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Foreword

The following notes cover the content of the course “Invariances in Physique and Group
Theory” given in the fall 2013. Additional lectures were given during the week of “prérentrée”
on the SO(3), SU(2), SL(2,C) groups, see below Chap. 0.

Chapters 1 to 5 also contain, in sections in smaller characters and Appendices, additional

details that are not treated in the oral course.
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Chapter O

Some basic elements on the groups

SO(3), SU(2) and SL(2,C)

0.1 Rotations of R?, the groups SO(3) and SU(2)

0.1.1 The group SO(3), a 3-parameter group

Let us consider the rotation group in three-dimensional Euclidean space. These rotations leave
invariant the squared norm of any vector OM, OM? = z? + 22 + 22 = 22 + ¢y*> + 22 [ and
preserve orientation. They are represented in an orthonormal bases by 3 x 3 orthogonal real
matrices, of determinant 1 : they form the “special orthogonal” group SO(3).
Olinde Rodrigues formula

Any rotation of SO(3) is a rotation by some angle ¢ around an axis colinear to a unit vector
n, and the rotations associated with (n,v) and (—n,—1) are identical. We denote Ry,(%))
this rotation. In a very explicit way, one writes x = x| + x; = (x.n)n + (x — (x.n)n) and

x' = x| +cosypx, +sinyn x x;, whence Rodrigues formula
X' = Ry(¢)x = cosyx + (1 — cosy)(xn)n+siny (n x x) . (0.1)

As any unit vector n in R? depends on two parameters, for example the angle 6 it makes with
the Oz axis and the angle ¢ of its projection in the Oz, Oy plane with the Oz axis (see Fig. 1)

an element of SO(3) is parametrized by 3 continuous variables. One takes
0<f<m 0<o¢p<2m, 0<9p<m. (0.2)

But there remains an innocent-looking redundancy, R,(7) = R_,(7), the consequences of which

we see later ...

n this chapter, we use alternately the notations (x,v,2) or (z1,z2,23) to denote coordinates in an or-

thonormal frame.

December 10, 2013 J.-B. Z M2 ICFP/Physique Théorique 2012



2 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

SO(3) is thus a dimension 3 manifold. For the rotation of axis n colinear to the Oz axis,

we have the matrix
cosyy —siny 0
R.(¢) = | sinyy cosyp 0 (0.3)
0 0 1

whereas around the Oz and Oy axes

1 0 0 cosy 0 siny
Re(¥) =0 cosyp —sing Ry(Y) = o 1 0 |. (0.4)
0 siny cosvy —siny 0 cosvy

Congugation of Ry(1) by another rotation

A relation that we are going to use frequently reads

RR\($)R™" = Ru (¢)) (0.5)

where n’ is the transform of n by rotation R, n’ = Rn (check it!). Conversely any rotation
of angle 1 around a vector n’ can be cast under the form (0.5) : we'll say later that the
“conjugation classes” of the group SO(3) are characterized by the angle .

<
<

A

: n =Ry(Y)u

Z=R(p )z
;/

y b

Y
<

Fig. 1 Fig. 2 veRfe)y
Euler angles

Another description makes use of Fuler angles : given an orthonormal frame (Oz, Oy, Oz),
any rotation around O that maps it onto another frame (OX,0Y,0Z) may be regarded as
resulting from the composition of a rotation of angle o around Oz, which brings the frame onto
(Ou, Ov, Oz), followed by a rotation of angle § around Ov bringing it on (Ou’, Ov,0Z), and
lastly, by a rotation of angle v around OZ bringing the frame onto (OX,0Y,0Z%), (see Fig.
2). One thus takes 0 < a < 2m, 0 <G <m, 0<~v < 27 and one writes

R(a, 8,7) = Rz(7) Ry (B) R.(a) (0.6)
but according to (0.5))

J.-B. Z M2 ICFP/Physique Théorique 2012 December 10, 2013



0.1. Rotations of R3, the groups SO(3) and SU(2) 3

thus, by inserting into ((0.6)

R(a, 3,7) = R(a) Ry(B)R.(7) - (0.7)

where one used the fact that R,(a)R,(v)R.;'(a) = R,(v) since rotations around a given axis

commute (they form an abelian subgroup, isomorphic to SO(2)).

Exercise : using , write the expression of a matrix R which maps the unit vector z colinear to Oz to
the unit vector n, in terms of R,(¢) and R, (6) ; then write the expression of R,(%)) in terms of R, and R,.
Write the explicit expression of that matrix and of and deduce the relations between 6, ¢, and Euler

angles. (See also below, equ. )

0.1.2 From SO(3) to SU(2)

Consider another parametrization of rotations. To the rotation R, (1)), we associate the unitary
d-vector u : (up = cos 2, u = nsinL); we have u? = u3 + u> = 1, and u belongs to the unit
sphere S? in the space R*. Changing the determination of ¢ by an odd multiple of 27 changes
u into —u. There is thus a bijection between R, (¢) and the pair (u, —u), i.e. between SO(3)
and S3/Zs,, the sphere in which diametrically opposed points are identified. We shall say that
the sphere S is a “covering group” of SO(3). In which sense is this sphere a group? To answer

that question, introduce Pauli matrices o;, 1 = 1,2, 3.

0 1 0 —2 1 0
01:<1 0) U2:<i O) 03:<0 _1> ) (0.8)

Together with the identity matrix I, they form a basis of the vector space of 2 x 2 Hermitian

matrices. They satisfy the identity
0,05 = 5@]1 + iGiijk y (Og)

with €;;; the completely antisymmetric tensor, €103 = +1, €5, = the signature of permutation
(ijk).

From u a real unit 4-vector unitary (i.e. a point of S%), we form the matrix
U =l — in.o (0.10)

which is unitary and of determinant 1 (check it and also show the converse: any unimodular

(= of determinant 1) unitary 2 x 2 matrix is of the form (0.10)), with u? = 1). These matrices

form the special unitary group SU(2) which is thus isomorphic to S3. By a power expansion of

the exponential and making use of (n.o)? = I, a consequence of , one may verify that
efign.o‘

2 = COS E — 7sin 511.0‘ . (0'11)

It is then suggested that the multiplication of matrices

Un(¥) = eTiEne — cos% — isin %n.a, 0<¢<2r, nes? (0.12)

December 10, 2013 J.-B. Z M2 ICFP/Physique Théorique 2012



4 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

gives the desired group law in S®. Let us show indeed that to a matrix of SU(2) one may
associate a rotation of SO(3) and that to the product of two matrices of SU(2) corresponds the
product of the SO(3) rotations (this is the homomorphism property). To the point z of R3 of

coordinates x1, xo, x3, we associate the Hermitian matrix

X =x.0= ( oo m) , (0.13)

Ty +iry  —X3
with conversely z; = 1tr (Xo;), and we let SU(2) act on that matrix according to
X X' =UXU', (0.14)
which defines a linear transform x +— 2’ = 7z. One readily computes that
det X = —(23 + 25 + 23) (0.15)

and as det X = det X', the linear transform x +— 2/ = 7 is an isometry, hence det7 = 1
or —1. To convince oneself that this is indeed a rotation, i.e. that the transformation has a
determinant 1, it suffices to compute that determinant for U = I where 7 = the identity, hence
det 7 = 1, and then to invoke the connexity of the manifold SU(2)(2 S®) to conclude that the
continuous function det 7 (U) cannot jump to the value —1. In fact, using identity , the
explicit calculation of X’ leads, after some algebra, to

X' = (cos % — in.osin %)X(COS % + in.o sin %)

= (costx+ (1 —cosv)(xn)n+siny (n x x)).0 (0.16)

which is nothing else than the Rodrigues formula (0.1)). We thus conclude that the transfor-
mation x — 2’ performed by the matrices of SU(2) in ({0.14) is indeed the rotation of angle 1)
around n. To the product U,/ (¢")U, (1) in SU(2) corresponds in SO(3) the composition of the
two rotations Ry (¢')Rn() of SO(3). There is thus a “homomorphism” of the group SU(2)
into SO(3). This homomorphism maps the two matrices U and —U onto one and the same
rotation of SO(3).

Let us summarize what we have learnt in this section. The group SU(2) is a covering group
(of order 2) of the group SO(3) (the precise topological meaning of which will be given in Chap.

1), and the 2-to-1 homomorphism from SU(2) to SO(3) is given by equations (0.12))-(0.14)).
-b

Exercise : prove that any matrix of SU(2) may be written as . | with [a[* +[b]* = 1. What is the
a

connection with (0.10) ?

0.2 Infinitesimal generators. The su(2) Lie algebra

0.2.1 Infinitesimal generators of SO(3)

Rotations Ry, (v) around a given axis n form a one-parameter subgroup, isomorphic to SO(2). In

this chapter, we follow the common use (among physicists) and write the infinitesimal generators

J.-B. Z M2 ICFP/Physique Théorique 2012 December 10, 2013



0.2. Infinitesimal generators. The su(2) Lie algebra 5

of rotations as Hermitian operators J = J'. Thus
Ra(dv) = (I — idd: ) (0.17)

where J, is the “generator” of these rotations, a Hermitian 3 x 3 matrix. Let us first show

that we may reconstruct the finite rotations from these infinitesimal generators. By the group

property,

Ra(¢ + dv) = Ro(d)Ra(v) = (I — idyJn) Ra(¥) (0.18)
or equivalently
Plt) i) (019)

which, on account of R,(0) = I, may be integrated into

Ru()) = e7W/n (0.20)

To be more explicit, introduce the three basic J;, Jo and J3 describing the infinitesimal
rotations around the corresponding axesﬂ. From the infinitesimal version of (0.3) it follows that

00 0 0 0 1 0 — 0
Ji=10 0 —i Jo=10 00 Js=17 0 0 (0.21)
0 ¢ O — 0 0 0 0 0
which may be expressed by a unique formula
(Ji)ij = —i€ijk (0.22)

with the completely antisymmetric tensor €.
We now show that matrices (0.21)) form a basis of infinitesimal generators and that .J, is

simply expressed as

Jo=>_ Jing (0.23)
k

which allows us to rewrite (0.20]) in the form

Ro(¥) = e7WZxmle (0.24)

The expression follows simply from the infinitesimal form of Rodrigues formula, R, (dv) =
(I + dynx) hence —iJ, = nx or alternatively —i(Jyn)i; = €njne = ni(—iJx)ij, q.e.d. (Here
and in the following, we make use of the convention of summation over repeated indices:
€ikjTk = D, €ikjTls, €tC.

A comment about (0.24)): it is obviously wrong to write in general Ry (1)) = ™™ 2 -
Hi:l e~"Wnedk because of the non commutativity of the J’s. On the other hand, formula

shows that any rotation of SO(3) may be written under the form

R(a, 3,7) = e~ials TR p=ivTs (0.25)

2Do not confuse J, labelled the unit vector n with .Jy, k-th component of J. The relation between the two

will be explained shortly.

December 10, 2013 J.-B. Z M2 ICFP/Physique Théorique 2012



6 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

The three matrices J;, i = 1,2, 3 satisfy the very important commutation relations

[Ji, J]] = iEiijk (026)

which follow from the identity (Jacobi) verified by the tensor €
€iab€hjc T €ich€baj T €ijb€oea = 0 . (0.27)

Exercise: note the structure of this identity (¢ is fixed, b summed over, cyclic permutation over

the three others) and check that it implies ((0.26)).

In view of the importance of relations (0.23H0.26)), it may be useful to recover them by another route. Note
first that equation (0.5 implies that for any R

Re~WJn g=1 _ ~iWRJaR™" _ —itpJy (0.28)

with n’ = Rn, whence

RJIZR™' = Ju . (0.29)
The tensor ¢;;;, is invariant under rotations
ElmnRilemRkn = €ijk detR = €ijk (030)

since the matrix R is of determinant 1. That matrix being also orthogonal, one may push one R to the
right-hand side

ElmnijRkn = eiijil (031)
which thanks to (0.22) expresses that
Rijm(J)mn Rt = (Ji)jxRa (0.32)
i.e. for any R and its matrix R,
RIR™ = JRy . (0.33)

Let R be a rotation which maps the unit vector z colinear to Oz on the vector n, thus n; = Ri3 and

Jo 2 R O pRis = o (0.34)

which is just (0.23]). Note that equations ((0.33]) and (0.34) are compatible with (0.29)

T/ RJ,R™! RJynyR™! T Rikng = Jinj .

As we shall see later in a more systematic way, the commutation relation ([0.26)) of infinitesimal generators
J encodes an infinitesimal version of the group law. Consider for example a rotation of infinitesimal angle di)
around Oy acting on Jy

Ro(d)Jy Ry (d) B2 I [Ro(d)]n (0.35)

but to first order, Ry(dy) = I —idyJo, and thus the left hand side of (0.35)) equals Jy — id[Js, J1] while on the
right hand side, [Ra(d)|k1 = dk1 — idip(J2)k1 = Or1 — dwdgs by (0.22), whence i[J1, Jo] = —J3, which is one of
the relations (0.26)).
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0.2. Infinitesimal generators. The su(2) Lie algebra 7

0.2.2 Infinitesimal generators of SU(2)

Let us examine now things from the point of view of SU(2). Any unitary matrix U (here 2 x 2)
may be diagonalized by a unitary change of basis U = V exp{idiag (\;)}VT, V unitary, and
hence written as

(¢H)"

n!

U=expiH =) (0.36)
0

with H Hermitian, H = V diag (\;) V1. The sum converges (for the norm ||M|> = tr M MT).

The unimodularity condition 1 = detU = expitr H is ensured if tr H = 0. The set of such

Hermitian traceless matrices forms a vector space V of dimension 3 over R, with a basis given

by the three Pauli matrices

which may be inserted back into (0.36)). (In fact we already observed that any unitary 2 x 2
matrix may be written in the form (0.11))). Comparing that form with (0.24]), or else comparing
its infinitesimal version U, (dy) = (I —idyn.Z) with (0.17), we see that matrices 20, play in
SU(2) the role played by infinitesimal generators J; in SO(3). But these matrices %0_ verify
the same commutation relations

g; 0; . Ok
[57 gj} = Zez‘jk? (038)

with the same structure constants €;;;, as in . In other words, we have just discovered that
infinitesimal generators J; (eq. of SO(3) and 30, of SU(2) satisfy the same commutation
relations (we shall say later that they are the bases of two different representations of the same
Lie algebra su(2) = so(3)). This has the consequence that calculations carried out with the &
and making only use of commutation relations are also valid with the j, and vice versa. For
instance, from , for example Ry(3)Ji Ry ' (8) = IR, (B)r, it follows immediately, with no
further calculation, that for Pauli matrices, we have

e—igogo_kezgaz = OlRy(ﬁ)lk (039)

where the matrix elements R, are read off (0.4]). Indeed there is a general identity stating that
e*Bet =B+ %> LIA[A,[--- ,[A, B]---]]], see Chap. 1, eq. (1.29), and that computation

(-

Vv
n commutators

thus involves only commutators. On the other hand, the relation

O'Z'O'j = 6ij + iﬁijkak

(which does not involve only commutators) is specific to the dimension 2 representation of the
su(2) algebra.

0.2.3 Lie algebra su(2)

Let us recapitulate: we have just introduced the commutation algebra (or Lie algebra) of
infinitesimal generators of the group SU(2) (or SO(3)), denoted su(2) or so(3). It is defined by
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8 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

relations , that we write once again
(i, J;] = i€iji e - (10.26))
We shall also make frequent use of the three combinations
J,o=Jd3, Jr=J+1i)y, J_=J—1idy. (0.40)

It is then immediate to compute

[Js, Ji] = J.
)5, J] = —J_ (0.41)
[J+,J_] — 2J3

One also verifies that the Casimir operator defined as
Y=L+ + =0+ J+J J (0.42)
commutes with all the J’s
[3%,J]=0, (0.43)

which means that it is invariant under rotations.
Anticipating a little on the following, we shall be mostly interested in “unitary representa-

tions”, where the generators J;, i = 1,2, 3 are Hermitian, hence

J=J, i=1,23 Jl=UJ;. (0.44)

)

Let us finally mention an interpretation of the J; as differential operators acting on differentiable functions

of coordinates in the space R?. In that space R?, an infinitesimal rotation acting on the vector x changes it into
x' = Rx = x + dYmn x x
hence a scalar function of x, f(x), is changed into f/(x’) = f(x) or

flx) = f(R'x)=f(x—dYnxx)
= (1-dYnxxV)f(x) (0.45)
(1 —idyn.J) f(x) .

We thus identify
) . 0
J=—ix x V, Ji = —ZGZ‘jk!EjaTk (046)

which allows us to compute it in arbitrary coordinates, for example spherical, see Appendix 0. (Compare also
with the expression of (orbital) angular momentum in Quantum Mechanics L; = %Gijkxj %). Exercise:
check that these differential operators do satisfy the commutation relations (|0.26]).

Among the combinations of J that one may construct, there is one that must play a particular role,
namely the Laplacian on the sphere S2, a second order differential operator which is invariant under changes
of coordinates (see Appendix 0). It is in particular rotation invariant, of degree 2 in the J , this may only be

the Casimir operator J? (up to a factor). In fact the Laplacian in R3 reads in spherical coordinates

1 02 J?
Ny = ——r— —
3 ror2 2
1 82 As here S2
= rore + pr2 ' (047)
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0.3. Representations of SU(2) 9

For the sake of simplicity we have restricted this discussion to scalar functions, but one might more generally
consider the transformation of a collection of functions “forming a representation” of SO(3), i.e. transforming

linearly among themselves under the action of that group

or else

for example a vector field transforming as
A'(x) = RA(R 'x) .

What are now the infinitesimal generators for such objects 7 Show that they now have two contributions, one
given by (0.46)) and the other coming from the infinitesimal form of R; in physical terms, these two contributions

correspond to the orbital and to the intrinsic (spin) angular momenta.

0.3 Representations of SU(2)

0.3.1 Representations of the groups SO(3) and SU(2)

We are familiar with the notions of vectors or tensors in the geometry of the space R3. They

are objects that transform linearly under rotations
V; — RZ-Z-/V;/ (V X W)” = V;I/Vj — RZ’Z’/RJ']'/(V X W)i’j/ = Rii/Rjj/V;'/Wj/ etc.

More generally we call representation of a group G in a vector space E a homomorphism of
G into the group GL(FE) of linear transformations of E (see Chap. 2). Thus, as we just
saw, the group SO(3) admits a representation in the space R3 (the vectors V of the above
example), another representation in the space of rank 2 tensors, etc. We now want to build the
general representations of SO(3) and SU(2). For the needs of physics, in particular of quantum
mechanics, we are mostly interested in unitary representations, in which the representation
matrices are unitary. In fact, as we’ll see, it is enough to study the representations of SU(2) to
also get those of SO(3), and even better, it is enough to study the way the group elements close
to the identity are represented, i.e. to find the representations of the infinitesimal generators
of SU(2) (and SO(3)).

To summarize : to find all the unitary representations of the group SU(2), it is thus sufficient
to find the representations by Hermitian matrices of its Lie algebra su(2), that is, Hermitian
operators satisfying the commutation relations (0.26).

0.3.2 Representations of the algebra su(2)

We now proceed to the classical construction of representations of the algebra su(2). As above,
J+ and J, denote the representatives of infinitesimal generators in a certain representation.
They thus satisfy the commutation relations (0.41)) and hermiticity (0.44). Commutation of

operators .J, and J? ensures that one may find common eigenvectors. The eigenvalues of these
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10 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

Hermitian operators are real, and moreover, J? being semi-definite positive, one may always
write its eigenvalues in the form j(j+1), j real non negative (i.e. j > 0), and one thus considers

a common eigenvector |jm )

Pjm) = jG+1)im)
Jljm) = m|jm), (0.48)

with m a real number, a priori arbitrary at this stage. By a small abuse of language, we call
|7m ) an “eigenvector of eigenvalues (j, m)”.
(i) Act with J, and J_ = J' on [jm). Using the relation JoJ = J* — J2 =+ J, (a consequence
of (0.41)), the squared norm of Jy|jm) is computed to be:

(jm|J-Jy|jm) 3G+ 1) —m(m+1)) (jmljm)
—m)(j+m+1)(jm|im) (0.49)

<.

(gmlJJ-|jm) J(7 +1) —=m(m — 1)) (jm|jm)

jH+m)(j—m+1)(imljm) .

(
= (U
(
(y

These squared norms cannot be negative and thus

(J-—m)i+m+1)>0 —Jj—1<m<y
G+m)(j—m+1)>0 = —j<m<j+1 (0.50)
which implies
—Jj<m<yj. (0.51)

Jiljj) =0 Jlj—j)=0. (0.52)
(i) If m # j, Jy|jm) is non vanishing, hence is an eigenvector of eigenvalues (j,m+1). Indeed

PIjm) = JJI|jm) =5 +1)J|jm)
JJiljm) = Ji(L+1)jm) = (m+1)Ji[jm) . (0.53)

Likewise if m # —j, J_|jm) is a (non vanishing) eigenvector of eigenvalues (j,m — 1).

(iii) Consider now the sequence of vectors

If non vanishing, they are eigenvectors of J, of eigenvalues m,m —1,m—2,--- ,m—p---. As
the allowed eigenvalues of .J, are bound by , this sequence must stop after a finite number
of steps. Let p be the integer such that J”|jm) # 0, J*™'|jm) = 0. By , JP|jm) is an
eigenvector of eigenvalues (j, —j) hence m —p = —j, i.e.

( +m) is a non negative integer . (0.54)
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0.3. Representations of SU(2) 11

Acting likewise with Jy, J2,--- sur |jm), we are led to the conclusion that
(j —m) is a non negative integer . (0.55)

and thus 5 and m are simultaneously integers or halt-integers. For each value of j

1.3
=0,-,1,2,2,--
j 727 7277

m may take the 27 + 1 valuesﬁ

Starting from the vector [jm = j), (“highest weight vector”), now chosen of norm 1, we

construct the orthonormal basis [jm ) by iterated application of J_ and we have

Jelim) = Vi(G+1) —m(m+1)|jm+1)
Jljm) = Vi +1)=m(m—1)[jm—1) (0.57)
Lljm) = mljm) .

These 25 4+ 1 vectors form a basis of the “spin j representation” of the su(2) algebra.
In fact this representation of the algebra su(2) extends to a representation of the group

SU(2), as we now show.

Remark. The previous discussion has given a central role to the unitarity of the representation and hence
to the hermiticity of infinitesimal generators, hence to positivity: ||J+|jm)||> > 0= —j < m < j, etc, which
allowed us to conclude that the representation is necessarily of finite dimension. Conversely one may insist on
the latter condition, and show that it suffices to ensure the previous conditions on j and m. Starting from
an eigenvector |¢) of J., the sequence J¥ |¢) yields eigenvectors of J, of increasing eigenvalue, hence linearly
independent, as long as they do not vanish. If by hypothesis the representation is of finite dimension, this
sequence is finite, and there exists a vector denoted |j) such that J.|j) =0, J,|j) = j|j). By the relation
J2 = J_Jy +J.(J,+1), it is also an eigenvector of eigenvalue j(j + 1) of J2. It thus identifies with the highest
weight vector denoted previously |77 ), a notation that we thus adopt in the rest of this discussion. Starting

from this vector, the J?|jj) form a sequence that must also be finite
Jq SN A0 i) =0 (0.58)
One easily shows by induction that
Jed2jg) = e 0 5) = a(2i+ 1= q)J jj) =0 (0.59)

hence ¢ = 2j + 1. The number j is thus integer or half-integer, the vectors of the representation built in that
way are eigenvectors of J% of eigenvalue j(j + 1) and of J, of eigenvalue m satisfying . We have recovered
all the previous results. In this form, the construction of these “highest weight representations” generalizes to
other Lie algebras, (even of infinite dimension, such as the Virasoro algebra, see Chap. 1, §.

The matrices D’ of the spin j representation are such that under the action of the rotation
UeSU(2)
jm) = DI(U)|jm) = |jm')D,,,,(U) . (0.60)

3In fact, we have just found a necessary condition on the j,m. That all these j give indeed rise to represen-

tations will be verified in the next subsection.
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12 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

Depending on the parametrization ((n, 1), angles d’Euler, ... ), we write D/, (n, ), D’, (a, 3,7),
etc. By (0.7)), we thus have

D}y, 8,7) = (jm'|D(a, B,7)|jm)
= (jm/|e7 el 5 im) (0.61)
6—iam'dzn/m(ﬁ)e—i'ym
where the Wigner matrix d’ is defined by
@ (B) = (e jm) (0.62)
An explicit formula for &/ will be given in the next subsection. We also have
D)2 ) = €V S
D)y (¥, 0) = dly(¥) - (0.63)

Exercise : Compute D’(x, ). (Hint : use (0.5)).)
One notices that D’(z,2r) = (—1)¥1, since (—1)*" = (—1)¥ using (0.55)), and this holds
true for any axis n by the conjugation (0.5

Di(n,27) = (-1)¥T . (0.64)

This shows that a 27 rotation in SO(3) is represented by —1I in a half-integer-spin representation
of SU(2). Half-integer-spin representations of SU(2) are said to be “projective”, (i.e. here,
up to a sign), representations of SO(3); we return in Chap. 2 to this notion of projective
representation.
We also verify the unimodularity of matrices D? (or equivalently, the fact that representatives
of infinitesimal generators are traceless). If n = Rz, D(n, ) = D(R)D(z,¢)D~*(R), hence
J
det D(n, 1) = det D(z,1)) = dete ¥ = J[ e =1. (0.65)
m=—j

It may be useful to write explicitly these matrices in the cases j = % and 7 = 1. The case

of j = % is very simple, since

D%(U) L [ — ibuno _ €085 zcos@st isin 5 sinfe
—17sin % sinfe®  cos % + 4 cos 8 sin %
Bo—iat+y)  _ gin Bo—sla—y)
_ 6—i%036—i§026—i%03 — (COS 2¢ * Sin e 2 ) (066)

sin ge%(o‘_” cos ge%(o‘ﬂ)

an expected result since the matrices U of the group form obviously a representation. (As a
by-product, we have derived relations between the two parametrizations, (n, ) = (6, ¢, ¢) and
Euler angles (a, 3,7).) For j = 1, in the basis |1,1), |1,0) and |1, —1) where J, is diagonal
(which is not the basis N

10 0 010 000
J.=100 0 Jy=v2[0 0 1| J=v2[1 0 0 (0.67)
00 —1 000 010
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0.3. Representations of SU(2) 13

whence
l+cos8  sing 1-—cosf3
2 V2 2
1 —i3J, sin sin
d'(B) = e = ﬂﬁ cosff — \/56 (0.68)
1—cos 3 sin 3 1+cos B
2 V2 2

as the reader may check.

In the following subsection, we write more explicitly these representation matrices of the
group SU(2), and in Appendix E of Chap. 2, give more details on the differential equations they
satisfy and on their relations with “special functions”, orthogonal polynomials and spherical
harmonics. . .

Irreductibility

A central notion in the study of representations is that of irreducibility. A representation is
irreducible if it has no invariant subspace. Let us show that the spin j representation of SU(2)
that we have just built is irreducible. We show below in Chap. 2 that, as the representation is
unitary, it is either irreducible or “completely reducible” (there exists an invariant subspace and
its supplementary space is also invariant) ; in the latter case, there would exist block-diagonal
operators, different from the identity and commuting the matrices of the representation, in
particulier with the generators J;. But in the basis any matrix M that commutes with .J,
is diagonal, M, = tmOmm, (check it ), and commutation with J, forces all yu,, to be equal:

the matrix M is a multiple of the identity and the representation is indeed irreducible.

One may also wonder why the study of finite dimensional representations that we just car-
ried out suffices to the physicist’s needs, for instance in quantum mechanics, where the scene
usually takes place in an infinite dimensional Hilbert space. We show below (Chap. 2) that
Any representation of SU(2) or SO(3) in a Hilbert space is equivalent to a unitary representa-
tion, and is completely reducible to a (finite or infinite) sum of finite dimensional irreducible

representations.

0.3.3 Explicit construction

a

Let ¢ and 7 be two complex variables on which matrices U = J of SU(2) act according
c

to & = al+cn, 0 = bE+dn. In other terms, £ and 7 are the basis vectors of the representation

of dimension 2 (representation of spin 3) of SU(2). An explicit construction of the previous

representations is then obtained by considering homogenous polynomials of degree 25 in the

two variables £ and 7, a basis of which is given by the 25 + 1 polynomials
VI +m)l(G —m)!

(In fact, the following considerations also apply if U is an arbitrary matrix of the group GL(2,C)

m=—j-j. (0.69)

jm =

and provide a representation of that group.) Under the action of U on £ and 7, the P;,(€,n)
transform into P;,, (£, 7’), also homogenous of degree 25 in £ and 7, which may thus be expanded

on the Pj,,(¢,n). The latter thus span a dimension 2j + 1 representation of SU(2) (or of
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14 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

GL(2,C)), which is nothing else than the previous spin j representation. This enables us to

write quite explicit formulae for the D’

Pin(€. 1) Zij & Di(U) - (0.70)
We find explicitly
Dhn) = ((G+mlG —m)lG+ G- 3 ST o)
m/m . . . n1sngog g >0 nl!n21n3!n4! .
7L1+n2:j.4‘»7n}; 7;3+;4:]:777L/
njtnz=j+m; ngtng=j—m
For U = —I, one may check once again that D/(—I) = (—1)¥[. In the particular case of

U=e 7 =cos ¥T—isin % hus h
=e 2 —COS2 ZSlIl2O'2,Wet us nave

£2k+m+m’ sin ¥ 2j—2k—m—m/'

& () = ((G+m)(G — )!(j+m’)!(j—m’)!)éz(Eﬂ;_lgm];n;f)(]_m /{;)(]E—m’—k})!k!

(0.72)
where the sum runs over k € [inf(0, —m — m/),sup(j — m,j — m/)].  The expression of the

infinitesimal generators acting on polynomials Pj,, is obtained by considering U close to the
identity. One finds

0 0 0
Jp = 58_17 Jo = 778_5 J. (f ¢ 778_77) (0.73)

on which it is easy to check commutation relations as well as the action on the P;,, in accordance
with (0.57). This completes the identification of with the spin j representation.

Remarks and exercises

1. Repeat the proof of irreducibility of the spin j representation in that new form.

2. Notice that the space of the homogenous polynomials of degree 2j in the variables £ and 7 is nothing
else than the symmetrized 2j-th tensor power of the representation of dimension 2 (see the definition below).

3. Write the explicit form of the spin 1 matrix D! using .

0.4 Direct product of representations of SU(2)

0.4.1 Direct product of representations and the “addition of angular

momenta”

Consider the direct (or tensor) product of two representations of spin j; and js and their
decomposition on vectors of given total spin (“decomposition into irreducible representations”).

We start with the product representation spanned by the vectors
|71m1) @ |jame ) = |j1my;jamo)  written in short as  |mymy) (0.74)
on which the infinitesimal generators act as

J=JVeI1® 410 g J@ (0.75)
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0.4. Direct product of representations of SU(2) 15

The upper index indicates on which space the operators act. By an abuse of notation, one

frequently writes, instead of (0.75)
J=J0 3@ ©.75))

and (in Quantum Mechanics) one refers to the “addition of angular momenta” J) and J.
The problem is thus to decompose the vectors (0.74) onto a basis of eigenvectors of J and
J.. As J12 and J®? commute with one another and with J? and .J,, one may seek common

eigenvectors that we denote
|(4142) J M) or more simply |J M) (0.76)

where it is understood that the value of j; and j, is fixed. The question is thus twofold: which
values can J and M take; and what is the matrix of the change of basis |m;mq) — |J M )? In
other words, what is the (Clebsch-Gordan) decomposition and what are the Clebsch-Gordan
coeflicients?

The possible values of M, eigenvalue of .J, = JY 4 J;EQ), are readily found

<m1m2|JZ|JM) = (m1+m2)<m1m2‘JM>

and the only value of M such that (m;my|J M) # 0 is thus

For ji, 7o and M fixed, there are as many independent vectors with that eigenvalue of M as
there are couples (my, ms) satisfying (0.78]), thus

0 if |M| > 71+ jo
(M) = q g1+ jo+1— M| if |j1 = jof <[M| <1+ 7 (0.79)
(see the left Fig. 3 in which j; = 5/2 and j, = 1). Let N; be the number of times the
representation of spin J appears in the decomposition of the representations of spin j; et js.

The n(M) vectors of eigenvalue M for J, may also be regarded as coming from the N; vectors
|J M) for the different values of J compatible with that value of M

n(M)= YN, (0.80)

J=|M|

hence, by subtracting two such relations

Ny = n(J)—n(J+1)
=1 iff si |j, — jo| < J < g1+ o (0.81)

=0 otherwise.
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2 n(M)

1
M_]]+]

‘J] JZ‘ Fig.3

To summarize, we have just shown that the (2j; + 1)(2j2 + 1) vectors (0.74) (with 7; and

jo fixed) may be reexpressed in terms of vectors |.J M ) with

J = | —dels i1 —del + 1,0+ g1+ g2
M = —J—J+41,--,J. (0.82)

Note that multiplicities N; take the value 0 or 1 ; it is a pecularity of SU(2) that multi-
plicities larger than 1 do not occur in the decomposition of the tensor product of irreducible

representations, 7.e. here of fixed spin.

0.4.2 Clebsch-Gordan coefficients, 3-7 and 6-; symbols...

The change of orthonormal basis |ji mq; jama) — |(j1 j2) J M) is carried out by the Clebsch-
Gordan coefficients (C.G.) ((j1 j2); J M|j1 m1; j2me ) which form a unitary matrix

Ji+7J2

imaijeme) = ) Z (J1J2) J M|jyma; j2 ma )| (j1 j2) J M) (0.83)

J= \Jl ]2|M —J

J1jes T M) = Z Z (J1 o) J M|jima; jama ) |j1 mas jama ) (0.84)

ml*_]l mQ*_]2

Note that in the first line, M is fixed in terms of m; and mo; and that in the second one, ms is

fixed in terms of my, for given M. Each relation thus implies only one summation. The value
of these C.G. depends in fact on a choice of a relative phase between vectors ((0.74]) and (0.76]);
the usual convention is that for each value of J, one chooses

<JM:J|]1m1:j1,]2m2:J—]1> real . (085)

The other vectors are then unambiguously defined by (0.57) and we shall now show that all
C.G. are real. C.G. satisfy recursion relations that are consequences of (0.57). Applying indeed
J1 to the two sides of (0.83)), one gets

VI +1) = M(M £1) ((j1 j2) J M|j1ma; j2ma) (0.86)

Vi + 1) —my(my £ D) (1 j2) J M £ 1]jimy + 1; jamy)
+ VVia(a + 1) — ma(my £ 1){((j1 ja) J M £ 1|51 my; jame £ 1)

which, together with the normalization Y- [(jim1; j2ma|(j1j2) J M )[> = 1 and the con-

vention ((0.85]), allows one to determine all the C.G. As stated before, they are clearly all real.
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0.4. Direct product of representations of SU(2) 17

The C.G. of the group SU(2), which describe a change of orthonormal basis, form a unitary

matrix and thus satisfy orthogonality and completeness properties

Ji
> (Gima; jamal(i g2) J M) jrma; jama|(jr j2) I M') = Sypbaae i [y — jol < J < a+
mi=—j1
(0.87)
Jiti2

> (Gima;jama|(r g2) J M) Grm; jamb| (i j2) J M) = Sy Oy, iF [ma < 1,y [mal < s -

J=|j1—j2|

Once again, each relation implies only one non trivial summation.
Rather than the C.G. coefficients, one may consider another set of equivalent coefficients, called 3-j symbols.
They are defined through

J j J —1)r—de M . o
(ml m22 M) - (\/)Qt]ﬁ<j1m1;]2 ma|(j1 j2) J M ) (0.88)
1 _

and they enjoy simple symmetry properties:

i J2 3
m; Mo Mg

is invariant under cyclic permutation of its three columns, and changes by the sign (—1)71+72%7 when two
columns are interchanged or when the signs of m1, mq and mg are reversed. The reader will find a multitude

of tables and explicit formulas of the C.G. and 3j coefficients in the literature.

Let us just give some values of C.G. for low spins

(3:3)1,1) 333 3)
[y (3:2)1.0) = F (353 -3) T3 -35.3)) (0.89)
2 (3:2)0,0) = & (333 -3)—l3:—33:3))
(5:3)1,-1) = 3 -3 3 —3)
and
(3:1)5.3) = 3351, 1)
(3:1)5.3) = %g(ﬂléa%;LOHI@ 5 1,1))
Lo, (3:13:—3) = 5 (351L-1)+V2[3,-51,0)) (0.90)
2 (5135, —3) = |§ —41,-1)
3:D3:3) = 5 (=13:51,0)+v2|3,-3:1.1))
(3:D)3:—3) = ( V205,51, -1) +13,—-5:1,0))

One notices on the case % ® % the property that vectors of total spin 7 = 1 are symmetric
under the exchange of the two spins, while those of spin 0 are antisymmetric. This is a general
property: in the decomposition of the tensor product of two representations of spin j; =
J2, vectors of spin j = 27;,2j; — 2,--- are symmetric, those of spin 25; — 1,25, — 3,--- are
antisymmetric.
This is apparent on the expression above, given the announced properties of the 3-5 symbols.

In the same circle of ideas, consider the completely antisymmetric product of 25+ 1 copies of
a spin j representation. One may show that this representation is of spin 0 (following exercise).
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18 Chap.0. Some basic elements on the groups SO(3), SU(2) and SL(2,C)

(This has consequences in atomic physics, in the filling of electronic orbitals: a complete shell
has a total orbital momentum and a total spin that are both vanishing, hence also a vanishing
total angular momentum.)

Exercise. Consider the completely antisymmetric tensor product of N = 2j + 1 representations of spin j. Show
that this representation is spanned by the vector €, my-..my|J M1,J Ma, -+ ,jmy ), that it is invariant under
the action of SU(2) and thus that the corresponding representation has spin J = 0.

One also introduces the 6-7 symbols that describe the two possible recombinations of 3 representations of

spins j1, jo and j3

Fig. 4

|71 mai;jamesjams) = > ( (41 j2) J1 Mi|jima;jame )((J1J3) J M|Jy Mu; jsms)|(j12)d35 J M)
= > ((Jaja) Jo Malja ma; jama ){ (j1 J2) J' M'|j1ima; J2 Ma)|j1(jaga); J' M") (0.91)

depending on whether one composes first j; and jo into J; and then J; and js into J, or first jo and j3 into Js
and then j; and J, into J’. The matrix of the change of basis is denoted

(j1(j2ga); J M|(jrja)js; J' M) = 855 0pmr v/ (21 + 1) (2J3 + 1)(—1)71 2 st {jl J; Jl} - 09
3 2

and the { } are the 6-j symbols. One may visualise this operation of “addition” of the three spins by a
tetrahedron (see Fig. 4) the edges of which carry j1, jo, js, J1, J2 and J and the symbol is such that two spins

carried by a pair of opposed edges lie in the same column. These symbols are tabulated in the literature.

0.5 A physical application: isospin

The group SU(2) appears in physics in several contexts, not only as related to the rotation
group of the 3-dimensional Euclidian space. We shall now illustrate another of its avatars by
the isospin symmetry.

