

Mention Physique - L2 - Année 2012-2013 Licence de Sciences et Technologies

LP 207: Mathématiques pour physiciens 2

TD N°7: Variables aléatoires. Lois de probabilité

I. Lois de probabilité

1. Densité et fonction de répartition

Considérons la fonction F(x), définie par :

$$F(x) = \frac{e^x}{e^x + e^{-x}} \qquad (x \in R)$$

- (a) Montrer que F est une fonction de répartition d'une v.a. réelle continue X.
- (b) Quelle est la densité f de X?
- (c) Montrer que X est une v.a. réelle centrée.
- (d) Donner l'expression de la variance de X (on ne cherchera pas à calculer l'intégrale).

2. Densité et fonction de répartition (2)

Soit la fonction de variable réelle x définie par f(x) = 0 sur $]-\infty, -q] \cup [q, \infty[$, f(x) = k(x+q) sur]-q, 0] et f(x) = -k(x-q) sur [0, q[(k et q sont des constantes positives).

- (a) Tracer le graphe de f(x). Déterminer pour quelle valeur de k cette fonction définit une densité de probabilité pour une variable aléatoire continue X.
- (b) Déterminer la fonction de répartition associée à f(x) et la tracer.
- (c) Calculer l'espérance de $X : \langle X \rangle$.
- (d) Calculer la variance de X: var(X), puis son écart type σ .
- (e) Calculer la probabilité que X soit supérieur à $\langle X \rangle$ sachant que X est supérieur à -q/2.
- (f) \star Montrer que la limite de $\int_{-\infty}^{\infty} f(x)g(x)dx$ lorsque q tend vers 0 est g(0) lorsque g est une fonction continue.

3. Lois exponentielles

- i) Soit la fonction $f(x) = Ce^{-ax}$ pour $x \ge 0$, f(x) = 0 si x < 0, avec a > 0. Quelle valeur doit prendre la constante C? Déterminer les moments qui existent et les calculer.
- ii) Soit la fonction à variable réelle x définie par $f(x) = ke^{-\alpha|x|}$ (k et α sont des constantes positives).

- (a) Déterminer pour quelle valeur de k cette fonction définit une densité de probabilité pour une variable aléatoire continue X. Tracer f(x) avec $\alpha = 1$. Même question avec $\alpha = 5$.
- (b) Déterminer la fonction de répartition associée à f(x). La tracer pour $\alpha = 1$ puis pour $\alpha = 5$.
- (c) Calculer l'espérance (ou moyenne) de X.
- (d) Calculer la variance de X: var(X), puis son écart type σ .
- (e) Calculer la probabilité que X soit supérieur à $\alpha^{-1} + \langle X \rangle$ sachant que X est supérieur à $\langle X \rangle$.
- (f) \star Montrer que la limite de $\int_{-\infty}^{\infty} f(x)g(x)dx$ lorsque α tend vers $+\infty$ est g(0) lorsque g est une fonction continue. Interpréter à l'aide des dessins faits au dessus.

4. Distribution de Lorentz

Une loi de probabilité importante en physique est la loi de Lorentz (parfois appelée Cauchy-Lorentz) de densité :

$$f(x) = \frac{\gamma}{\pi} \left(\frac{1}{\gamma^2 + (x - x_0)^2} \right) \tag{1}$$

- (a) Montrer que f(x) est bien une densité de probabilité.
- (b) Quel est le mode, (c'est-à-dire la valeur de x qui donne le maximum), de cette distribution? Que caractérise le paramètre γ ?
- (c) Montrer que la moyenne et la variance ne sont pas définies.

II. Exemples concrets

1. Durée de vie d'une savonnette

La durée d'utilisation d'une savonnette mesurée en jours est une variable aléatoire réelle, T, dont la densité de probabilité est :

$$f(t) = \lambda^2 t e^{-\lambda t} \qquad (t \ge 0)$$

où λ est un paramètre réel positif.

- (a) Vérifier que f est bien une densité de probabilité.
- (b) Déterminer la fonction de répartition F de la variable aléatoire T.
- (c) On constate que $\langle T \rangle = 20$ j. Déterminer λ et $\sigma(T)$.
- (d) Calculer la probabilité qu'une savonnette dure plus de 30 jours sachant qu'elle est toujours là au bout de 10 jours.

2. Pile ou face

On dispose de n pièces identiques. On associe à la i-ème pièce la variable aléatoire X_i qui prend la valeur 1 lorsque cette pièce tombe sur pile et 0 lorsqu'elle tombe sur face. On suppose que la probabilité d'obtenir $X_i = 1$ (pile) est p et celle d'obtenir $X_i = 0$ (face) est q = 1 - p. Les variables aléatoires X_i sont toutes indépendantes.

