

Mention Physique - L2 - Année 2012-2013 Licence de Sciences et Technologies

LP 207: Mathématiques pour physiciens 2

TD N°3 : Systèmes linéaires d'équations du premier degré

I. Systèmes d'équations

A) Résolution des systèmes suivants, par élimination, puis par utilisation des formules de Cramer, si c'est possible. Discuter les cas qui ne sont pas de Cramer.

(a)
$$\begin{cases} 2x + y = 5 \\ -3x + 2y = 3 \end{cases}$$
 (b)
$$\begin{cases} 3x - y + z = 5 \\ x + y - z = -2 \\ -x + 2y + z = 3 \end{cases}$$
 (c)
$$\begin{cases} 2x - y + z = 4 \\ -x + 3y - 5z = 1 \\ 8x - 9y + 13z = 2 \end{cases}$$

B) Discussion et résolution des systèmes suivants selon la valeur de m

1)
$$\begin{cases} 2x + y - z &= a \\ x + my + z &= b \\ 3x + y - mz &= c \end{cases}$$
2)
$$\begin{cases} (1 - m)x + (2m + 1)y + (2m + 2)z &= m \\ mx + my &= 2m + 2 \\ 2x + (m + 1)y + (m - 1)z &= m^2 - 2m + 9 \end{cases}$$
3)
$$\begin{cases} x + my + z &= 1 \\ mx + y + (m - 1)z &= m \\ x + y + z &= m + 1 \end{cases}$$

II. Application électrique. Pont de Wheatstone

On considère le montage de la figure 1.1. L'ampèremètre figuré par I est supposé de résistance négligeable.

Écrire le système d'équations reliant les trois intensités i_1 , i_2 , i_3 à la tension V du générateur. Montrer qu'en imposant que le courant traversant l'ampèremètre est nul, on obtient une relation entre R_1, \dots, R_4 , d'où la possibilité de mesurer la résistance de l'une d'elles si les trois autres sont connues et ajustables.

III. Application mécanique. Équilibre d'une échelle

On considère une échelle AB de longueur L, appuyée sur le sol et sur un mur vertical et faisant un angle θ avec le sol horizontal (voir Fig. 1.2). Le poids total \vec{P} de l'échelle et de la personne sur l'échelle s'applique en un point H, à la distance ℓ du bas A de l'échelle. On suppose que les contacts avec le sol et le mur se font avec le même coefficient de frottement $k = \tan \phi$. Autrement dit, les composantes tangentielle T et normale N de la réaction en A et B doivent satisfaire $|T|/|N| \le \tan \phi$. On se donne \vec{P} , ℓ , L et θ .

On rappelle que l'équilibre statique d'un solide indéformable soumis à différentes forces statiques $\vec{F}_{\text{ext},i}$ s'appliquant en des points M_i est conditionné par deux relations vectorielles

$$\sum_{i} \vec{F}_{\text{ext},i} = 0 \qquad \sum_{i} \overrightarrow{OM}_{i} \wedge \vec{F}_{\text{ext},i} = 0 , \qquad (1)$$

où O est un point arbitraire.

- 1) Écrire selon ce principe les conditions d'équilibre de l'échelle.
- 2) Peut-on déterminer les valeurs des forces de réaction en A et B?
- 3) On examine dans quelle situation limite l'équilibre cesse d'être possible. Au point limite, les deux forces de réaction en A et B satisfont $|T|/|N| = \tan \phi$ et l'échelle commence à glisser. Écrire et discuter le système dans ces conditions.
- 4) Montrer qu'après élimination de $T_A = N_A \tan \phi$ et $T_B = N_B \tan \phi$, le système peut se mettre sous la forme

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \tan \phi & -1 \\ 1 & \tan \phi \end{pmatrix} \begin{pmatrix} N_A \\ N_B \end{pmatrix} = P \begin{pmatrix} (1 - \frac{\ell}{L})\cos \theta \\ 0 \\ 1 \end{pmatrix} ,$$

et le discuter.

Montrer que la condition qui rend ce système soluble, dite condition de glissement, est que

$$(1 - \frac{\ell}{L})\cos\theta = \cos(\theta + \phi)\cos\phi , \qquad (2)$$

ou de façon équivalente,

$$\frac{\ell}{L}\cos\theta = \sin(\theta + \phi)\sin\phi \ . \tag{3}$$

5) La condition (2) peut-elle être satisfaite pour un $\ell < L$? Montrer que si $\theta > \frac{1}{2}\pi - \phi$, cela est impossible et l'échelle ne glisse jamais. Que se passe-t-il pour $\theta < \frac{1}{2}\pi - \phi$? (on considérera alors plutôt l'équation (3)).

Moralité : placez votre échelle selon une inclinaison assez proche de la verticale, et dans le doute, évitez de monter trop haut !

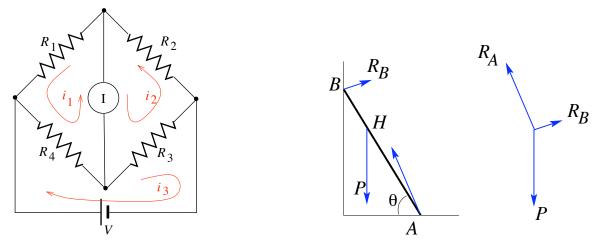


Figure 1: 1. Pont de Wheatstone. 2. Stabilité de l'échelle. On a AB = L, $AH = \ell$.