There exists in nature elementary particles subject to nuclear forces, or more precisely
to “strong interactions”, and thus called hadrons. Some of those particles present similar
properties but have different electric charges. This is the case with the two “nucleons”,
i.e. the proton and the neutron, of respective masses M, =938,28 MeV/c? and M,, =939,57
MeV/c?, and also with the “triplet” of pi mesons, 7 (mass 134,96 MeV /c?) and 7+ (139,57
MeV/c?), with K mesons etc. According to a great idea of Heisenberg these similarities are
the manifestation of a symmetry broken by electromagnetic interactions. In the absence of
electromagnetic interactions proton and neutron on the one hand, the three m mesons on the

other, etc, would have the same mass, differing only by an “internal” quantum number, in

J.-B. Z M2 ICFP/Physique Théorique 2012 December 10, 2013



0.5. A physical application: isospin 19

the same way as the two spin states of an electron in the absence of a magnetic field. In fact
the group behind that symmetry is also SU(2), but a SU(2) group acting in an abstract space
differing from the usual space. One gave the name isotopic spin or in short, isospin, to the
corresponding quantum number. To summarize, the idea is that there exists a SU(2) group of
symmetry of strong interactions, and that different particles subject to these strong interactions
(hadrons) form representations of SU(2) : representation of isospin / = 1 for the nucleon (proton
I, = —I—%, neutron [, = —%), isospin I = 1 pour the pions (7% : I, = &1, 7% : I, = 0) etc. The
isospin is thus a “good quantum number”, conserved in these interactions. Thus the “off-shell”
process N — N + 7, (N for nucleon) important in nuclear physics, is consistent with addition
» 1

). The different scattering reactions N +7m — N + 7 allowed

rules of isospins (1 ®1 “contains” 3

by conservation of electric charge

p+rt — p+at =3
p+7m — p+n° L=1
N n_"_,n_—i- i
prr o phr L=l
N 7’L+7T0 "
n+r" — n+m I,=-3

also conserve total isospin [ and its I, component but the hypothesis of SU(2) isospin invariance
tells us more. The matrix elements of the transition operator responsible for the two reactions

in the channel I, = %, for example, must be related by addition rules of isospin. Inverting the

relations , one gets

1 1 2 1 1
-\ = SI=2L=—=)—/S|[=>1,=—=
) = yar=tn - b ol
1
2

3
2
2 3 1 1
‘n,7TO> = \/;“-:5,[2:—5)4— §|]:

whereas for I, = 3/2
3
|p,7T+>: ’I:§7IZ:_>'

Isospin invariance implies that (I 1. |T|I'I.) = 7101101, 17, as we shall see later (Schur lemma
or Wigner-Eckart theorem, Chap. 2): not only are I and I, conserved, but the resulting
amplitude depends only on I, not I,. Calculating then the matrix elements of the transition

operator 7 between the different states,

(pr*|Tlpr™) = Ty

(pn|Tlpr™) = 3 (Top2 +2T0p) (0.93)
(nm°|Tlpr™) = = (T2 — Tip2)
one finds that amplitudes satisfy a relation

\/§<7’L,7T0|Tlp, T > + <p7 ﬂ-i‘7—|p7 7T7> = <p7 7T+|T|p7 7T+> = 7?’)/2
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a non trivial consequence of isospin invariance, which implies triangular inequalities between

squared modules of these amplitudes and hence between cross-sections of the reactions

Wolmp—rp) — 2o p— ) <olxtp—rip) <
< [Wolr=p — 77p) + /20(7—p — 70n)]?

which are experimentally well verified. Even better, one finds experimentally that at a certain
energy of about 180 MeV, cross sections (proportional to squares of amplitudes) are in the

ratios

olntp—7tp)io(mrp—an):io(rp—np =9:2:1

which is what one would get from ((0.93) if 7 1 were vanishing. This indicates that at that
energy, scattering in the channel I = 3/2 is dominant. In fact, this signals the existence of an
intermediate 7N state, a very unstable particle called “resonance”, denoted A, of isospin 3/2
and hence with four states of charge

AT AT AY AT
the contribution of which dominates the scattering amplitude. This particle has a spin 3/2 and
a mass M(A) ~ 1230 MeV /2.

In some cases one may obtain more precise predictions. This is for instance the case with the reactions
Hp — 3Hen® and 2Hp — 3Hnt

which involve nuclei of deuterium 2H, of tritium >H and of helium 3He. To these nuclei too, one may assign an
isospin, 0 to the deuteron which is made of a proton and a neutron in an antisymmetric state of their isospins
(so that the wave function of these two fermions, symmetric in space and in spin, be antisymmetric), I, = —%
to3H and I, = % to 3He which form an isospin % representation. Notice that in all cases, the electric charge is
related to the I, component of isospin by the relation @) = %B + I, with B the baryonic charge, equal here to
the number of nucleons (protons or neutrons).
Exercise: show that the ratio of cross-sections o(*Hp — 3Hen)/o(*Hp — 3Hz ") is 3.

Remark : invariance under isospin SU(2) that we just discussed is a symmetry of strong interactions. There
exists also in the framework of the Standard Model a notion of “weak isospin”, a symmetry of electroweak

interactions, to which we return in Chap. 5.

0.6 Representations of SO(3,1) and SL(2,C)

0.6.1 A short reminder on the Lorentz group

Minkowski space is a R* space endowed with a pseudo-Euclidean metric of signature (+, —, —, —).

In an orthonormal basis with coordinates (z° = ct, 2!, 22, 2%), the metric is diagonal
g = diag (1, -1, -1, 1)
and thus the squared norm of a 4-vector reads

r.x = 1'g,r” = () — (z')? — (2?)* — (2%)2.
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The isometry group of that quadratic form, called O(1,3) or the Lorentz group L, is such that
AeO(1,3) o' =Azx : 2’2’ =N ag,N,2° = 2P g,e2”

i.e.
A'upg;wAVg = gpoc OI ATQA =4g. (094)

These pseudo-orthogonal matrices satisfy (det A)?> = 1 and (by taking the 00 matrix element
of ) (M%) =1+ 327 (A%)? > 1 and thus £ = O(1,3) has four connected components
(or “sheets”) depending on whether det A = 41 and A% > 1 or < —1. The subgroup of
proper orthochronous transformations satisfying det A = 1 and A°% > 1 is denoted EL. Any
transformation of EL may be written as the product of an “ordinary” rotation of SO(3) and a
“special Lorentz transformation” or “boost”.

A major difference between the SO(3) and the £ groups is that the former is compact (the
range of parameters is bounded and closed, see ), whereas the latter is not : in a boost
along the 1 direction, say, o} = y(z1 — vao/c), x) = y(ro — vay /c), with v = (1 — v%/c?)"z, the
velocity |v| < ¢ does not belong to a compact domain (or alternatively, the “rapidity” variable
B, defined by cosh 3 = v can run to infinity). This compactness/non-compactness has very
important implications on the nature and properties of representations, as we shall see.

The Poincaré group, or inhomogeneous Lorentz group, is generated by Lorentz transforma-
tions A € £ and space-time translations; generic elements denoted (a,A) have an action on a

vector z and a composition law given by

(a,A) : z—2a" = Azr+a
(', A")(a,A) = (d'+ Na,AN'A); (0.95)

the inverse of (a,A) is (—A~'a, A™') (check it !).

0.6.2 Lie algebra of the Lorentz and Poincaré groups

An infinitesimal Poincaré transformation reads (a#, A¥, = 6#+w* ). By taking the infinitesimal
form of , one easily sees that the tensor w,, = w* g,, has to be antisymmetric: w,,+w,, =
0. This leaves 6 real parameters: the Lorentz group is a 6-dimensional group, and the Poincaré
group is 10-dimensional.

To find the Lie algebra of the generators, let us proceed like in § [0.2.3} look at the Lie
algebra generated by differential operators acting on functions of space-time coordinates; if z'* =
401t = 2r+ ot +wM,, 0f(x) = f(a# —ar —wa,) — f(z) = (I —iat P, — fw J,, — 1) f(x),
(see (0.45))), thus

Jow = i(x,0, — ,0,) P, =—io, (0.96)

the commutators of which are then easily computed

[J,uz/a Pp] = 1 (gupPp - g,upPu)
[J,um Jpo‘] = 1 (gpr,m — Jupdvo T Guodvp — gVUJup) (0’97)
P,,P] = 0.
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Note the structure of these relations: antisymmetry in p <> v of the first one, in y < v, in p <> ¢ and in
(u,v) < (p, o) of the second one; the first one shows how a vector (here P,) transforms under the infinitesimal
transformation by J,,,,, and the second then has the same pattern in the indices p and o, expressing that J,, is
a 2-tensor.

Generators that commute with Py (which is the generator of time translations, hence the
Hamiltonian) are the P, and the J;; but not the Jy; : [P, Jo;| = P;.

Set
Jij = Eiijk Kl = J()Z' . (098)
Then
[J5 0] = dejpJ”
[J4 K] = e K" (0.99)
(K K9] = —iejJ”
and also
[J', P7] = ie;j P* [K', P = iP%;;
[J', P’ =0 [K', P =iP". (0.100)

Remark. The first two relations and the first one of express that, as expected,
J={J}, K= {K’} and P = {P7} transform like vectors under rotations of R®. Now form
the combinations

MI = %(Jj +iK7) NI = %(Jj —iK7) (0.101)

which have the following commutation relations

[Mi,Mj] = iGijkMk
[N, N7] = i€ N* (0.102)
[M',N] = 0.

By considering the complex combinations M and N of its generators, one thus sees that the
Lie algebra of £ = O(1,3) is isomorphic to su(2) @& su(2). The introduction of +i, however,
implies that unitary representations of £ do not follow in a simple way from those of SU(2)x
SU(2). On the other hand, representations of finite dimension of £, which are non unitary, are
labelled by a pair (ji, j2) of integers or half-integers.

Exercise. Show that this algebra admits two independent quadratic Casimir operators, and

express them in terms of M and N first, and then in terms of J and K.

0.6.3 Covering groups of LL and 771

We have seen that the study of SO(3) led us to SU(2), its “covering group” (the deep reasons
of which will be explained in Chap. 1 and 2). Likewise in the case of the Lorentz group its
“covering group” turns out to be SL(2,C).
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There is a simple way to see how SL(2,C) and EL are related, which is a 4-dimensional
extension of the method followed in §|0.1.2l One considers matrices o, made of oy = I and of
the three familiar Pauli matrices. Note that

tro,o, = 20, ai =1 with no summation over the index u .

With any real vector x € R*, associate the Hermitian matrix
1
X =ato, ot = §tr (Xo,) det X =27 = (2°)* —x* . (0.103)
A matrix A € SL(2,C) acts on X according to

X X' = AXA (0.104)

which is indeed Hermitian and thus defines a real 2'# = 1tr (X'o,), with det X’ = det X, hence
22 = x'2. This is a linear transformation of R* that preserves the Minkowski norm 22, and thus
a Lorentz transformation, and one checks by an argument of continuity that it belongs to EL
and that A — A is a homomorphism of SL(2,C) into £!. In the following we denote 2’ = A.z
if X'=AXA'.

As is familiar from the case of SU(2), the transformations A and —A € SL(2,C) give the
same transformation of EL : SL(2,C) is a covering of order 2 of EL. For the Poincaré group,
likewise, its covering is the (“semi-direct”) product of the translation group by SL(2,C). If one
denotes a := a*0,,, then

(a, A)(d, A") = (a + Ad' AT, AX') (0.105)

and one sometimes refers to it as the “inhomogeneous SL(2, C) group” or ISL(2, C)).

0.6.4 Irreducible finite-dimensional representations of SL(2,C)

The construction of §(0.3.3] yields an explicit representation of GL(2,C) and hence of SL(2,C).

mm/

b )
For A = (a d) € SL(2,C), (0.71)) gives the following expression for D’ (A) :
c

; 1 a™ b ctidt
J — (4 (7 — 1(4 M7 — m/)! _—
D) (A) =17 +m)!(G —m)!(j +m")(j —m)]? . n;ng Tl (0-71)

n1+n2:j+m H n3+n4:j—m’
ni+ng=j+m; ngtng=j—m

Note that DT(A) = D(AT) (since exchanging m <> m’ amounts to no < nsz, hence to b < ¢) and
(D(A))" = D(A*) (since the numerical coefficients in are real) thus DT (A) = D(A").

This representation is called (j,0), it is of dimension 2j 4+ 1. There exists another one of
dimension 2j + 1, which is non equivalent, denoted (0, j), this is the “contragredient conjugate”
representation (in the sense of Chap 2. § 2.1.3.b) DI(AT~!). Replacing A by AT~! may be
interpreted in the construction of § if instead of associating X = z"0, with x, one
associates X = 10, — x.0. Notice that oy(0)) oy = —0; for i = 1,2, 3 hence X = 0,X 0y, For
the transformation A : X +— X' = AX A" | we have

5(:/ == O'Q(X/)TO'Q == JQ(AXAT)TUQ = (O-QATO'2>T_§Z<O-2AT0-2> .
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Any matrix A of SL(2,C) may itself be written as A = a*c,,, with (a*) € C*, and as det A =
(a%)? —a? =1 (the “S” of SL(2,C)), one verifies immediately that A~! = a5 — a.e, donc

O'QATO'Q = Ail . (0106)

Finally
X' =AXAT —= X =@aHxat. (0.107)

Remark. The two representations (4,0) and (0, j) are inequivalent on SL(2,C), but equiva-
lent on SU(2). Indeed in SU(2), A=U = (U")~L.

Finally, one proves that any finite-dimensional representation of SL(2,C) is completely
reducible and may be written as a direct sum of irreducible representations. The most general
finite-dimensional irreducible representation of SL(2,C) is denoted (ji, j2), with j; and jo > 0
integers or half-integers; it is defined by

(41,72) = (J1,0) ® (0, ja) (0.108)

All these representations may be obtained from the representations (3,0) and (0, 3) by tensor-
ing: (j1,0) and (0, j) are obtained by symmetrized tensor product of representations (%, 0) and
(0, %), respectively, as was done for SU(2). Only representations (j;, j2) with j; and js simulta-
neously integers or half-integers are true representations of E;r. The others are representations
up to a sign.

Exercise : show that the representation (0, 7) is “equivalent” (equal up to a change of basis)
to the complex conjugate of representation (j,0). (Hint: show it first for j = I by recalling
that (A~!)" = 0340y, then for representations of arbitrary j obtained by 2j-th tensor power

of j =1

Spinor representations

1
29
2 (two-component spinors). It is traditional to note the indices of components with “pointed”

Return to the “spinor representations” (3,0) and (0, 3). Those are representations of dimension

a b
or “unpointed” indices, for representation (0, 3) and (3,0), respectively. With A = ( d) €
c

SL(2,C), we thus have

1 P o
1 _ & s & — x¢ o a*€1+b*€2
03  E=(E)—g=at= (C*gi ! d*§2> (0109)

Note that the alternating (=antisymmetric) form (¢,7) = £'n? —&*nt = €7 (ioy)n is invariant

in (3,0) (and also in (0, 1)), which follows once again from (0.106])

(O'QATO'Q)A = AilA =1« AT(’i02>A =109 .

J.-B. Z M2 ICFP/Physique Théorique 2012 December 10, 2013



0.6. Representations of SO(3,1) and SL(2,C) 25

One may thus use that form to lower indices « (or &). Thus

in (3,00 - (€)=t  &=8 &=-¢

n(0.3) 0 (Em)=&n*  &G=g &=-¢ (0.110)

(j1,72) representation

Tensors {50‘10‘2"'“23'15152"'5212} symmetric in oy, ag, -+, a9, and in By, Ba, -+ ,ﬁgjz, form the
irreducible representation (ji,j2). (One cannot lower the rank by taking traces, since the
only invariant tensor is the previous alternating form). The dimension of that representation is
(271 +1)(2j2 + 1). The most usual representations encountered in field theory are (0,0), (3,0)

and (0,1), (3, 3)- The reducible representation (3,0)@® (0, ) describes the (4-component) Dirac

fermion; the (%, %) corresponds to 4-vectors, as seen above:
AeSL(2,C
z— X =12, +x.0 <SLEO) X' = AX At

i.€.

X = Xaﬁ. N (X/)ozﬁ' — Aaa/(ABﬁ'/)*Xa/B/ ’
11
272
Exercise. Show that representations (1,0) and (0, 1), of dimension 3, describe rank 2 tensors

which shows that X transforms indeed according to the (3, =) representation .

F* that are “self-dual” ou “anti-self-dual”, i.e. satisfy

i
FM = &0 c P Fy

0123 _ 1 (

where €#777 is the fully antisymmetric rank-4 tensor, with the convention that e beware

that €P7 = —€,p0 !).

0.6.5 Irreducible unitary representations of the Poincaré group. One
particle states.

According to a theorem of Wigner which will be discussed in Chap, 2, the action of proper orthochronous
transformations of the Lorentz or Poincaré groups on state vectors of a quantum theory is described by means
of unitary representations of these groups, or rather of their “universal covers” SL(2,C) and ISL(2,C). As will
be seen below (Chap. 2), unitary representations (of class L?) of the non compact group SL(2, C) are necessarily
of infinite dimension (with the possible exception of the trivial representation (0,0), which describes a state
invariant by rotation and by boosts, i.e. the vacuum !,..., and which is in fact not of class L?!).

Returning to commutation relations of the Lie algebra , one seeks a maximal set of commuting
operators. The four P, commute. Let (p,) be an eigenvalue for a common eigenvector of P,, describing a
“one-particle state”. We assume that the eigenvector denoted |p) is labelled only by p* and by discrete indices:
(this is indeed the meaning of “one-particle state”, in contrast with a two-particle state that would depend on

a relative momentum, a continuous variable)

Pulp) = pulp) - (0.111)

One also considers the Pauli-Lubanski tensor

1 v
WA = 2N, P, (0.112)
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and one verifies (exercise !) that (0.97)) implies

WVIM Pu] =0
WEWY] = —id"P"W,P, (0.113)
[Jul/y W)\] = i(gl/)\Wu - g,u)\Wu) .

The latter relation means that W is a Lorentz 4-vector (compare with ) One also notes that W.P = 0
because of the antisymmetry of tensor e. One finally shows (check it!) that P? = P,P* and W? = W,W*
commute with all generators P and J : those are the Casimir operators of the algebra. According to a lemma by
Schur, (see below Chap. 2, §, these Casimir operators are in any irreducible representation proportional
to the identity, in other words, their eigenvalues may be used to label the irreducible representations. In physics,

one encounters only two types of representations for these one-particle stateﬂ representations with P? > 0
and those with P2 = 0, W2 = 0. Their detailed study will be done in Adel Bilal’s course.
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Problem

One considers two spin % representations of the group SU(2) and their direct (or tensor) product. One denotes
JM and J®@ the infinitesimal generators acting in each representation, and J = J) +J2) those acting in their

direct product, see (0.75)), (0.75[).

e What can be said about the operators JM2, J)2 and J2 and their eigenvalues ?
e Show that JM .J®?) may be expressed in terms of these operators and that operators
1 1
LB+ 4JM J@y et 1= 43 32
are projectors on spaces to be identified.

e Taking into account the symmetries of the vectors under exchange, what can you say about the operator

11 +2JM @) ?
2

4which does not mean that there are no other irreducible representations; for example “unphysical” repre-
sentations where P? = —M? < 0
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Appendix 0. Measure and Laplacian on the S? and S°

spheres

Consider a Riemannian manifold, 7.e. a manifold endowed with a metric :
ds® = gopdE>de’ (0.114)

with a metric tensor g and (local) coordinates £*, a« = 1,--- ,n; n is the dimension of the
manifold. This ds? must be invariant under changes of coordinates, £ — &', which dictates the

change of the tensor g

/ / / g™ P
5'—>€ , grH— g : g = %%goﬁ, (0115)

meaning that ¢ is a covariant rank-2 tensor. The metric tensor is assumed to be non singular,

i.e. invertible, and its inverse tensor is denoted with upper indices
Gap g™ =46, (0.116)
Also, its determinant is traditionnally denoted g

g = det(gap) - (0.117)

There is then a general method for constructing a volume element on the manifold (i.e. an

integration measure) and a Laplacian, both invariant under changes of coordinates

du(€) = vg[Ja

L=
A = —0,/99"0 (0.118)
NG V9970
where 0, is a shorthand notation for the differential operator agia‘

Exercise: check that du(£) and A are invariant under a change of coordinates £ — ¢&’.
This may be applied in many contexts, and will be used in Chap. 1 to define an integration

measure on compact Lie groups.

Let us apply it here to the n-dimensional Euclidean space R™. In spherical coordinates, one
writes
ds* = dr? + r?dQ?
where df2 is a generic notation that collects all the angular variables. The metric tensor is thus

of the general form with a (n — 1) x (n — 1) matrix A which is r-independent and

r?A

depends only on angular variables. The latter give rise to the Laplacian on the unit sphere
Sn=1 denoted Agn-1; /g = " 'vdet A; and (0.118) tells us that the Laplacian on R" takes
the general form

0 #? n—-10 1

L0, 0, 1, .
= — " 4+ — A1 = —
rn=1 op or 25T or? r Or r2

Agn
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Let us write more explicit formulae for the S? and S3 unit spheres. Consider first the unit
sphere 5% with angular coordinates 0 < 0 <7, 0 < ¢ < 27 (Fig. 1). We thus have

ds?
V9
dp(x)
Ag

= db? + sin® 0 d¢?

The generators J; read (see (0.46)))

Js =

J1:

JQI

and one verifies that —Agz = J2

= sinf
= sinfdfdo
1 02 1 0 0

_ 9 nel 11
2008 smaan 50 (0.119)
acb

—i | —cos ¢ cot 03 m(ba (0.120)
i | — cos ¢ cotg 9 sin ¢z )

—1 | —sin ¢ cot Qﬁ—i-cosmﬁ

=J:+ JI+ J3

For the unit sphere S® one finds similar formulas. In the parametrization (0.12)), one takes

for example

1 Y
2 _ T e
ds® = 2trdUdU = <d2>

invariant under U — UV, U — VU or U — U™*

2 ¥

+ sin” — (d02 + sin” 6 d¢?) (0.121)

, whence a measure invariant under the same

transformations )
1
du(U) = 5 (Sin %) sinf dy dfde . (0.122)
In the Euler angles parametrization,
U=e 0% 7% (0.123)
thus ) )
ds? = §tr dUdUT = 1 (da? + 2dady cos 8 + dv* + d5?) (0.124)
and with /g = sin # one computes
1
du(U) = gsinﬁda dp dry (0.125)
4 0? 0? 0? 4 0 0
Ags = —sin f——— . 0.126
7 sin? B | 0a? + 0?2 + oady + sin 5 003 Smﬁ@sinﬁ ( )
*
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Chapter 1

Groups. Lie groups and Lie algebras

1.1 Generalities on groups

1.1.1 Definitions and first examples

Let us consider a group (G, with an operation denoted ., x or + depending on the case, a
neutral element (or “identity”) e (or 1 or I or 0), and an inverse g~ (or —a). If the operation
is commutative, the group is called abelian. If the group is finite, i.e. has a finite number of
elements, we call that number the order of the group and denote it by |G|. In these lectures
we will be mainly interested in infinite groups, discrete or continuous.

Examples (that the physicist may encounter . ..)
1. Finite groups

e the cyclic group Z, of order p, considered geometrically as the invariance rotation
group of a circle with p equidistant marked points, or as the multiplicative group
of p-th roots of the unity, {€*™/?} ¢ =0,1,--- ,p — 1, or as the additive group of

integers modulo p;

e the groups of rotation invariance and the groups of rotation and reflexion invariance
of regular solids or of regular lattices, of great importance in solid state physics and

crystallography;

e the permutation group S, of n objects, called also the symmetric group, of order n!;

ete.

2. Discrete infinite groups.
The simplest example is the additive group Z. Let us also mention the translation groups
of regular lattices, or the space groups in crystallography, which include all isometries

(rotations, translations, reflections and their products) leaving a crystal invariant. . .

Also the groups generated by reflexions in a finite number of hyperplanes of the Euclidean space R™, that

are finite or infinite depending on the arrangement of these hyperplanes, see Weyl groups in Chap. 4.
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b
Another important example is the modular group PSL(2,Z) of matrices A = “ d> with integer
¢

coefficients, of determinant 1, ad — bc = 1, with matrices A and —A identified. Given a 2-dimensional
lattice in the complex plane generated by two complex numbers w; and wy of non real ratio (why ?), this
group describes the changes of basis (w1, ws)? — (W}, wh)T = A(wy,ws)T that leave invariant the area of
the elementary cell ($(wawi) = F(whwi*)) and that act on 7 = wo/wy as T — (a7 + b)/(er + d). This
group plays an important role in mathematics in the study of elliptic functions, modular forms, etc, and

in physics, in string theory and conformal field theory ...

The homotopy groups, to be encountered soon, are other examples of discrete groups, finite or infinite. . .

. Continuous groups. We shall be dealing only with matrix groups of finite dimension, i.e.

subgroups of the linear groups GL(n,R) ou GL(n,C), for some n. In particular

e U(n), the group of complex unitary matrices, UUT = I, which is the invariance group
of the sesquilinear form (z,y) = >_ "y’ ;
e SU(n) its unimodular subgroup, of unitary matrices of determinant det U = 1;

e O(n) and SO(n) are orthogonal groups of invariance of the symmetric bilinear form
>, xy;. Matrices of SO(n) have determinant 1 ;

e U(p,q), SU(p,q), resp. O(p,q), SO(p, q), invariance groups of a sesquilinear, resp.
bilinear form, of signature ((+)?, (—)9) (e.g. the Lorentz group O(1,3)).
Most often one considers groups O(n,R), SO(n,R) of matrices with real coefficients, but groups

O(n,C), SO(n,C) of invariance of the same bilinear form over the complex numbers may also play

a role.

® Sp(2n,R) : Let Z be the matrix 2n x 2n made of a diagonal of n blocks iog:

0 1
Z = diag ) 0) , and consider the bilinear skew-symmetric form

(X,Y)=X"2Y = Z(-%'Zifly% — Y2i-172;) - (1.1)
i=1

The symplectic group Sp(2n,R) is the group of real 2n x 2n matrices B that preserve that form:
BTZB = Z . That form appears naturally in Hamiltonian mechanics with the symplectic 2-form
w= >y, dp; Ndg; = %Zijd& A d&; in the coordinates £ = (p1,q1,p2, - ,¢n) ; w is invariant by
action of Sp(2n,R) on £. For n = 1, verify that Sp(2,R)=SL(2,R).
One may also consider the complex symplectic group Sp(2n,C). A related group, often denoted
Sp(n) but that I shall denote USp(n) to avoid confusion with the previous ones, the unitary sym-
plectic group, is the invariance group of a Hermitian quaternionic form, USp(n)=U(2n)N Sp(2n, C).
See Appendix A.

e the group of “motions” in R? — compositions of O(3) transformations and translations
—, and groups obtained by adjoining dilatations, and then inversions with respect to
a point;

e the group of conformal transformations, i.e. angle preserving, in R™ (see Problem
at the end of this chapter).

e the Galilean group of transformations x’ = Ox + vt + x¢, t' =t + tog, O € SO(3);
e the Poincaré group, in which translations are adjoined to the Lorentz group O(1,3),

e ctc etc.
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1.1.2 Conjugacy classes of a group

In a group G we define the following equivalence relation:
a~b iff J3g€CG : a=gbg! (1.2)

and the elements a and b are said to be conjugate.

The equivalence classes (conjugacy classes) that follow provide a partition of GG, since any
element belongs to a unique class. For a finite group, the different classes generally have
different orders (or cardinalities). For instance, the class of the neutral element e has a unique
element, e itself.

We have already noted (in Chap. 0) that in the rotation group SO(3), a conjugacy class is
characterized by the rotation angle ¢ (around some unitary vector n). But this notion is also
familiar in the group U(n), where a class is characterized by an unordered n-tuple of eigenvalues
(e’ ... e'r). This notion of class plays an important role in the discussion of representations

of groups and will be abundantly illustrated in the following.

What are the conjugacy classes in the symmetric group S, 7 One proves easily that any permutation o of
Sy decomposes into a product of cycles (cyclic permutations) on distinct elements. (To show that, construct the
cycle (1,0(1),02(1),---); then, once back to 1, construct another cycle starting from a number not yet reached,
etc.). Finally if o is made of p; cycles of length 1, ps of length 2, etc, with > ip; = n, one writes o € [1P12P2 ... ]
and one may prove that this decomposition into cycles characterizes the conjugacy classes: two permutations

are conjugate iff they have the same decomposition into cycles.

1.1.3 Subgroups

The notion of subgroup H, subset of a group G itself endowed with a group structure, is
familiar. The subgroup is proper if it is not identical to G. If H is a subgroup, for any a € G,
the set a='.H.a of elements of the form a~!.h.a, h € H forms also a subgroup, called conjugate
subgroup to H.

Examples of particular subgroups are provided by :

e the center 7 :

In a group G, the center is the subset Z of elements that commute with all other elements
of G:
Z ={a|Vg€G,a.g=g.a} (1.3)

Z is a subgroup G, and is proper if GG is nonabelian. Examples: the center of the group
GL(2,R) of regular 2 x 2 matrices is the set of matrices multiple of I; the center of SU(2)
is the group Zs of matrices +1 (check by direct calculation).

e the centralizer of an element a :
The centralizer (or commutant ) of a given element a of G is the set of elements of G that commute with

a
Z,={g € Gla.g=g.a}. (1.4)

December 10, 2013 J.-B. Z M2 ICFP/Physique Théorique 2012



32 Chap.1. Groups. Lie groups and Lie algebras

The commutant Z, is never empty: it contains at least the subgroup generated by a. The center Z is

the intersection of all the commutants. Example: in the group GL(2,R), the commutant of the Pauli
0 1
matrix o1 = (1 0) is the abelian group of matrices of the form al 4 bo1, a? — b% # 0.

e More generally, given a subset S of a group G, its centralizer Z(S) and its normalizer N(S) are the

subgroups commuting respectively individually with every element of S or globally with S as a whole

Z(S)= {y:VseS ys=sy} (1.5)
N(S) = {x:271.S2=5}. (1.6)

1.1.4 Homomorphism of a group G into a group G’

A homomorphism of a group G into a group G’ is a map p of G into G’ which respects the

composition law:
Vg,h € G, plg-h) = p(g).p(h) (1.7)
In particular, p maps the neutral element of G onto that of G', and the inverse of g onto that

of ¢' = plg): plg™) = (p(9))~"

An example of homomorphism that we shall study in great detail is that of a linear rep-
resentation of a group, whose definition has been given in Chap. 0 and that we return to in
Chap. 2.

The kernel of the homomorphism, denoted ker p, is the set of preimages (or antecedents) of
the neutral element in G": kerp = {x € G : p(x) = €¢'}. It is a subgroup of G.

For example, the parity (or signature) of a permutation of .S,, defines a homomorphism from

Sy, into Zy. Tts kernel is made of even permutations: this is alternating group A, of order n!/2.

1.1.5 Cosets with respect to a subgroup

Consider a subgroup H of a group GG. We define the following relation between elements of G :
g~g = gg ' €H, (1.8)

which may also be rewritten as
g~g < JheH : g=hg orequivalently g€ H.g . (1.9)

This is an equivalence relation (check !), called the right equivalence. One defines in a similar

way the left equivalence by
/ —1 / /
gL g <= g JeEH&geg.H. (1.10)

This relation (say, right) defines equivalence classes that give a partition of G if g; is a repre-
sentative of class 7, that class, called right-coset, may be denoted H.g;. The elements of H form
by themselves a coset. The set of (say right) cosets is denoted G/H and called the (right) coset

“space”. Its cardinality (the number of cosets) is called the index of H in G and is denoted
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by |G : H|. For example, the (additive) group of even integers H = 27 is of finite index 2 in
G = 7. In contrast, Z is of infinite index in R.

If H is of finite order |H|, all cosets have |H| elements, and if G is itself of finite order |G/,
it is partitioned into |G : H| = |G|/|H| classes, and one obtains the Lagrange theorem as a
corollary: the order |H| of any subgroup H divides that of G, and the index |G : H| = |G|/|H|
is the order (=cardinality) of the coset space G/H.

The left equivalence gives rise in general to a different partition, but with the same index.
For example, the group S5 has a Z, subgroup generated by the permutation of the two elements
1 and 2. Exercise: check that the left and right cosets do not coincide.

1.1.6 Invariant subgroups

Consider a group G with a subgroup H. H is an invariant subgroup (one also says normal) if

one of the following equivalent properties holds true
e Vgc G,Yhc H, ghg™' € H;
e left and right cosets coincide;
e H is equal to all its conjugates Vg € G, ¢gHg ' = H.

Exercise: check the equivalence of these three definitions.

The important property to remember is the following:
e [f His an invariant subgroup G, the coset space G/H may be given a group structure, and is
called the quotient group.

Note that in general one cannot consider the quotient group G/H as a subgroup of G.

Let us sketch the proof. If g1 ~ ¢} and go ~ g, 3h1,ha € H : g1 = hi1.g], g2 = gh.ho, hence gy.90 =
hi.(g,.g5).hy ie. g1.g2 ~ g}.95 and g7 ' = g’fl.hfl ~ g’l_l. The equivalence relation is thus compatible with
the composition and inverse operations, and if [g1] and [g2] denote two cosets, one defines [g1].[g2] = [g1.92]
where on the right hand side (rhs), one takes any representative g; of the coset [g1] and go of [g2] ; and likewise
for the inverse. Thus the group structure passes to the coset space. The coset made by H is the neutral element

in the quotient group.
Example of an invariant subgroup: The kernel of a homomorphism p of G into G’ is an

invariant subgroup; show that the quotient group is isomorphic to the image p(G) C G’ of G
by p.

1.1.7 Simple, semi-simple groups

A group is simple if it has no non-trivial invariant subgroup (non trivial, i.e. different from {e}
and from G itself). A group is semi-simple if it has no non-trivial abelian invariant subgroup.
Any simple group is obviously semi-simple.
This notion is important in representation theory and in the classification of groups.
Examples : The rotation group in two dimensions is not simple, and not even semi-simple

(why?). The group SO(3) is simple (non trivial proof, see below, section 1.2.2). The group
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SU(2) is neither simple nor semi-simple, as it contains the invariant subgroup Z, = {I,—1I}.

The group S, is not simple, for n > 2 (why?).

Direct, semi-direct product

Consider two groups 7 and G2 and their direct product G = G1 X G: it is the set of pairs (g1, g2) endowed with
the natural product (g1, 93).(91,92) = (91-91, 95.92). Obviously its subgroups {(g1,€)} =~ G1 and {(e, g2)} = G2
are invariant subgroups, and G is not simple.

A more subtle construction appeals to the automorphism group of G denoted Aut(G1): this is the group of
bijections § of G into itself that respect its product (group homomorphism): 5(g}.g1) = 6(¢1)5(g1). Suppose
there is a group homomorphism ¢ from another group Go into Aut(G1): Vga € Ga, p(g2) € Aut(G1). We now
define on pairs (g1, g2) the following product

(91595)-(91, 92) = (91-9(95)91, g5-92) -

Exercise: show that this defines on these pairs a group structure. This is the semi-direct product of G; and G,
(for a given ¢) and is denoted G X, G2. Check that the subgroup {(g1,e)} ~ G is an invariant subgroup of
G.

Examples : the group of (orientation preserving) motions, generated by translations and rotations in Eu-
clidean R™, is the semi-direct product of R” xSO(n), with (@', R')(a@, R) = (d'+R'd, R'R). Likewise the Poincaré

group in Minkowski space is the semi-direct product R* x L.

1.2 Continuous groups. Topological properties. Lie groups.

A continuous group (one also says a topological group) is a topological space (hence endowed
with a basis of neighbourhoods that allows us to define notions of continuity etcﬂ) with a group
structure, such that the composition and inverse operations (g,h) + g¢.h and g — g~! are
continuous functions. In other words, if ¢’ is nearby ¢ (in the sense of the topology of G), and
k' nearby h, then ¢'.' is nearby g.h and ¢~ ' is nearby ¢!

The matrix groups presented at the beginning of this chapter all belong to this class of
topological groups, but there are also groups of “infinite dimension” like the group of diffeo-
morphisms invoked in General Relativity, or of gauge transformations in gauge theories.

Let us first study some topological properties of these continuous groups.

1.2.1 Connectivity

A group may be connected or not. If G is not connected, the connected component of the
identity (i.e. of the neutral element) is an invariant subgroup.

One may be interested in the connectivity in the general topological sense (a topological space E is connected
if its only subspaces that are both open and closed are E and (}), but we shall be mainly concerned by the arc
connectivity: for any pair of points, there exists a continuous path in the space (here the group) that joins them.
Show that the connected component of the identity is an invariant subgroup for both definitions. Ref. [K-S,

Po).

1See Appendix B for a reminder of some points of vocabulary. ..
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Figure 1.1: The paths x; and x5 are homotopic. But none of them is homotopic to the “trivial”

path that stays at xy. The space is not simply connected.

Examples. O(3) is disconnected and the connected component of the identity is SO(3);
for the Lorentz group £=0(1,3), the connected component of I is its proper orthochronous
subgroup EL, (see Chap. 0), the other “sheets” then result from the application on it of parity
P, of time reversal T" and their product PT...

1.2.2 Simple connectivity. Homotopy group. Universal covering

The notion of simple connectivity should not be mistaken for the previous one.

As it does not apply only to groups, consider first an arbitrary topological space E. Let us
consider closed paths (or “loops”) drawn in the space, with a fixed end-point zy, i.e. continuous
maps z(t) from [0, 1] into E such that x(0) = z(1) = xy. Given two such closed paths x;(.)
and z5(.) from zg to xg, can one deform them continuously into one another? In other words,
is there a continuous function f(¢,£) of two variables ¢, € [0, 1], taking its values in the space
E such that

Ve €10, 1] f(0,8) = f(1,£) = x . closed paths (1.11)
vt € [0,1] f(t,0) = a1(t) f(t,1) = z5(t) : interpolation .

If this is the case, one says that the paths x; and x5 are homotopic (this is an equivalence
relation between paths), or equivalently that they belong to the same homotopy class, see Fig.
L1

One may also compose paths: If z1(.) and x(.) are two paths from z( to zg, their product
x9 0 1 also goes from zg to xy by following first x; and then xy. The inverse path of z;(.) for
that composition is the same path but followed in the reverse direction: zy*(t) := x(1 — t).
Both the composition and the inverse are compatible with homotopy: if z; ~ 2} and x5 ~ 7,
then x9 o xy ~ x} o 2 and 7t~ :E’fl. These operations thus pass to classes, giving the set of
homotopy classes a group structure: this is homotopy group m (E, x). Hence, a representative
of the identity class is given by the “trivial” path, x(t) = xo, V¢. One finally shows that in
a connected space, homotopy groups relative to different end-points xy are isomorphic; if F is
a connected group, see below, one may take for example the base point zy to be the identity
xo = e. One may thus talk of the homotopy group (or fundamental group) m (E). For more
details, see for example [Po|, [DNF].
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(a) (b)

Figure 1.2: (a) The group U(1), identified with the circle and its universal covering group R,
identified with the helix. An element g € U(1) is lifted to points - -, g_1, go, g1, - - on the helix.
(b) In the ball B? representing SO(3), the points y and —y of the surface are identified. A
path going from x to x via y and —y is thus closed but non contractible: SO(3) is non simply

connected.

