations (1
2
, 0) and

(0, 1
2
), respectively, as was done for SU(2). Only representations (j1, j2) with j1 and j2 simulta-

neously integers or half-integers are true representations of L+
" . The others are representations

up to a sign.

Exercise : show that the representation (0, j) is “equivalent” (equal up to a change of basis)

to the complex conjugate of representation (j, 0). (Hint: show it first for j = 1
2

by recalling

that (A�1)† = �2A⇤�2, then for representations of arbitrary j obtained by 2j-th tensor power

of j = 1
2
.)

Spinor representations

Return to the “spinor representations” (1
2
, 0) and (0, 1

2
). Those are representations of dimension

2 (two-component spinors). It is traditional to note the indices of components with “pointed”

or “unpointed” indices, for representation (0, 1
2
) and (1

2
, 0), respectively. With A =

 

a b

c d

!

2
SL(2, C), we thus have

(
1

2
, 0) ⇠ = (⇠↵) 7! ⇠0 = A⇠ =

 

a⇠1 + b⇠2

c⇠1 + d⇠2

!

(0,
1

2
) ⇠ = (⇠↵̇) 7! ⇠0 = A⇤⇠ =

 

a⇤⇠1̇ + b⇤⇠2̇

c⇤⇠1̇ + d⇤⇠2̇

!

(0.109)

Note that the alternating (=antisymmetric) form (⇠, ⌘) = ⇠1⌘2�⇠2⌘1 = ⇠T (i�2)⌘ is invariant

in (1
2
, 0) (and also in (0, 1

2
)), which follows once again from (0.106)

(�2A
T�2)A = A�1A = I() AT (i�2)A = i�2 .
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One may thus use that form to lower indices ↵ (or ↵̇). Thus

in (
1

2
, 0) : (⇠, ⌘) = ⇠↵⌘

↵ ⇠2 = ⇠1 ⇠1 = �⇠2

in (0,
1

2
) : (⇠, ⌘) = ⇠↵̇⌘

↵̇ ⇠2̇ = ⇠1̇ ⇠1̇ = �⇠2̇ (0.110)

(j1, j2) representation

Tensors {⇠↵1↵2···↵2j1 �̇1�̇2···�̇2j2} symmetric in ↵1,↵2, · · · ,↵2j1 and in �̇1, �̇2, · · · , �̇2j2 , form the

irreducible representation (j1, j2). (One cannot lower the rank by taking traces, since the

only invariant tensor is the previous alternating form). The dimension of that representation is

(2j1 + 1)(2j2 + 1). The most usual representations encountered in field theory are (0, 0), (1
2
, 0)

and (0, 1
2
), (1

2
, 1

2
). The reducible representation (1

2
, 0)�(0, 1

2
) describes the (4-component) Dirac

fermion; the (1
2
, 1

2
) corresponds to 4-vectors, as seen above:

x 7! X = x0�0 + x.���
A2SL(2,C)�! X 0 = AXA†

i.e.

X = X↵�̇ ! (X 0)↵�̇ = A↵↵0(A�̇�̇0)⇤X↵0�̇0 ,

which shows that X transforms indeed according to the (1
2
, 1

2
) representation .

Exercise. Show that representations (1, 0) and (0, 1), of dimension 3, describe rank 2 tensors

F µ⌫ that are “self-dual” ou “anti-self-dual”, i.e. satisfy

F µ⌫ = ± i

2
✏µ⌫⇢�F⇢� .

0.6.5 Irreducible unitary representations of the Poincaré group. One

particle states.

According to a theorem of Wigner which will be discussed in Chap, 2, the action of proper orthochronous
transformations of the Lorentz or Poincaré groups on state vectors of a quantum theory is described by means
of unitary representations of these groups, or rather of their “universal covers” SL(2,C) and ISL(2,C). As will
be seen below (Chap. 2), unitary representations (of class L2) of the non compact group SL(2, C) are necessarily
of infinite dimension (with the possible exception of the trivial representation (0, 0), which describes a state
invariant by rotation and by boosts, i.e. the vacuum !,. . . , and which is in fact not of class L2!).

Returning to commutation relations of the Lie algebra (0.97), one seeks a maximal set of commuting
operators. The four Pµ commute. Let (pµ) be an eigenvalue for a common eigenvector of Pµ, describing a
“one-particle state”. We assume that the eigenvector denoted |p i is labelled only by pµ and by discrete indices:
(this is indeed the meaning of “one-particle state”, in contrast with a two-particle state that would depend on
a relative momentum, a continuous variable)

Pµ|p i = pµ|p i . (0.111)

One also considers the Pauli-Lubanski tensor

W� =
1
2
✏�µ⌫⇢Jµ⌫P⇢ (0.112)

and one verifies (exercise !) that (0.97) implies

[Wµ, P⌫ ] = 0
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26 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

[Wµ, W ⌫ ] = �i✏µ⌫⇢�W⇢P� (0.113)

[Jµ⌫ , W�] = i(g⌫�Wµ � gµ�W⌫) .

The latter relation means that W is a Lorentz 4-vector (compare with (0.97)). One also notes that W.P = 0
because of the antisymmetry of tensor ✏. One finally shows (check it!) that P 2 = PµPµ and W 2 = WµWµ

commute with all generators P and J : those are the Casimir operators of the algebra. According to a lemma by
Schur, (see below Chap. 2, § 2.1.4), these Casimir operators are in any irreducible representation proportional
to the identity, in other words, their eigenvalues may be used to label the irreducible representations.