- (a) Calculer l'espérance puis la variance de X_i .
- (b) Donner la loi de probabilité de la variable aléatoire $X = \sum_{i=1}^{n} X_i$.
- (c) Calculer $\sum_{k=0}^{n} P(X=k)$. Interprétation ?
- (d) On appelle fonction génératrice associée à la variable aléatoire X la fonction de z définie par $\phi(z) = \sum_{k=0}^{n} z^k P(X=k)$. Montrer que $\phi(z) = (pz+q)^n$.
- (e) Montrer que la moyenne de X, $\langle X \rangle$, est égale à $\phi'(1)$. En déduire $\langle X \rangle$.
- (f) En calculant $\phi''(1)$, déterminer la variance de X.
- (g) Quelle est la probabilité que l'on obtienne au moins k_0 fois pile : $P(X \ge k_0)$. Faites l'application numérique pour p = 1/2, n = 5 et $k_0 = 4$.

3. Durée de vie d'un appareil

On met en service un appareil à l'instant t = 0. Il cesse de fonctionner à l'instant aléatoire T, durée de vie de l'appareil. Soient F(x) la fonction de répartition de T et f(x) sa densité.

- (a) Exprimer en fonction de F et f la fonction de répartition $F_{T>t}(x) = P(T < x|T > t)$ et la densité $f_{T>t}(x)$ de la v.a. T conditionnée par T > t.
- (b) On considère un système dont la densité de probabilité de panne à l'instant t, sachant qu'il fonctionnait jusqu'à l'instant t, est une constante. Déterminer F(t) et f(t) définissant la loi de l'instant de la panne. Interpréter dans ce cas $f_{T>t}(t+x)$. Calculer la durée de vie moyenne (ou espérance de vie) $\langle T \rangle$.
- (c) On connecte deux appareils A_1 et A_2 , de durées de vie aléatoires T_1 et T_2 indépendantes et de densités f_1 et f_2 , pour former un système de durée de vie T. Déterminer les fonctions F(t) et f(t) relatives au temps T dans le cas où A_1 et A_2 sont connectés
 - en série (le système fonctionne si A_1 et A_2 fonctionnent).
 - en parallèle (le système fonctionne si A_1 ou A_2 fonctionne(nt)).
- (d) Calculer l'espérance de vie du système dans les deux cas précédents, si $\alpha_1 = \alpha_2$ (α_i étant l'inverse de la durée de vie moyenne de l'appareil i).

4. Paradoxe de Bertrand

Soit un cercle de rayon R. Quelle est la longueur a du côté du triangle équilatéral ABC inscrit dans ce cercle ? On se propose d'étudier l'évènement \mathcal{E} suivant : une corde tracée au hasard a une longueur ℓ supérieure à a. Quelle est la probabilité de \mathcal{E} ? Trois raisonnements différents vont conduire à trois résultats différents !

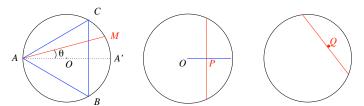


Figure 1: Trois définitions d'une "corde aléatoire"

(a) On fixe une extrémité de la corde en A, l'autre extrémité M a une densité uniforme sur le cercle. Montrer que \mathcal{E} est réalisé sissi M appartient à l'arc BC. En déduire la probabilité p_1 de cet évènement. Montrer que l'angle $\theta = \widehat{OAM}$ a une distribution uniforme et trouver la relation entre ℓ et θ ; en déduire la densité de probabilité de ℓ . Comment retrouve-t-on la probabilité p_1 à partir de cette densité ?

- (b) On se donne un rayon quelconque du cercle et un point aléatoire P sur ce rayon avec une densité uniforme. On construit la corde dont ce rayon est la médiatrice. Dans quel intervalle P doit-il varier pour que l'évènement \mathcal{E} soit réalisé? En déduire la probabilité p_2 de cet évènement et calculer la densité de probabilité de ℓ . Vérifier comme en a) le calcul de p_2 .
- (c) Soit un point Q choisi de façon aléatoire à l'intérieur du disque, avec une densité uniforme, et la corde dont il est le milieu. Comment construit-on géométriquement cette corde ? Chercher à quelle région du disque Q doit appartenir pour que \mathcal{E} soit réalisé. En déduire la probabilité p_3 de cet évènement, puis calculer la densité de probabilité de ℓ . Vérifier comme en a) le calcul de p_3 .

Ce paradoxe souligne que le problème de départ est mal posé. Ce que l'on entend par corde "tracée au hasard" n'est pas bien défini!