If all paths from xy to zp may be continuously contracted into the trivial path {zo}, 7 (E)
is trivial, and FE is said to be simply connected. In the opposite case, one may prove and we
shall admit that one may construct a space E , called the universal covering space of E, such
that E is simply connected and that locally, £ and E are homeomorphic. This means that
there exists a continuous and surjective mapping p from E to E such that any point x in E has
a neighborhood V. and that V,, — p(V,) is a homeomorphism, i.e. a bicontinuous bijection H
The universal covering space Eof E is unique (up to a homeomorphism).

Let us now restrict ourselves to the case where £ = G, a topological group. Then one shows
that its covering G is also a group, the universal covering group, and moreover, that the map
p is a group homomorphism of G into G. Its kernel which is an invariant subgroup of é, is
proved to be isomorphic to the homotopy group m;(G) ([Po], sect. 51). The quotient group is
isomorphic to GG

G/m(G) ~ G, (1.12)

(according to a general property of the quotient group by the kernel of a homomorphism, cf.

sect. [1.1.6]).

One may construct the universal covering group G by considering paths that join the identity e to a point g,
and their equivalence classes under continuous deformation with fixed ends. G is the set of these equivalence
classes. It is a group for the multiplication of paths defined as follows: if two paths g1 (t) and g2(t) join e to g1
and to go respectively, the path g;(t).g2(t) joins e to g;.g2. This composition law is compatible with equivalence
and gives Ga group structure and one shows that G is simply connected (cf. [Po| sect. 51). The projection p
of G into G associates with any class of paths their common end-point. One may verify that this is indeed a

local homeomorphism and a group homomorphism, and that its kernel is the homotopy group 71 (G).

Example : The group G =U(1) of complex numbers of modulus 1, seen as the unit circle

S1, is non simply connected: a path from the identity 1 to 1 may wind an arbitrary number

2 “bicontinuous” means that the map and its inverse are both continuous.
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of times around the circle and this (positive or negative) winding number characterizes the
different homotopy classes: the homotopy group is m(U(1)) = Z . The group G is nothing
else than the additive group R and may be visualised as a helix above U(1). The quotient is
R/Z ~ U(1), which must be interpreted as the fact that a point of U(1), i.e. an angle, is a real
number modulo an integer multiple of 27r. One may also say that m1(S') = Z. More generally
one may convince oneself that for spheres, m(S™) is trivial (all loops are contractible) as soon
asn > 1.

Another fundamental example: The rotation group SO(3) is not simply connected, as fore-
seen in Chap. 0. To see this fact, represent the rotation Ry, (1) by the point x = tan %n of an
auxiliary space R?; all these points are in the ball B? of radius 1, with the identity rotation at
the center and rotations of angle 7 on the sphere S = B3, but because of R,(7) = R_(7),
(see Chap 0, sect. 1.1), diametrically opposed points must be identified. It follows that there
exists in SO(3) closed loops that are non contractible: a path from x to x passing through two
diametrically opposed points on the sphere S? must be considered as closed but is not con-
tractible (Fig. [L.2|b). There exist two classes of non homotopic closed loops from x to x and
the group SO(3) is doubly connected, i.e. its homotopy group is m1(SO(3)) = Zs. In fact, we al-
ready know the universal covering group of SO(3): it is the group SU(2), which has been shown
to be homeomorphic to the sphere S, hence is simply connected, and for which there exists a
homomorphism mapping it to SO(3), according to £U, (1)) = £(cos & — isin Lo.n) — Ry (1)),
see Chap. 0, sect. 1.2.

This property of SO(3) to be non simply connected may be illustrated by various home experiments,
the precise interpretation of which may not be obvious, such as “Dirac’s belt” and “Feynman’s plate”, see
http://gregegan.customer.netspace.net.au/APPLETS/21/21 .html
andhttp://www.math.utah.edu/~palais/links.html|for nice animations, and V. Stojanoska and O. Stoytchev,
Mathematical Magazine, 81, 2008, 345-357, for a detailed discussion involving the braid group.

The same visualisation of rotations by the interior of the unit ball also permits to understand the above
assertion that the group SO(3) is simple. Suppose it is not, and let R = R,(¢)) be an element of an invariant
subgroup of SO(3), which also contains all the conjugates of R (by definition of an invariant subgroup). These
conjugates are represented by points of the sphere of radius tan /4. The invariant subgroup containing Ry, (1))
and points that are arbitrarily close to its inverse R_, (%) contains also points that are arbitrarily close to the
identity, which by conjugation, fill a small ball in the vicinity of the identity. It remains to show that the
products of such elements fill all the bowl, i.e. that the invariant subgroup may only be SO(3) itself; this is in

fact true for any connected Lie group, as we shall see below.

Other examples: classical groups. One may prove that

e the groups SU(n) are all simply connected, for any n, whereas m(U(n)) = Z;

e for the group SO(2)= U(1), we have seen that m(SO(2))= Z;

e for any n > 2, SO(n) is doubly connected, m1(SO(n))= Zs, and its covering group is called
Spin(n). Hence Spin(3)=SU(2).

The notion of homotopy, i.e. of continuous deformation, that we have just applied to loops, i.e. to maps
of S! into a manifold V (a group G here), may be extended to maps of a sphere S™ into V. Even though the

composition of such maps is less easy to visualise, it may be defined and is again compatible with homotopy,
leading to the definition of the homotopy group m, (V). For example 7, (S™) = Z. See [DNF] for more details

3For example, 71(S?) = 0 and “you cannot lasso a basketball” as S. Coleman puts it !
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and the determination of these groups 7,. This notion is important in physics to describe topological defects,
solitons, instantons, monopoles, etc. See Fig. for vortexr and anti-vortex configurations of unit vectors in 2

dimensions, of respective winding number (or vorticity) £1.

[

Figure 1.3: Two configurations of unit vectors realizing homotopically non trivial mappings
St — Sl Those are respectively the vorter and anti-vorter of the XY model of statistical
mechanics, see for example http://www.ibiblio.org/e-notes/Perc/xy.htm for more details

and nice figures.

1.2.3 Compact and non compact groups

If the domain D in which the parameters of the group G take their values is compact, G is said

to be a compact group.

Recall the definition and some of the many properties of a compact space E. A topological (separated)
space E is compact if from any covering of F by open sets U;, one may extract a covering by a finite number
of them. Then from any infinite sequence in E one may extract a converging subsequence. Any real continuous
function on E is bounded, etc. For a subset D of R?, being compact is equivalent to being closed and bounded.

Examples. The unitary groups U(n) and their subgroups SU(n), O(n), SO(n), USp(n/2)
(n even), are compact. The groups SL(n,R) or SL(n,C), Sp(n,R) or Sp(n, C), the translation

group in R", the Galilean group, the Lorentz and Poincaré groups are not, why 7

1.2.4 Haar invariant measure

When dealing with a finite group, one often considers sums over all elements of the group and

“rearrangement lemma”, in which one writes

VgeG Y fld9= > fld9=>_ [,

e h=g'geG e

makes use of the

(left invariance), the same thing with ¢’¢g changed into gg’ (right invariance), and also
Sfah =Y flgh =D flo).
geG g~ leG geG

Can one do similar operations in continuous groups, the finite sum being replaced by an
integral, which converges and enjoys the same invariances ? This requires the existence of an

integration measure, with left and right invariance, and invariance under inversion:

du(g) = dplg'.g) = dp(g.g') = du(g™")
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such that [ du(g)f(g) be finite for any continuous function f on the group.

One may prove (and we admit) that
e if the group is compact, such a measure exists and is unique up to a normalization.

This is the Haar measure.

For example, in the unitary group U(n), one may construct explicitly the Haar measure,
using the method proposed in Chap. 0, Appendix 0: one first defines a metric on U(n) by
writing ds? = tr dU.dUT in any parametrization; this metric is invariant under U — UU’ or
U — U'U and by U — U~ = UT; the measure du(U) that follows has the same properties.
See Appendix C for the explicit calculation for SU(2) and U(n), and more details in the TD.

Conversely if the group is non compact, left and right measures may still exist, they may even coincide, (for
non compact abelian or semi-simple groups) but their integral over the group diverges.

Thus, if G is locally compact, (i.e. any point has a basis of compact neighbourhoods), one proves that
there exists a left invariant measure, unique up to a multiplicative constant. There exists also a right invariant

measure, but they may not coincide. For example, take

=10 1)

one easily checks that duz(g) = y~2dzdy, dugr(g) =y~ 'daxdy are left and right invariant measures, respec-

r,y € Ry > 0}
tively, and that their integrals diverge. See [Bu].

1.2.5 Lie groups

Imposing more structure on a continuous group leads us in a natural way to the notion of Lie
groups.

According to the usual definition, a Lie group is a topological group which is also a differentiable manifold

and such that the composition and inverse operations G x G — G and G — G are infinitely differentiable
functions. One sometimes also requests them to be analytic real functions, i.e. functions for which the Taylor
series converges to the function. That the two definitions coexist in the literature is a hint that the weakest
(infinite differentiability) implies the strongest. In fact, according to a remarkable theorem (Montgomery and
Zippen, 1955), much weaker hypotheses suffice to ensure the Lie group property.
A topological connected group which is locally homeomorphic to R?, for some finite d, is a Lie group. In other
words, the existence of a finite number of local coordinates, together with the properties of being a topological
group (continuity of the group operations), are sufficient to imply the analyticity properties ! E| This shows that
the structure of Lie group is quite powerful and rigid. There exist, however, infinite dimensional Lie groups.

To avoid a mathematical discussion unnecessary for our purpose, we shall restrict ourselves
to continuous groups of finite size matrices. In such a group, the matrix elements of g € G
depend continuously on real parameters (£1,£2,---£%) € D C R%, and in the group operations
g(&") = g(€").9(€), and g(£)~" = g(&"), the €% are continuous (in fact analytic) functions of the

¢ (and £Y). Such a group is called a Lie group, and d is its dimension.
More precisely, in the spirit of differential geometry, one has in general to introduce several domains D;,

with continuous (in fact analytic) transition functions between coordinate charts, etc.

4For an elementary example of such a phenomenon, consider a function f of one real variable, satisfying
f(@)f(y) = f(x +y). Under the only assumption of continuity, show that f(z) = expkz, hence that it is

analytic !
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Examples : all the matrix groups presented in §1.1 are Lie groups. Check that the dimension
of U(n) is n?, that of SU(n) is n? — 1, that O(n) or SO(n) is n(n —1)/2. What is the dimension
of Sp(2n,R) ? of the Galilean group in R3? of the Lorentz and Poincaré groups ?

Show that dim(Sp(2n,R))=dim(USp(n))=dim(SO(2n + 1)). We shall see below in Chap. 3 that this is not

an accident.
The study of a Lie group and of its representations involves two steps: first a local study of
its tangent space in the vicinity of the identity (its Lie algebra), and then a global study of its

topology, i.e. an information not provided by the local study.

1.3 Local study of a Lie group. Lie algebra

1.3.1 Algebras and Lie algebras. Definitions

Let us first recall the definition of an algebra.
An algebra is a vector space over a field (for physicists, R or C), endowed with a product

denoted X %Y, (not necessarily associative), bilinear in X and Y

()\1X1—|—)\2X2) xY = )\1X1 *Y—|->\2X2 xY (113)
Xk (Y1 4+ pn2Ys) =mX Y]+ X xYs . (1.14)

Examples: the set M (n,R) or M(n,C) of n x n matrices with real, resp. complex coefficients,
is an associative algebra for the usual matrix product. The set of vectors of R3 is a (non
associative !) algebra for the vector product (denoted A in the French literature, and x in the
anglo-saxon one).

A Lie algebra is an algebra in which the product, denoted [ X, Y] and called Lie bracket, has

the additional properties of being antisymmetric and of satisfying the Jacobi identity

(X,Y] =Y, X] (1.15)
(X1, [Xo, X5]] + [Xo, [X5, Xa]] + [ X5, [X1, Xa]] =0 . (1.16)

Examples : Any associative algebra for a product denoted *, in particular any matrix

algebra, is a Lie algebra for a Lie bracket defined by the commutator
(X, Y]=X*xY -V xX .

The bilinearity and antisymmetry properties are obvious, and verifying the Jacobi identity
takes one line. Another example: the space R? with the above-mentionned vector product is in
fact a Lie algebra, with the Jacobi identity following from the “double vector product” formula,
ux (vxw)=(uw)v— (av)w. If we write (v A W); = €;,v;wy, in terms of the completely

antisymmetric tensor €, the Jacobi identity is indeed what we encountered in (0.27)).

(See Chap. 0, (0.27).)
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1.3.2 Tangent space in a Lie group

Consider a Lie group G and a one-parameter subgroup g(t), where t is a real parameter taking
values in a neighborhood of 0, with ¢g(0) = e; in other words, g(t) is a curve in G, assumed to

be differentiable, and passing through the identity, and one assumes that (for ¢ near 0)

g(t)g(ta) = gltr +t2) g ' (t) = g(—1) . (1.17)

The composition law in this subgroup locally amounts to the addition of parameters ¢; thus,
locally, this one-parameter subgroup is isomorphic to the abelian group R. It is then natural

to differentiate
g(t +t) = g(t)g(6t) & g~ (t)g(t +dt) = g(dt) . (1.18)

As we have chosen to restrict ourselves to matrix groups, (with e = I, the identity matrix), we

may write the linear tangent map in the form
g0ty =T+ 5tX +---
which defines a vector X in the tangent space. One may also write
X = —g(t) , (1.19)
this is the velocity at t = 0 (or at g = e) along the curve. Equation thus reads

g(t) = g(t)X . (1.20)

As usual in differentiable geometry, (see Appendix B.3), the tangent space T.G at e to the
group GG, which we denote g from now on, is the vector space generated by the tangent vectors

to all one-parameter subgroups (i.e. all velocity vectors at ¢ = 0). If coordinates £* of G have

_9
oo

The dimension (as a vector space) of this tangent space is equal to the dimension of the (group)

been chosen in the vicinity of e (= I), a tangent vector is a differential operator X = X

manifold defined above as the number of (real) parameters, dim g = dim G.
In the case of a group G C GL(n,R) to which we are restricting ourselves, X € g C M(n,R),

the set of real n x n matrices, and one may carry out all calculations in that algebra. In
particular, one may integrate (|1.20]) as

tn
g(t) =exptX = Z EX” : (1.21)

n=0

a converging sum. (In fact, the assumption that the group is a matrix group may be relaxed,
provided one makes sense out of the map exp from g to G, a map that enjoys some of the usual

properties of the exponential, see Appendix B.4.)
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42 Chap.1. Groups. Lie groups and Lie algebras

1.3.3 Relations between the tangent space g and the group G

1. If G is the linear group GL(n,R), g is the algebra of real n x n matrices, denoted M (n,R).
If G is the group of unitary matrices U(n), g is the space of anti-Hermitian n x n matrices.
Moreover they are traceless if G = SU(n). Likewise, for the orthogonal O(n) group, g is made

of skew-symmetric, hence traceless, matrices.
For the symplectic group G =USp(n), g is generated by “anti-selfdual” quaternionic matrices, see Appendix A.

For each of these cases, check that the characteristic property (anti-Hermitian, skew-symmetric,

tracelessness, ... ) is preserved by the commutator, thus making g a Lie algebra.

2. The exponential map plays an important role in the reconstruction of the Lie group G from

its tangent space g. One may prove, and we admit, that
e the map X € g e* € G is bijective in the neighborhood of the identity;
e it is surjective (= every element in G is reached) if G is connected and compact;

e it is injective (any g € G has only one antecedent) only if G is simply connected. An
example of non-injectivity is provided by G =U(1), for which g = iR and all the i(z+27k),
k € Z have the same image by exp. The converse is in general wrong: for example in

iTn.o

SU(2) which is simply connected, if n is a unit vector, e = —1I, hence all elements

imn.o of g =su(2) have the same image!

* Example of a non-compact group for which the exp map is non surjective: G=SL(2,R), for which g=sl(2,R),
the set of real traceless matrices. For any A € g, hence traceless, use its characteristic equation to show that
tr A?2"+L =0, tr A%" = 2(—det A)", hence tr e = 2coshy/—det A > —2. There exist in G, however, matrices
of trace < —2, for instance diag (-2, —1).

* For a non compact group, the exp map may still be useful. One may prove that any element of a matrix
group may be written as the product of a finite number of exponentials of elements in its Lie algebra. [Cornwell
p 151].

% Observe that one still has det eX = e X a property easily established if X belongs to the set of diago-
nalizable matrices. As the latter are dense in M(d,R), the property holds true in general.

1.3.4 The tangent space as a Lie algebra

Let us now show that the tangent space g of G' at e = I has a Lie algebra structure. Given two
one-parameter groups generated by two independent vectors X and Y of g, we measure their
lack of commutativity by constructing their commutator (in a sense different from the usual
one!) g = eXeWe e Y« for small t ~ u, this ¢ is close to the identity, and may be written

g=-expZ, Z € g. Compute Z to the first non trivial order

eXee e = (I +1X 4 32X (I + uY + $u’Y?) (I — tX + 32 X?) (I — uY + tu?Y?)
=1+ (XY -YX)tu+O(t3) . (1.22)

The computation has been carried out in the associative algebra of matrices, the neutral element

being denoted I. All the neglected terms are of third order since ¢t ~ u. To order 2, one thus
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sees the appearance of the commutator in the usual sense, XY — Y X, i.e. the Lie bracket of

matrices X and Y. In general, for an arbitrary Lie group, the bracket is defined by
eXeWe e =2 Z =tu[X,Y]+ O(t?) (1.23)

and one proves that this bracket has the properties ((1.15)) of a Lie bracket.

This fundamental result follows from a detailed discussion of the local form of the group operations in a Lie

group (“Lie equations”, see for example [OR]).

e Adjoint map in the Lie algebra g. Baker-Campbell-Hausdorff formula

Let us introduce a handy notation. For any X € g, let ad X be the linear operator in the Lie
algebra defined by

Y (ad X)Y = [X,Y] | (1.24)

hence
(ad?X)Y = [X,[X, - [X, Y] --]]

with p brackets (commutators).

Given two elements X and Y in g, and e* and e¥ the elements they generate in G, does
there exist a Z € g such that eXe¥ = e¢# ? The answer is yes, at least for X and Y small
enough.

Note first that if [X,Y] = 0, the ordinary rules of computation apply and Z = X + Y. In
general, the Baker-Campbell-Hausdorff formula, that we admit, gives an explicit expression of
Z.

€X€Y — €Z

1
Z = X+/ dtyp(expad X exptadY)Y (1.25)
0

where 9(.) is the function

vy = =1 ) g1 (1.26)

u—1

which is regular at u = 1. The first terms in the expansion in powers of X and Y read explicitly

Z=X+Y 4 X Y]+ o (6 X Y]+ [V X)) + o (1.27)

This complicated formula has some useful particular cases. Hence if X and Y commute with [X,Y7], (1.25)
boils down to

1
XY — (XY +5[XY]

XY ezlX YT (1.28)

a formula that one may prove directly using the general identity

_ —1 .
eXYe X:;aad XYy (1.29)

December 10, 2013 J.-B. Z M2 ICFP/Physique Théorique 2012
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(which is nothing else than the Taylor expansion at t = 0 of !X Ye™!X evaluated at t = 1), and writing and
solving the differential equation satisfied by f(t) = !X ¥, f(0) =1

') =X +eXYe ™)f(t) (1.30)
= (X +Y +t[X,Y])f(t) . (1.31)

On the other hand, to first order in Y, one may replace the argument of ¥ in (1.25) by expad X and then

o0
B
Z=X+» —(-1)"(adX)" Y +0(Y?) (1.32)
— nl
where the B,, are the Bernoulli numbers: ﬁ => Bn%, By=1,By = %,34 = —% and, beside B; = —%,

all B of odd index vanish. Still to first order in Y, one has also
1
XY =X —I—/ dt Xy el =0X 4 o(Y?)
0

which is obtained by writing and solving the differential equation satisfied by F(t) = expt(X +Y).exp —tX.
The convergence of these expressions may be proven for X and Y small enough. Note that
this BCH formula makes only use of the ad map in the Lie algebra, and not of the ordinary

matrix multiplication in GL(d, R). This is what makes it a canonical and universal formula.

1.3.5 An explicit example: the Lie algebra of SO(n)

From the definition of elements of g as tangent vectors in G at e = I, or else from the construc-
tion of one-parameter subgroups associated with each X € g, follows the interpretation of X
as “infinitesimal generator” of the Lie group G. The actual determination of the Lie algebra of
a given Lie group GG may be done in several ways, depending on the way the group is defined
or represented.

If one has an explicit parametrization of the elements of G in terms of d real parameters,
infinitesimal generators are obtained by differentiation wrt these parameters. See in Chap. 0,
the explicit cases of SO(3) and SU(2) treated in that way.

If the group has been defined as the invariance group of some quadratic form in variables x,
one may derive an expression of the infinitesimal generators as differential operators in x. Let
us illustrate it on the group O(n), the invariance group of the form Y 27 in R™. The most
general linear transformation leaving that form invariant is x — 2z’ = Ox, with O orthogonal.

T

In an infinitesimal form, O = [ + w, and w = —w" is an arbitrary skew-symmetric real matrix.

An infinitesimal transformation of the form dz* = w';2/ may also be written
or'  =whal = =it el (1.33)
Jkl = :kaZ — :vlé?k . JklZEi = $k(5il — xléik (134)
(note that we allow to raise and lower freely the indices, thanks to the signature (+)" of the
metric). This yields an explicit representation of infinitesimal generators of the so(n) algebra
as differential operators. It is then a simple matter to compute the commutation relationsﬂ
[Jijs Ja] = Sudji, — dinJj — S di + S - (1.35)

®Note that wrt to the calculation carried out in the O(1,3) group in Chap. 0, § we have changed our

conventions and use here anti-Hermitian generators.
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(In other words, the only non-vanishing commutators are of the form [J;;, Jix] = —Jj for any
triplet @ # j # k # i, and those that follow by antisymmetry in the indices.)

One may proceed in a different way, by using a basis of matrices in the Lie algebra, regarded
as the space of skew-symmetric n X n matrices. Such a basis is provided by matrices A;; labelled

by pairs of indices 1 < ¢ < j < n, with matrix elements
(Aij>kl = 0ir0j1 — 0l -

Hence the matrix A;; has only two non vanishing (and opposite) elements, at the intersection of

the i-th row and j-th column and vice versa. Check that these matrices A;; have commutation

relations given by ((1.35)).

Exercise : repeat this discussion and the computation of commutation relations for the group SO(p, q) of

2 p+q 2

invariance of the form Y7 _, 27 — > itpy1 T 1t is useful to introduce the metric tensor g = diag ((+1)7, (—1)7).

A physical application: Noether currents for the “O(n) model”
A field theory frequently considered (see F. David’s course and Chap. 4) is the O(n) model.
Its Lagrangian, written here in the Euclidean version of the theory and for a real bosonic field

¢ = {¢*} with n components,
1 1 9 A9
L= 5(3@2 + §m2¢ +5(@ )? (1.36)

is invariant under O(n) rotations. The Noether currents are derived from infinitesimal transfor-

mations of the previous type d¢ = 3°, . dw* A;;¢, or, in components, Sk = D icj 0w (A &,
namely (up to a possible factor) jffj) = 8§f¢k (Aij)% ¢ = 0,0k(Aij)" ¢'. Using the antisym-
metry of matrices A and the Euler-Lagrange equations, show that these currents are indeed

divergenceless, which implies the conservation of dimso(n) = in(n — 1) “charges”.

1.3.6 An example of infinite dimension: the Virasoro algebra

In these notes, we are restricting our attention to Lie groups and algebras of finite dimension. Let us give here
an example of infinite dimension. One considers diffeomorphisms z — 2z’ = f(z) where f is an analytic (holo-
morphic) function of its argument except maybe at 0 and at infinity. (One also speaks of the “diffeomorphisms
of the circle”.) This is obviously a group and an infinite dimensional manifold, which manifests itself in the

algebra of infinitesimal diffeomorphisms z — 2’ = z + €(z), generated by differential operators £,

0
S Z L
L A ne (1.37)
which satisfy
[y lm] = (n —m)lpim - (1.38)

This Lie algebra is the Witt algebra. A modified form of this algebra, with a central extension (see. Chap.
2), i.e. with an additional “central” generator ¢ commuting with all generators, is called Virasoro algebra and

appears naturally in physics. Calling L,, and ¢ the generators of that algebra
(L L] = (= m) L + 1300 = Voo [eLa] = 0. (1.39)

(The L,, may be thought of as quantum realizations of the operators ¢,,, with the ¢ term resulting from quantum
effects. . .)
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Check that the Jacobi identity is indeed satisfied by this algebra. One proves that this is the most general
central extension of that respects the Jacobi identity. Show that the subalgebra generated by L4, Lg is
not affected by the central term. What is the geometric interpretation of the corresponding transformations?

The Virasoro algebra plays a central role in the construction of conformal field theories in 2d and in their
application to two-dimensional critical phenomena and to string theory. More details in [DFMS].

1.4 Relations between properties of g and GG

Let us examine how properties of GG translate in g.

1.4.1 Simplicity, semi-simplicity

Let us define the infinitesimal version of the notion of invariant subgroup. An ideal (also
sometimes called an invariant subalgebra) in a Lie algebra g is a subspace J of g which is stable
under multiplication (defined by the Lie bracket) by any element of g, i.e. such that [J,g] C 7.
The ideal is called abelian si [J,7] = {0}.

A Lie algebra g is simple if g has no other ideal than {0}. It is semi-simple if g has no other
abelian ideal than {0}.

Example. Consider the Lie algebra of SO(4), denoted so(4), see the formulae given in ((1.35))

for so(n). It is easy to check that the combinations
1 1 1
Ay = §(J12 — Jay), Ag = §(J13 + Ju), As = §(J14 — Ja3)
commute with
1 1 1
B, = §(J12 + J34), By = 5(—J13 + Jo4), B3 = §(J14 + Jag)

and that
[A;, Aj] = €1 A |B;, B;] = €1 By [A4;,B;] =0

where one sees two commuting copies of so(3). One writes so(4)=so(3)® so(3). Obviously the
algebra so(4) is not simple, but it is semi-simple.
Notice the difference between this case of so(4) and the case of the algebra so(1,3) studied in Chap. 0, §
There, the indefinite signature forced us to complexify the algebra to “decouple” the two copies of the algebra
so(3).
One has the following relations
G simple = g simple
G semi-simple = g semi-simple
but the converse is not true ! Several different Lie groups may have the same Lie algebra, e.g.
SO(3) which is simple, and SU(2) which is not semi-simple, as seen above in il

6Beware! Some authors call “simple” any Lie group whose Lie algebra, is simple. This amounts to making a
distinction between the concepts of simple group and simple Lie group. The latter is such that it has no non
trivial invariant Lie group. Thus the Lie group SU(2) is a simple Lie group but not a simple group, as it has an

invariant subgroup Zs which is not of Lie type...
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1.4.2 Compacity. Complexification

A semi-simple Lie algebra is said to be compact if it is the Lie algebra of a compact Lie group.
At first sight, this definition looks non intrinsic to the algebra and seems to depend on the Lie group from which

it derives. We shall see below that a condition (Cartan criterion) allows to remove this dependance.
At this stage one should examine the issue of complexification. Several distinct groups may
have different Lie algebras, that become isomorphic when the parameters are complexified. For

instance, the groups O(3) and O(2,1), the first compact, the second non compact, have Lie

algebras
( X1 =20y, — y0,
0(3) Xy = 20, — 20, (X1, Xo] = y0, — 20, = X; etc
. X3 = y@m — Iay
( X1 :zay+y3z [Xl,XQ] :yﬁx—xé?y :Xg
0(2,1) Xo =20, + 20,  [Xo, X3] = —20, —yd. = - X, (1.40)
)?3 = ya’p - .CL’ay [5(:3,5(:1] = —x&z - z@m = —5(:2

\

that are non isomorphic on the real numbers, but iX;, iX, and —X; verify the o(3) algebra.
The algebras o(3) and o(2,1) are said to have the same complexified form g., or else, to be
two real forms of g., but only one of them, namely o(3), (or so(3)=su(2)), is compact. This
complexified form is the sl(2,C) algebra, of which sl(2,R) is another non compact real form.

(See Exercise B and TD).

The algebras so(4) and so(1,3) studied above and in Chap. 0 provide another example of
two algebras, which are two non-isomorphic real forms of the same complexified form.
Another example is provided by sp(2n,R) and usp(n). (See Appendix A).

More generally, one may prove ([FH] p. 130) that

e any semi-simple complex Lie algebra has a unique real compact form.

To summarize, local topological properties of the Lie group are transcribed in the Lie alge-
bra. The Lie algebra, however, is unable to capture global topological properties of the group,

as we discuss now.

1.4.3 Connectivity, simple-connectivity

— If G is non connected and G’ is the subgroup of the connected component of the identity, the
Lie algebras of G and G’ coincide: g = ¢'. For example, o(3)=so(3).

— If G is non simply connected, let G be its universal covering group. G and G being locally
isomorphic, they have the same Lie algebra. Examples: U(1) and R; SO(3) and SU(2); SO(1,3)
and SL(2,C).

To summarize:

Given a Lie group GG, we have constructed its Lie algebra. Conversely, a theorem by Lie asserts
that any (finite-dimensional) Lie algebra is the Lie algebra of some Lie group [Ki-Jr, p.34].
More precisely, to every Lie algebra g corresponds a unique connected and simply connected

Lie group G, whose Lie algebra is g. Any other connected Lie group G’ with the same Lie
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algebra g has the form G’ = G/H with H a finite or discrete invariant subgroup of G. This
agrees with what we saw above: if G is the covering group of G, G' = G/m(G"). For example
U(1)=R/Z, SO(3)=SU(2)/Z,. 1f G’ is non connected, the previous property applies to the
connected component of the identity.

1.4.4 Structure constants. Killing form. Cartan criteria

Given a basis {t,} in a d-dimensional Lie algebra g, any element X of g reads X = Zizl %%,.

The structure constants of g (in that basis), defined by
[tasts] = Cf't, . (1.41)

are clearly antisymmetric in their two lower indices C, ;) = —Cj,’. Return to the linear operator
ad X defined above in (|1.24])

adX 7= (X, 2] =Y 2°2°C,Jt,

and for X, Y € g consider the linear operator ad X ad Y which acts in the Lie algebra according
to
ad X adY Z = [X, [V, Z]] = oy Cy. a"y 2t .

Exercises (easy !): show that the Jacobi identity is equivalent to the identity

Z (Cos Tyl + CasCL 0+ C 5 CLE) =0 (1.42)
1)

(note the structure : a cyclic permutation on the three indices «, (3, v with € fixed and summation

over the repeated §); and show that this identity may also be expressed as
ad X,adY]|Z = ad [X,Y]Z . (1.43)
Taking the trace of this linear operator ad X ad Y defines the Killing form

(X,Y):=tr(ad XadY) = C,, Cplay® = gaga®y” (1.44)

7,0

a symmetric bilinear form (a scalar product) on vectors of the Lie algebra. The symmetric

tensor gos is thus given by

Gos = »_ C,s'Cyl = tr (adtq adty) .
¥,0

(Symmetry in «, 5 is manifest on the 1st expression, it follows from the cyclicity of the trace
in the 2nd.)

Note that this Killing form is invariant under the action of any ad Z :

VX,Y,Z€g (adZX,Y)+ (X,adZY) = ([Z,X],Y)+ (X,[Z,Y]) =0 (1.45)
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(think of ad Z as an infinitesimal generator acting like a derivative, either on the first term, or
on the second). Indeed by (1.43), the first term equals tr (ad Zad Xad Y —ad Xad ZadY') while
the second is tr (ad Xad Zad Y —ad Xad Yad Z), and they cancel thanks to the cyclicity of the
trace. One may prove that in a simple Lie algebra, an invariant symmetric form is necessarily
a multiple of the Killing form.

One may then use the tensor g, to lower the 3d label of C’OCBW, thus defining

- 1 _ )
COZ,B’Y T Caﬁ Gvs = Coaﬁ 'yenc&j :

Let us then show that this C,g, is completely antisymmetric in o, 3,v. Given the already
known antisymmetry in «, 3, it suffices to show that C,g, is invariant by cyclic permutations.

This follows from ([1.45) which may be written in a more symmetric form as
(X,[Y,2]) = (V,[Z,X]) = (Z,[X,Y]) = Cop,a°y’2" = Cpray’272% = Cupz’2%y’,  (1.46)

thus proving the announced property.

A quite remarkable theorem of E. Cartan states that:

e (i) A Lie algebra is semi-simple iff the Killing form is non-degenerate, i.e. det g # 0.
e (ii) A real semi-simple Lie algebra is compact iff the Killing form is negative definite.
Those are the Cartan criteria.

In one way, property (i) is easy to prove. Suppose that g is not semi-simple and let us show that det g = 0.
Let J be an ideal of g, choose a basis of g made of a basis of J, {¢;}, ¢ = 1,---r, complemented by t,, a =
r+1,---d. For 1 <14,j <r, compute g;; = Zaﬂ CmﬁCjBa. By definition of an ideal, @ and ( are themselves
between 1 and r, g;; = Zlgk,lgr Cilejlk. Hence the restriction of the Killing form of g to J is the Killing form
of J. If moreover the ideal is assumed to be abelian, g;; = 0 and g, = 0 (Exercise: check that point!). The
form is obviously degenerate (det g = 0). The reciprocal, det g = 0 = g non semi-simple, is more delicate to
prove.

Likewise, property (ii) is relatively easy to prove in the sense compactness = definite negative form.
Start from an arbitrary positive definite symmetric bilinear form; for example in a given basis {t,}, con-
sider (X,Y) = > 2%y%. For a compact group G, one can make this form invariant by averaging over G :
o(X,Y) == [du(g)(gXg~t,gYg™'). It is invariant p(gXg~',gYg ') = p(X,Y), or in infinitesimal form,
o([Z,X],Y] + ¢(X,[Z,Y]) =0, (cf (1.45)). It is also positive definite. Let e, be a basis which diagonalizes it,
@(eq, e3) = dap. Let us calculate in that basis the matrix of the ad X operator and show that it is antisymmetric,
(adX)ag = 7(adX)5a :

(ad X)ap = ¢(ea, (X, 6[3]) = —p(es, (X, ea]) = _(adX)ﬁa :
Hence the Killing form
(X, X) =tr(ad Xad X) =) (ad X)ap(ad X)ga = — Y _((ad X)ap)® <0
o, o,
is negative semi-definite, and if the algebra is semi-simple, it is negative definite, q.e.d.

Example. The case of SO(3) or SU(2) is familiar. The structure constants are given by the
completely antisymmetric tensor Cngy = €q45y. The Killing form is gog = —20.3. Exercise :
compute the Killing form for the algebra so(2, 1), (see Exercise B).

A last important theorem (again by Cartan !) states that

e Any semi-simple Lie algebra g is a direct sum of simple Lie algebras g;

g =Dig; -
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This is a simple consequence of . Consider a semi-simple algebra g with an ideal J and call € the
complement of J wrt the Killing form, i.e. (J,&) = 0. By (L.46), ([¢,7],3) = (¢,[3,3]) = (¢€,J) = 0 (since T is
a subalgebra), and ([¢,7],€) = (J,€) = 0 (since J is an ideal), hence [€,J], orthogonal to any element of g for
the non-degenerate Killing form, vanishes, [€,J] = 0, which means that g = J @ €. Iterating the argument on

¢, one gets the announced property.
Cartan made use of these properties to classify the simple complex and real Lie algebras.

We return to this classification in Chap. 3.

1.4.5 Casimir operator(s)

With previous notations, given a semi-simple Lie algebra g, hence with an invertible Killing

form, and a basis {t,} of g, we define

Cy =Y g"taty (1.47)
a,f

where g*” is the inverse of gas, i.€. gayg™” = 6P

Formally, this combinaison of the ¢’s, which does not make use of the Lie bracket, does not live in the Lie algebra
but in its universal enveloping algebra Ug, defined as the associative algebra of polynomials in elements of g.
Here, since we restricted ourselves to g C M (n,R), Ug may also be considered as a subalgebra of M (n,R).

Let us now show that C5 has a vanishing bracket (commutator) with any ¢, hence with any

element of g. This is the quadratic Casimir operator.

[Co,15] = Zgaﬁ[tatﬁ’t’y]
a,f
= 37 6% (taltp ty) + [tas 1))
.,

= Y 9°7Cy (tals + tsta) (1.48)
a,3,0

= Z gaﬁg6ncﬁwn(tat6 + téta) .
a,B3,0,K

The term B 9P g°*Cp,, is antisymmetric in a < &, while the term in parentheses is sym-
metric. The sum thus vanishes, q.e.d.

One shows that in a simple Lie algebra, (more precisely in its universal enveloping algebra), a
quadratic expression in ¢ that commutes with all the t’s is proportional to the Casimir operator
Cs. In other words, the quadratic Casimir operator is unique up to a factor.

Example. In the Lie algebra so(3)= su(2), the Casimir operator Cy is (up to a sign) J?,
which, as everybody knows, commutes with the infinitesimal generators J* of the algebra. In a
non simple algebra, there are as many quadratic operators as there are simple components, see
for example the two Casimir operators J? and K? in the (complexified) so(1,3)~ su(2)& su(2)
algebra of the Lorentz group (see Chap. 0 §[0.6.2); or P? and W? in the (non semi-simple)

Poincaré algebra, see Chap. 0, § 0.6.5.
There may exist other, higher degree Casimir operators. Check that

CT’ = galallga2a/2 .o ga'"aic 620 B3 e Carﬁflta/lta/g .o ta; (149)

a1 T azf2
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has a vanishing bracket with any ¢,. What is that C3 in su(2) ? See Bourbaki ([Bo], chap. [3.52)) for a discussion
of these general Casimir operators. See also exercice C below.

If one remembers that infinitesimal generators (vectors of the Lie algebra) may be regarded
as differential operators in the group coordinates, one realizes that the Casimir operators
yield invariant (since commuting with the generators) differential operators. In particular,
the quadratic Casimir operator corresponds to an invariant Laplacian on the group (see Chap.

0, § for the case of SO(3)).

These Casimir operators will play an important role in the study of group representations.
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Appendix A. Quaternion field and symplectic groups

A.1 Quaternions

The set of quaternions is the algebra over C generated by 4 elements, e;, i = 1,2, 3,
7=q91+¢We; +¢Pey + ¢Pesy ¢V ecC (A1)
with multiplication e? = ejezeg = —1, from which it follows that
e1e2 = —ege; = e3

and cyclic permutations. One may represent the e; in terms of Pauli matrices : e; — —io;.
The conjugate of ¢ is the quaternion

7=q"1-qWe; — ey — q¥es . (A2)
not to be confused with its complex conjugate

(3)%

q* — q(U)*l + q(l)*€1 + q(2)*62 +q es . (A3)

Note that q7 := |q|> = (¢@)2 + (¢M)2 + (¢®)2 + (¢®)2, the square norm of the quaternion, and hence
q~! = ¢/|q|? if this norm is non-vanishing.

One may also define the Hermitian conjugate of ¢ as
¢" =g =q"1—¢M"er —¢®e; — ey (A.4)

(in accordance with the fact that Pauli matrices are Hermitian).