In physics, one encounters only two types of representations for these one-particle states4: representations
with P 2 > 0 and those with P 2 = 0, W 2 = 0. Their detailed study will be done in Adel Bilal’s course.
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Problem
One considers two spin 1

2

representations of the group SU(2) and their direct (or tensor) product. One denotes
J(1) and J(2) the infinitesimal generators acting in each representation, and J = J(1) +J(2) those acting in their
direct product, see (0.75), (0.75’).

• What can be said about the operators J(1) 2, J(2) 2 and J2 and their eigenvalues ?

• Show that J(1).J(2) may be expressed in terms of these operators and that operators

1
4
(3I + 4J(1).J(2)) et

1
4
(I� 4J(1).J(2))

are projectors on spaces to be identified.

• Taking into account the symmetries of the vectors under exchange, what can you say about the operator

1
2
I + 2J(1).J(2) ?

Appendix 0. Measure and Laplacian on the S2 and S3

spheres

Consider a Riemannian manifold, i.e. a manifold endowed with a metric :

ds2 = g↵� d⇠↵d⇠� (0.114)

4which does not mean that there are no other irreducible representations; for example “unphysical” repre-
sentations where P 2 = �M2 < 0
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with a metric tensor g and (local) coordinates ⇠↵, ↵ = 1, · · · , n; n is the dimension of the

manifold. This ds2 must be invariant under changes of coordinates, ⇠ ! ⇠0, which dictates the

change of the tensor g

⇠ 7! ⇠0 , g 7! g0 : g0↵0�0 =
@⇠↵

@⇠0↵0
@⇠�

@⇠0�0
g↵� , (0.115)

meaning that g is a covariant rank-2 tensor. The metric tensor is assumed to be non singular,

i.e. invertible, and its inverse tensor is denoted with upper indices

g↵� g�� = � �
↵ . (0.116)

Also, its determinant is traditionnally denoted g

g = det(g↵�) . (0.117)

There is then a general method for constructing a volume element on the manifold (i.e. an

integration measure) and a Laplacian, both invariant under changes of coordinates

dµ(⇠) =
p

g
n
Y

↵=1

d⇠↵

� =
1p
g
@↵
p

gg↵�@� (0.118)

where @↵ is a shorthand notation for the di↵erential operator @
@⇠↵

.

Exercise: check that dµ(⇠) and � are invariant under a change of coordinates ⇠ 7! ⇠0.

This may be applied in many contexts, and will be used in Chap. 1 to define an integration

measure on compact Lie groups.

Let us apply it here to the n-dimensional Euclidean space Rn. In spherical coordinates, one

writes

ds2 = dr2 + r2d⌦2

where d⌦ is a generic notation that collects all the angular variables. The metric tensor is thus

of the general form

 

1 0

0 r2A

!

with a (n � 1) ⇥ (n � 1) matrix A which is r-independent and

depends only on angular variables. The latter give rise to the Laplacian on the unit sphere

Sn�1, denoted �Sn�1 ;
p

g = rn�1
p

det A; and (0.118) tells us that the Laplacian on Rn takes

the general form

�Rn =
1

rn�1

@

@r
rn�1 @

@r
+

1

r2
�Sn�1 =

@2

@r2
+

n� 1

r

@

@r
+

1

r2
�Sn�1 .

Let us write more explicit formulae for the S2 and S3 unit spheres. Consider first the unit

sphere S2 with angular coordinates 0  ✓  ⇡, 0  �  2⇡ (Fig. 1). We thus have

ds2 = d✓2 + sin2 ✓ d�2

p
g = sin ✓
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dµ(x) = sin ✓ d✓ d�

�S2 =
1

sin2 ✓

@2

@�2
+

1

sin ✓

@

@✓
sin ✓

@

@✓
. (0.119)

The generators Ji read (see (0.46))

J3 = �i
@

@�

J1 = �i



� cos� cotg ✓
@

@�
� sin�

@

@✓

�

(0.120)

J2 = �i



� sin� cotg ✓
@

@�
+ cos�

@

@✓

�

and one verifies that ��S2 = ~J2 = J2
1 + J2

2 + J2
3 .

For the unit sphere S3 one finds similar formulas. In the parametrization (0.12), one takes

for example

ds2 =
1

2
tr dUdU † =

✓

d
 

2

◆2

+ sin2  

2

�

d✓2 + sin2 ✓ d�2
�

(0.121)

invariant under U ! UV , U ! V U or U ! U�1, whence a measure invariant under the same

transformations

dµ(U) =
1

2

✓

sin
 

2

◆2

sin ✓ d d✓ d� . (0.122)

In the Euler angles parametrization,

U = e�i↵
�3
2 e�i�

�2
2 e�i�

�3
2 (0.123)

thus

ds2 =
1

2
tr dUdU † =

1

4

�

d↵2 + 2d↵d� cos � + d�2 + d�2
�

(0.124)

and with
p

g = sin � one computes

dµ(U) =
1

8
sin � d↵ d� d� (0.125)

�S3 =
4

sin2 �



@2

@↵2
+

@2

@�2
+

@2

@↵@�

�

+
4

sin �

@

@�
sin �

@

@ sin �
. (0.126)

?
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