Note that conjugation and Hermitian conjugation reverse the order of factors

(q192) = @2G1 (Q1(12)T = qgtﬁ . (A.5)

A real quaternion is a quaternion of the form with ¢ € R , hence identical with its complex
conjugate.

The set of real quaternions forms a field, which is also a space of dimension 4 over R. It is denoted H (from
Hamilton).

A.2 Quaternionic matrices

Let us consider matrices () with quaternionic elements (Q);; = gij, or @ = (g;;). One may apply to @ the
conjugations defined above. One may also transpose (). The Hermitian conjugate of @ is defined by

(Q)ij = aj; - (A.6)
The dual Q¥ of a quaternionic matrix Q is the matrix
(@QM)ij = T - (A.7)

(It plays for quaternionic matrices the same role as Hermitian conjugates for complex matrices.) A quaternionic
matrix is self-dual if

Q" =Q = (aij) = (@) (A.8)
it is real quaternionic if
Q" = Q' hence qij = qi; (A.9)

i.e. if its elements are real quaternions.
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A.3 Symplectic groups Sp(2n,R) and USp(n), and the Lie algebras
sp(2n) and usp(n)

Consider the 2n x 2n matrix
I,
S = < 0 ) (A.10)
—I, O

(with I, the n x n identity matrix) and the associated “skew-symmetric” bilinear form

n

(X,Y) = XTSY = (2i¥isn — YiTisn) - (A.11)

i=1

The symplectic group Sp(2n,R) is the group of real 2n x 2n matrices that preserve that form

BTSB=25. (A.12)

0 1
In the basis where X7 = (21,241, %2, Tni2, -+ ), the matrix S = diag ( 1 0) = diag (—e2) in terms of

quaternions, and the symplectic group is then generated by quaternionic n x n matrices Q satisfying Q*.Q = I,
(check !); the matrix B being real, however, the elements of () are such that qgl)
imaginary for @ = 1,3. This group is non compact. Its Lie algebra sp(2n,R) is generated by real matrices
A such that ATS + SA = 0. The dimension of that group or of its Lie algebra is n(2n + 1). For n = 1,
Sp(2,R)=SL(2,R).

A related group is USp(n), generated by unitary real quaternionic n x n matrices Q = Qt = Q. This is

are real for « = 0,2 and purely

the invariance group of the quaternionic Hermitian form Y Z;y;, z,y € H". It is compact since it is a subgroup
of U(2n). Its Lie algebra usp(n) is generated by antiselfdual real quaternionic matrices A = —Af = —Af
(check!). Its dimension is again n(2n + 1). For n =1, USp(1)=SU(2).

Expressing the condition on matrices A of sp(n,R) in terms of quaternions, one sees that the two algebras
sp(2n,R) and usp(n) have the same complexified algebra, namely sp(2n,C). Only usp(n) is compact.

Appendix B. A short reminder of topology and differential

geometry.

B.1 A lexicon of some concepts of topology used in these notes

Topological space : set E with a collection of open subsets, with the property that the union of
open sets and the intersection of a finite number of them is an open subset, and that E and ()
are open.
Closed subset of E' : complement of an open subset of F.
Neighborhood of a point z : subset E that contains an open set containing z. Let V(z) be the
set of neighborhoods of .

A topological space is separated (or Hausdorff) if two distinct points have distinct neighbor-
hoods. This will always be assumed in these notes.
Basis of neighborhoods B(x) of a point x : subset of V(x) such that any V' € V(z) contains a
W € B(x). (Intuitively, a basis is made of “enough” neighborhoods.)
Continuous function: a function f from topological space E to topological space F' is called

continuous if the inverse image of every open set in F' is open in E.
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Compact space E: topological (separated) space such that from any covering of E by open sets,
one may extract a finite covering.

Consequences: if E is compact,
— any infinite sequence of points in F has an accumulation point in F;
—if f: E'+— F'is continuous, f(FE) is compact;
— any continuous real function on £ is bounded.
If E is a subspace of R", E compact < E closed and bounded (Heine-Borel theorem).
Locally compact space : (separated) space in which any point has at least one compact neigh-
borhood. Examples : R is not compact but is locally compact ; Q is neither compact nor locally

compact.

B.2 Notion of manifold

A manifold M of dimension n is a space which locally, in the vicinity of each point, “resembles”
R™ or C". Counter-examples are given by two secant lines, or by ——(). More precisely,
there exists a collection of neighborhoods U; covering M, with charts f;, i.e. invertible and
bicontinuous (homeomorphisms) functions between U; and an open set of R™: f;(U;) C R™. Let
m be a point of M, m € U;, and f;(m) = (x', 2%, ... 2") its image in R" : (x!, 22 ...2") are the
local coordinates of m, which depend on the chart. It is fundamental to know how to change
the coordinate chart. The manifold is said to be differentiable of class C* if for any pair of
open sets U; and U; with a non-empty intersection, f; o f; which maps f;(U; N U;) C R™ onto
f;(UiNU;) C R™ is of class C*.

Example : the sphere S? is an analytic manifold of dimension 2. One may choose as two
open sets the sphere with its North, resp. South, pole removed, with a map to R? given by the
stereographic projection (see Problem below) from that pole.

A Riemann manifold is a differentiable real manifold on the tangent vectors of which a
positive definite inner product has been defined. If the inner product is only assumed to

be a non degenerate form of signature (+1)?,(—1)""?), the manifold is said to be pseudo-

Riemannian. In local coordinates z°, a tangent vector (see below § B.3) reads X = X* 821-, and
the inner product and the squared length element are given by the metric tensor g
(X,Y) = g;; X'Y7 | ds® = gjdz'da’ . (B.1)

B.3 Tangent space

In differential geometry, a tangent vector X to a manifold M at a point zq is a linear differential operator, of
first order in the derivatives in xg, acting on functions f on M. In local coordinates z°,

;0
X: f(wain o xof(:v)

and under a change of coordinates {2’} — {y'}, these operators transform by the Jacobian matrix % =

> gTI; S2- with the transformation of X* — Y7 that follows from it.
V7 |4
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Figure 1.4: The field of tangent vectors to the curve C(t) is a left-invariant vector field

Tangent vector to a curve : if a curve C(t) passes through the point zg at ¢ = 0, one may differentiate a
function f along that curve

df(C@)

dt =0

f—

which defines the tangent vector to the curve C' at point xg, also called velocity vector and denoted C’(t)|;=0 =
C’'(0).

The tangent space to M at zg, denoted T, M, is the vector space generated by the velocity vectors of all
o
ozt lxg

If a vector X, tangent to M at x is assigned for any x, this defines a vector field on the manifold M.

curves passing through zo. The space T,,M has a basis made of : it has the same dimension as M.

B.4 Lie group. Exponential map

Take a group G, e its identity. Let C(t) be a curve passing through C'(0) = e, and let X, = (C’(¢)):=o be its
velocity vector at e. For g € G, one defines the left translate g.C(t) of C by g. Its velocity at g, X4 = (9.C(t))}j—0,
is called a left translated vector of X.. The vector field g — X, is said to be left-invariant, it is the set of left
translated vectors of X.. The tangent space at e and the space of invariant vector fields are thus isomorphic,

and are both denoted g.

Conversely, given a tangent vector X, at e, let
C(t) =exptXe (B.2)

be the unique solution to the differential equation
C'(t) = Xog) (B.3)

which expresses that the curve C(¢) is tangent at any of its points to the left-invariant vector field, that equation
being supplemented by the initial condition that C'(0) = e. (This first-order differential equation has a solution,
determined up to a constant (in the group), and that constant is fixed uniquely by the initial condition.)

Let us now prove that the function exp defined by satisfies property . Note that C(t) satisfies
(B.3), and so does C(t+1t'). Thus C(t+1t') = k.C(t), (with k constant in the group), and that constant is fixed
by taking t = 0, C'(#') = k, hence C(t +t') = C(¢)C(t) and C(—t) = C(t)~, qed.

In the case of matrix groups considered in this course, the function exp is of course identical to the expo-
nential function defined by its Taylor series .

J.-B. Z M2 ICFP/Physique Théorique 2012 December 10, 2013



App. C. Invariant measure on SU(2) and on U(n) 57

Appendix C. Invariant measure on SU(2) and on U(n)

The group SU(2) being isomorphic to a sphere S* is compact and one may thus integrate a
function on the group with a wide variety of measures du(g). The invariant measure, such that
du(g.g1) = du(gi.9) = du(g=') = du(g), is, on the other hand, unique up to a factor.

A possible way to determine that measure is to consider the transformation U — U’ = U.V
where U, V and hence U’ are unitary of the form (0.10)) (i.e. U = ugl —u.0o, u € S® etc) ; if the
condition u2 +u? = 1 is momentarily relaxed (but v +v? = 1 maintained), this defines a linear
transformation u — u’ which conserves the norm det U = u2 + u? = u + u’? = det U’. This is
thus an isometry of the space R* which preserves the natural measure d*u §(u? — 1) on the unit
sphere S? of equation det U = 1. In other terms, that measure on the sphere S* gives a right
invariant measure: du(U) = dp(U.V). One may prove in a similar way that it is left invariant:
du(U) = du(V.U). Tt is also invariant under U — UL, since inversion in SU(2) amounts to the
restriction to S? of the orthogonal transformation uy — g, u — —u in R*, which preserves of

course the natural measure on S° :
dp(U) = dp(UV) = dp(VU) = dp(U) .

The explicit form of the measure depends on the chosen parametrization. If one uses the

direction n (or its two polar angles § and ¢) and the rotation angle v, one finds
I L,
du(U) = 5 sin §Sln9d’(/) df do (C.1)

normalized for SU(2) to

T 27 27
v(SU(2)) = /SU(z) du(U) = %/o de Sin«9/0 dgb/o dy sinQ% = 27 (C.2)

which is the “area” of the unit sphere S* and the volume of SU(2). For SO(3) where the angle
¢ has a range restricted to (0,), one finds instead v(SO(3)) = [ dui(g) = 7*.
The expression in any other coordinate system, like the Euler angles, is then obtained by

computing the adequate Jacobian
1
du(U) = gsinﬂda B dr . (C.3)

(Note that 0 < v < 47 for SU(2), whereas 0 < o < 27 and 0 < g < ).
Compare these results with those obtained by a different method in Chap. 0, App. 0.

e Case of U(n).
Let us discuss rapidly the case of U(n), using the method of Chap. 0, App. 0. Any unitary matrix U € U(n)
may be diagonalized in the form
U=VAVT, (C.4)

with A = diag (A1, ,\,) and the \; are in fact of modulus one, \; = e®. These \; may be regarded as
“radial” variables, while V represents the “angular” variables. Note that V has to be restricted not to commute
with the diagonal matrix A. If the latter is generic, with distinct eigenvalues A;, V' lives in U(n)/U(1)™. The
natural metric, invariant under U + U’U or +— UU’, reads tr (dUdUT). But dU = V(dA + [dX, AV,
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where dX := V1dV is anti-Hermitian (and with no diagonal elements, why?). Thus tr (AUdUT) = 3, |da;|? +
2> i<y ldXi; |%|X\i —A;|? which defines the metric tensor g,g in coordinates £* = (a;, RX;;, 3X;;) and determines

the integration measure

du(U) = \/detng«fO‘ = const. |A(e™)|? Hdaidu(V) . (C.5)

Here A(X) is the Vandermonde determinant

)\?71 )\371 . )\2—1
AN =] =N) =] ° S (C.6)
1<J )\1 )\2 e >\n
1 1 . 1

The “radial” part of the integration measure is thus given by |A(e'®)[?[[da; up to a constant factor, or
equivalently
dp(U) = const.il:gsin2 <ai;aj> Hdai x angular part . (C.7)
Note that this radial part of the measure suffices if one has to integrate over the group a function of U
which is invariant by U — VUVT, V €U(n). For example [du(U)tr P(U), with P a polynomial.
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Exercises and Problem for chapter 1

A. Action of a group on a set
A group G is said to act on a set E if there exists a homomorphism 3 of G into the group of bijections of F
into itself.

1. Write explicitly the required conditions.

One then defines the orbit O(z) of a point x € E as the set of images 5(g)x for all g € G.

2. Show that belonging to the same orbit is an equivalence relation.

3. Example : action of O(n) on R™. What are the orbits?

4. A space is homogeneous if it has only one orbit. Show that a trivial example is given by the action of
translations on R™. More generally, what can be said of the left action of G on itself, with £ =G 7 Give other
examples of homogeneous spaces for G = O(3) or £ =0(1,3).

5. One also defines the isotropy group S(x) of the element x € E, (also called stabilizer, or, by physicists,
little group): this is the subgroup of G leaving = invariant:

S(a) = {g € GlB(g)x = 2} . (1.49)

Show that if x and y belong to the same orbit, their isotropy groups are conjugate. What is the isotropy
group of a point z € R™ under the action of SO(n) ? of a time-like vector p in Minkowski space under the action
of the Lorentz group? Is S(z) an invariant subgroup?

6. Show that there exists a bijection between points of the orbit O(z) and the coset space G/S(x). For a
finite group G, deduce from it a relation between the orders (cardinalities) of G, O(x) and S(z). Is this set
G/S(x) homogeneous for the action of G 7

Chap. 2 will be devoted to the particular case where E is a vector space, with the linear transformations
of GL(E) acting as bijections: one then speaks of representations of G in E.

B. Lie groups and algebras of dimension 3.

1. Recall the definition of the group SU(1,1). What is its dimension ?

2. Which equation defines its Lie algebra? What does that imply on the matrix elements of X € su(1,1)?
Prove that one may write a basis of su(1,1) in terms of 3 Pauli matrices and compute their commutation
relations. Is this algebra isomorphic to the so(3) algebra?

3. One now considers the linear group SL(2,R). What is its definition ? How is its Lie algebra defined?
Give a basis in terms of Pauli matrices.

4. Prove the isomorphism of the two algebras su(1,1) and sl(2,R).

5. Same questions with the algebra so(2,1) : definition, dimension, commutation relations, isomorphism
with one of the previous algebras?

6. Using the Cartan criteria, discuss the semi-simplicity and the compactness of these various algebras.
What is their relationship with su(2)?

(For the geometric relationship between the groups SU(1,1), SL(2,R) et SO(1,2)), see §13 and §24, vol. 1
of [DNF].

C. Casimir operators in u(n).

1. Prove that the n? matrices taij) of size n x n, 1 <,4,j < n, with elements (t(;;))ap = dia0;p form a basis
of the algebra u(n). Compute their commutation relations and the structure constants of the algebra.

2. Compute the Killing form in that basis and check that the properties related to Cartan criteria are
satisfied.

3. Show that the elements in the envelopping algebra C(") = Elgil,iz,mz‘,.gn Livio)t(inis) **  L(iyiy) cOmMmute
with all £(;;) and are thus Casimir operators of degree r.

4. How to modify this discussion for the su(n) algebra? ([Bu], chap 10).
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60 Chap.1. Groups. Lie groups and Lie algebras

Problem : Conformal transformations

I-1. We recall that in a (classical) local, translation invariant field theory, one may define a stress-energy tensor
© ., () such that

e under an infinitesimal change of coordinates z# — z'* = z# + a#(x), the action has a variation
58 = / d?z (D,a,) OM () ; (1.50)

e O,, is conserved: 0,0""(z) =0;
e we assume that O, is symmetric in u, v.

Prove that if © is traceless, © /' = 0, the action is also invariant under dilatations, z* — ' = (14 dN\)xH.

2. In a Riemannian or pseudo-Riemannian manifold of dimension d, with a metric tensor g, () of signature
{(+1)?, (=1)4P}, a conformal transformation is a coordinate transformation x# — z# which is a local dilatation
of lengths

ds® = gy (x)dztdx” — ds" = g, (z')dz"dx’" = a(z)ds® (1.51)

a) Write the infinitesimal form of that condition, when z# — 2/ = x* + a(z). (Hint : One may relate the
dilatation parameter 1 + da to a* by taking some adequate trace.)

b) Prove that for an Euclidean or pseudo-Euclidean space of metric g, = diag {(+1)?, (—1)¢"P}, that condition
may be recast as

2
Oua, + 0ya, = Eg,wapa” . (1.52)

3. Prove, using ((1.50)1.52)), that under the conditions of 1. and 2.b, any field theory invariant under
translations, rotations and dilatations is also invariant under conformal transformations.
4. We now study consequences of {i We set D := éapap .

e a) Differentiating (1.52)) with respect to z¥, prove that
d%a, = (2 —d)0,D. (1.53)

e b) Differentiating (1.53)) w.r.t. z*, prove that in dimension d > 1, D is a harmonic function : §*D = 0.

e ¢) We assume in the following that d > 2. Differentiating (1.53)) w.r.t. =¥, symmetrizing it in g and v
and using (1.52)), prove that if d > 2, then 0,0, D = 0. Show that it implies the existence of a constant

scalar h and of a constant vector k such that D = k,z" + h.

e d) Differentiating w.r.t. 7 and antisymmetrizing it in v and o, prove that
0u(0rar — Ovao) = 2(guvko — Guoky) = 0, (2kox, — 2k, 25). (1.54)
e ¢) Show that it implies the existence of a constant skew-symmetric tensor I, such that
Oyt — Opay = (2kox, — 2k, 25) + 214y, (1.55)
which, together with (1.52)), gives
Oy = Tvko — Toky + lov + Guok,2” + hgyo -

e f) Conclude that the general expression of an infinitesimal conformal transformation in dimension d > 2
reads L
ay, = kex’x, — ixgx”k,, +lypx® + hxy, +cy (1.56)

with ¢ a constant VECtOIm On how many independent real parameters does such a transformation depend

in dimension d ?

"This pretty argument is due to Michel Bauer.
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Figure 1.5: Stereographic projection from the North pole

II-1. One learns in geometry that in the (pseudo-)Euclidean space of dimension d > 2, conformal transfor-
mations are generated by translations, rotations, dilatations and “special conformal transformations”, obtained
by composition of an inversion x# — z#/x?, a translation and again an inversion. Write the finite and the
infinitesimal forms of special conformal transformations, and show that this result is in agreement with ,
which justifies the previous assertion.

2. Write the expression of infinitesimal generators P, of translations, J,, of rotations, D of dilatations and
K, of special transformations, as differential operators in .

3. Write with the minimum of calculations the commutation relations of these generators (Hint : use
already known results on the generators P, and J,,, and make use of homogeneity and of the definition of
special conformal transformations to reduce the only non-trivial computation to that of [K,, P,]). Check that
these commutation “close” on this set of generators P, J, D and K.

4. What is the dimension of the conformal group in the Euclidean space R? ?

III-1. To understand better the nature of the conformal group, one now maps the space R%, completed by
the point at infinity and endowed with its metric x? = 23 +--- + xfl, on the sphere S%. This sphere is defined
by the equation r? + r2 41 = 1 in the space R*1 and the mapping is the stereographic projection from the
“North pole” r =0, 7441 =1 (see Fig. [1.5]). Prove that

2x xZ—1

SRR | TdHl = ey

What is the image of the point at infinity ? What is the effect of the inversion in R? on the point 7 = (r,7441) €
S 7
2. The previous sphere is in turn regarded as the section of the light-cone C in Minkowski space M 441 of

equation 23 — z2

— 22 1 = 0 by the hyperplane zp = 1. Prove that this establishes a one-to-one correspondance
between points of R U {co} and rays of the light-cone (i.e. vectors up a dilatation) and that the expression of

x € R? as a function of z = (20,2, 24+1) € C is

z
X=—".
20 — Zd+1

3. We now want to prove that the action of the conformal group in R? follows from linear transformations
in My q41 that preserve the light-cone. Without any calculation, show that these transformations must then
belong to the Lorentz group in My g41, that is O(1,d + 1).

a) What are the linear transformations of z corresponding to rotations of x in R?? Show that dilatations
of x correspond to “boosts” of rapidity S in the plane (zg, z4+1), by giving the relation between the dilatation
parameter and the rapidity.

b) Let us now consider transformations of O(1,d + 1) that preserve zy — zg4+1. Write the matrix T, of such

an infinitesimal transformation acting on coordinates (2o, 2, z4+1), and such that dz = a(zg — z441) (to first
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62 Chap.1. Groups. Lie groups and Lie algebras

order in a). To which transformation of x € R? does it correspond? Compute by exponentiation of 7T}, the
matrix of a finite transformation (Hint: compute the first powers 722, T3...).

c¢) What is finally the interpretation of the inversion in R? in the Lorentz group of M 4117 What can be
said about special conformal transformations? What is the dimension of the group O(1,d + 1)? What can be
concluded about the relation between the Lorentz group in Minkowski space M 441 and the conformal group
R%?

IV. Last question: Do you know conformal transformations in the space R? that are not of the type discussed
in I1.17
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Chapter 2

Linear representations of groups

The action of a group in a set has been mentionned in the previous chapter (see exercise A
and TD). We now focus our attention on the linear action of a group in a vector space. This
situation is frequently encountered in geometry and in physics (quantum mechanics, statistical
physics, field theory, ...). One should keep in mind, however, that other group actions may
have some physical interest: for instance the rotation group SO(n) acts on the sphere S"~! in a
non-linear way, and this is relevant for example in models of ferromagnetism and field theories

called non linear o models, see the course of F. David.

2.1 Basic definitions and properties

2.1.1 Basic definitions

A group G is said to be represented in a vector space E (on a field which for us is always R or
C), or stated differently, E carries a representation of G, if one has a homomorphism D of the

group G into the group GL(FE) of linear transformations of E:

Vge G g — D(g) € GL(F)
= D(9)-D(g) (2.1)

Vg e G D(g™*

where [ denotes the identity operator in GL(F). If the representation space E is of finite
dimension p, the representation itself is said to be of dimension p. The representation which to
any g € GG associates 1 (considered as € GL(R)) is called trivial or identity representation; it is

of dimension 1.
If G is a topological, resp. Lie, group, we will also demand that the mapping g — D(g) be continuous, resp.
differentiable. In the following, these conditions will be tacitly assumed.

The representation is said to be faithful if ker D = {e}, or equivalently if D(g) = D(¢') & g =

g'. Else, the kernel of the homomorphism is an invariant subgroup H, and the representation of
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64 Chap.2. Linear representations of groups

the quotient group G/H in E is faithful (check!). Consequently, any non trivial representation
of a simple group is faithful. Conversely, if G has an invariant subgroup H, any representation
of G/H gives a degenerate (i.e. non faithful) representation of G.

If F is of finite dimension p, one may choose a basis e¢;, i = 1, ..., p, and associate with any

g € G the representative matrix of D(g), denoted with a curly letter :

D(g)e; = e; Dij(g) (2.2)

with, as (almost) always in these notes, the convention of summation over repeated indices.
The setting of indices (i: row index, j column index) is dictated by (2.1). Indeed we have

D(g.9)er = eiDi(g.9)
D(g')ex) = D(g)ejpjk(g/)

hence  Dir(9.9) = Dij(9)Djily’) - (2.3)

Ezamples : The group SO(2) of rotations in the plane admits a dimension 2 representation,

C‘OSQ —sinf (2.4)
sinfl  cosf

which describe indeed rotations of angle # around the origin.

with matrices

The group SU(3) is defined as the set of unitary, unimodular 3 x 3 matrices U. These
matrices form by themselves a representation of SU(3), it is the “defining representation”.

Show that the complex conjugate matrices form another representation of SU(3).

Of which group do the matrices (1) C;) form a representation?

2.1.2 Equivalent representations. Characters

Take two representations D and D’ of GG in spaces £ and E’, and suppose that there exists a

linear operator V' from FE into E’ such that
Vg e G VD(g)=D'(g9)V . (2.5)

Such a V' is called an intertwining operator, or “intertwiner” in short. If V' if invertible (and
hence if F and E’ have equal dimension, if finite), we say that the representations D and D’
are equivalent. (It is an equivalence relation between representations!).

In the case of finite dimension, where one identifies £ and E’, the representative matrices
of D and D’ are related by a similarity transformation and may be considered as differing by
a change of basis. There is thus no fundamental distinction between two equivalent represen-
tations, and in representation theory, one strives to study inequivalent representations.

One calls character of a finite dimension representation the trace of the operateur D(g) :

x(g) =tr D(g) . (2.6)

It is a function of G in R or C which satisfies the following properties (check!) :

J.-B. Z M2 ICFP/Physique Théorique 2012 December 10, 2013



2.1. Basic definitions and properties 65

e The character is independent of the choice of basis in F.
e Two equivalent representations have the same character.

e The character takes the same value for all elements of a same conjugacy class of G: one

says that the character is a class function: x(g) = x(hgh™").

The converse property, namely whether any class function may be expressed in terms of
characters, is true for any finite group, and for any compact Lie group and continuous (or L?)
function on G: this is the Peter-Weyl theorem, see below § 2.3.1.

Note also that the character, evaluated for the identity element in the group, gives the

dimension of the representation
x(e) =dim D . (2.7)

2.1.3 Reducible and irreducible representations

Another redundancy is related to direct sums of representations. Assume that we have two
representations D; and Dy of G in two spaces E7 and E,. One may then construct a represen-
tation in the space F = F; @ F, and the representation is called direct sum of representations
Dy and Dy and denoted D; & D,. (Recall that any vector of Ey @& Ey may be written in a
unique way as a linear combination of a vector of E; and of a vector of Fy). The two subspaces
E; and E5 of F are clearly left separately invariant by the action of Dy & Ds.

Inversely, if a representation of G in a space E leaves invariant a subspace of F, it is said
to be reducible. Else, it is irreducible. If D is reducible and leaves both the subspace F;
and its complementary subspace Fs, invariant, one says that the representation est completely
reducible (or decomposable); one may then consider E as the direct sum of E; and Es and the

representation as a direct sum of representations in £} and Es.
When dealing with a topological or Lie group, it is suitable to add in the definition of reducibility of a
representation the condition that the invariant subspace is closed, or some condition of a similar nature, in

agreement with the group topology. This will be considered as implicit in the following.

If E is finite dimensional, this means that the matrices of the representation take the
following form (in a basis adapted to the decomposition!) with blocks of dimensions dim E;
and dim FEs

Di(9) 0
Vg e G D(g) = . (2.8)
0 Dsy(9)

If the representation is reducible but not completely reducible, (indecomposable representation),
its matrix takes the following form, in a basis made of a basis of F; and a basis of some

complementary subspace

D(g) = : (2.9)
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66 Chap.2. Linear representations of groups

This is the case of representations of the translation group in one dimension. The representation

D(a) = (1) ‘f (2.10)

is reducible, since it leaves invariant the vectors (X, 0) but it has no invariant supplementary
subspace.

On the other hand, if the reducible representation of G in E leaves invariant the subspace
E4, there exists a representation in the subspace Fy = E/E;. In the notations of equ. ([2.9)),
its matrix is Da(g).

One should stress the importance of the number field in that discussion of irreducibility.
For instance the representation which is irreducible on a space over R is not over C: it

may be rewritten by a (complex) change of basis in the form

e 0
\ (2.11)

2.1.4 Conjugate and contragredient representations

Given a representation D, D its matrix in some basis, the complex conjugate matrices D* form

another representation D*, called conjugate representation, since they also satisfy (2.3))

Diy(g-9") = Dj5(9)Djig") - (2.12)

The representation D is said to be real if there exists a basis where D = D*. This implies
that its character y is real. Conversely if x is real, the representation D is equivalent to its
conjugate D* E| If the representations D and D* are equivalent but if there no basis where
D = D*, the representations are called pseudoreal. (This is for example the case of the spin
5 representation of SU(2).) For alternative and more canonical definitions of these notions of
real and pseudoreal representations, see the Problem III.

This concept plays a key role in the study of the “chiral non-singlet anomaly” in gauge theories: if fermions
belong to a real or pseudoreal representation of the gauge group, their potential anomaly cancels, which is
determinant for the consistency of the theory. In the standard model, this comes from a balance between
contributions of quarks and leptons, see chap 5.

The contragredient representation of D is defined by

D(g)=D"""(g) (2.13)

or alternatively, D;;(g) = D;i(g~"), which does satisfy (2.3)). For a unitary representation, see next paragraph,

Dij(g) = Dj; (g9), and the contragredient representation equals the conjugate. The representations D, D* and

D are simultaneously reducible or irreducible.

IThis is true at least for the irreducible representations of finite and compact groups, for which we see below

(8 D that two non irreducible representations are equivalent iff they have the same character.
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2.1.5 Unitary representations

Suppose that the vector space E is “prehilbertian”, i.e. is endowed with a scalar product, (i.e.
a form J(z,y) = (x|y) = (y|z)*, bilinear symmetric if we work on R, or sesquilinear on C),
such that the norm be positive definite: x # 0 = (x|z) > 0. If the dimension of F is finite,
one may find an orthonormal basis where the matrix of J reduces to I and then define unitary
operators U such that UTU = I. If the space is infinite dimensional, (and is assumed to be a
separable prehilbertian spaceﬂ), one proves that one may find a countable orthonormal basis,
thus labelled by a discrete index. A representation of G in E is called unitary if for any g € G,
the operator D(g) is unitary. Then for any g € G and =,y € F

(zly) = (D(g)z|D(9)y) (2.14)
hence D(g)'D(g) = I (2.15)
and D(¢g7') = D7'(g9) = D'(g) . (2.16)

The following important properties hold:
(i) Any unitary reducible representation is completely reducible (Maschke theorem).
Proof: let E; be an invariant subspace, its complementary subspace E, = (E;), is invariant
since for all g € G, z € F; and y € Es

(z|D(g)y) = (D(g~")zly) =0 (2.17)

which proves that D(g)y € Es.
(ii) Any representation of a finite or compact group on a prehilbertian space is “unitarisable”,
i.e. equivalent to a unitary representation.

Proof: consider first a finite group and define
Q=Y Di(¢d)D(g) (2.18)
g'eG

which satisfies

DY(9)QD(g) = Y D'(g'.9)D(g'-9) = Q (2.19)

g'eG
where the “rearrangement” of >, by >, ~has been used (see §[1.2.4). The self-adjoint
operator () is positive definite (why?) and may thus be written

Q=VV (2.20)

with V' invertible. (For example, by diagonalisation of the operator () by a unitary operator,
Q = UA?UT, with A diagonal real, one may construct the “square root” V = UAUT.) The

intertwiner V' defines a representation D’ equivalent to D and unitary:
D'(g) = VD(g)V™'
D' (g)D'(9) = VITIDNg)VIVD(g)V (2:21)
VIDigQD(gv B vittQr o~ 1.

2A space is separable if it contains a dense countable subset.
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In the case of a continuous compact group, the existence of the invariant Haar measure (see §
1.2.4)) allows us to repeat the same argument with Q = [ du(g’)D'(¢')D(g). o

As a corollary of the two previous properties, any reducible representation of a finite or
compact group on a prehilbertian space is equivalent to a unitary completely reducible rep-
resentation. It thus suffices to construct and classify unitary irreducible representations. We
show below that, for a finite or compact group, these irreducible representations are finite

dimensional.

1 a
Counter-example for a non compact group: the matrices <0 1) form an indecomposable (=non completely

reducible) representation of the group R.

2.1.6 Schur lemma

Consider two irreducible representations D in £ and D’ in E’ and an intertwiner between
them, as defined in (2.5). We then have the important

Schur lemma: either V =0, or V' is a bijection and the representations are equivalent.

Proof: Suppose V' # 0. Then VD(g) = D'(g)V implies that ker V' is a subspace of E invariant
under D; by the assumption of irreducibility, it reduces to 0 (it cannot be equal to the whole
E otherwise V' would vanish). Likewise, the image of V' is a subspace of E’ invariant under
D', it cannot be {0} and thus equals E’. A classical theorem on linear operators between
vector spaces then asserts that V' is a bijection from F to E’ and the representations are thus
equivalent. ¢.e.d.

Note that if the two representations are not irreducible, this result is generally false. A counter-

example is given by the representation ([2.10) which commutes with matrices V' = (8 8)

Corollary 1. Any intertwining operator of an irreducible representation on C with itself, i.e.
any operator that commutes with all the representatives of the group, is a multiple of the
identity.

Proof: on C, V has at least one eigenvalue A; A # 0 since V is invertible by Schur lemma. The

operator V' — AI is itself an intertwining operator, but it is singular and thus vanishes.

Corollaire 2. An irreducible representation on C of an abelian group is necessarily of dimension
1.
Proof: take ¢ € G, D(¢') commutes with all D(g) since G is abelian. Thus (corollary 1)
D(¢') = A¢')I. The representation decomposes into dim D copies of the representation of
dimension 1 : g — A(g), and irreducibility imposes that dim D = 1.

Let us insist on the importance of the property of the complex field C to be algebraically

closed, in contrast with R, in these two corollaries. The representation on R of the group SO(2)

cosf —sinf

by matrices D(0) = provides counterexamples to both propositions: any matrix

sinf  cosd
D(a) commutes with D(#) but has no real eigenvalue (for # # 0,7) and the representation is

irreducible on R, although of dimension 2.
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Application of Corollary 1: in the Lie algebra of a Lie group, the Casimir operators defined in Chap. 1
commute with all infinitesimal generators and thus with all the group elements. Anticipating a little bit on a
forthcoming discussion of representations of a Lie algebra, in a unitary representation these Casimir operators
may be chosen hermitian hence diagonalisable, which allows one to apply the argument of Corollary 1: in an
irreducible representation, they are multiples of the identity. Thus for SU(2), J? = j(j + 1)I in the spin j

representation.

2.1.7 Tensor product of representations. Clebsch-Gordan decompo-
sition
Tensor product of representations

A very commonly used method to construct irreducible representations of a given group consists
in building the tensor product of known representations and decomposing it into irreducible
representations. This is the situation encountered in Quantum Mechanics, when the transfor-
mation properties of the components of a system are known and one wants to know how the
system transforms as a whole (a system of two particles of spins j; and j, for example).

Let Fy and E, be two vector spaces carrying representations D; and Dy of a group G.
The tensor product EI E = F; ® E, is the space generated by linear combinations of (tensor)
“products” of a vector of E; and a vector of Ey: z =), 2@ @ y®. The space E carries also
a representation, denoted D = D; ® D, the tensor product (one says also direct product) of
representations Dy and Ds. (See Chap. 0 for the example of the group SU(2)). On the vector

z above
D(9)z =Y _ Di(g)a” @ Dy(g)y" . (2:22)

One readily checks that the character of representation D is the product of characters y; and
X2 de Dy and Dy

x(9) = x1(9)x2(9) (2.23)

In particular, evaluating this relation for g = e, one has for finite dimensional representations

as is well known for a tensor product.

Clebsch-Gordan decomposition

The tensor product representation of two irreducible representations D and D’ is in general not
irreducible. If it is fully reducible (as is the case for the unitary representations that are our

chief concern), one performs the Clebsch-Gordan decomposition into irreducible representations
D® D' =®;D, (2.25)

where in the right hand side, certain irreducible representations Dy, -- appear. The notation

@, encompasses very different situations: summation over a finite set (for finite groups), on a

3The reader will find in Appendix D a short summary on tensor products and tensors.
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finite subset of an a priori infinite but discrete set (compact groups) or on possibly continuous
variables (non compact groups).

If GG is finite or compact and if its inequivalent irreducible representations are classified and
labelled: D), one may rather rewrite in a way showing which of these inequivalent

representations appear, and with which multiplicity
D® D' =®,m,D" . (2.26)

A more correct expression would be E® E' = &,F, ® E®) where F, is a vector space of dimension m,, the

“multiplicity space”.
The integers m, are all non negative. The equations (2.25) and (2.26) imply simple rules
on characters and dimensions

XD-XD' = ij:Zme(p) (2.27)
J

p
dimD.dim D' = ) dimD; =Y m,dim D" . (2.28)
J p

Example: the tensor product of two copies of the Euclidean space R? does not form an irre-
ducible representation of the rotation group SO(3). This space is generated by tensor products
of vectors 7 and g and one may construct the scalar product ./ which is invariant under the

group (trivial representation), a skew-symmetric rank 2 tensor
Aij = xiyj — 2y

which transforms as a dimension 3 irreducible representation (spin 1)E| and a symmetric trace-
less tensor )
Sij = Tiyj + Tjy; — §5¢jf-?7
which transforms as an irreducible representation of dimension 5 (spin 2); thus we may always
decompose
1. .. 1 1

Tiy; = 30457-Y + 5y + 55 (2.29)

the total dimension is of course 9 = 3 x 3 = 1 4 3 + 5, and labelling in that simple case the

representations by their dimension, we write
D® @ D® = DM @ DB g DO (2.30)

Or equivalently, in a “spin” notation

in which one recognizes the familiar rules of “addition of angular momentum” (see Chap. 0)

() ® (1) = &5, - (2.31)

4(such a tensor is “dual” to a vector: A;; = €2k, 2 =T X Y)
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By iteration, one finds
D¥ @ D® g DB = pW g 3DB) g2D® ¢ DO | (2.32)

with now multiplicities.
Invariants. A frequently encountered problem consists in counting the number of linearly
independent invariants (under the action of a group ) in the tensor product of certain pre-

scribed representations. This is an information contained in the decompositions into irreducible

representations like (2.26} [2.30], [2.32)), where the multiplicity of the identity representation pro-

vides this number of invariants in the product of the considered representations. Exercise :
interpret in terms of classical geometric invariants the multiplicities m; = 1,1, 3 of the identity
representation that appear in tensor products (1) ® (1), (1) ® (1) ® (1), (1) ® (1) ® (1) ® (1)
of SO(3). We shall make an extensive use of such considerations in Chap 4 on SU(3) invariant

amplitudes. See also Problem II at the end of this chapter.

Clebsch-Gordan coefficients

Formula ([2.25)) describes how the representation matrices decompose into irreducible represen-
tations under a group transformation. It is also often important to know how vectors of the

representations at hand decompose. Let e ), a =1,---,dimD®, be a basis of vectors of

representation p. One wants to expand the product of two such basis vectors, that is e ® eg),

on some egT). As representation 7 may appear m, times, one must introduce an extra index,
1=1,---,m;. One writes
egp) ® e(ﬁg) = Z Cp.050,81mv e,(YTi) : (2.33)
Tt

or with notations borrowed from Quantum Mechanics

p,aso,8) = |pa)loB) =Y (mlp,a; 0,8) 7). (2.34)

i
The coefficients C,, o;0.8r,y = (Ti7|p, s 0, 3) are the Clebsch-Gordan coefficients. In contrast
with the multiplicities m, in , they have no reason to be integers, as we saw in Chap. 0
on the case of the rotation group, nor even real in general. Suppose that we consider unitary
representations and that the bases have been chosen orthonormal. Then C.-G. coefficients
which represent a change of orthonormal basis in the space E; ® Fs satisfy orthonormality and

completeness conditions

> (e, e 0, 8) (Tl s 0,8 ) = bawbsp (2.35)
T,7Y,%
> (vl s 0,8) (7Y |9, 05 0,8)° = Grpibyyibij - (2.36)
o

This enables us to invert relation (2.34)) into

7v) =Y (7lp, s 0,8)|p,; 0, 8) (2:37)

a76
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and justifies the notation

<p,Oé; O-aﬁ|7—i7> = <Ti7‘p7a; 0-75>* (238)
) = Yo 0, Bl o 0, 8) (2.39)
a,B

Finally, applying a group transformation on both sides of (2.34) and using these relations, one

decomposes the product of matrices D) and D) in a quite explicit way

DYDY = 3 (mrlp.aso, B) (1 |p, o5 0, 8) DT (2.40)

s
T"y’,\/ ’1’

We shall see below (§[2.4.4)) an application of these formulae to Wigner-Eckart theorem.

2.1.8 Decomposition of a group representation into irreducible rep-

resentations of a subgroup

Let H be a subgroup of a group G, then any representation D of G may be restricted to H

and yields a representation D’ of the latter
Vh e H D'(h) = D(h) . (2.41)

This is a very common method to build representations of H, once those of G are known. In
general, if D is irreducible (on G), D’ is not (on H), and once again the question arises of its
decomposition into irreducible representations. For example, given a finite subgroup of SU(2),
one wants to set up the (finite, as we see below) list of its irreducible representations, starting
from those of SU(2).

Another instance frequently encountered in physics: a symmetry group G is “broken” into a
subgroup H; how do the representations of G' decompose into representations of H? Examples:
in solid state physics, the “point group” G C SO(3) of symmetry (of rotations and reflexions)
of a crystal is broken down to H by an external field; in particle physics, we shall encounter in

Chap. 4 and 5 the instances of SU(2)C SU(3); U(1)xSU(2)x SU(3) c SU(5), etc.

2.2 Representations of Lie algebras

2.2.1 Definition. Universality

The notion of representation also applies to Lie algebras.

A representation of a Lie algebra g in a vector space E is by definition a homomorphism of
g into the Lie algebra of linear operators on the space E, i.e. amap X € g— d(X) € End F
which respects linearity and Lie bracket X,Y € g, [X, Y] — d([X,Y]) = [d(X),d(Y)] € End V.
A corollary of this definition is that in any representation of the algebra, the (representatives

of) generators satisfy the same commutation relations. In other words, in appropriate bases,
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the structure constants are the same in all representations. More precisely, if t; is a basis of g,
with [t;, ;] = C;;*ty, and if T; = d(t;) is its image by the representation d
(T, T3] = [d(ts), d(t;)] = d([ts, t;]) = Cy "d(ts) = C;;* T .

v

Thus calculations carried in some particular representation and involving only commutation
rules of the Lie algebra remain valid in any representation. We have seen in Chap. 0, §[0.2.2
an illustration of this universality property. In contrast, Casimir operators take different values
in different irreducible representations.

In parallel with the definitions of sect. one defines the notions of faithful representation
of a Lie algebra (its kernel ker d = {X|d(X) = 0} reduces to the element 0 of g), of reducible

or irreducible representation (existence or not of an invariant subspace), etc.

2.2.2 Representations of a Lie group and of its Lie algebra

Any differentiable representation D of G into a space E gives a map d of the Lie algebra g into
the algebra of operators on E. It is obtained by taking the infinitesimal form of D(g), with
g(t) = T +1X (or g = )

d
d(X):=—| D(g(t 2.42
()= 2| Do) (2.2
or, for t infinitesimal,
D(etX) = 40 (2.43)

Let us show that this map is indeed compatible with the Lie bracket, thus giving a representation
of the Lie algebra. For this purpose, we repeat the discussion of chap. 1, § to build the
commutator in a natural way. Let g(t) = e!* and h(u) = ¥ be two one-parameter subgroups,
for ¢t and v infinitesimally small and of same order. We have e/Xe"Ve XY = ¢Z with
Z =ut[X,Y]+---, whence

ed(Z) _ D(GZ) _ D<€tXeuYe—tX€—uY) _ D(etX)D<€uY)D(e—tX)D(e—uY)
etd(X)eud(Y)e—td(X)e—ud(Y)

(uHAX) A ) (2.44)

and by identification of the leading terms, d([X,Y]) = [d(X),d(Y)], qed.

o This connection between a representation of G and a representation of g applies in particular
to a representation of G which plays a special role, the adjoint representation of G into its Lie
algebra g. It is defined by the following action

Xeg DY(g)(X)=gXg ", (2.45)

which we denote Ad g X. (The right hand side of must be understood either as resulting
from the derivative at t = 0 of geX¢g~!, or, following the standpoint of these notes, as a matrix
multiplication, since then the matrices g and X act in the same space.)

The adjoint representation of G gives rise to a representation of g in the space g, also
called adjoint representation. It is obtained by taking the infinitesimal form of , formally
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g =1 +tY, or by considering the one-parameter subgroup generated by Y € g, g(t) = exptY
and by calculating Ad g(t)X = g(t)Xg ' (t) = X +t[Y, X]+ O(#?) (cf. Chap. 1 (1.29)), whence

Lndgt)x| = x]=adv X . (2.46)

t=0
where we recover (and justify) our notation ad of Chap. 1.

Exercise: show that matrices T} defined by (T})’ = C’ikj satisfy commutation relations of
the Lie algebra as a consequence of the Jacobi identity, and thus form a basis of generators in

the adjoint representation.

Remark. To a unitary representation of G corresponds a representation of g by antihermitian operators

(19X

(or matrices). Physicists, who love Hermitian operators, usually include an “” in front of the infinitesimal
generators: for example e~ [J,, Jy] = i€qpe e, ete.

o Conversely, a representation of a Lie algebra g generates a representation of the unique
connected and simply connected group G whose Lie algebra is g. In other words if X 2, d(X)

X e4X) is a representation of that group. Indeed, the

is a representation of the algebra, e
BCH formula being “universal”, i.e. involving only linear combinations of brackets in the Lie

algebra, and being thus insensitive to the representation of g, we have:

eXo¥ — oZ y pd(X) dY) _ ,d(2) 7

showing that the homomorphism of Lie algebras integrates into a group homomorphism in
the neighbourhood of the identity. One finally proves that such a local homomorphism of
a connected and simply connected group G into a group G’ (here, the linear group GL(FE))
extends in a unique way into an infinitely differentiable homomorphism of the whole G into
G’'. To summarize, in order to find the (possibly unitary) representations of the group G it is
sufficient to find the representations by (possibly antihermitian) operators of its Lie algebra.

This fundamental principle has already been illustrated in Chap. 0 on the concrete cases of
SU(2) and SL(2,C).

2.3 Representations of compact Lie groups

In this section, we study the representations of compact groups on the field C of complex
numbers. Most of the results rely on the fact that one may integrate over the group with the
Haar measure dy(g). Occasionally, we will compare with the non compact case. It is thus useful
to have in mind two archetypical cases: the compact group U(1)= {e*} with z € R/27Z (an
angle modulo 27), and the non compact group R, the additive group of real numbers. The case

of finite groups, very close to that of compact groups, will be briefly mentionned at the end.

2.3.1 Orthogonality and completeness

Let G be a compact group. We shall admit that its inequivalent irreducible representations are

labelled by a discrete index, written in upper position: D). These representations are a priori
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of finite or infinite dimension —in fact we shall see below that the dimension n, of D) is finite.

In a finite or countable basis, the matrices D&’g may be assumed to be unitary, according to

the result of § (In contrast, a generic representation of a non compact compact depends
on a continuous parameter. And we shall see that its unitary representations are necessarily of

infinite dimension.)

In our two cases of reference, the irreducible representations of U(1) (hence of dimension 1 for this abelian
group) are such that D) (z)D®) (z') = D®) (x4 '), they are of the form D®¥)(z) = ¢** with k € Z, the latter
condition to make the representation single valued when one changes the determination z — x + 27n. For
ikx

G = R, one may also take x — €***, but nothing restricts k € C, except unitarity which imposes k € R.

Theorem: For a compact group, the matrices Dgg satisfy the following orthogonality properties
dp(9) o) (p')* 1

D (g)D.1 = — 0,0 000’035 247

/ U(G) aB(g) o' (g) n, PP 8o ( )

and their characters satisfy thus

/ i’;g];x(p)(g)x(”')*(g) = 0oy - (2.48)

In these formulae, du(g) denotes the Haar measure and v(G) = [ du(g) is the “volume of the

group”.
Proof: Take M an arbitrary matrix of dimension n, x n, and consider the matrix

V= / dyu(g') D (¢ ) D () (2.49)

The left hand side of (2.47)) is (up to a facteur v(G)) the derivative with respect to Mgy of
Vier- The representations being unitary, Df(g) = D(g7!), it is easy, using the left invariance of

the measure du(g') = du(gg’), to check that V' satisfies
VD) (g) = D) (g)V (2.50)

for all g € G. By Schur lemma, the matrix V' is thus vanishing if representations p and p’ are
different, and a multiple of the identity if p = p'.
a) In the former case, choosing a matrix M whose only non vanishing element is Mgg = 1 and
identifying the matrix element V., one finds the orthogonality condition with d,, = 0.
b) If p = p, choose first My; = 1, the other Mgz vanishing. One has V' = ¢;I, where the
coefficient ¢; is determined by taking the trace: ¢;n, = v(G)D11(I) = v(G), which proves that
the dimension n, is finite.
c) Repeating the argument with an arbitrary matrix M, one finds again V' = ¢y, I and one
computes ¢y by taking the trace: cyn, = v(G)tr M, which, upon differentiation wrt Mpgga,
leads to the orthonormality ([2.47), qed.

The proposition then follows simply from the previous one by taking the trace on
a=Fand o/ =[.

Let us stress two important consequences of that discussion:
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e we just saw that any irreducible (and unitary) representation of a compact group is of

finite dimension;

e the relation (2.48) implies that two irreducible representations D®) and D) are equiva-
lent (in fact identical, according to our labelling convention) iff their characters are equal:

Case of a non compact group

A large part of the previous calculation still applies to a non compact group, provided it has a left invariant
measure (which holds true for a wide class of groups, cf Chap. 1, end of § and if the representation is in
a prehilbertian separable space, hence with a discrete basis, and is square integrable: D,s € L?(G). Choosing
M as in b), one finds again [ du(g) = ¢1 trI. In the lhs, the integral over the group (“volume of the group” G)
diverges. In the rhs, tr I, the dimension of the representation, is thus infinite.

More generally, one may assert
Any unitary square integrable representation of a non compact group is of infinite dimension.

Of course, the trivial representation g — 1 (which is not in L?(G)) evades the argument.

Let us test these results on the two cases U(1) and R. For the unitary representation e
of U(1), the relation (2.47)) (or (2.48)), which makes no difference for these representations of

dimension 1) expresses that
2m d
xXr . T
/ _ezkme tk's 5kk’ 7
0

2T

as is well known. On the other hand on R it would lead to

/ dze* e %' = ons(k — k')

—0o0

with a Dirac function. Of course this expression is meaningless for k = £/, the representation

is not square integrable.

Completeness.

We return to compact groups. One may prove that the matrices Dgg (g) also satisfy a com-

pleteness property

> n,DL(9)DL) () = v(G)dlg.9) . (2.51)

pya,B

or stated differently

> n,DY)(g)D anx (9-97) = v(G)d(g,9) .51y

Py,

where 6(g, ¢') is the Dirac distribution adapted to the Haar measure, i.e. such that [ du(g’)f(¢')0(g,9') =
f(g) for any sufficiently regular function f on G.
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This completeness property is important: it tells us that any C-valued function on the

group, continuous or square integrable, may be expanded on the functions D&g (9)

0= [ autet0.000) = Xm0 [ LD 21 g110) = 3 m 2015

pa,B P8
(2.52)
This is the Peter—Weyl theorem, a non trivial statement that we admitﬂ A corollary then
asserts that characters x(?) of a compact group form a complete system of class functions, i.e.
invariant under g — hgh™'. In other words, any continuous (or L?) class function can be
expanded of irreducible characters.
Let us prove the latter assertion. If f is a continuous class function, f(g) = f(hgh™!), we apply the Peter-Weyl
theorem and examine the integral appearing in :

19 = [ HGsemie) = [T o vy

v(G) A
- [ B gyl i
— [ 1P ) vuatrs by
[ A 1 ()0 259

from which it follows that (2.52)) reduces to an expansion on characters, qed.

Let us test these completeness relations again in the case of U(1). They express that

Z ehretha’ — onp(x — o) (2.54)
k=—o00
where dp(z — 2') = > 2 0(x — 2’ — 27{) is the periodic Dirac distribution (alias “Dirac’s
comb”). Then ([2.52)) means that any 2r-periodic function (with adequate regularity conditions)

may be represented by its Fourier series

oo

fay =Y e fo = / e (2.55)

k=—o00

For the non compact group R, the completeness relation (which is still true in that case)

amounts to a Fourier transformation
fla) = [ avfae = [ S e (250

Peter-Weyl theorem for an arbitrary group is thus a generalization of Fourier decompositions.
The SO(2) rotation group in the plane is isomorphic to the U(1) group. If we look at real representations,

their dimension is no longer equal to 1 but to 2 (except the trivial representation)

k —sink
DW(a) = Cf)s @ Tomaa , keN* , x®(a) =2coska (2.57)
sinka  coska

What are now the orthogonality and completeness relations?

5For a proof, see for example, T. Brécker and T. tom Dieck, see bibliography at the end of this chapter
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2.3.2 Consequences

For a compact group,

(i) any representation being completely reducible, its character reads
X = Z m,x?) (2.58)
P

and multiplicities may be computed by

m, = / Cffzg)) x(9)x"*(g) . (2.59)

One also has [|x||* := f(ff(L_(G%)W(g)P = >, m2, an integer greater or equal to 1. Thus a rep-
resentation is irreducible iff its character satisfies the condition ||x||*> = 1. At any rate the
computation of ||x||* gives indications on the number of irreducible representations appearing
in the decomposition of the representation of character y, a very useful information in the
contexts mentionned in §[2.1.7] and 2.1.8]

More generally, any class function may be expanded on irreducible characters (Peter-Weyl).

(ii) In a similar way one may determine multiplicities in the Clebsch-Gordan decomposition
of a direct product of two representations by projecting the product of their characters on

irreducible characters. Let us illustrate this on the product of two irreducible representations

p and o
DY g DY = @ m DT (2.60)
X(P)X(U) _ ZmTX(T) (2.61)
A1(9) ()¢ N o)y ()
. o D (g) | 2.62
m / (@) ¥ (X' (9)x"(9) (2.62)

and hence the representation 7 appears in the product p ® o with the same multiplicity as ¢* in
p®T1*. Exercise: show that the identity representation appears in the product p® o iff 0 = p*,

the complex conjugate of representation p as in sect. 2.1.4.

Case of SU(2)

It is a good exercise to understand how the different properties discussed in this section are
realized by representation matrices of SU(2). This will be discussed in detail in TD and in
App. E.

2.3.3 Case of finite groups

We discuss only briefly the case of finite groups. Theorems (2.47] [2.48] [2.51]) and their conse-

quences ([2.58 [2.59] [2.60]), which are based on the existence of an invariant measure, remain of

course valid. It suffices to replace in these theorems the group volume v(G) by the order |G|
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(=number of elements) of G, and [ du(g) by 3_ ¢

1
Z D ’ﬁ’ (g) = n—5pp/5aa/5ﬁg/ (2.63)
gEG 4
n .,
Z ’é)|D é/?ﬁ) (9) = dgg - (2.64)

py, 3

But representations of finite groups enjoy additional properties. Let us show that the dimensions

of inequivalent irreducible representations verify
> ni=|al. (2.65)
P

This follows from the fact that the system of equations ([2.6312.64)) expresses that the matrix
1
Upop.g = (%)2 Dfm( ) of dimensions Y- n? x |G| satisfies UUt = I, U'U = I, which is
possible only if it is a square matrix, ged.

Moreover

Proposition. The number r of inequivalent irreducible representations is finite and is equal
to the number m of classes C; in the group.

Proof: Denoting X§-p ) the value of character x) in class C;, one may rewrite the orthogonality

and completeness properties of characters as
‘G| Z |C |sz)Xz = 5pp’ (266&)

C
:42Wﬁ_%. (2.66D)

(Exercise : derive the second relation from (2.52)) and ([2.53)), applied to a finite group.)

But once again, these relations mean that the matrix IC,; := <%> Xz ) of dimensions 7 x m

satisfies KT = I, KTKC = I, thus is a square (and unitary) matrix, m = r, qed.

The character table of a finite group is the square table made of the (real or complex) numbers Xl(-p ),
p=1---r i=1,--- ,m=r. Its rows and columns satisfy the orthogonality properties .

We illustrate it on the example of the group 7', subgroup of the rotation group SO(3) leaving invariant
a regular tetrahedron. This group of order 12 has 4 conjugacy classes C;, that of the identity, that of the 3
rotations of 7 around an axis joining the middles of opposite edges, that of the 4 rotations of 27r/3 around an
axis passing through a vertex, and that of the 4 rotations of —27/3, see Fig. .

This group has 4 irreducible representations, and one easily checks using that their dimensions can
only be n, = 1,1,1 and 3. The character table is thus a 4 x 4 table, of which one row is already known, that
of the identity representation D;, and one column, that of dimensions n,. The spin 1 representation of SO(3)

yields a dimension 3 representation of T' whose character x takes the values x; = 1+ 2cos6; = (3,—1,0,0) in
2=

= 1 and this character is irreducible.

the four classes ; according to the criterion of § 2.3.2, [|[x|* =Y, IG\
This gives a second row (called D). The spin 2 representation of SO(3) gives a representation of dimension 5
which is reducible (same criterion) into a sum of 3 irreps, and is orthogonal to D;. This is the sum of rows Do,
D5 and Dy, in which j = e2™/3, with j + j2 = —1.
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| irreps. p\ Classes C; — || C(0) | C(m) | C(3F) | C(—%F)
D, 1 1 1 1
D, 1 1 j 52
Ds 1 1 j? J
D, 3 -1 0 0

| [T I I I

Check that relations (2.66) are satisfied. Explain why the group T is nothing else than the alternate group
Ay of even permutations of 4 objects.

2.3.4 Recap

For a compact group, any irreducible representation is of finite dimension and equivalent to
a unitary representation. Its matrix elements and characters satisfy orthogonality and com-
pleteness relations. The set of irreducible representations is discrete.

For a finite group, (a case very superficially treated in this course), the same orthogonality
and completeness properties are satisfied. And one has additional properties, for example
the number of inequivalent irreducible representations is finite, and equal to the number of
conjugacy classes of the group.

For a non compact group, the unitary representations are generally of infinite dimension.
(On the other hand there may exist non unitary finite dimensional representations, see for
instance the case of SL(2,C) in Chap. 0). The set of irreducible representations is indexed by

discrete and continuous parameters.

2.4 Projective representations. Wigner theorem.

2.4.1 Definition

A projective representation of a group G is a linear representation up to a phase of that group

(here we restrict ourselves to unitary representations). For g, go € G, one has

U(g1)U(g2) = eig(gl’g2)U(ng2) . (2.67)
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One may always choose U(e) = I, and thus Vg ((e,g) = ((g,e) = 0. One may also redefine
U(g) — U'(g) = e9U(g), which changes

C(g1,92) — ¢'(91,92) = (g1, 92) + (1) + a(g2) — a(g1g2) - (2.68)

The function (g1, 92) of G x G in R is what is called a 2-cochain. It is closed (and it is thus called 2-cocycle)

because of the associativity property:

Vg1, 92,93 (0¢€)(91,92,93) := C(g1,92) + (9192, 93) — ((g2,93) — ((g1,9293) =0 (2.69)

(check it). In general, for a n-cochain (g1, - ,gn), one defines the operator 0 which takes n-cochains to

n + 1-cochains:

n

@) (g1: -+ 2 gnt1) = D_(=1)" (g1, 92, (9igir1)s -+ Gn1) = ©(g2, -+ s gnr1) + (1) 0(g1,-  gn) -
=1

For a 1-cochain a(g), dalgr,92) = a(g192) — alg1) — a(gz), and hence reads ¢ = ¢ — Oa.

Check that 9% = 0.

The questions whether representation U(g) is intrinsically projective, or may be brought back to an ordinary
representation by a change of phase amounts to knowing if the cocycle ( is trivial, i.e. if there exists a(g) such
that in , ¢’ = 0. In other words, is the 2-cocycle ¢, which is closed (9¢ = 0) by , also exact, i.e. of
the form ¢ = da? This is a typical problem of cohomology. Cohomology of Lie groups is a broad and much
studied subject, ...on which we won’t dwell in these lectures.

One may summarize a fairly long and complex discussion (sketched below in § by
saying that for a semi-simple group G, such as SO(n), the origin of the projective representations
is to be found in the non simple-connectivity of GG. Indeed, in the case of a non simply connected
group G, the unitary representations of é, its universal covering, give representations up to a
phase of G. For example, one recovers that the projective representations of SO(3) (up to a
sign) are representations of SU(2). This is also the case of the proper orthochronous subgroup
L'L of the Lorentz group O(1,3), the universal covering of which is SL(2,C).

Before we proceed, it is legitimate to ask the question: why are projective representations
of interest for the physicist? The reason is that transformations of a quantum system make use

of them, as we shall now see.

2.4.2 Wigner theorem

Consider a quantum system, the (pure) states of which are represented by rayﬁ of a Hilbert
space H, and in which the observables are self-adjoint operators on H. Suppose there exists a

transformation g of the system (states and observables) which leave unchanged the quantities

[{PlA )2, de.
V) = [¢) . A—9A suchthat  |[(g[AJy)| = [(“0]PA[7¢)] . (2.70)

One then proves the following theorem

6ray = vector up to scalar, or up to a phase if normalized
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Wigner theorem: If a bijection between rays and between auto-adjoint operators of a

Hilbert space 'H preserves the modules of scalar products

(ol A[0) [ = [(“olPAl7P)] , (2.71)

then this bijection is realized by an operator U(g), linear or antilinear, unitary on H, and

unique up to a phase, i.e.

90) =Ulg)le), ‘A=U(g)AU(g) ; Ulg)U(g) =U(g)'U(g) =1.  (2.72)

Recall first what is meant by antilinear operator. Such an operator satisfies

UAe) + ple) = NU[9) + p*Ul) (2.73)

and its adjoint is defined by

(DlUTw) = (Uglv)" = (¢|US) (2.74)

so as to be consistent with linearity
(AUT) = X (o|UT|y) . (2.75)

If it is also unitary,

(Plo)* = (olv) = (oIUUW) = (Ug|Up)* (2.76)
hence (Ug|Uy) = (1)]8).

The proof of the theorem is a bit cumbersome. It consists in showing that given an orthonor-
mal basis |1y ) in H, one may find representatives |[91);) of the transformed rays such that a
representative of the transformed ray of > cx|t) is D ¢,|9¢x) with either all the ¢}, = ¢, or
all the ¢}, = ¢}. Stated differently, the action [¢)) — |9 ) is on the whole H either linear, or
antilinear.

Once the transformation of states by the operator U(g) is known, one determines that of
observables: 94 = U(g)AUT(g) so as to have

(9ol APPy) = (Ug|UAUTUY) (2.77)
= (|UTUAUTU | ) (2.78)
= (¢|Aly)* (2.79)

with # = nothing or * depending on whether U is linear or antilinear.

The antilinear case is not of academic interest. One encounters it in the study of time
reversal.
The T operation leaves unchanged the position operator x, but changes the sign of velocities, hence of the

momentum vector p
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2.4. Projective representations. Wigner theorem. 83

The canonical commutation relations are consistent with 7" only if U(T") is antilinear

[5, 0] = —lzj,pu] = —ihdjk (2.82)
= UMz, pJUNT) = U(T)ihd ;U (T) (2.83)
Another argument: U(T) commutes with time translations, the generator of which is ¢ times the Hamiltonian:

U(T)iHUY(T) = —iH (since t — —t). If U were linear, one would conclude that UHU' = —H, something

embarrassing if the spectrum of H is bounded from below, Spec(H) > E,,n, as in any decent physical system!

The transformations of a quantum system, ¢.e. the bijections of Wigner theorem, form a
group G: if g; and gy are two such bijections, their composition g; g, is another one, and so is
gy ' By virtue of the unicity up to a phase of U(g) in the theorem, the operators U(g) (that will
be assumed linear in the following) thus form a representation up to a phase, i.e. a projective

representation of G.

An important point of terminology

Up to this point, we have been discussing transformations of a quantum system without any
assumption on its possible invariance under these transformations, 7.e. on the way they affect
(or not) its dynamics. These transformations may be considered from an active standpoint:
the original system is compared with the transformed system, or from a passive standpoint:
the same system is examined in two different coordinate systems (two observers) obtained from

one another by the transformation.

2.4.3 Invariances of a quantum system

Suppose now that under the action of some group of transformations GG, the systeme is invariant,

in the sense that its dynamics, controlled by its Hamiltonian H, is unchanged. Let us write
H=U(g)HU'(g)

or alternatively

[H,U(g)] =0 . (2.84)

An invariance (or symmetry) of a quantum system under the action of a group G is thus defined
as the existence of a unitary projective (linear ou antilinear) representation of that group in
the space of states, that commutes with the Hamiltonian.

e This situation implies the existence of conservation laws. To see that, note that any

observable function of the U(g) commutes with H, and is thus a conserved quantity

m% — [F(U(g)), H] =0 (2.85)

and each of its eigenvalues is a “good quantum number”: if the system is in an eigenspace V
of F at time ¢, it stays in V in its time evolution. If G is a Lie group, take g an infinitesimal

transformation and denote by T' the infinitesimal generators in the representation under study,

Ulg)=1—i6T;
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84 Chap.2. Linear representations of groups

(where one chose self-adjoint T" to have U unitary), the T} are observables that commute with
H, hence conserved quantities, but in general not simultaneously measurable.

Examples.
Translation group — P, energy-momentum; rotation group — M, angular momentum.
Note also that these operators T; which realise in the quantum theory the infinitesimal opera-
tions of the group G form a representation of the Lie algebra g. One may thus state that they
satisfy the commutation relations

T3, Ty = iC,f Ty (2.86)

wsn
]

(with an because one chose to consider Hermitian operators). The maximal number of
these operators that may be simultaneously diagonalised, hence of these conserved quantities
that may be fixed, depends on the structure of g and of these commutation relations.

e On the other hand, the assumption of invariance made above has another consequence, of
frequent and important application. If the space of states H which “carries” a representation of
a group G is decomposed into irreducible representations, in each space E), assumed first to
be of multiplicity 1, the Hamiltonian is a multiple of the identity operator, by Schur’s lemma.
One has thus a complete information on the nature of the spectrum: eigenspace E®) and
multiplicity of the eigenvalue £, of H equal to dim E®) . If some representation spaces E()
appear with a multiplicity m, larger than 1, one has still to diagonalise H in the sum of these
spaces @; E(»%) which is certainly easier than the original diagonalisation problem in the initial
space H. We shall see below that the Wigner-Eckart theorem allows us to simplify this last
step. Group theory has thus considerably simplified our task, although it does not give the

values of the eigenvalues &,,.

In that discussion, we have focused on the Hamiltonian point of view. As is well known, there is a parallel
discussion in the — classical or quantum — Lagrangian formalism. There invariances of the Lagrangian (or of
the action) imply the existence of divergenceless Noether currents and of conserved quantities.

2.4.4 Transformations of observables. Wigner—Eckart theorem

According to (2.72), the transformation of an operator on H obeys: A — U(g)AU(g)!. Suppose
we are given a set of such operators, A,, a = 1,2, -, transforming linearly among themselves,

1.e. spanning a representation:

Ao = U(9)AaU(9)" = AwDaalyg) - (2.87)

If the representation D is irreducible, the operators A, form what is called an irreducible op-
erator (or irreducible “tensor”).
For example, in atomic physics, the angular momentum J and the electric dipole moment

>, @iT; are operators transforming like vectors under rotations.

"It may happen that the multiplicity of some eigenvalue &, of H is higher than m,, either because of the
existence of a symmetry group larger than GG, or because some representations come in complex conjugate pairs,

or for some “accidental” reason.
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Using the notations of section 2.2, suppose that the A, transform by the irreducible represen-
tation D) and apply them on states |¢3) transforming according to the irreducible represen-

tation D). The resulting state transforms as

U(g)AaloB) = U(g) AU (9) U (g)|03) = D% (9)DY) (g)Aaf|0'ﬁ’> (2.88)

that is, according to the tensor product of representations D) and D(®). Following (2.40)), one
may decompose on irreducible representations

D)D) = Y (tlp ;0. 5)(77 lp,as0, 8) DI (g) - (2:89)
T,y 8
Suppose now that the group G is compact (or finite). The representation matrices satisfy the

orthogonality property (2.47)). One may thus write

(TlAaloB) = (|U(9)'U(9)AaloB) VgeG

d‘(“ ))<W|U(9)TU(9)Aa|06>

)Z DO (g)( 7| Aurlo YDLL(0) D) (9)

Il
|H\\

o By
- Z (Trlp, a0, B) {7y |p, oy 0, 8 ) (7 | Awlo) . (2.90)
T o B A
Introduce the notation
(Tl Allo)i=— Z 7Y |p, o’y 0, B7) (7o [ A0 B - (2.91)
7ﬂ/ !
It follows that (Wigner—Eckart theorem):
(T]4alof) =D (T || Allo)i{Tlp 50, ) (2.92)
i=1

in which the “reduced matrix elements” (. || A || .); are independent of a, 3,~. The matrix
element of the lhs in (2.92)) vanishes if the Clebsch-Gordan coefficient is zero, (in particular
if the representation 7 does not appear in the product of p and o). This theorem has many
consequences in atomic and nuclear physics, where it gives rise to “selection rules”. See for
example in Appendix E.3 the case of the electric multipole moment operators.

This theorem enables us also to simplify the diagonalisation problem of the Hamiltonian H
mentionned at the end of § , when a representation space appears with a multiplicity m,.
Labelling by an index ¢ = 1,---m, the various copies of representation p, one has thanks to
(12.92))

(pailH|pa/i") = baor(pi | H || pi") (2.93)
and the problem boils down to the diagonalisation of a m, x m, matrix.

Exercise. For the group SO(3), let K}* be the components of an irreducible vector operator (for example,
the electric dipole moment of Appendix E.3). Using Wigner-Eckart theorem show that

(J.K);
3G +1)

where (f K ); denotes the expectation value of J.K in state j- In other terms, one may replace K by its

projection JLLE )

<j7m1|Kim‘jam2> <.7am1|J L|Jam2> (294)

J+1) -
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86 Chap.2. Linear representations of groups

2.4.5 Infinitesimal form of a projective representation. Central ex-
tension

If G is a Lie group of Lie algebra g, let ¢, be a basis of g
[ta,ts] = Cpplte -

In a projective representation ([2.67)), let us examine the composition of two infinitesimal transformations of the
form I + at, and I + Bty. As (I, 9) =((g,I) =0, {(I + ats, I + Ptp) is of order af

iC(I + ate, I + Bty) = afzap - (2.95)
The t, are represented by T,, and by expanding to second order, we find

e—z‘((1+ata,,1+ﬂtb)U(eata)U(eﬁtb) U (eataeﬁtb) —U (e(ata+[3tb)e%o¢[3[ta,tb])
and thus, with U(e*a) = e®Ta etc,
1 1.
Oéﬂ (ZabI -+ i[TaJTb} — ioab Tc> = 0

(which proves that z,, must be antisymmetric in a,b). One thus finds that the commutation relations of T are

modified by a central term (i.e. commuting with all the other generators)
[Ta; Tb] - CabcTc —+ 22’(1[,[ .

The existence of projective representations may thus imply the realization of a central extension of the Lie
algebra. Onme calls that way the new Lie algebra generated by the T, and by one or several new generator(s)

Cyp commuting with all the T, (and among themselves)
[Ta, Tb} = CabcTc + Cuwp [Oab; TC} =0 [Cab, Ocd] =0. (2.96)

(In an irreducible representation of the algebra, Schur’s lemma ensures that C,, = cqpl.) The triviality (or
non-triviality) of the cocycle ¢ translates in infinitesimal form into the possibility (or impossibility) of getting
rid of the central term by a redefinition of the T'

To—To=Ti+Xe [Ta,Tp) =C,°T. , (2.97)

in a way consistent with the contraints on the C ,° and C,; coming from the Jacobi identity.

Exercise. Write the constraint that the Jacobi identity puts on the constants C,,° and Cyp. Show that
Cup = C,°D, gives a solution and that a redefinition such as is then possible.

One proves (Bargmann) that for a connected Lie group G, the cocycles are trivial if

1. there exists no non-trivial central extension of g;
2. @ is simply connected.

As for point 1), a theorem of Bargmann tells us that there is no non-trivial central extension for any semi-
simple algebra, like those of the classical groups SU(n), SO(n), Sp(2n). It is thus point 2) which is relevant.

If the group G is not simply connected, one studies the (say unitary) representations of its universal covering
G, which are representations up to a phase of G (the group 7 (G) = G/G is represented on U(1)). This is the
case of the groups SO(n) and their universal covering Spin(n), (for example SO(3)), or of the Lorentz group
0(1,3), as recalled above.
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A short bibliography (cont’d)
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For a proof of Wigner theorem, see E. Wigner, [Wi], or A. Messiah, [M] vol. 2, p 774, or S.
Weinberg, [Wf] chap 2, app A.
On projective representations, see

[Ba] V. Bargmann, Ann. Math. 59 (1954) 1-46, or

S. Weinberg [Wf] Chap 2.7.

Appendix D. ‘Tensors, you said tensors?’

The word “tensor” covers several related but not quite identical concepts. The aim of this

appendix is to (try to) clarify these matters. ..

D.1. Algebraic definition

Given two vector spaces E and F', their tensor product is by definition the vector space £ ® F'
generated by the pairs (z,y), v € E, y € F, denoted x ® y. An element of £ ® F thus reads

2= 32l @y (D.1)

with a finite sum over vectors z(® € E, y(® € F (a possible scalar coefficient \, has been
absorbed into a redefinition of the vector (™).
If A, resp. B, is a linear operator acting in E, resp. F', A® B is the linear operator acting

in £ ® F according to

A® B(z®y) Azr ® By (D.2)
A® B Z(x(o‘) 2y™) = Z Az @ By (D.3)

In particular if £ and F' have two bases e; and f;, z =2 ®@y = Z” z'y’e; f;, the basis E @ F
and the components of z are labelled by pairs of indices (i,7), and A ® B is described in that

basis by a matrix which is read off

(A ® B)Z = Z Aii/Bjj/l'i,yjleifj = (A X B)ii/;jjlzi/jlei X fj (D4)

R
T”Z ’J’J
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88 Chap.2. Linear representations of groups

thus
(A® B)ijirje = Aw By (D.5)

a formula which is sometimes taken as a definition of tensor product of two matrices.

D.2. Group action

If a group G has representations D and D’ in two vector spaces E and F', x € E +— D(g)z =
e;D;;x?, and likewise for y € F', the tensor product representation D ® D’ in E ® F is defined
by
D(g) ® D'(g)(z @ y) = D(g)r ® D'(g)y (D.6)
in accord with . The matrix of D ® D' in a basis e; ® f; is DZ-Z-/D;j,.
Another way of saying it is: if z “transforms by the representation D” and y by D', under
the action of g € G, i.e. 2’ = D(g)z, v = D'(9)y, t @ y — 2’ @ ¢/, with

(@' @y)7 = a'y = DyDjya"y’, (D.7)

another formula sometimes taken as a definition of a tensor (under the action of G).

The previous construction of rank 2 tensors z“ may be iterated to make tensor products
Ey ® By ® -+ E, and rank p tensors z'*". This is what we did in Chap. 0, §[0.3.3 in the
construction of the representations of SU(2) by symmetrized tensor products of the spin %
representation, or in § for those of SL(2,C), by symmetrized tensor products of the two

representations with pointed or unpointed indices, (0, %) and (%, 0).

Appendix E. More on representation matrices of SU(2)

We return to the representation matrices D’ of SU(2) defined and explicitly constructed in §

0.3.2 and [0:3.3]

E.1. Orthogonality, completeness, characters

Allunitary representations of SU(2) have been constructed in Chap. 0. Following the discussion

of § 2.3, the matrix elements of D7 satisfy orthogonality and completeness properties, which
make use of the invariant measure on SU(2) introduced in Chap. 1 (§ and App. C)

@i+1) [ B2 01037, 0) = Sy (1)
> (27 + )P, ()DL, (U) = 20%6(U.U").

jmn
The “delta function” 6(U, U’) appearing in the rhs of (E.1]) is the one adapted to the measure
dp(U), such that [du(U)6(U,U")f(U') = f(U); in Euler angles parametrization «, 3, for

example,

(U, U") = 80(av — ')d(cos 8 — cos 3)d(y —7') , (E.2)
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(see Appendix C of Chap. 1). The meaning of equations (E.1)) is that functions D?  (U) form
a complete and orthogonal basis in the space of functions (continuous or square integrable) on
the group SU(2) (Peter—Weyl theorem).

Characters of representations of SU(2) follow from the previous expressions

J

i(U) =x;(¥) = wDi(ny)= Y €& (E.3)
sin (*57¢)
sin £ .

2

Note that these expressions are polynomials (so-called Chebyshev polynomials of 2nd kind) of

the variable 2 cos% (see exercise D at the end of this chapter). In particular

(¥) = QCOS% X1(¥) =1+ 2cosyp etc. (E.4)

One may then verify all the expected properties

xo()=1 x

1
2

unitarity and reality Xj(U_1> = *-( ) = ( )
parity and periodicity x;(=U) = x;2m +¢) = (=1)%x;(U) (E.5)
orthogonality fo% d) sin® §Xj (V)xj (¥) = w5

2 2

complotencss 35,1 x; (), (¥) = g0 ) =

The latter expresses that characters form a complete basis of class functions, i.e. of even

5 nyd(cosy — cos %)
2

2m-periodic functions of %w. This is a variant of the Fourier expansion.
Does the multiplicity formula (2.60]) lead to the well known formulae (2.31])7

E.2. Special functions. Spherical harmonics

We are by now familiar with the idea that infinitesimal generators act in each representation
as differential operators. This is true in particular in the present case of SU(2): the generators
J; appear as differential operators with respect to parameters of the rotation, compare with
the case of a one-parameter subgroup exp —iJy for which J = i0/0y. This gives rise to
differential equations satisfied by the Df;l,m and exposes their relation with “special functions”
of mathematical physics.

We already noticed in Chap. 0 that the construction of the Wigner D matrices in §

b
applies not only to SU(2) matrices but also to arbitrary matrices A = (a ) in the linear group
c d

GL(2,C). Equation (0.70) of Chap. 0 still holds true

Pin(€. 1) Z Py (§,)D2,1,,(A) . (070
The combination (a& + cn)? ™™ (b€ + dn)’~™ clearly satisfies
0? 0? L ,
- j+m —m E.
(5050 e ) (064 n ™"+ dp = =0 (5:6)
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and because of the independance of the Pj,,(€,7), the D/, (A) satisfy the same equation. If
we now impose that d = a*, ¢ = —b*, but p?> = |a|> + |b|? is kept arbitrary, the matrices A

satisfy AAT = p?I, det A = p?, hence A = pU, U € SU(2), and (E.6)) leads to

. o? o? )

ADY, (A) =4 D, (A)=0 E.7

where A, is the Laplacian in the space R* with variables ug, u, and a = ug + fug, b = uq + fus.
In polar coordinates

92 30 1

Ay=—+-——+ =Agx E.8

! 8p2+p8p+p2 s (E8)

where the last term Ags, Laplacian on the unit sphere S3, acts only on “angular variables”

U € SU(2), see App. 0 of Chap. 0. The functions D’ being homogeneous of degree 2j in

a, b, c,d hence in p, one finally gets
1 . .

For example, using the parametrization by Euler angles, one finds (see ((0.126)))

{1 0 0 1 {02 02 0?

—_—— 3 P _ . . ‘] ) _ ' .
sin 3 00 Smﬁ@ﬁ—'—sinQﬂ Oa? * 0?2 2008680@7} +J<]+1)}D (a, B,7)mm = 0. (E.10)

For m = 0 (hence j necessarily integer), the dependence on v disappears (see [0.61])). Choose
for example v = 0 and perform a change of notations (j,m') — (I,m) and (5,a) — (6, ¢), so

as to recover classical notations. The equation reduces to

19 o 1 o
26°"96 T snZg 092 1)| Dp(¢,0,0) =0 E.11
[Sin@@& Sln969+sin208¢2 + 11+ )} b o(0,0,0) =0 ( )

The differential operator made of the first two terms is the Laplacian Ag2 on the unit sphere

S%. Equation (E.11)) thus defines spherical harmonics Y;™(0, ¢) as eigenvectors of the Laplacian

Ag2. The correct normalisation is

[2l+1

) D000 =¥ 0.0). (©.12)

Introduce also the Legendre polynomials and functions P,(u) and P"(u), which are defined for

integer [ and u € [—1, 1] by

Pu) = zl_l!@(u2 —1) (E.13)
1 d™
P™u) = (1- uz)ﬁmdu—mPl(u) for 0 <m <. (E.14)

The Legendre polynomials Pj(u) are orthogonal polynomials on the interval [—1, 1] with the
weight 1: fjl duP(u)Py(u) = 520y The first P, read

20+1

1 1
Ph=1 P =u P2:§(3u2—1) P3:§(5u3—3u),--~ (E.15)
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while P? = Py, P} = (1—u?)2 P/, etc. The spherical harmonics are related to Legendre functions
P (cosf) (for m > 0) by

Y70, 0) = (—1)" [(25 - 8 - m " PP (eos ) (E.16)
and thus
DL o(0.0,0) = d'y(6) = (—1)™ [8 . Z?] * PP (cost) = (2[“; 1) Tyree.0). (E17)

In particular, di,(8) = Pi(cosf). In general, d! , (0) is related to the Jacobi polynomial

P (u) = (;}f (1= ) (U ) (1= )™ (14 )] (E-18)

by

. . TRy % m+m’ m—m/’ , ,
b0 = |G o] (03)  (05) A e @

Jacobi and Legendre polynomials pertain to the general theory of orthogonal polynomials, for which one shows
that they satisfy 3-term linear recursion relations, and also differential equations. For instance, Jacobi polyno-

mials are orthogonal for the measure

! 20TAFIN(I + o+ )T+ B+ 1)
1—w)*(1 +w)? P (u) PSP (w) = 5, E.2
/_1du( W+ w) BT () Py () = 03 Ql+a+B3+DIT(I+a+8+1) (E-20)
and satisfy the recursion relation
20+ 1) (I +a+B+1)(2 +a+ B8P (u) (E.21)
—@2ta+B+ D[ +a+B)2+a+B+2u+a®— P w) — 20+a)l+B)2l+a+8+2)PY7 .
The Jacobi polynomial Pl(a’ﬁ )(u) is a solution of the differential equation
2y 42 d o)
{(1—u )@Hﬂ—a* (2+a+ﬂ)u]@+l(l+a+ﬁ+1)}PI u)=0. (E.22)

The Legendre polynomials correspond to the case a = § = 0. These relations appear here as related to those of
the D7. This is a general feature: many “special functions” (Bessel, etc) are related to representation matrices

of groups. Group theory thus gives a geometric perspective to results of classical analysis.
Return to spherical harmonics and their properties.

(i) They satisfy the differential equations

(Asz +1(I+1)Y" =0 (E.23)
LY = —i%}/}m =mY," (E.24)
and may be written as
mig gy — O @A DA M) g (AT
Y,"(0,0) = 51 Trl — ) e’ sin”™ 6 Toosd sin“ 6 . (E.25)
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(ii) They are normalized to 1 on the unit sphere and more generally satisfy orthogonality and

completeness properties

27 T
/ QYY" = / d¢ / df sin @Y™ Y = 0 (B.26)
0 0

() l / /
SN e o, d) = so-a)="0" Qsi)j(j’ =) (E.27)
=0 m=-1

= 0(cosf — cosB)o(p — @) (E.28)

(iii) One may consider Y;*(6, ¢) as a function of the unit vector n with polar angles 0, ¢. If the

vector n is transformed into n’ by the rotation R, one has
Y (0) = Y (0) D' (R) (E.29)

which expresses that the Y, transform as vectors of the spin [ representation.

(iv) One checks on the above expression the symmetry property in m
Y™ (0,¢) = (=1)"Y,;"(0,9) (E.30)
and parity
Y7 (r = 0,6+ 1) = (—1)'Y;"(6,6) (E.31)
Note that for 6 = 0, Y;"(0, ¢) vanishes except for m = 0, see (E.13| [E.16]).

(v) Spherical harmonics satisfy also recursion formulae of two types: those coming from the

action of Jy, differential operators acting as in (|0.120))

, 0
+ip 4+
‘ { Y,

+ dcotg 0 0 } = VIl 4+ 1) —m(m + 1)y ! (E.32)

and those coming from the tensor product with the vector representation

L+m)(l—m))? l+m+1)(l—m+1)\2
\/2l—|—10059Ylm:(( ;;)Elm)> YZT1+<( = 2l)£3m )> YL (B.33)

More generally, one has a product formula

(20 + 1)(20 + 1)}5 -

nmw,@nﬁ”’(w)=Z<lm;l’m/|L,m+m/>{ WL | Y @9 (E3)

L

(vi) Finally let us quote the very useful “addition theorem”

2l +1
4+ P(cos ) = Zym Y™ (n') (E.35)

m=—I

where 0 denotes the angle between directions n and n’. This may be proved by showing that

the rhs satisfies the same differential equation as the P, (see exercise 1 below).
Exercises.

1. Prove that the Legendre polynomial P, verifies

(Ag2 +1(l+1)) P(nn') =0
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as a function of n or of n’, as well as (J +J') P, = 0 where J and J’ are generators of rotations of n and n’
respectively. Conclude that there exists an expansion on spherical harmonics given by the addition theorem of
(E.35) (Remember that P;(1) = 1).

2. Prove that a generating function of Legendre polynomials is

1 — I
=N ). E.36
VI-2ut + P ; ) (E.36)

Hint: show that the differential equation of the P; (a particular case of (E.22)) for « = § = 0) is indeed satisfied
and that the P; appearing in that formula are polynomials in u. Derive from it the identity (assuming r’ < r),

/1 /1

1 = 4 r - e
= q,lilz_grlﬂpz(cosg):lmeYl ()Y (n') . (E.37)

The expression of the first ¥, may be useful

—_

Vir

/3 /3 ,
Y = /-—cosf Y = 34/ —sinfe*? (E.38)
4 8T
/5 15 , /15 ,
Y, = Ton (3cos®6 —1) ;7 = F g €08 0'sin f e=** Y52 = 39 sin? § e*2%

E.3. Physical applications
E.3.1. Multipole moments
Consider the electric potential created by a static charge distribution p(7)

o) = 1 d®r' p(7)

 47eg |7 — 7|

and expand it on spherical harmonics following (E.37). One finds

1 Y™ (n)

A==y — L E.
#(F) = — %j T Qm (E:39)
where the ), defined by
Qum = / A p(F )Y () (F.40)

are the multipole moments of the charge distribution p. For example, if p(7') = p(r) is invariant

by rotation, only Qg is non vanishing and is equal to the total charge (up to a factor 1/v/4m)

Qoo = \/% = \/E/ﬁdrp(r) o(r) = 47207" :

For an arbitrary p(7), the three components of Qy,, reconstruct the dipole moment [ d*r'p(#)7.
More generally, under rotations, the @);,,, are the components of a tensor operator transforming

according to the spin [ representation and (see. (E.31)), of parity (—1)".
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In Quantum Mechanics, les ), become operators in the Hilbert space of the theory. One

may apply the Wigner-Eckart theorem and conclude that

(J1, m1|Qumliz ma ) = (J1]|@Qillg2 ) (1, mall, m; ja, ma )

with a reduced matrix element which is independent of the m_. In particular, if j; = js = 7,

the expectation value of @); is non zero only for [ < 27.

E.3.2. Eigenstates of the angular momentum in Quantum Mechanics
Spherical harmonics may be interpreted as wave functions in coordinates 6, ¢ of the eigenstates

of the angular momentum L=hJ=hixV

V"0, 90) = (0, 0[l,m)

in analogy with
1

(27’(’)3/2 €

(We take A = 1.) In particular, suppose that in a scattering process described by a rotation

= (7))

invariant Hamiltonian, a state of initial momentum p; along the z-axis, (i.e. 6 = ¢ = 0),
interacts with a scattering center and comes out in a state of momentum py, with |p;| = |ps| = p,

along the direction n = (6, ¢). One writes the scattering amplitude

(p.0,¢|T1p,0,0) = Y Y;"(0,)(p,1,m|T|p,I',m')Y;"™(0,0)

'mm/

= > Y"™0,0){p.L m|T|p,1,m)Y;™*(0,0) (E41)
m

= > 2T Peost)

47
1

using once again the addition formula and (plm|7 |pl'm’) = 8y 6mm T (p) expressing rotation

invariance. This is the very useful partial wave expansion of the scattering amplitude.
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Exercises for chapter 2

A. Unitary representations of a simple group

Let G be a simple non abelian group, and D be unitary representation of G.

1. Show that det D is a representation of dimension 1 of the group, and a homomorphism of the group into
the group U(1).

2. What can be said about the kernel K of this homomorphism? Show that any “commutator” g;gag; *gs *
belongs to K and thus that K cannot be trivial.

3. Conclude that the representation is unimodular (of determinant 1).

4. Can we apply that argument to SO(3)? to SU(2)?

B. Adjoint representation
1. Show that if the Lie algebra g of a Lie group G is simple, the adjoint representation of G is irreducible.

2. Show that if g is semi-simple, its adjoint representation is faithful: kerad = 0.

C. Tensor product D ® D*
Let G be a compact group and D) its irreducible representations. Denote D) the identity representation,
D) the conjugate representation of D).

What is the multiplicity of D) in the decomposition of D) ® D(@) into irreducible representations?

D. Chebyshev polynomials
Consider the expression
sin(l +1)6
U= ——F"— 2.98
! sinf ' (2.98)

where [ is an integer > 0.

1. By an elementary trigonometric calculation, express U;_1 + U417 in terms of Uj, with an [ independent

coefficient.
2. Conclude that U; is a polynomial in z = 2 cos 6 of degree I, which we denote U,(z).
3. What is the group theoretic interpretation of the result in 1. ?
4. With the minimum of additional computations, what can be said about

E/ dz (1 - 22)% Uy(2)Up(2)

T™J-

and

2/ dz (1 — 22)% Uy(2) U (2) Ui (2) ?

TJ-1

The U;(z) are the Chebyshev polynomials (Tchebichev in the French transcription) of 2nd kind. They are
orthogonal (the first relation in 4.) and satisfy a 3-term recursion relation (question 1.), which are two general

properties of orthogonal polynomials.

E. Spherical Harmonics
Show that the integral

[ o 0.0 0.0 0.0)

is proportional to the Clebsch-Gordan coefficient (—1)™2( 1y, my;la, malls, —ms ), with an m independent factor

to be determined.
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Problem I. Decomposition of an amplitude

Consider two real unitary representations (p) and (o) of a simple compact Lie group G of dimension d. Denote
T(P)a

aa’

o)a

|p, ), resp. |o, ), two bases of these representations, and resp. Tﬁ(ﬁ’ , a=1,---d, the representation

matrices in a basis of the Lie algebra. Explain why this basis may be assumed to be orthonormal wrt the Killing
form. These matrices are taken to be real skew-symmetric and thus satisfy tr T%T? = —§,,. Consider now the

quantity
Xagiarg = ZT(”)“ TS . (2.99)

To simplify things, we assume that all irreducible representations appearing in the tensor product of represen-
tations (p) and (o) are real and with multiplicity 1. Let |7y) be a basis of such a representation. The (real)

Clebsch-Gordan coefficients are written as matrices
(M) = (lpaioB) (2.100)

1. Recall why these coeflicients satisfy orthogonality and completeness relations and write them.

2. Show that it follows that

Xopiarsr = =3 ( M(m))aﬁ (T(p)aM(T'y)T(a)a)a,ﬂ/ . (2.101)
TY

3. Acting with the infinitesimal generator 7% on the two sides of the relation

lpo; o) = (M(W))aﬁ [7v) (2.102)

Y

show that one gets

ZT(T)a ( m'>>aﬁ -y (M(m))w Yarrer + Z ( Tv>>aﬁ, (T 1 (2.103)

a/
or, in terms of matrices of dimensions dim(p) x dim(o)

ZT(T = —7Wa (™) 4 pmOnlola (2.104)

4. Using repeatedly this relation (2.104)) in (2.101]), show that one finds
1
Xagiag = 5 D (Cp+Co = Cr) (M) (M) 2.105
Bia/ B 2m( pt ) o5 v (2.105)

where the C' are Casimir operators, for example

Cp=— (T¥)?, (2.106)

a

5. Why can one say that “large representations” 7 tend to make the coefficient (C, + C» — C;) increasingly
negative? (One may take the example of SU(2) with p and o two spin j (5 € N) representations).

6. Can you propose a field theory in which the coefficient X,g3.4’3- would appear in a two-body scattering
amplitude (in the tree approximation)? What is the consequence of the property derived in 5) on that

amplitude?
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Figure 2.2: Bratteli diagram : a graphical construction of the n,

Problem II. Tensor product in SU(2)

1. Let R% denote the spin % representation of SU(2); we want to compute the multiplicity n, of the identity
representation in the decomposition into irreducible representations of the tensor product of r copies of
R 1.

(a) Interpret m, in terms of the number of linearly independent invariants, multilinear in &p,--- , &,
where the &; are spinors transforming under the representation R 1
(b) By convention ng = 1. With no calculation, what are ny and ny?

(c) Show that n, may be expressed with an integral involving characters x;(¢) of SU(2). (Do not

attempt to compute this integral explicitly for arbitrary r.)
(d) Check that this formula gives the values of n; and ng found in b).

(e) We shall now show that the n, may also be obtained by the following graphical and recursive
method. On the graph of Fig. attach ng = 1 to the leftmost vertex, then to each vertex S,

attach the sum o = 8 + v of numbers on vertices immediately on the left of S.

i. Show that the n, are the numbers located on the horizontal axis. What is the interpretation

of the horizontal and vertical axes?

ii. Compute with this method the value of n4 and ng.

2. One wants to repeat this computation for the spin 1 representation R;, and hence to determine the

number N, of times the identity representation appears in the tensor product of r copies of R;.

(a) How should the graph of fig [2.2| be modified to yield the N, ?
(b) Compute Ny, N3 and N4 by this method.

(¢) What do these numbers represent in terms of vectors Vi, --- |V, transforming under the represen-
tation Rq?

Problem III. Real, complex and quaternionic representations

Preliminary question

Given a vector space E of dimension d, one denotes E ® E or E®? the space of rank 2 tensors and (E ® E)g,
resp. (F ® E)a, the space of symmetric, resp. antisymmetric, rank 2 tensors, also called (anti)symmetrized
tensor product. What is the dimension of spaces E® F, (E® E)g, (E® E)a ?
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Chap.2. Linear representations of groups

A. Real and quaternionic representations

1.

Consider a compact group G. If D(g) is a representation of G, show that D~!7'(g) is also a representation,
called the contragredient representation.

Recall briefly why one may assume with no loss of generality that the representations of GG are unitary,
which we assume in the following.

Show that the contragredient representation is then identical to the complex conjugate one.

Suppose that the unitary representation D is (unitarily) equivalent to its contragredient (or conjugate)

representation. Show that there exists a unitary matrix S such that

D=Sp1Tg-1 (2.107)

Show that (2.107) implies that the bilinear form S is invariant.
Is this form degenerate?

Using (2.107)) show that
DSS™'T = 55~1TD . (2.108)

Show that if D is irreducible, S = AST, with A\? = 1.

Conclude that the invariant form S is either symmetric or antisymmetric.

In the former case (S symmetric), the representation is called real, in the latter (S antisymmetric), it is
called pseudoreal (or quaternionic). One may prove that in the former case, there exists a basis on R in

which the representation matrices are real, and that no such basis exists in the latter case.

Do you know an example of the second case?

B. Frobenius—Schur indicator

1.

2.

Let G be a finite or compact Lie group. Its irreducible representations are labelled by an index p and one
denotes x()(g) their character. Let x(g) be the character of some arbitrary representation, reductible or

not.

(a) For any function F' on the finite group G, one denotes ( F') its group average
1
(F)= @ > Flg) . (2.109)
geG
How to extend that definition to the case of a compact Lie group (and a continuous function F)?

(b) - Recall why {x) is an integer and what it means.
- If 5 denotes the conjugate representation of the irreducible representation p, recall why ({ x (") x(?) ) =

1 and what it implies on the decomposition of p ® p into irreducible representations.

(c) Show that an irreducible representation p is equivalent to p iff
2
<(X(p)(g)) > =1.
Evaluate this expression if p is not equivalent to p.

We now consider a representation D(?) acting in a space F, and its tensor square D) ®2 = D) g D)

which acts on rank 2 tensors of £ ® E.
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(a) Write explicitly the action of D(®)®2 on a tensor t = {tV},

s = L

(b) Show that any rank 2 tensor, t = {¢t*/}, is the sum of a symmetric tensor tg and of an antisymmet-
ric one t4, transforming under independent representations. Write explicitly the transformation

matrices, paying due care to the symmetry properties of the tensors under consideration.

(¢) Show that the characters of the representations of symmetric and antisymmetric tensors are re-

spectively

W (g) = % ()2 £x(gY) - (2.110)

(d) What is the value of these characters for g = e, the identity in the group? Could this result have

been anticipated?

3. One then defines the Frobenius—Schur indicator of the irreducible representation p by

ind(p) = (x"(g%)) - (2.111)

(a) Using the results of 2., show that one may write

ind(p) = <X(p®p)5 ) — <X(p®p)A ).

(b) Using the results of 1., show that

<(X(p) (g))2> — <X<p®p)s )+ <X(p®p)A )

takes the value 0 or 1, depending on the case: discuss.

(c) - Show that (x(P®P)s ) and (x(P®P)4) are non negative integers and give a certain multiplicity to
be discussed.
- Finally show that the Frobenius—Schur indicator of (2.111f) can take only the three values 0 and

+1 according to cases to be discussed.

(d) What is the relation between this discussion and that of part A?

4. * We now restrict to the case of a finite group G. For any h € G, we define Q(h) :=3_, ind(p)x® (h).
Prove the
Theorem Q(h) = #{g € G|g®> = h}
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Chapter 3

Simple Lie algebras. Classification and

representations. Roots and weights

3.1 Cartan subalgebra. Roots. Canonical form of the

algebra

We consider a semi-simple (i.e. with no abelian ideal) Lie algebra of finite dimension. We

want to construct a canonical form of commutation relations modeled on the case of SU(2)
[y, Ji] = £y [J, J_]=2J, . (3.1)

It will be important to consider the algebra over C, at the price of “complexifying” it if it was
originally real. The adjoint representation will be used. As it is a faithful representation for a
semi-simple algebra, (i.e. ad X = 0 = X = 0, see exercise B of Chap. 2), no information is
lost.

It may also be useful to remember that the complex algebra has a real compact version, in
which the real structure constants lead to a negative definite Killing form, and, as the repre-
sentations can be taken unitary, the elements of the Lie algebra (the infinitesimal generators)

may be taken as Hermitian (or antiHermitian, depending on our conventions).

3.1.1 Cartan subalgebra

We define first the notion of Cartan subalgebra. This is a maximal abelian subalgebra of g such
that all its elements are diagonalisable (hence simultaneously diagonalisable) in the adjoint
representation. That such an algebra exists is non trivial and must be established, but we shall
admit it.

If we choose to work with the unitary form of the adjoint representation, the elements of g are Hermi-
tian matrices, and assuming that the elements of §h are commuting among themselves ensures that they are
simultaneously diagonalizable.

This Cartan subalgebra is non unique, but one may prove that two distinct choices are
related by an automorphism of the algebra g.
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For instance if g is the Lie algebra of a Lie group G and if b is a Cartan subalgebra of g, any conjugate ghg*
of h by an arbitrary element g of G is another Cartan subalgebra.

Let b be a Cartan subalgebra, call ¢ its dimension, it is independent of the choice of h and
it is called the rank of g. For su(2), this rank is 1, (the choice of J, for example); for su(n), the
rank is n — 1. Indeed for su(n), a Cartan algebra is generated E| by diagonal traceless matrices,

a basis of which is given by the n — 1 matrices

H, = diag(1,-1,0,---,0), Hy =diag(0,1,—-1,0,---,0),---, H,_q =diag(0,---,0,1,—1) .

(3.2)
An arbitrary matrix of the Lie algebra, (in that representation), (anti-)Hermitian and trace-
less, is diagonalisable by a unitary transformation; its diagonal form is traceless and is thus
expressed as a linear combination of the h;; the original matrix is thus conjugate by a unitary
transformation of a linear combination of the h;. This is a general property, and one proves
(Cartan, see [Bu], chap. 16) that

If g is the Lie algebra of a group G, any element of g is conjugate by G of an element of .

Application. Canonical form of antisymmetric matrices. Using the previous statement, prove the

Proposition If A = A* = —AT is a real skew-symmetric matrix of dimension N, one may find a real
O .
orthogonal matrix O such that A = ODOT where D = diag(< ,13) )If N =2n and D =
— 1 :
j=1,n

0 ,

diag (0, < lg) ) if N =2n+ 1, with real p;.
_/J'j j=1,---,n

If one allows the complexification of orthogonal matrices, one may fully diagonalise the matrix A in the form

. 0 A
D = diag ( i _ ) or D = diag (0, W . ). For a proof making only use of matrix
O =) i 0 =) 1

theory, see for example [M.L. Mehta, Elements of Matriz Theory, p 41].
3.1.2 Canonical basis of the Lie algebra

Let H;, i =1,--- ,¢ be a basis of h. It is convenient to choose the H; Hermitian. By definition

[H;, H;] = 0, (abelian subalgebra) or more precisely, since we are in the adjoint representation,
[adHZ-,ade] =0. (33)

We may thus diagonalise simultaneously these ad H;. We already know (some?) eigenvectors
of vanishing eigenvalue since V7, j, ad H; H; = 0, and we may complete them to make a basis
by finding a set of eigenvectors F, linearly independent of the H;

ad Hi Ea = Oé(,;)Ea (34)
i.e. a set of elements of g such that

[Hi7 Ea} = a(i)Ea y (35)

"'We use momentarily the “representation of definition” (made of n x n matrices) rather than the adjoint

representation.
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with the o) not all vanishing (otherwise the subalgebra h would not be maximal).

The space h*. In these expressions, the o) are eigenvalues of the operators ad H;. Since
we chose Hermitian ad Hj, their eigenvalues a;) are real. By linearity, for an arbitrary element
of b written as H =Y, h'H;,

ad HE, = o(H)E, , (3.6)

and the eigenvalue of ad H on E, is a(H) := Y, h'ay;), which is a linear form on §. In general
linear forms on a vector space E form a vector space E*, called the dual space of F. One may
thus consider the root «, of components «a(;), as a vector of the dual space of h, hence o € b*,
the root space. Note that o(H;) = ag).

Roots enjoy the following properties ()

1. if a is a root, —« in another root;
2. the eigenspace of the eigenvalue « is of dimension 1 (no multiplicity);
3. if a is a root, the only roots of the form Ao are +q;

4. roots a generate all the dual space bh*.

For proofs of 1., 2., 3., see below, for 4. see exercise A.

Number of roots. Since the H; are diagonalisable, the total number of their eigenvectors
E, and H; must be equal to the dimension of the space, here the dimension d of the adjoint
representation, i.e. of the Lie algebra g. As any (non vanishing by definition) root comes along
with its opposite, the number of roots « is even and equal to d — ¢ (with ¢ = rank(g)). We
denote A the set of roots.

In the basis {H;, E,} of g, the Killing form takes a simple form

(H;, E,) =0 (Eoy Ez) =0  unless a+5=0. (3.7)

To show that, we write (H,[H', E,]) = a(H')(H, E,), and also, using the definition of the Killing form and the
cyclicity of the trace

(H,[H',E,]) = tr (ad Hlad H',ad E,]) = tr ([ad H,ad H'| ad E,,) = 0 (3.8)
since [ad H,ad H'] = 0. It follows that VH, H' € b, a(H')(H, E,) = 0, hence that (H, E,) = 0. Likewise
([H, Ea], Ep) = a(H)(Ea, Eg) = —(Ea, [H, Egl) = —6(H)(Ea, Ep) (3.9)

again by the cyclicity of the trace, and thus (E,, Eg) = 0if 3H : (a+ 8)(H) #0, i.e. if o+ # 0. Note
that the point 1. in (x) above follows simply from (3.7)): if —« were not a root, E, would be orthogonal to all
elements of the basis hence to any element of g, and the form would be degenerate, contrary to the hypothesis

of semi-simplicity (and Cartan’s criterion). For an elegant proof of points 2. et 3. of (x), see [OR, p. 29].
The restriction of this form to the Cartan subalgebra is non-degenerate, since otherwise one
would have 3H € h, VH' € b : (H,H') =0, but (H, E,) =0, thus VX € g, (H, X) = 0 and the
form would be degenerate, contrary to the hypothesis of semi-simplicity (and Cartan’s criterion,
Chap. 1, §4.4). The Killing form being non-degenerate on b, it induces an isomorphism between

h and h*: to a € h* one associates the unique H, € b such that

VHeblb (Hy,H):=alH), (3.10)
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and o) = a(H;) = (Ha, H;). (Or said differently, one solves the linear system g;;h), = o
which is of Cramer type since g;; = (H;, H;) is invertible.) One has also a bilinear form on b*

inherited from the Killing form
(a,0) = (Hy, Hp) , (3.11)

which we are going to use in § 2 to study the geometry of the root system.
It remains to find the commutation relations of the F, among themselves. Using the Jacobi
identity, one finds that

ad Hi[Ea, Eg] = [H;, [Ea, Eg]] = [Ea, [Hi, Eg] — [Ep, [Hi, Eo]] = (0 + 8) i) [Ea, Eg] - (3.12)

Invoking the trivial multiplicity (=1) of roots, one sees that three cases may occur. If o + 3
is a root, [E,, Eg| is proportional to E, 3, with a proportionality coefficient N,g which will be
shown below to be non zero (see § and exercise B). If a + 8 # 0 is not a root, [E,, E3]
must vanish. Finally if o + 3 = 0, [E,, E_,] is an eigenvector of all ad H; with a vanishing
eigenvalue, thus [E,, E_,| = H € h. To determine that H, let us proceed like in ({3.9))

(H;,[Ea, E_y)) = tr(ad H;[ad E,,ad E_,]) = tr ([ad H;,ad E,]ad E_,)
= a@)(Ea, E-a) = (Hi, Ho)(Ea, E-a) (3.13)

hence

(Ea, E_) = (Eu, E_o)H,, . (3.14)

To recapitulate, we have constructed a canonical basis of the algebra g

[Hi, HJ] - 0
[Hia Ea] = a(i)EOé

NopEoip if « + [ is a root BT
[Eo, Egl = < (Eq, E_o)H, if a+£=0

0 otherwise

Up to that point, the normalisation of the vectors H; and E, has not been fixed. It is
common to choose, in accord with (3.7))

(H, H;) =05 (Ea, Eg) = datp0 - (3.15)

(Indeed, the restriction of the Killing form to b, after multiplication by ¢ to make the ad H;
Hermitian, is positive definite.) With that normalisation, H, defined above by satisfies
also

H,=a.H :=ouH, . (3.16)
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Note that E,, E_, and H, form an su(2) subalgebra
[Ho, Fio) = £ (a,a) Eyy [Eo, E_o] = H, . (3.17)

(This is in fact H,/(a, a) that we identify with J,, and that observation will be used soon.)
Any semi-simple algebra thus contains an su(2) algebra associated with each of its roots.
Note that with the normalisations of (3.15)), the Killing metric reads in the basis { H;, E., F_,}

I, 0

Gab = . (318)

1

where the first block is an identity matrix of dimension ¢ x .

3.2 Geometry of root systems

3.2.1 Scalar products of roots. The Cartan matrix

As noticed in (3.11)), the space of roots, i.e. the space (of dimension ¢, see point 4. in (x)

above) generated by the d — ¢ roots « inherits the Euclidean metric of b
(o, B) = (Ha, Hg) = a(Hg) = B(H,) = (o.H, 3.H) Za(l @ > (3.19)

where the various expressions aim at making the reader familiar with the notations introduced
above. (Only the last two expressions depend on the choice of normalisation ([3.15)).) We shall
now show that the geometry —lengths and angles— of roots is strongly constrained. First it is

good to remember the lessons of the su(2) algebra: in a representation of finite dimension, J,

has integer or half-integer eigenvalues. Thus here, where each <H"> plays the role of a J, and
has Fj3 as eigenvectors, ad H,Eg = (o, §)Eg, i.e.
[Ho, Eg) = (o, B)Ep (3.20)
we may conclude that
AP o en (3.21)
(o, )

Root chains

It is in fact useful to refine the previous discussion. Like in the case of su(2), the idea is to
repeatedly apply the “raising” F, and “lowering” E_, operators (aka ladder operators) on a
given eigenvector Eg. We saw that if o and 3 are two distinct roots, with o + 3 # 0, it may
happen that S+« are also roots. Let p < 0 be the smallest integer such that (ad E_a)|p‘Eﬁ is non
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zero, i.e. that §+ pa is a root, and let ¢ > 0 be the largest integer such that (ad E,)?Ej is non
zero, i.e. that 54qa is a root. We call the subset of roots {8+pa, B+ (p+1)a, -+, 3, B+qa}
the a-chain through . Note that the Eg, when (' runs along that chain, form a basis of a
finite dimensional representation of the su(2) algebra generated by H, and F.,. According to
what we know about these representations of su(2), the lowest and highest eigenvalues of H,

are opposite
<Oj,ﬁ+p0[> = —<O[,ﬁ—}—q01>
or 2(3,a) = —(q¢+ p){a,a), thus with the notation (3.21)
m=-p—q. (3.22)

This construction also shows that f —ma = 8+ (p+ ¢)a is in the a-chain through £, (since
p < —m < q), hence that this is a root.
Remark. The discussion of § 3.1 left the coefficients N,z undetermined. One shows (see Exercise B), using the
commutation relations of the E’s along a chain that the coefficients N,g satisfy non linear relations and that

they are determined up to signs by the geometry of the root system according to

[Nasl = /50~ Plalasa) (323)

Note that, as stated before, N,g vanishes only if ¢ =0, ¢.e. if @ 4+ 3 is not a root.

Weyl group
For any vector x in the root space h*, define the linear transformation

(a, )

(3.24)

Wo(x) =2 — 2(a,a)
This is a reflection in the hyperplane orthogonal to o through the origin: (w,)? = I, we(a) =
—a, and w,(z) = z if = is orthogonal to a.. This is of course an isometry, since it preserves the
scalar product: (we(z), wa(y)) = (x,y). Such a w, is called a Weyl reflection. By definition
the Weyl group W is the group generated by the w,, i.e. the set of all possible products of w,
over roots . Thanks to the remark following , if a and [ are two roots, w, () = f — ma
is also a root. The set of roots is thus globally invariant under the action of the Weyl group.
The group W is completely determined by its action on roots, which is a permutation. W is
thus a subgroup of the permutation group of the finite set A, hence a finite groupﬂ
Example : for the algebra su(n), one finds that W = §,,, the permutation group of n objects,
see below in § 3.3.2.

Signature of an element of W. Let w € W, written as the product of r elementary reflections
of the form (3.24)): w = w,, ... Wa, W, lts signature is defined as sign(w) := (—1)". This
generalises the familiar notion in the group W = §,,, and one shows that this definition is

consistent and independant of the way w is written as a product.

2This property is far from trivial: generically, when m vectors are given in the Euclidean space R™, the
group generated by reflections in the hyperplanes orthogonal to these vectors is infinite. You need very peculiar
configurations of vectors to make the group finite. Finite reflection groups have been classified by Coxeter.

Weyl groups of simple algebras form a subset of Coxeter groups.
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Note that if f; = § + g« is the highest root in the a-chain through g, and f_ = § + pa the lowest one,
Wq(B+) = P+ and more generally, the roots of the chain are swapped pairwise under the action of w,. The
chain is thus invariant by w,. This is a generalisation of the m < —m symmetry of the su(2) “multiplets”
(=j,—j+1,---,j—1,7), and this applies to any a-chain through any 8 and thus to the full set of roots. One
concludes that

The set of roots is invariant under the Weyl group.

Positive roots, simple roots. Cartan matrix

Roots are not linearly independent in h*. One may show that one can partition their set A
into “positive” and “negative” roots, the opposite of a positive root being negative, and find a
basis a;, i = 1,--- £ of £ simple roots, such that any positive (resp. negative) root is a linear
combination with non negative (resp non positive) integer coefficients of these simple roots. As
a consequence, a simple root cannot be written as the sum of two positive roots (check !).

Neither the choice of a set of positive roots, nor that of a basis of simple roots is unique.
One goes from a basis of simple roots to another one by some operation of the Weyl group.

If a and 3 are simple roots, & —  cannot be a root (why?). The integer p in the previous

discussion thus vanishes and m = —¢ < 0. It follows that («, 5) < 0.
The scalar product of two simple roots is non positive. (3.25)

We now define the Cartan matrix
< Qi O )

<Oéj70‘j> .

Beware, that matrix is a prior: non symmetricﬂ Its diagonal elements are 2, its off-diagonal

Cy; =2 (3.26)

elements are < 0 integers.

One must remember that the scalar product appearing in the numerator of is positive
definite. According to the Schwarz inequality, («, 3)? < (a,a)(3, 3) with equality only if a
and [ are colinear. This property, together with the integrity properties of their elements,
suffices to classify all possible Cartan matrices, as we shall now see.

Write {a;, ;) =| ]| [|ay]| cosas, a;. Then by multiplying or dividing the two equations
for the pair {ay, o}, i # j, namely C;; = m; <0 and C}j; = m; < 0, where the property
(3.25) above has been taken into account, one finds that if i # 7,

e 1
COS Oy, vy = -3 m;mn;
I a || ™ with m;, m; e N | (3.27)
oy | m;

and the value —1 of the cosinus is impossible, since a; # —a; by assumption, so that the

only possible values of that cosinus are 0, —%, —‘/75, —%g, 1.e. the only possible angles be-
tween simple roots are 7, %’r, %’r or ‘%’T, with ratios of lengths of roots respectively equal to

?(undetermined), 1, v/2, v/3.
There exists of course only one algebra of rank 1, viz the (complexified) su(2) algebra, ({3.1))
or (3.17). It will be called A; below. It is then easy to classify the possible algebras of rank 2.

3Also, beware that some authors call Cartan matrix the transpose of 1)
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3a1+2a2
o, apras, a,y o+, (11+2(x2 A, ag+a, 2a1+(x2 30{1+0c2 o,
%1% )
A2 BZ G2 D2

Figure 3.1: Root systems of rank 2. The two simple roots are drawn in thick lines. For the

algebras By, G5 and Ds, only positive roots have been labelled.

The four cases are depicted on Fig. [3.1] with their Cartan matrices reading

A2:(2 _1> BQ:<2 _2) G2:<2 _1) D2:(2 0). (3.28)
12 19 3 2 0 2

The nomenclature, Ay, By, G5 and Ds, is conventional, and so is the numbering of roots. The
latter case, Dy, which has (ay,as) = 0, is mentioned here for completeness: it corresponds to
a semi-simple algebra, the direct sum of two A; algebras. (Nothing forces its two roots to be
of equal length.)

In general, if the set of roots may be split into two mutually orthogonal subsets, one sees
that the Lie algebra decomposes into a direct sum of two algebras, and vice versa. Recalling
that any semi-simple algebra may be decomposed into the direct sum of simple subalgebras

(see end of Chap. 1), in the following we consider only simple algebras.

Dynkin diagram

For higher rank , i.e. for higher dimension of the root space, it becomes difficult to visualise the
root system. Another representation is adopted, by encoding the Cartan matrix into a diagram
in the following way: with each simple root is associated a vertex of the diagram; two vertices
are linked by an edge iff (o, ;) # 0; the edge is simple if C;; = Cj; = —1 (angle of 27/3,

equal lengths); it is double (resp. triple) if Cj; = —2 (resp. —3) and Cj; = —1 (angle of 2T
5
6
from i to j indicating which root is the longest. (Beware that some authors use the opposite

resp. with a length ratio of v/2, resp. v/3) and then carries an arrow (or rather a sign >)

convention for arrows !).

3.2.2 Root systems of simple algebras. Cartan classification

The analysis of all possible cases led Cartanﬁ to a classification of simple complex Lie algebras,

in terms of four infinite families and five exceptional cases. The traditional notation is the

4This classification work, undertaken by Killing, was corrected and completed by E. Cartan, and later

simplified by van der Waerden, Dynkin, ...
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6
A 1 2 3 ! 12 4 5
/I &—eo—e—0—90—0—0 E,
3
7
B 1 2 3 ! 1 2 4 5 6
I &—o—o—0—0—0——9 E7
3
8
1 2 3 l 12 4 5 6 7
Cl oo o o o9 Eg
3
1-1
1 2 3 4
Dl 2 3 Fy o—e=2—o
12
I G, e
Figure 3.2: Dynkin diagrams
following
A€7 Bﬂ; CK; Df? E67 E77 E87 F47 G2 . (329)

In each case, the lower index gives the rank of the algebra. The geometry of the root system is

encoded in the Dynkin diagrams of Fig. |3.2]

The proof is a bit laborious and will be omitted here. It relies on the positive definiteness of the Cartan
matrix and consists in showing that at most one of its off-diagonal matrix elements is different from 0 or —1
(i.e. at most one edge of the Dynkin diagram is multiple); that the diagram contains no cycle; that the only
possible coordinence of a vertex is 1, 2 or 3; that a diagram has at most one coordinence-3 vertex, etc; and
finally that the list of possible diagrams reduces to that of Fig. [3:2]

The four infinite families are identified with the (complexified) Lie algebras of classical

groups
Ay=sl(l+1,C), By,=s0(20+1,C), C,=sp(2¢,C), D,=s0(2¢,C), (3.30)

or with their unique compact real form, respectively A, =su({ +1), By =so(2(+ 1),
Cy = usp({), Dy =so(20).

The “exceptional algebras” Fg, ..., G have respective dimensions 78, 133, 248, 52 and 14. Those are
algebras of ... exceptional Lie groups ! The group G5 is the group of automorphisms of octonions, Fy is itself
an automorphism group of octonion matrices, etc.

Among these algebras, the algebras A, D, E, whose roots have the same length, are called simply laced. A
curious observation is that many problems, finite subgroups of su(2), “simple” singularities, “minimal conformal
field theories”, etc, are classified by the same ADFE scheme...but this is another story!

The real forms of these simple complex algebras have also been classified by Cartan. One finds 12 infinite
series and 23 exceptional cases!

3.2.3 Chevalley basis

There exists another basis of the Lie algebra g, called Chevalley basis, with brackets depending only on the

Cartan matrix. Let h;, ¢; and f;, i =1,--- £, be generators attached to simple roots «; according to
2 \? 2 \*? 20,.H
Q4.
i= —— E,. i = — E_.. hj= — . 3.31
“ <<Oéz‘a04i>> R <<04z"04i>) o C () (3:31)
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Their commutation relations read

[hi,h;] = 0

[hi,ej] = Cjiej (3.32)
[hi, i1 = =Cji f;

les, f51 = bijh;

(check!). The algebra is generated by the e;, f;, h; and all their commutators, constrained by (3.32) and by the
“Serre relations”

ad (e;)'"%ie; = 0

ad (f)7"%f; = 0. (3.33)

This proves that the whole algebra is indeed encoded in the data of the simple roots and of their geometry
(Cartan matrix or Dynkin diagram).
Note also the remarkable and a priori not obvious property that in that basis, all the structure constants

(coefficients of the commutation relations) are integers.

3.2.4 Coroots. Highest root. Coxeter number and exponents

We give here some complements on notations and concepts that are encountered in the study of simple Lie
algebras and of their root systems.
As the combination )
v
o = —— 3.34)

! < Qg > ’ (

for o; a simple root, appears frequently, it is given the name of coroot. The Cartan matrix may be rewritten as
Cij = (a,a) ) . (3.35)

J

The highest root 0 is the positive root with the property that the sum of its components in a basis of simple
roots is maximal: one proves that this characterizes it uniquely. Its components in the basis of simple roots and
in that of coroots

2 \ Y,
gzzz:aiai ’ <979>9:;a1a1 ) (336)

called Kac labels, resp dual Kac labels, play also a role, in particular through their sums,
h=1+Yai , h'=1+) a. (3.37)

The numbers h and h" are respectively the Cozeter number and the dual Coxeter number. When a normalisation
of roots has to be picked, which we have not done yet, one usually imposes that (6,6) = 2.
Lastly the diagonalisation of the symmetrized Cartan matrix

P T (3.38)

v \/<O‘iaai><ajaaj>

SN

yields a spectrum of eigenvalues
eigenvalues of C = {4 sin? (%ml)} , i=1,--- 0, (3.39)

in which a new set of integers m; appears, the Coxeter exponents, satisfying 1 < m; < h — 1 with possible
multiplicities. These numbers are relevant for various reasons. They contain useful information on the Weyl
group. After addition of 1, (making them > 2), one gets the degrees of algebraically independent Casimir

operators, or the degrees where the Lie group has a non trivial cohomology, etc etc.
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Examples: for A,_; alias su(n), roots and coroots coincide. The highest root is § = ). «;, thus h =
hY = n, the Coxeter exponents are 1,2--- ,n — 1. For D,, alias so(2n), roots and coroots are again identical,
0=a1+2a2+ -+ 2ap_2+ ap_1+ ay, h =2n — 2, and the exponents are 1,3, -+ ;2n —3,n— 1, withn — 1
double if n is even.

See Appendix F for Tables of data on the classical simple algebras.

3.3 Representations of semi-simple algebras

3.3.1 Weights. Weight lattice

We now turn our attention to representations of semi-simple algebras, with an approach par-
allel to that of previous sections. In what follows, “representation” means finite dimensional
irreducible representation. We also assume these representations to be unitary: this is the case
of interest for representations of compact groups. The elements of the Cartan subalgebra com-
mute among themselves, they also commute in any representation. Denoting with “bras” and
“kets” the vectors of that representation, and writing simply X (instead of d(X)) for the rep-
resentative of the element X € g, one may find a basis |\, ) which diagonalises simultaneously

the elements of the Cartan algebra
H’)‘a> = )‘(H)’)‘a> (340)

or equivalently

HiA) = Ay ha) (3.41)

with an eigenvalue A which is again a linear form on the space b, hence an element of bh*,
the root space. Such a vector A = (A(;)) of b* is called a weight. Note that for a unitary
representation, the H are Hermitian, hence \ is real-valued: the weights are real vectors of h*.
As the eigenvalue A may occur with some multiplicity, we have appended the eigenvectors with
a multiplicity index a. The set of weights of a given representation forms in the space h* the
weight diagram of the representation, see Fig. below for examples in the case of su(3).

The adjoint representation is a particular representation of the algebra whose non vanishing
weights are the roots. The roots studied in the previous sections thus belong to the set of weights
in bh*.

The vectors |\, ) forming a basis of the representation, their total number, including the
multiplicity, equals the dimension of the representation space E. This space E contains rep-
resentation subspaces for each of the su(2) algebras that we identified in § 3.2, generated by

{H,, E., E_,}. By the same argument as in § 3.2, we shall now show that any weight A satisfies

(A a)

2
S

=m'e€Z, (3.42)

and conversely, it may be shown that any A € h* satisfying (3.42) is the weight of some finite
dimensional representation. One may thus use (3.42)) as an alternative definition of weights.
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To convince oneself that the weights of any representation satisfy (3.42), one may, like in § 3.2,
define the maximal chain of weights through A

)\+p/a,~--,/\,~~-,)\—i—q'oz p,§07 q,207

which form a representation of the su(2) subalgebra, and then show that m' = —p’ — ¢'.

Let p' be the smallest < 0 integer such that (E_,)P'l|\,) # 0, and ¢’ the largest > 0 integer such that
(Ea)?|A\a) # 0, H, has respective eigenvalues (X, o) 4+ p/(a, ), and (X, o) 4+ ¢/(a,a) on these vectors.
Expressing that the eigenvalues of 2H,,/{ «, «) are opposite integers, one finds

(A o)

A
ag 42380 _oi gy gl
(a,a) (a,a)

Subtracting these equations gives ¢’ — p’ = 27, and the length of the chain is 25 + 1 (dimension of the spin j

=-2j. (3.43)

representation of su(2)), while adding them to get rid of 2j, one has

(A a)

lara)

=—(¢d +p)=mn, as announced in ([3.42)).

This chain is invariant under the action of the Weyl reflection w,. (This is a generalisation
of the Z, symmetry of su(2) “multiplets” (—j,—j + 1,---,7 — 1,j).) More generally the set
of weights is invariant under the Weyl group: if A is a weight of a representation, so is wq(A),
and one shows that they have the same multiplicity. The weight diagram of a representation is
thus invariant under the action of W.

The set of weights is split by the Weyl group W into “chambers”, whose number equals the

order of W. The chamber associated with the element w of W is the cone
Co={MN{wA\ ;) >0, Vi=1,---,(}, (3.44)

where the a; are the simple roots. (This is not quite a partition, as some weights belong to
the “walls” between chambers.) The fundamental chamber is Cy, corresponding to the identity
in W. The weights belonging to that fundamental chamber are called dominant weights. Any
weight may be brought into C; by some operation of W: it is on the “orbit” (for the Weyl group)
of a unique dominant weight. Among the weights of a representation, at least one belongs to
Cy.

On the other hand, from [H;, E,| = o) E, follows that

HiEa|/\a> = ([Hw Ea] + EaHi)|/\a> = (O‘(i) + >‘(i)>Ea’)‘a>

hence that E,|\, ), if non vanishing, is an eigenvector of weight A\ + a. Now, in an irreducible
representation, all vectors are obtained from one another by such actions of E,,, and we conclude
that
> T'wo weights of the same (irreducible) representation differ by a integer-coefficient combination
of roots,
(but this combination is in general not a root).

One then introduces a partial order on weights of the same representation: X > X if

N — X = Y .n;a;, with non negative (integer) coefficients n;. Among the weights of that
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representation, one proves there exists a unique highest weight A, which is shown to be of
multiplicity 1. The highest weight vector will be denoted |A) (with no index a). It is such
that for any positive root E,|A) = 0, (otherwise, it would not be the highest), hence ¢' = 0 in
equation and (A, ) = 3(a,@)j > 0, A is thus a dominant weight.

> The highest weight of a representation is a dominant weight, A € C;.

This highest weight vector characterises the irreducible representation. (In the case of su(2),
this would be a vector |j,m = j).) In other words, two representations are equivalent iff they
have the same highest weight.

One then introduces the Dynkin labels of the weight A by

<>\,Oéi>

(i, a;)

A =2 €L (3.45)
with «; the simple roots. For a dominant weight, thus for any highest weight of a representation,
these indices are non negative, ¢.e. in N.
The fundamental weights A; satisfy by definition
A, o
pdfiai) 5 - (3.46)

< O, O >
Their number equals the rank ¢ of the algebra, and they make a basis of h*. Each one is the
highest weight of an irreducible representation called fundamental; hence there are ¢ funda-
mental representations. We have thus obtained
> Any irreducible representation irreducible is characterised by its highest weight,
and with a little abuse of notation, we denote (A) the irreducible representation of highest
weight A.

> Any highest weight decomposes on fundamental weights, and its components are its Dynkin

labels ,

¢
A=)"NA . NEN. (3.47)
j=1
and any A of the form is the highest weight of an irreducible representation.
Stated differently, the knowledge of the fundamental weights suffices to construct all irreducible

representations of the algebra.
Using the properties just stated, show that the highest weight of the adjoint representation is necessarily 6,

defined in eq. (3.36).

Weight and root lattices

Generally speaking, given a basis of vectors ej,---e, in a p dimensional space, the lattice

P, 2"e; with coefficients 2* € Z. This lattice

generated by these vectors is the set of vectors )
is also denoted Ze; + - - - + Ze,,.

The weight lattice P is the lattice generated by the ¢ fundamental weights A;. The root
lattice @) is the one generated by the ¢ simple roots «;. This is a sublattice of P. Any weight

of an irreducible representation belongs to P.
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One may consider the congruence classes of the additive group P wrt its subgroup @, that
are the classes for the equivalence relation A ~ X iff A — X € Q. The number |P/Q)| of these
classes turns out to be equal to the determinant of the Cartan matrix. (Exercise : prove it.
Hint : compute the determinants of the A; and of the «; in the basis of coroots.) In the case
of su(n), there are n classes, we shall return to that point later.

One may also introduce the lattice Q¥ generated by the £ coroots o) (cf §2.4). It is the “dual” of P, in the
sense that (o), A;) € Z.

One also shows that the subgroups of the finite group P/Q are isomorphic to homotopy groups of groups
G having g as a Lie algebra! For example for su(n), we find below that P/Q = Z,, and these subgroups are

characterised by a divisor d of n. For each of them, SU(n)/Z4 has the su(n) Lie algebra. The case n = 2, with
SU(2) and SO(3), is quite familiar.

Dimension and Casimir operator

It may be useful to know the dimension of a representation with a given highest weight and the
value of the quadratic Casimir operator in that representation. These expressions are given in

terms of the Weyl vector p, defined by any of the two (non trivially!) equivalent formulas

P = % Za>0 o

A remarkable formula, due to Weyl, gives the dimension of the representation of highest weight

A as a product over positive roots

. (Atpa)
dim(A) = —_— 3.49
(&) 1:[0 Toa) (3.49)
while the eigenvalue of the quadratic Casimir reads
1
Cy(A) = §<A,A +2p) . (3.50)

A related question is that of the trace of generators of g in the representation (A). Let ¢, be a basis of g such
that tr t,tp, = Tadap, with a coefficient T4 whose sign depends on conventions (¢ Hermitian or antihermitian,

see Chap. 1). In the representation of highest weight A, one has (see below Exercise B of Chap. 5)
tr dA(ta)dA(tb) =Trbap - (3.51)
But in that basis, the quadratic Casimir reads Co =3, (da(ta))? hence, taking the trace,

trCy = tr (da(ty))* =Ta Y, 1 =Ty dimg

= CQ(A) tr IA = CQ(A) dlm(A) (352)
whence dim(A
T, = Co(n) (3.53)

a useful formula in calculations (gauge theories ...). In the adjoint representation, dim(A) = dim g, hence
Th =Ty = CQ(A)

There is a host of additional, sometimes intriguing, formulas relating various aspects of Lie algebras and
representation theory. For example the Freudenthal-de Vries “strange formula”, which connects the norms of

the vectors p and 6 to the dimension of the algebra and the Coxeter number: (p,p) = %( 0,0)dimg.
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There is also a formula (Freudenthal) giving the multiplicity of a weight A within a representation of given
highest weight A. And last, as a related issue, a formula by Weyl giving the character x(e) of that repre-
sentation evaluated on an element of the Cartan torus, an abelian subgroup resulting from the exponentiation
of the Cartan algebra b.

Conjugate representation

Given a representation of highest weight A, its complex conjugate representation is generally non equivalent.

One may characterize its highest weight A thanks to the Weyl group. The non-equivalence of representations

(A) and (A) has to do with the symmetries of the Dynkin diagram. For the algebras of type B, C, E7, Eg, Fy, G
for which there is no non trivial symmetry, the representations are self-conjugate. This is also the case of Ds,..

For the others, conjugation corresponds to the following symmetry on Dynkin labels

Ap = su(f + 1) i e )\g+1,i {>1
Doryy = 80(47" + 2) Ao e A1, {=2r+1
E6 >\z s )\6—i7 = 17 2. (354)

where the labelling of fundamental weights, hence that of Dynkin labels, matches that of simple roots, see Fig.
.2)

3.3.2 Roots and weights of su(n)

Let us construct explicitly the weights and thus the irreducible representations of su(n).

We first pick a convenient parametrization of the space b*, which is of dimension n — 1. Let
e;, 1 =1,---n, be n vectors of h* = R"* (hence necessarily dependent), satisfying > | e; = 0.
They are obtained starting from an orthonormal basis é; of R™ by projecting the é; on an
hyperplane orthogonal to p := "7  é;, thus ¢, = ¢ — %/3. It is convenient to choose the

hyperplane Y ;" 2* = 1 in the space R"™. These vectors have scalar products given by

1
<€i7ej>:5i'_ﬁ . (3.55)

In terms of these vectors, the positive roots of su(n)= A,_;, whose number equals |A,| =
n(n —1)/2, are
Qi = €; — €5, 1<i1<y<n, (356)

and the £ = n — 1 simple roots are
O = Qi1 = € — €441, 1§z§n—1 (357)

These roots have been normalized by (a, a) = 2. The sum of positive roots is easily computed
to be

2p =(n—1eg+(n—3)ea+---+(n—20i+1)e;+---—(n—1)e,
=n—-—1Dag+2n—2)ae+---+i(n—i)a; + -+ (n— 1)ay_1. (3.58)

One checks that the Cartan matrix is

2 ifi=j

Cij=( i, a5 ) = o
-1 ifi=45+1
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Figure 3.3: Weights of su(2). The positive parts of the weight (small dots) and root (big dots)

lattices.

in accord with the Dynkin diagram of type A, _;, thus justifying (3.57). The fundamental

weights A;, @ = 1,--- ,n — 1 are then readily written

%

A= ey, (3.59)

=1

€ = Al, €; = Az — Ai—l for i = 2, e, N — 1, €n = _An—l (360)

with scalar products

<Ai,Aj>:@ i< (3.61)

Y

The Weyl group W = Sy acts on roots and on weights by permuting the e;:
weW —weSy : we)=ep -

Dimension of the representation of weight A

Combining formulas (3.49)) and (3.56|), prove the following expression

. . n—1
dim(A) =[] fizirizi g > Moy fa=0. (3.62)
k=1

1<i<j<n J—t
Conjugate representations

If A = (A, -+, 1) is the highest weight of an irreducible representation of su(n), A =
(M1, , A1) is that of the complex conjugate, generally inequivalent, representation (see
above in § 3.3.1). Note that neither the dimension, nor the value of the quadratic Casimir

operator distinguish the representations A and A.
“p-ality”.
There are n congruence classes of P with respect to Q). They are distinguished by the value of
v(A) =M +2X+--+(n—1)A\—1 modn, (3.63)

to which one may give the unimaginative name of “n-ality”, by extension of the “triality” of su(3), see below.
The elements of the root lattice thus have v(\) = 0.

Examples of su(2) and su(3).

In the case of su(2), there is one fundamental weight A = A; and one positive root a, normalised
by (a,a) = 2, hence (A,a) =1, (A,A) = 3. Thus o = 2A, A corresponds to the spin 3
representation, a to spin 1. The weight lattice and the root lattice are easy to draw, see Fig.
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Figure 3.4: Weights of su(3). Only the first Weyl chamber C; has been detailed, with some
highest weights. The weights of triality 0 (forming the root lattice) are represented by a wide
disk, those of triality 1, resp. 2, by a full, resp. open disk.

3.3l The Dynkin label A; is identical to the integer 2j, the two congruence classes of P wrt @
correspond to representations of integer and half-integer spin, the dimension dim(A) = A\ +1 =
2j + 1 and the Casimir operator Co(A) = A1 (A +2) = j(j + 1), in accord with well known
expressions.

For su(3), the weight lattice is triangular, see Fig. on which the triality 7(A) 1= A\ +2Xy
mod 3 has been shown and the fundamental weights and the highest weights of the “low lying”
representations have been displayed. Following the common use, representations are referred
to by their dimension’]

dim(A) = %(Al FD e+ D\ + Ao +2) (3.64)

supplemented by a bar to distinguish a representation from its conjugate, whenever necessary.
The conjugate of representation of highest weight A = (A1, o) has highest weight A = (Ag, \1).

Only the representations lying on the bisector of the Weyl chamber are thus self-conjugate.

Exercise. Compute the eigenvalue of the quadratic Casimir operator in terms of Dynkin labels Aj, Ay using

the formulas and .
The set of weights of low lying representations is displayed on Fig. (3.5)), after a rotation

of the axes of the previous figures. The horizontal axis, colinear to a;, and the vertical axis,
colinear to Ay, will indeed acquire a physical meaning: that of axes of isospin and “hypercharge”
coordinates, see next chapter.

Remark. The case of su(n) has been detailed. Analogous formulas for roots, fundamen-

tal weights, etc of other simple algebras are of course known explicitly and tabulated in the

Swhich may be ambiguous; for example, identify on Fig. (3.4) the weight of another representation of

dimension 15.
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Figure 3.5: The weight diagrams of low lying representations of su(3), denoted by their dimen-
sion. Note that a rotation of 30° of the weight lattice has been performed with respect to the
previous figure. In each representation, the highest weight is marked by a small indentation.

The small dots are weights of multiplicity 1, the wider open dot has multiplicity 2.

literature. See for example Appendix F for the identity card of “classical algebras” of type
A, B,C, D, and Bourbaki, chap.6, for more details on the other algebras.

3.4 Tensor products of representations of su(n)

3.4.1 Littlewood—Richardson rules and Racah—Speiser algorithm

Given two irreducible representations of su(n) (or of any other Lie algebra), a frequently en-
countered problem is to decompose their tensor product into a direct sum of irreducible rep-
resentations. If one is only interested in multiplicities and if one has a character table of the
corresponding compact group, one may use the formulae proved in Chap. 2, § 2.3.2.

There exist also fairly complex rules giving that decomposition into irreducible represen-
tations of a product of two irreducible representations (A) and (A’) of su(n). Those are the
Littlewood-Richardson rules, which appeal to the expression in terms of Young tableaux (see
next §). But it is often simpler to proceed step by step, noticing that the irreducible represen-
tation (A’) is found in an adequate product of fundamental representations, and examining the
successive products of representation A by these fundamental representations. By the associa-
tivity of the tensor product, one brings the original problem back to that of the tensor product
of (A) by the various fundamental representations.

The latter operation is easy to describe on the weight lattice. Given the highest weight A
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Figure 3.6: Tensor product of the 8 representation by the 3 representation, depicted on the
weight diagram of su(3).

in the first Weyl chamber C;, the tensor product of (A) by the fundamental representation of
highest weight A; is decomposed into irreducible representations in the following way: one adds
in all possible ways the dim(A;) weights of the fundamental to the vector A and one keeps as
highest weights in the decomposition only the weights resulting from this addition that belong
to Cy.

Let us illustrate that on the case of su(3). Suppose that we want to determine the decom-
position of 8 ® 8. One knows that the 8 representation (adjoint) is to be found in the product
of two fundamental 3 and 3 (see below, end of § . The weights of the fundamental repre-
sentation “3” of highest weight A; = ey are ey, es, e3. Those of the fundamental representation

“3” are their opposites. With the previous rule, one finds

33 = 306 3R3=13®8

36 = 8@10 36=3®15

38 = 306315

315 = 6015®24 (3.65)

etc, and their conjugates, see Fig. [3.6] In general one adds the three vectors e; = (1,0), ey =
(—=1,1) and e3 = (0,—1) (in the basis Aj, As) to A = (A1, A2): the highest weights of the
decomposition are thus (A + 1, Ag), (A — 1, A2+ 1) and (Ay, Ay — 1), among which those having
a negative Dynkin label are discarded. Note the consistency with triality: all the representations
appearing in the rhs have the same triality, the sum (modulo 3) of trialities of those of the lhs.
For example, 7(3) =1, 7(15) = 1, 7(6) = 2, 7(15) = 2, etc.

Iterating this procedure, one then computes
8R(148)=8R303=CB06015)R3=19808d8® 100 10® 27
from which one derives the formula
8R8=1®8,®8,H10H10® 27 . (3.66)

In the latter expression, one added a subscript s or a to distinguish the two copies of the 8
representation: one is symmetric, the other antisymmetric in the exchange of the two represen-
tations 8 of the left hand side. This relation will be very useful in the following chapter, in the

study of the SU(3) “flavor” symmetry group.
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Though a bit tedious, this procedure is simple and systematic. There exists a more elaborate
rule for the tensor product of two general highest weight representations (A) and (A’), see below.
There exist also codes computing these decompositions, like for example the amazing LiE, see

http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/form.html
A generalization of the above rules, valid for any simple algebra g, is the Racah—Speiser algorithm, which

gives the multiplicities N Ve for h.w. X\ and p of g (we have changed notations for convenience A — A\, A’ — )
(N @ (1) = &N, (v). (3.67)

Consider the set of weights o0 = X' 4+ u + p where X runs over the weight diagram [A] of the irrep of h.w. A and

p is the Weyl vector. Three cases may occur:

e i) if all Dynkin labels of o are strictly positive, A’+pu contributes to the sum over h.w. v with a multiplicity

equal to the multiplicity of o (i.e. of \');

e ii) if o or any of its images under the Weyl group has a vanishing Dynkin label, i.e. if o is on the edge

of a Weyl chamber, X + u does not contribute to the sum over v;

e iii) if o has negative (but no vanishing) Dynkin labels, and is not of the type discussed in case (ii), it
may be mapped inside the fundamental Weyl chamber by a unique element w of the Weyl group. The
weight w(o] — p then contributes sign(w) times the multiplicity of A’ to the sum over v, where sign(w) is

the signature of w defined above in section 3.2.1.
This is summarized in the formula

N,/ = Z Z sign (W) Oy, wn/+pu+pl—p (3.68)

’ weW
MER wX 4ptpl—peP L

in which P is the fundamental Weyl chamber (including its walls): v € Py < 1v; >0Vi=1,---n.

3.4.2 Explicit tensor construction of representations of SU(2) and
SU(3)

Consider a vector V' € C" in the defining representation of SU(n). Under the action of U €
SU(n), V +— V' = UV, or component-wise v’ — v = U*;v7, with indices 4,7 = 1,---n. Let W
be a vector which transforms by the complex conjugate representation, (like W = V*), hence
W — W' = U*W. It is natural to denote the components of W with lower indices, since
U* = (UNHT, and therefore w'; = w;(U')’;. Note that V.W := viw; is invariant, by virtue of

Ut.U = I. In other words the mixed tensor 6;- is invariant
i i oprtd el i i

Consider now tensors of rank (p,m), with p upper indices and m lower ones, transforming as

V& @ W®™ hence according to

o = U U Ut Ut (3.69)

m ll"'lm

e In the case of SU(2), we know that the representations U and U* are equivalent. This
results from the existence of a matrix C' = ioy, such that CUC~! = U*, thus C~'V* transforms

. . -/ i’ . . . .
like V. Or, since Cj; = €;; and €;;,U",U ]j = ¢;; det U = ¢;5, the antisymmetric tensor €, invariant
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and invertible (€¥ = —¢;;, €;;6/% = §F), may be used to raise or lower indices, (v; := €;;07, hence
vy = v%, vy = —o'); and therefore it suffices to consider only tensors of rank p with upper
indices. For any pair of indices, say i; and i, such a tensor may be written as a sum of

symmetric and antisymmetric components in these indices

tilign-ip — t[il,ig]mip 4 t{il,ig}-uip

with ¢l = L(ghiziy _ giaiiio) apd glivialte o= L(ghizis 4 giali-i) - The antisymmetric
component may be recast as 1721 = ghizfiai with §5% = —1e 9% and its rank has
thus been reducedﬂ Consequently only tensors that are completely symmetric in all their p
upper indices give irreducible representations, and one recovers once again the construction of
all irreducible representations of SU(2) by symmetrized tensor products of the representation
of dimension 2, see Chap. 0, and the rank p identifies with 2j. One checks in particular that
the number of independent components of a rank p completely symmetric tensor in the space
C? is p + 1, since these components have 0, 1, - - - p indices equal to 1, the other being equal to
2.

A rank p completely symmetric tensor will be represented by a “Young diagram” with p
boxes @; For the general definition of a Young diagram, see next section. Take p = 3 for

deﬁnitenpess. The tensor product of such a rank 3 tensor by a rank 1 tensor will be depicted as
[(ITT] @U=[TTT1® H:D

which means, in terms of components,

ApiTkgl = (fikyl g iRy ikl d gLy Ry gkl aklyEy gkl ikl g (fkl ity ky

where the first term is completely symmetric in its p + 1 = 4 indices, and the following terms
are antisymmetric in (4,1), (j,{) or (k,[). According to the previous argument, the latter may

be reduced to rank 2 tensors.
(tkqyl — giklyty = ¢ilfik ’ Ph — e 19k
which we represent by erasing the columns with two boxes. Therefore
[T @ =[LTTT1eT]

where we recognize the familiar rule j @ 2 = (j+ 1) ® (j — 3).

Exercise : reproduce with this method the decomposition rule of j ® j'.

e In the case of SU(n), n > 2, one must consider tensors with two types of indices, upper
and lower, and reduce them. But itis only in the case of SU(3) that this construction will
provide us with all irreducible representations. For n > 3 one has to introduce other tensors
transforming under fundamental representations of SU(n) other than the defining representation

(of dimension n) and its conjugate.

6Tt may be useful to recall the identities €qp€cqd = SacOpd — Gaddpe and hence egpepe = —dge.
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We thus restrict the discussion of the end of this section to the case of SU(3). The tensors
i1
have an invariant tensor €, but now of rank 3,

are of type t (i.,7. = 1,2,3), transforming under the representation 3¥7 @ 3®™. We still

-/ 1 /
Eilj/k/UZinjUkk = €k det U = €ijk »

which allows us to trade any pair of upper antisymmetric indices for a lower one, or vice
versa, and thus to reduce the rank. But a pair of one upper and one lower indices may also
be contracted, according to a remark at the beginning of the section. Consequently one may
consider only completely symmetric and traceless tensors of rank (p,m). One may prove that
such tensors form an irreducible representation, which is nothing other than the representation
of highest weight pA; +mA, in the notations of § 3.3.2. We content ourselves with a check that
the dimensions of these representations are in accord with those given in , see Exercise
E. With this representation we associate again a Young diagram with two rows, the first with
p + m, the second with m boxes.

The rules of decomposition of tensor products, in particular by the fundamental represen-
tations 3 and 3 (see § 3.4.1), are also recovered in this language : the new box must be added
in all possible ways to the diagram (while preserving the decreasing of lengths of rows), and
any column of height 3 is erased, reflecting the property that det U = 1. Exercise : study the
reduction of ® [1 and recover the graphical rule of § 3.4.1 in this language.

A particular case that we shall use repeatedly in the next chapter is the following: the
adjoint representation is that of rank (1,1) traceless tensors. This is no surprise: the adjoint
representation is spanned by the su(3) Lie algebra, hence by (anti)Hermitian 3 x 3 traceless
matrices. A tensor of that representation transforms by t; — t’; =U',U 47 or in a matrix

Jjvih
form

t=UtU", (3.70)

which is also expected, compare with the definition of the adjoint representation in Chap. 2.

Which Young diagram is associated with the adjoint representation?

3.5 Young tableaux and representations of GL(n) and
SU(n)

The previous construction extends to su(n), in fact to the group GL(n), and involves symmetrization and anti-
symmetrization operations related to the symmetric group of permutations S,,. We just give a few indications.
Let E = C" be the vector space of dimension n. The group GL(n,C), or GL(n) in short, is naturally

represented in F
g€GL(n), zeF—a =gux. (3.71)

Form the m-th tensor power of E: F = E®™ = E®---® E. In F, the group GL(n) acts by a representation,
the m-th tensor power of (3.71))

g €GL(n), D(g)zW® 2™ =g2Wx...0gzM™ (3.72)
which is in general reductible. But in F', there is also the action of the symmetric group S,, according to

€ S, ﬁ(o—)x(l) Q- Cp(m) — x(oill) R-® x(gflm) . (3_73)
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Choose a basis e; in E, and denote g;; the matrix elements of g € GL(n) in that basis. The representation of
GL(n) in F has a matrix

D(9){ir i }Hirim} = H Gir.jw (3.74)
k=1
and that of S,
D(0) (irin} i} = L] Givr s - (3.75)
k=1

A tensor t, element of F, has components t* in that basis and transforms under the action of g € GL(n), resp.

of o € S, into a tensor ¢’ of components ¢'*- = D; ; tJ-, resp. 'Z/ji.,j'tj'. These two sets of matrices commute
Y P@iyy PO yary = Ihgiidik, 1 =gk,
{3}
=243 PO 1,539 534wy - (3.76)

Define then a Young diagram. A Young diagram is made of m boxes set in k rows of non increasing length:
fi>fa>-fr, > fi = m. Here is an example for m = 8, with f; =4, fo =2, f3 =2

L]

The m boxes of a Young diagram may then be filled with different integers ranging between 1 and m, thus
making a Young tableau. A standard tableau is a tableau in which the integers are increasing in each row from
left to right, and in each column from top to bottom.

The number ny of standard tableaux obtained from a Young diagram Y is computed as follows. One defines
the numbers ¢; = f; + k —1¢,i=1,--- k. They form a strictly increasing sequence: ¢; > 5 > --- > {;. Then
one proves that

ny = HT_“[, T - ) (3.77)
(AP}
where the product in the numerator is 1 if there is a single row.

The representation theory of the symmetric group S, tells us that there is a bijection between irreducible
representations and Young diagrams with m boxes. The dimension of that representation is given by the number
of standard tableaux (3.77)).

A tensor is said to be of (symmetry) type Y if it transforms by S,, under that representation. The
commutation of matrices D(g) and D(c), eq. , then ensures that tensors of type Y form an invariant
subspace under the action of GL(n).

Example. Consider the cases of m = 2 and m = 3. In the first case, rank 2 tensors may be decomposed into

their symmetric and antisymmetric parts which transform independently under the action of GL(n)
iz _ 1 (£1%2 4 g2 4 1 (tirie — fizin)
2 2

This decomposition corresponds to the two Young tableaux with 2 boxes, arranged horizontally or vertically.

For rank 3, one writes in a similar way the tensors associated with the 4 standard Young tableaux

A — ti1i2i3 +ti2’i3i1 +ti3i1i2 +ti2i1i3 +ti3i2i1 +ti1i3i2 (378)

B — tiliQig _|_ ti2i3i1 + t’i3’i1’i2 _ ti2i1i3 _ tigigil _ t’il’igig (379)

Cl — tilizig _ tizigil + tizilig _ tigizil (3.80)

D1 — tilizig _ t’izilig + tigizil _ tigiliz (3.81)

where, to make the notations lighter, the indices i1,42,93 on A,--- , D1 have been omitted. Any rank 3 tensor

decomposes on that basis:
6172 = A4+ B+ 2(Cy + D) .
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The labels 1 on C and D recall that under the action of the group Ss, these objects mix with another combination
Co = thrisiz _ gisiia y yizishy _ yivisls (regp. Dy = ti2iris 4 gioishs _ girizis _ yiisiz) of 497k to make dimension
2 representations. On the contrary the action of the group GL(n) mixes the different components of tensor A,
those of tensor B, etc. Tensors C' and D transform by equivalent representations.

All Young tableaux, however, do not contribute for a given n. It is clear that a tableau with k& > n rows
implies an antisymmetrization of k indices taking their values in {1,--- ,n} and vanishes. On the other hand it
is easy to see that any tableau with & < n rows gives rise to a representation. One proves, and we admit, that
this representation of GL(n) is irreducible and that its dimension is

dimgf) _ A(fitn—1,fo+n—2,--,fn)
An—1,n—-2,---,0)

(3.82)

where A(aq, a9, - ,a,) = HK]- (a; —aj) is the Vandermonde determinant of the a’s and the f; denote as above
the lengths of rows of the tableau Y. This is a polynomial of degree m =Y f; in n. Compare with (3.62]).

In the case of a one-row tableau, the formula results from a simple combinatorial argument. The dimension
equals the number of components of the completely symmetric tensor ¢ in which one may assume that
1 <i <ig <--- <ip <n. One has to arrange in all possible ways n — 1 < signs between the m indices
i1, - ,im to mark the successive blocks de 1, 2, ..., n. The seeked dimension is thus the binomial coefficient
("t =Cn,,. 4, in accord in this particular case with .

n
In the previous example with m = 3, the last two tensors C; and D; transform according to equivalent

representations. One thus says that E®3 decomposes as
[T+ @ +2 EF]

where the third representation comes with a multiplicity two. As a general rule, the multiplicity in E®™ of some
representation of GL(n) labeled by a Young tableau equals the dimension of the corresponding representation
of S,,.

This remarkable relation between representations of Sy, and of GL(n) is due to Frobenius and Weyl and is
called Frobenius—Weyl duality.

One may extend these considerations to other groups of linear transformations, SL(n), O(n), U(n), ... Because
of the additional conditions on the g matrices in these groups, a further reduction of the representations may
occur. For example, we saw in sect. 2.2.2 that the tensor power E®? of the 3-dimensional Euclidian space

reduced under the action of SO(3) into three subspaces, corresponding to tensors with a definite symmetry and

traceless, and to an invariant scalar.

Relations between Young diagrams and weights of su(n)

Let us finally give the relation between the two descriptions of irreducible representations obtained for SU(n)
or its Lie algebra su(n). In that case, one may limit the number of rows of the Young tableau Y to k <n —1
to obtain all irreducible representations. The i-th fundamental weight is represented by a Young diagram made

of one column of height i, for example A3 =| | And the correspondence between the highest weight A with

Dynkin labels \; and the tableau Y with rows of length f; is as follows
n—1

A=A ) oY =(fi=> N). (3.83)
j=i

In other words, Ay, is the number of columns of Y of height k, see Fig. [3.7]
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Figure 3.7: Correspondence between a Young diagram and a highest weight (or Dynkin labels).
Here Y < A =(2,2,0,0,1,0,2)
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For the classification of real forms, see S. Helgason, Differential Geometry, Lie groups and
Symmetric spaces, Academic Press, 1978, or Kirillov, op. cit. in chap. 2 .
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Appendix F. The classical algebras of type A, B,C, D
F.1 SI(N): AN_1

Rank = [ = N — 1, dimension N2 — 1, Coxeter number h = N, dual Coxeter number hY = N.
ei,i=1,---,N aset of vectors in RY such that fo ei =0, (e;,ej) =0; — %

Roots a;; = e; —e;, i # j = 1,--- N; positive roots a;; = e; — e;, ¢ < j; their number |[Ay| = N(N —1)/2;
simple roots o; == ;41 =€; — €41t =1,--- N — 1.

Highest root 6 = a1 + -+ ay_1=2e;1 +es+---+exy_1=A1 + Ay_1 = (1,0,---,0,1).

Sum of positive roots

20 =(N—-1e1+(N—=3)ea+---+(N—=2i+1)e;+---— (N —1)en
= (N— 1)0[1 +2(N = 2)ay +"'+i(N—i)Ozi +- 4+ (N - 1)0[]\{,1. (F.1)
2 ifi—j
Cartan matrix (o;,0;) =4 —1 ifi=j+1

0 otherwise

Fundamental weights A; i = 1,--- ,N — 1, A; = ZZ

j=1

ej,e1 =M, e =N —ANqfori=2---,N—-1,
ey = —An_1.

(A Ay ) = "N for i < 4.

Weyl group: W = Sy acts on the weights by permuting the e;: w € W« w € Sn: w(e;) = egi

Coxeter exponents {1,2,--- ;N — 1}.

F.2s0(2l+1)=8B,1>2

Rank = [, dimension /(2] + 1), Coxeter number h = 2[, dual Coxeter number hY = 2] — 1

ei,i=1,---,1, (eiej)=0; abasis of Rl

Roots +e;, 1 <14 <[ and +e; +e;, 1 <i < j <[. Basis of simple roots a; = e¢; — ;41,9 =1,---,1 — 1, and
o] = €.

Positive roots

e = Zak, 1<i <1,

i<k<l

ei—e; = Y o 1<i<j<l, (F.2)
i<k<j

e +e = Z oy + 2 Z o, 1<i<j<lI,
i<k<j J<k<l

their number is |A | = [2.
Highest root 8 = e; + e3 = a1 + 2a + - - - + 2q.
Sum of positive roots
20 = (2—-1er+ @2l —3)ea+---+ 20 —2i+1)e;+---+3e-1 + €
= (21— 1Dag + 220 — 2)ag + -+ +i(2l — i)y + -+ + Py, (F.3)
2 ifl1<i=j<I
1 ifl<i=(jx1)<i-1
Cartan matrix (o, Y ) =¢ -2 ifi=1—-1,j=1

J
—1 ifi=1,j=1—-1

0 otherwise
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Fundamental weights A; = Z;’:l ej,t=1,---,1—-1 A = %23:1 ej; hence e; = Ay = (1,0,---,0), ; =

Ai_Aifl:(Of" 7_171a0"'>7i:2,"' 71_15 elzzAl_Alflz(O,"' 707_172)'
Dynkin labels of the roots
a1 :(2,*1,0,"')70%2(0,"' a7172771a0"')7i:27"' 71725 -1 :(07 50771a2772);al:(07"' 70771a2)

and 0 = (0,1,0,---,0)
Weyl group: W = S x (Zy)!, of order 2'.1!, acts on the weights by permuting the e; and e; — (41);e;.

Coxeter exponents {1,3,5,--- ,2l — 1}.

F.3. sp2))=Cj, 1 > 2

Rank = [, dimension /(2] + 1), Coxeter number h = 2[, dual Coxeter number hY =1+ 1
ei,t=1,---,1,(ee)= %51']- a basis of R! (Beware ! factor 2 to enforce the normalisation §? = 2). Basis of
simple roots o; =e; —e;41, 1 =1,--- ;1 — 1, and g = 2.

Roots +2¢;, 1 <i <l and fe; £e;, 1 <i<j <.

Positive roots

ei—e = E:ab 1<i<j<l,
1<k<j
ei+e = Zak+22ak+al, 1<i<j<lI, (F.4)
i<k<j i<k<l
2; = 2 apto, 1<i<l,
i<k<l

their number is |A | = [2.
Highest root 8 = 2e; = 21 + 2 + -+ - + 2041 + .
Sum of positive roots

2p = 2[61+(2172)62+"‘+(2172Z‘+2)6i+"'+4€l_1+2€l
1
= 2oy +2(2 = Dag - +i2 =i+ Dag + -+ (L= (= s + 511+ Dan. (F.5)

2 ifl<i=j<I
1 ifl<i=(+1)<i-1
Cartan matrix (a0 ) =¢ -1 ifi=1-1,j=1

-2 ifi=1,j=101-1

0 otherwise

Fundamental weights A; = 23:1 ej,i=1,---,l, hencee; = Ay = (1,0,---,0), ¢, = Ay—A;_1 =(0,--- ,—1,1,0---),
i=2,- 1.

Dynkin labels of the roots

a1 =(2,-1,0,---), a; = (0,-- ,~1,2,-1,0---),i =2, .l = Iy oy = (0,--- ,0,-2,2) and § = (2,0,--- ,0)

Weyl group: W = S x (Zy)!, of order 2'.1!, acts on the weights by permuting the e; and e; — (41);e;.

F.4. so(2l)=D;, 1 >3
Rank = [, dimension /(2] — 1), Coxeter number = dual Coxeter number h = 2] — 2 = h"

ei,i=1,---,1, (e;,e;) = 0;; a basis of RL.

Basis of simple roots a; = e; —e;q1,i=1,---, I —1,and oy = ¢;—1 + €.
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128 Chap.3. Classification of simple algebras. Roots and weights

Positive roots

ei—e; = Y o, 1<i<j<l,
i<k<j

eit+e = Zak+2 Z ap+a1ta, 1<i<j<l-1, (F.6)
i<k<j j<k<l—1

e, +e = Z op+a, 1<i<l-1,
i<k<l-2

their number is |[AL| =1(l —1).
Highest root 8 = e; +e3 = a1 + 2a0 + -+ 200 + a1 + .

Sum of positive roots

20 = 2(l—Der+2(l—2)ea + -+ 2¢;1
(1-1
2

= 2(l-1og +2(20=3)ag+---+i(2l —i—1)oy +--- + )(oq_1+oq). (F.7)

Weyl group: W = 8; x (Z2)! ™1, of order 271!, acts on the weights by permuting the e; and e; — (£1);e;, with
[L(£1); = 1.
Coxeter exponents {1,3,5,---,2l — 3,1 — 1}, with [ — 1 appearing twice if [ is even.

2 ifl1<i=j<I
Cartan matrix (o, a; ) = -boflsi=(xh<i-2

-1 if(5,7)=(1—-2,1)or (I,1 —2)

0 otherwise
Fundamental weights A; = E;Zl ej = o1+ 200+ -+ (1 — Va1 +i(a; + -+ oq_2) + %(al,l + o) for
t=1,---,01—-2; A\_1 = %(61 +te—e) = %(oq + 20 + -+ (I — 2)ay_2) + éal_l + Z*TQozl; A =
Ller+ te1+e)=1(ar+2a+ -+ (1 —2)a2) + FRay1 + Loy

For the exceptional algebras of types E, F, G, see Bourbaki.

J.-B. Z M2 ICFP/Physique Théorique 2012 December 10, 2013



Exercises and Problem for chapter 3 129

Exercises and Problem for chapter 3

A. Cartan algebra and roots

1. Show that any element X of g may be written as X = Y a'H; + Y aen £¥Eq with the notations of §
3.1.2.

For an arbitrary H in the Cartan algebra, determine the action of ad H on such a vector X; conclude
that ad Had H'X = ) .\ 2%a(H)a(H')E, and taking into account that the eigenspace of each root a has
dimension 1, cf point (x) 2. of § 3.1.2, that the Killing form reads

(H.H') =tr(ad Had H') = > a(H)a(H') . (3.82)
a€EA

2. One wants to show that roots « defined by (3.5)) or (3.6) generate all the dual space h* of the Cartan
subalgebra . Prove that if it were not so, there would exist an element H of h such that

YaeA afH)=0. (3.83)

Using show that this would imply VH' € b, (H, H') = 0. Why is that impossible in a semi-simple
algebra? (see the discussion before equation )

3. Variant of the previous argument: under the assumption of 2. and thus of , show that H would
commute with all H; and all the F,, thus would belong to the center of g. Prove that the center of an algebra

is an abelian ideal. Conclude in the case of a semi-simple algebra.

B. Computation of the Nog
1. Show that the real constants N,s satisfy No3 = —Npg, and, by complex conjugation of [E,, Es] =
NaﬁEoH»ﬁ that
Nog=—N_q,—5 - (3.84)

2. Consider three roots satisfying a + 8 + v = 0. Writing the Jacobi identity for the triplet E,, Eg, E,,
show that o ;) Ngy + cycl. = 0. Derive from it the relation

Nag=Ng—ap=N_o_pa- (3.85)

3. Considering the a-chain through § and the two integers p and ¢ defined in § 3.2.1, write the Jacobi
identity for Ey, F_, and Fgirq, with p < k < ¢, and show that it implies

<O[, ﬂ + ka> = Nfa,ﬂ+ko¢Na,ﬁ+(k—l)a + Nﬁ+ko¢,aN—a,[3+(k+1)a .
Let f(k) := Nu g+kaN—a,—3—ka- Using the relations (3.85)), show that the previous equation may be recast as
(o, +ka)=f(k)— f(k—1). (3.86)

4. What are f(q) and f(q¢ — 1)? Show that the recursion relation (3.86) is solved by

FR) = ~(Nugika)® = (k= @){ 0 54+ 5 (k+ g+ T)a) (387)

What is f(p —1)? Show that the expression (3.21)) is recovered. Show that (3.87) is in accord with (3.23). The
sign of the square root is still to be determined ..., see [Gi].

C. Study of the B; =so(2l + 1) and G5 algebras

1. so(2l+1) =By, 1 > 2

a. What is the dimension of the group SO(2! + 1) or of its Lie algebra so(2] 4 1)?

b. What is the rank of the algebra? (Hint: diagonalize a matrix of so(2/+ 1) on C, or write it as a diagonal
of real 2 x 2 blocks, see §3.1)

¢. How many roots does the algebra have? How many positive roots? How many simple?
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130 Chap.3. Classification of simple algebras. Roots and weights

d. Let e;, i =1,--- ,1 be a orthonormal basis in R, (e;, ej ) = 0;;. Consider the set of vectors
A={te; , 1<i<l}U{te;te;, 1<i<j<I}

What is the cardinal of A? A is the set of roots of the algebra so(2] + 1).

e. A basis of simple roots is given a; = e¢; — ;41,1 =1,--- ;1 — 1, and oy = ¢;. Explain why the roots
e = Z o, 1<i<I,
i<k<l
ei—ej = Y a 1<i<j<l, (3.88)
i<k<j
e +e = Z ag + 2 Z ag, 1<i<j<lI,
i<k<j j<k<l

qualify as positive roots. Check that assertion on the case of By = so(5).

f. Compute the Cartan matrix and check that it agrees with the Dynkin diagram given in the notes.

g. Compute the sum p of positive roots.

h. The Weyl group is the (“semi-direct”) product W = &; x (Zs)!, which acts on the e; (hence on weights
and roots) by permutation and by independant sign changes e; — (£1);e;. What is its order? In the case of
Bs, check that assertion and draw the first Weyl chamber.

i. Show that the vectors A; = 22:1 ej,i=1,---,1—-1 A= %22:1 e; are the fundamental weights.

j- Using Weyl formula: dim(A) =[], UZ;Z;” compute the dimension of the two fundamental represen-
tations of By and of that of highest weight 2A5. In view of these dimensions, what are these representations of

SO(5)?

k. Draw on the same figure the roots and the low lying weights of so(5).

2. Go
In the space R?, we consider three vectors e, eq, e3 of vanishing sum, (e;, ej) =0ij — %, and construct the
12 vectors

i(el — 62), i(el — 63), i(€2 — 63), i(2€1 — €3 — 63), i(2€2 — €1 — 63), i(263 — €1 — 62)

They make the root system of Ga, as we shall check.

a. What can be said on the dimension of the algebra G5?

b. Show that a; = e; —es and as = —2e; +e5 + e3 are two simple roots, in accord with the Dynkin diagram
of G5 given in the notes. Compute the Cartan matrix.

c. What are the positive roots? Compute the vector p, half-sum of positive roots.

d. What is the group of invariance of the root diagram? Show that it is of order 12 and that it is the Weyl
group of G. Draw the first Weyl chamber.

e. Check that the fundamental weights are

A =201 + Ay = 31 + 29

f. What are the dimensions of the fundamental representations?
g. In the two cases of By and G2, one observes that the highest weight of the adjoint representation is given
by the highest root. Explain why this is true in general.

3. A little touch of particle physics (after Chap. 4 has been studied)
Why were the groups SO(5) or G5 inappropriate as symmetry groups extending the SU(2) isospin group,
knowing that several “octets” of particles had been observed?

D. Root systems. Folding of Dynkin diagrams

One considers the simple roots «; of the algebra su(2n), numbered as in the lectures. (Beware! we do say 2n !)
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1. What is the rank of that algebra? What are the (c;,a;) ? Draw the corresponding Dynkin diagram.
What is the symmetry of that diagram?

2. One then defines 8; = (a; + aon_i)/V2, fori=1,--- ,n—1 and B, = a, /2. Calculate the (B, B ).

3. Show that the (8 form a root system and identify it.

4. More generally, any system of simple roots with the same lengths may be “folded” according to a possible
symmetry of its Dynkin diagram and then gives rise to another Dynkin diagram. With no calculation, which

diagram should be obtained in that manner, starting from the Fg diagram?

E. Dimensions of SU(3) representations
We admit that the construction of § 3.4.2, of completely symmetric traceless rank (p, m) tensors in C?, does give

the irreducible representations of SU(3) of highest weight (p,m). Then we want to determine the dimension
d(p,m) of the space of these tensors.

1. Show, by studying of the product of two tensors of rank (p,0) and (0,m) and separating the trace terms
(those containing a &% between one lower and one upper index) that (p,0) ® (0,m)=((p —1,0) ® (0,m — 1)) &
(p,m) and thus that

d(p,m) = d(p,0)d(0,m) — d(p — 1)d(0,m — 1).

2. Show by a computation analogous to that of SU(2) that
1

3. Derive from it the expression of d(p, m) and compare with (3.64]).

Problem: Lie algebra to identify

1. Reminder. Given two square 2 X 2 matrices A and B, one defines the matrix A ® B
(A® B)iji = AiBji
and by convention pairs (ij) or (ki) are ordered according to the lexicographic order 11, 12, 21, 22.
(a) Show that the product of two such matrices satisfies

(A B)- (C®D)=(A-C)®(B-D).

(b) Deduce from it an expression of the commutator [A ® B,C ® D] in terms of commutators [A, C]
and [B, D] (with coefficients which may still imply the matrices A4,---, D.

2. One then considers the 3 Pauli matrices o,, a = 1,2,3 and the two-dimensional identity matrix I. One

constructs the 10 matrices
A, =0,01, By =0,001, Cqo=0,R03, D=1®05.
(As far as possible, refrain from writing explicitly these matrices.)

(a) With the minimum amount of calculations, compute the commutation relations of these matrices
and show that they form a Lie algebra g. One will admit that this algebra is simple.

(b) Let H; = Az and Hy = C35. Why can one say that they belong to a Cartan subalgebra ? What
does the statement: “they generate a Cartan subalgebra” mean? One will admit that this is the

case. What is the rank of the algebra g 7
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(c) Show that one may find 4 linear combinations X (e1,e2) = (A1 + €1C1) + €2i(Az + €1Cs) with
€1,€2 = £1 such that [H;, X (e1,€2)] = vi(e1,€2) X (€1, €2), and determine the ~;(e1,€2). (Hint: these
vi(e1, €2) take values +2.)

(d) Show similarly that By & iBy and B3 £ iD have also simple commutation properties with H; and
Hs. (Hint: the “eigenvalues” are now 0, +2.)

(e) What can be said about the roots of the algebra g ? Give the components of these roots in a basis

of the (dual) Cartan algebra.

3. We shall now identify more precisely the algebra g.

(a) Give a system of positive roots, and then a system of simple roots.
(b) Compute the Cartan matrix. Identify g in the Cartan classification.

(¢) In the plane of roots, draw the simple roots, the set of all roots. Show the fundamental Weyl

chamber.
(d) Compute the components of fundamental weights and display them on the previous figure.

(e) What is the Weyl vector? Compute the dimension of the fundamental representations. What do

they correspond to in geometrical terms?
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Chapter 4

Global symmetries in particle physics

Particle physics offers a wonderful playground to illustrate the various manifestations of symme-
tries in physics. We will be only concerned in this chapter and the following one with “internal
symmetries”, excluding space-time symmetries.

We shall examine in turn various types of symmetries and their realizations, as exact sym-

metries, or broken explicitly, spontaneously or by quantum anomalies.

4.1 Global exact or broken symmetries. Spontaneous

breaking

4.1.1 Overview. Exact or broken symmetries

Transformations that concern us in this chapter are global symmetries and we discuss them in
the framework of (classical or quantum) field theory. A group G acts on degrees of freedom
of each field ¢(z) in the same way at all points z of space-time. For example, G' acts on ¢ by
a linear representation, and to each element ¢ of the group corresponds a matrix or operator

D(g), independent of the point z
¢(z) — D(g)p(x) . (4.1)

In a quantum theory, according to Wigner theorem, one assumes that this transformation is
also realized on vector-states of the Hilbert space of the theory by a unitary operator U(g),
and, as an operator, ¢(x) — U(g)d(x)UT(z).

This transformation may be a symmetry of dynamics, in which case U(g) commutes with
the Hamiltonian of the system, or in the Lagrangian picture, it leaves the Lagrangian invariant
and gives rise to Noether currents j! of vanishing divergence (see for example § and to
conserved charges Q; = [dxj?(x,t),i=1,---,dim G. These charges act on fields as infinites-
imal generators, classically in the sense of the Poisson bracket, {Q;, ¢(z)}da’ = d¢(x), and if

everything goes right in the quantum theory, as operators in the Hilbert space with commutation
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134 Chap.4. Global symmetries in particle physics

relations with the fields [Q;, ¢(x)]da’ = —ihdd(x) and between themselves [Q;, Q;] = iC, [ Qy.
An important question will be indeed to know if a symmetry which is manifest at the classical
level, say on the Lagrangian, is actually realized in the quantum theory.

e An example of exact symmetry is provided by the U(1) invariance associated with electric
charge conservation. A field carrying an electric charge ¢ (times |e|) is a complex field, it
transforms under the action of the group U(1) according to the irreducible representation

labelled by the integer ¢

¢(a) = () i ¢ (x) = e ().

If the Lagrangian is invariant when all fields transform that way, then the Noether current
J*(x), sum of contributions of the different charged fields, is divergence-less, 0,j*(x) = 0, and
the associated charge () is conserved. The quantum theory is quantum electrodynamics, and
there one proves that the classical U(1) symmetry as well as the current conservation (and gauge
invariance) are preserved by quantization and in particular by renormalization, for example that
all electric charges renormalize in the same way, see the course of Quantum Field Theory.
Other invariances and conservation laws of a similar nature are those associated with bary-

onic or leptonic charges, which are conserved (until further notice ... ).

e A symmetry may also be broken explicitely. For example the Lagrangian contains terms that
are non invariant under the action of G. In that case, the Noether currents are non conserved,

but their divergence reads

i) = 2 (42)

We will see below with flavor SU(3) an example of a broken (or “approximate”) symmetry.

Certain types of breakings, called “soft”, are such that the symmetry is restored at short distance or high
energy. This is for example the case of scale invariance (i.e. under space-time dilatations), broken by the
presence of any mass scale in the theory, but restored —in a fairly subtle way— at short distance, see the study

of the Renormalization Group in the courses of quantum or statistical field theory.

e A more subtle mechanism of symmetry breaking is that of spontaneous symmetry break-
ing. This refers to situations where the ground state of the system does not have a symmetry
apparent on the Lagrangian or on the equations of motion. The simplest illustration of this phe-
nomenon is provided by a classical system with one degree of freedom, described by the “double
well potential” of Fig. M(a). Although the potential exhibits a manifest Z, symmetry under
x — —ux, the system chooses a ground state in one of the two minima of the potential, which
breaks symmetry. This mechanism plays a fundamental role in physics, with diverse manifes-
tations ranging from condensed matter —ferromagnetism, superfluidity, supraconductivity. . .—
to particle physics —chiral symmetry, Higgs phenomenon— and cosmology.

> Exzample. Spontaneous breaking in the O(n) model

The Lagrangian of the bosonic (and Minkovskian, here) “O(n) model” for a real n-component
field ¢ — {6}
1
L=5(0¢)" -

g (@) (43)
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Vix)

(@) (®)
Figure 4.1: Potentials (a) with a “double well” ; (b) “mexican hat”

is invariant under the O(n) rotation group. The Noether current j¢ = 0,¢"(T*);¢’ (with T°
real antisymmetric, see § [1.3.5) has a vanishing divergence, which implies the conservation
of a “charge” etc. The minimum of the potential corresponds to the ground state, alias the

2 is taken negative, the minimum of the potential

vacuum, of the theory. If the parameter m
V = 1m2¢* + 2(¢°)? is no longer at ¢° = 0 but at some value v? of ¢” such that —m? = \?,
see Fig. {4.1(b). The field ¢ “chooses” spontaneously a direction 7 (72? = 1) in the internal

space, in which its vacuum expectation value (“vev” in the jargon) is non vanishing
(0|4|0) = vn . (4.4)

This “vev” breaks the initial invariance group G = O(n) down to its subgroup H that leaves
invariant the vector (0|¢|0) = vn, hence a group isomorphic to O(n — 1). The fact that a
vacuum expectation value of a non invariant field be non zero, (0|¢|0) # 0, signals that the
vacuum is not invariant : this is a case of spontaneous symmetry breaking. This is the mechanism
at work in a low temperature ferromagnet, for example, in which the non zero magnetization
signals the spontaneous breaking of the space rotation symmetry.
Exercise (see F. David’s course) : Set ¢ = (v+0)n+ 7, where m denote the n — 1 components
of the field ¢ orthogonal to (@) = vn and determine the terms of V (o, ) that are linear and
quadratic in the fields ¢ and 7 ; check that the linear term in ¢ vanishes (minimum of the
potential), that ¢ has a non-zero mass term, but that the 7 are massless, they are the Nambu—
Goldstone bosons of the spontaneously broken symmetry. This is a general phenomenon: any
spontaneous breaking of a continuous symmetry is accompanied by the appearance of massless
excitations whose number equals that of the generators of the broken symmetry (Goldstone
theorem). More precisely when a group G is spontaneously broken into a subgroup H (group
of residual symmetry, invariance group of the ground state), a number d(G) — d(H ) of massless
Goldstone bosons appears. In the previous example, G = O(n), H = O(n—1), d(G) —d(H) =
n— 1.

Let us give a simple proof of that theorem in the case of a Lagrangian field theory. We write £ = %(8@5)2 —

V(¢) with quite generic notations, ¢ denotes a set of fields {¢;} on which acts a continuous transformation

group G. The potential V' is assumed to be invariant under the action of infinitesimal transformations §%¢;,
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a=1,---,dimG. For example for linear transformations: §“¢; = T};¢;. We thus have

OV (9()) 0, () _
0¢;(x) O¢ulx) =0

Differentiate this equation with respect to ¢;(z) (omitting everywhere the argument x)

OV 06%¢; 0V

7741) + 7§a¢i =0

0¢p; 0¢; 0000,
and evaluate it at ¢(z) = v, a (constant, z-independent) minimum of the potential : the first term vanishes,
the second tells us that

0*v ‘
00;09¢; lp=v

where we write (with a little abuse of notation) §%v; = 6*®;|¢=». On the other hand, the theory is quantized

5 =0 (4.5)

near that minimum v (“vacuum” of the theory) by writing ¢(z) = v + ¢(z) and by expanding
1 0%V ‘

20¢;0¢; lp=v
and the masses of the fields ¢ are then read off the quadratic form. But (4.5)) tells us that the “mass matrix”

2 . . . . . . .
%M:v has as many “zero modes” (eigenvectors of vanishing eigenvalue) as there are independent variations

V(g)=V(v)+ Vi 4

0%; # 0. If H is the invariance group of v, 6%v; # 0 for the generators of G that are not generators of H, and
there are indeed dim G — dim H massless modes, qed.

4.1.2 Chiral symmetry breaking

Consider a Lagrangian that involves massless fermions

L =i + gy ) (V) | (4.6)

where ¢ = {14 }a=1,... v is @ N-component vector of 4-spinor fields. Note the absence of a mass
term v7) in (4.6). That Lagrangian is invariant under the action of two types of infinitesimal

transformations

oap(z) = dAY(x) (4.7)
dpp(r) = 0Bys(x)

where the matrices A and B are infinitesimal N x N antihermitian, that act on the “flavor”
indices o but not on spinor indices and hence commute with v matrices. Recall that ~s is
Hermitian and anticommutes with the v, and check that 640 = —§A, dpth = )§Bvs. The

conserved Noether currents are respectively

J =T T8O = Ty, (4.8)

with 7 infinitesimal generators of the unitary group U(N).  The transformations of the
first line are dubbed “vector”, those of the second, which involve 75, are “axial”. One may
also rephrase it in terms of independent transformations of v := %(I — v5)% and of Yg =
(I + 75)¢ ; one recalls that (v5)* = I and that 3(I £ 75) are thus projectors; one has thus

Yr = 10270 = %@(I + 75), ete, and

L =i, + vridr + g(Ur10L + YY) (VLY YL + VRV UR)

J.-B. Z M2 ICFP/Physique Théorique 2012 December 10, 2013



4.1. Global exact or broken symmetries. Spontaneous breaking 137

which is clearly invariant under the finite unitary transformations ¢, — Uytr, g — Ust)g,
with Uy, Uy € U(N). The group of chiral symmetry is thus U(N) x U(N).

If we now introduce a mass term 6L = —map (which “couples” the left and right compo-
nents ¢, and g: 0L = —m(Ypir +¥rR)), the “vector” symmetry is preserved, but the axial

one is not and gives rise to a divergence
8"]3(5) (z) o myTys1) . (4.9)

The residual symmetry group is U(N), the “diagonal” subgroup of U(N) x U(N) (diagonal in

the sense that one takes U; = U, in the transformations of ¢ z.)

The axial symmetry may also be spontaneously broken. Let us start from a Lagrangian,
sum of terms of the type (4.6) with NV = 2 and (4.3 for n = 4, with a coupling term between

the fermions and the four bosons, traditionally denoted ¢ and

L =i+ g(o + im7y)) 0 + % ((0m)* + (00)?) — %mQ(a2 + %) — %(02 +7%)? ., (4.10)
in which the Pauli matrices have been exceptionally denoted by 7 not to confuse them with
the field 0. The symmetry group is U(2) x U(2), with fields ¢, ¥g and o + iw.T transforming
respectively by the representations (3,0), (0,1) and (1,1) of SU(2) x SU(2) (see exercise A).
If m? < 0, the field ¢ = (o, 7) develops a non-zero vev, that may be oriented in the direction
o if one has initially introduced a small explicit breaking term 0L = co, the analogue of a
small magnetic field, which is then turned off. The vev is given as above by v? = —m?/\, and,
rewriting o(x) = o’(x)+v, where the field ¢’ has now a vanishing vev, one sees that the fermions
have acquired a mass m,, = —gv, whereas the 7 are massless. This Lagrangian, the o-model of
Gell-Mann—Lévy, has been proposed as a model explaining the chiral symmetry breaking and
the low mass of the m mesons, regarded as “quasi Nambu—Goldstone quasi-bosons” (“quasi” in
the sense that the chiral symmetry is only approximate before being spontaneously broken).

Some elements of that model will reappear in the standard model.

4.1.3 Quantum symmetry breaking. Anomalies

Another mode of symmetry breaking, of a purely quantum nature, manifests itself in anomalies of quantum
field theories. A symmetry, which is apparent at the classical level of the Lagrangian, is broken by the effect
of “quantum corrections”. This is for instance what takes place with some chiral symmetries of the type just
studied: an axial current which is classically divergenceless may acquire by a “one-loop effect” a divergence
9, JE # 0. If the “anomalous” current is the Noether current of an internal classical symmetry, that symmetry
is broken by the quantum anomaly, which may cause interesting physical effects (see discussion of the decay
70 — 47, for example in [IZ] chap 11). But in a theory like a gauge theory where the conservation of the axial
current is crucial to ensure consistency —renormalizability, unitarity—, the anomaly constitutes a potential threat
that must be controlled. This is what happens in the standard model, and we return to it in Chap. 5. Another
example is provided by dilatation (scale) invariance of a massless theory, see the study of the renormalization

group in F. David’s course.
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4.2 The SU(3) flavor symmetry and the quark model.

An important approximate symmetry is the “flavor” SU(3) symmetry, to which we devote the

rest of this chapter.

4.2.1 Why SU(3) ?

We saw in Chap. 0 that if the weak and electromagnetic interactions are neglected, hadrons,
i.e. particules subject to strong interactions, such as proton and neutron, © mesons etc, fall into
“multiplets” of a SU(2) group of isospin. Or said differently, the Hamiltonian (or Lagrangian)
of strong interactions is invariant under the action of that SU(2) group and consequently, the
SU(2) group is represented in the space of hadronic states by unitary representations. Proton
and neutron belong to a representation of dimension 2 and of isospin %, the three pions 7, 7°
form a representation of dimension 3 and isospin 1, etc. The electric charge @) of each of these

particles is related to the eigenvalue of the third component I, of isospin by
1
Q= 5[3 + 1. [for SU(2)] (4.11)

where a new quantum number B appears, the baryonic charge, supposed to be (additively)
conserved in all interactions (until further notice). B is 0 for 7 mesons, 1 for “baryons” as
proton or neutron, —1 for their antiparticles, 4 for an « particle (Helium nucleus), etc.

This relation between @ and I, must be amended for a new family of mesons (K*, K, K0, ---)
and baryons AY, 3, =, ... discovered at the end of the fifties. One assigns them a new quan-
tum number S, strangeness. This strangeness is assumed to be additively conserved in
strong interactions. Thus, if S is —1 for the A° and +1 for the K+ and the K°, the reaction
p+71~ — AY+ K° conserves strangeness, whereas the observed decay A — p+4 7~ violates that
conservation law, as it proceeds through weak interactions. Relation (4.11)) must be modified
into the Gell-Mann—Nishima relation

1 1 1
= - B4+-S+1=-Y+1,, 4.12
Q 5 +2 + 5 + (4.12)

where we introduced the hypercharge Y, which, at this stage, equals Y = B+ S.

These conservation laws and different properties of mesons and baryons discovered then, in
particular their organisation into “octets”, led at the beginning of the sixties M. Gell-Mann
and Y. Ne’eman to postulate the existence of a group SU(3) of approximate symmetry of
strong interactions. The quantum numbers I, and Y that are conserved and simultaneously
mesurable are interpreted as eigenvalues of two commuting charges, hence of two elements of a
Cartan algebra of rank 2, and the algebra of SU(3) is the natural candidate, as it possesses an
irreducible 8-dimensional representation (see also exercise C of Chap. 3).

In the defining representation 3 of SU(3), one constructs a basis of the Lie algebra su(3),
made of 8 Hermitian matrices A\, that play the role of Pauli matrices o; for su(2). These
matrices are normalised by

tr )\a/\b = 25ab . (413)
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Figure 4.3: Baryon octet (JZ = 17)

1+7) and decuplet (J = %+)

A1 and A9, Ay and A5, A\g and A7 have the same matrix elements as o; and o9 at the * locations

« . .|,|. . .land|. . x| respectively, where dots stand for zeros. The two generators

of thé Cartan algebra are
Ag=1|. -1 . d=—0=1]. 1 . . (4.14)

The charges I, and Y are then representatives in the representation under study of %)\3 and
\/ig)\g. See exercise B for the change of coordinates from (A1, A2) (Dynkin labels of some
representation, not to be confused with the above matrices !) to (I,,Y).

The matrices A, satisfy commutation relations
[)\av Ab} = 2ifabc>\c (415)

with structure constants (real and completely antisymmetric) fupe of the su(3) Lie algebra. It is useful to also
consider the anticommutators

4
{Aaa )‘b} = géab + 2dabc>\c . (416)
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Thanks to (4.13)), (4.15) and (4.16) may be rewritten as tr ([Ag, Ao]Ae) = 4ifave, tr ({Aas Ao} Ae) = 4dgpe. These

numbers f and d are tabulated in the literature ...but they are easily computable ! Beware that in contrast
with (4.15)), relation (4.16]) and the (real, completely symmetric) constants dgp. are proper to the 3-dimensional

representation.

Hadrons are then organized in SU(3) representations. Each multiplet gathers particles with
the same spin J and parity P. For instance two octets of mesons with J¥ equal to 0~ or 1~ and
one octet and one “decuplet” of baryons of baryonic charge B = 1 are easily identified. Contrary
to isospin symmetry, the SU(3) symmetry EI is not an exact symmetry of strong interactions.
The conservation laws and selection rules that follow are only approximate.

At this stage one may wonder about the absence of other representations of zero triality,
such as the 27, or of those of non zero triality, like the 3 and the 3. We return to that point in
§ 4.2.5.

4.2.2 Consequences of the SU(3) symmetry
The octets of fields

Let us look more closely at the two octets of baryons N' = (N, X, Z A) and of pseudoscalar
mesons P = (m, K,n). Recalling what was said in Chap. 3, § 3.4.2, namely that the adjoint
representation is made of traceless tensors of rank (1,1), it is natural to group the 8 fields

associated to these particles in the form of traceless matrices

\}571'0 \/ién mt K+
o = T —\/LET('O - \/ign K% | | (4.17)
K- K° 2n
and
1yo0_ 1
_ 10 _ 1
v 5 —Ls0 A | (4.18)
=- =0 20

To make sure that the assignments of fields/particles to the different matrix elements are correct,

it suffices to check their charge and hypercharge. The generators of charge () and hypercharge

Lo (200 froo0
Q=L+5¥ =510 -1 0 Y=2101 0 (4.19)
0 0 -1 00 -2

act in the adjoint representation by commutation and one has indeed

0 T4 K+ 0 0 K+
Q,P] =1 -7 0 0 Y, ®] = 0 0 K,
-K_ 0 0 -K. —-K, 0

said to be “of flavour”, according to the modern terminology, but called “unitary symmetry” or “eightfold

way” at the time of Gell-Mann and Ne’eman. . .
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Exercises : (i) with no further calculation, what is [I,, ®] ? Check.

(ii) Compute tr 2, and explain why the result justifies the choice of normalization of the matrix

elements in (4.17). See also Problem 2.c.

Tensor products in SU(3) and invariant couplings

Recall that in SU(3), with notations of Chap. 3, § 3.4,
8®8=108G8d10®10® 27 . (4.20)

(As a side remark, note that the multiplicity 2 of representation 8 reflects the existence of
two independent invariant tensors fup. and dg. in and ) Let us show that this
decomposition has immediate implications on the number of invariant couplings between
fields.

e We want to write an SU(3) invariant Lagrangian involving the previous octets of fields
® and ¥. What is the number of independent “Yukawa couplings”, i.e. of the form VoW,
that are invariant under SU(3)? In other words, what is the number of (linearly independent)
invariants in 8 ® 8 ® 8 7 According to a reasoning already done in Chap 2. § 3.2, this number
equals the number of times the representation 8 appears in 8 ® 8, hence, according to ,
2. There are thus two independent invariant Yukawa couplings. If the two octets ¥ and ¢ are
written as traceless 3 X 3 matrices as in (4.17) and (4.18), ¥ = {1;'} and ® = {¢,’}, these two
couplings read

tr 0P =1, 0 and tr IOV = ;'¢, (4.21)

(this compact writing omits indices of Dirac spinors, a possible 5 matrix, etc). An often
preferred expression uses the sum and difference of these two terms, hence tr U[®, U] and
tr W{®, ¥}, traditionally called f term and d term, by reference to and .

e Another question of the same nature is: what is a priori the number of SU(3) invariant
amplitudes in the scattering of two particles belonging to the octets NV and P : N; + P; —
N; + P 7 (One takes only SU(3) invariance into account and does not consider possible
discrete symmetries.) The issue is thus the number of invariants in the fourth tensor power
of representation 8. Or equivalently, the number of times the same representation appears in
the two products 8 ® 8 and 8 ® 8. If m; are the multiplicities appearing in 8 ® 8, namely
my; = 1,mg = 2, etc, see , this number is Y, m? = 8. There are thus eight invariant

amplitudes. In other words, one may write a priori the scattering amplitude in the form

(NPT |INP;) =

(4.22)

8
Z Ar<37 t) < (L [Z7 Y)(Nf)7 (L IZ7 Y)(Pf)’r7 (L [Z? Y)(T) ><T‘, (Ia [Z7 Y)(T)|(I’ [Z? Y)(Ni)7 (I’ [Z? Y)(Pi) >
r=1

(with s and ¢ the usual relativistic invariants s = (p; + p2)?, t = (p1 — p3)?), and all the
dependence in the nature of the scattered particles, identified by the values of their isospin and

hypercharge, is contained in SU(3) Clebsch-Gordan coefficients.
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o Let ®;, i = 1,2,3,4 be four distinct octet fields. How many quartic (degree 4) SU(3) invariant cou-
plings may be formed with these four fields? On the one hand, the previous argument gives 8 couplings;
on the other hand, it is clear that for any permutation P of {1,2,3,4}, terms tr (®p;PpoPp3Ppy) and
tr (Pp1Ppo) tr (Pp3Ppy) are SU(3)-invariant. A quick counting leads to 9 different terms, in contradiction

with the previous argument. Where is the catch ? For more, go to the Problem 1 at the end of this chapter. ..

4.2.3 Electromagnetic breaking of the SU(3) symmetry

The SU(3) symmetry is broken, as we said, by strong interactions. Of course, just like the
isospin SU(2) symmetry, it is also broken by electromagnetic and by weak interactions. We
won’t examine the latter but describe now two consequences of the strong and electromagnetic
breakings.

The interaction Lagrangian of a particle of charge ¢ with the electromagnetic field A reads
Lew = —qj"A, (4.23)

where j is the electric current. The field A is invariant under SU(3) transformations, but how
does j transform? One knows the transformation of its charge Q = [ d*zjo(x, t), since following
, (@ is a linear combination of two generators Y and I.. () thus transforms according to
the adjoint representation (8, alias (1, 1) in terms of Dynkin labels). And it is natural to assume
that the current j also transforms in the same way. This is indeed what is found when the

current j* is regarded as the Noether current of the U(1) symmetry (exercise, check it).

Magnetic moments

The electromagnetic form factors of the baryon octet are defined as
(Blju(@)|B) = ™ a(FP (k2), + FEP (k) k)l (4.24)

where @ and u' are Dirac spinors which describe respectively the baryons B and B’ ; k is the
four-momentum transfer from B’ to B. F, is the electric form factor, if B = B, F.(0) =
qp, the electric charge of B, whereas F}, is the magnetic form factor and F/PB(0) gives the
magnetic moment of baryon B. One wants to compute these form factors to first order in the
electromagnetic coupling and to zeroth order in the other terms that might break the SU(3)
symmetry.

From a group theoretical point of view, the matrix element ( B|j,(x)|B’) comes under the
Wigner-Eckart theorem: there are two ways to project 8 x 8 on 8 (see (4.20)), (or also, there
are two ways to construct an invariant with 8 ® 8 ® 8). There are thus two “reduced matrix
elements”, hence two independent amplitudes for each of the two form factors, dressed with
SU(3) Clebsch-Gordan coefficients. By an argument similar to (4.21]), one finds that one may
write

FB5' (k) = FO, (k) tr BQB' + F,(k?) tr BB'Q

e,m
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where () is the matrix of (4.19))

0 0
_ 0 7
0 —

Q=

Wl

O O win

1
3

and tr BQ B’ means the coefficient of BB’ in the matrix trace tr WQWV, and likewise for tr BB'Q.
For example, the magnetic moment of the neutron u(n) is proportional to the magnetic term in
nn, namely —%(Fr(n1 )+ FY )). The four functions F.y are unknown (their computation would

involve the theory of strong interactions) but one may eliminate them and find relations

p(n) = u(E) =2u(A) = —2u(x°) uWE") = ulp) (4.25)

wE7) = wE")=—(up) + pun)) WE" = A) = S-pn)

where the last quantity is the transition magnetic moment ¥° — A. These relations are in

qualitative agreement with experimental data.

The magnetic moments of “hyperons” (baryons of higher mass than the nucleons) are measured by their spin
precession in a magnetic field or in transitions within “exotic atoms” (i.e. in the nucleus of which a nucleon has
been substituted for a hyperon). The transition magnetic moment ¥ — A is determined from the cross-section
A — X9 in the Coulomb field of a heavy nucleus. One reads in tables

p(p) = 2792847351 +0.000000028 iy pu(n) = —1.9130427 + 0.0000005 11y

w(A) = —0.613 +0.004 py (20 — A)| = 1.61 £ 0.08 py (4.26)
wE) = 2458 +0.010 ux w(X7) = —1.160 £ 0.025 py
W=’ = —1.25040.014 uy w(E7) = —0.6507 + 0.0025 pu

where py is the nuclear magneton, uy = 267:} =3.152 10" MeV T

Electromagnetic mass splittings

With similar assumptions and methods, one may also find relations between mass splittings of particles with

the same hypercharge and isospin I but different charges, due to electromagnetic interactions, see Problem 3.

4.2.4  “Strong” mass splittings. Gell-Mann—Okubo mass formula

In view of the discrepancies between masses within a SU(3) multiplet, the mass term in the
Lagrangian (or Hamiltonian) cannot be an invariant of SU(3). Gell-Mann and Okubo made
the assumption that the non invariant term AM transforms under the representation 8, more
precisely, since it must have vanishing isospin and hypercharge, that it transforms like the n
or A component of octets. One is thus led to consider matrix elements ( H|AM|H ) for the
hadrons H of a multiplet, and to appeal once more to Wigner—Eckart theorem. According to
the decomposition rules of tensor products given in Chap. 3, the representation 8 appears at
most twice in the product of an irreducible representation of SU(3) by its conjugate, (check it,
recalling that 8 = 3 ® 3 © 1) ; there are at most two independent amplitudes describing mass

splittings within the multiplet, which leads to relations between these mass splittings.
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An elegant argument enables one to avoid the computation of Clebsch—Gordan coefficients and to find these
two amplitudes in any representation. As the eight infinitesimal generators transform themselves according to
the representation 8 (adjoint representation), they may be set as before into a 3 x 3 matrix

%Y+IZ \/§I+ *
G=| V2I. Ly-L «
* * -Y

where the * stand for strangeness-changing generators that are of no concern to us here. (Note that Gi; =
I, + %Y = @, the electric charge, is invariant under the action (by commutation with G) of generators X =
000
0 * x| which preserve the electric charge.) One seeks two combinations of the generators I, and Y

0 * x
transforming like the element (3,3) of that matrix. One is of course Y itself, the other is given by the element
(3,3) of the cofactor of G, cofGgy = Y2 — 12 —2I, 1 =1y2 .

One gets in that way a mass formula for any representation (any multiplet)

1
M =my +myY +mg(I(1+1) — ZYZ) (4.27)

which leaves three undetermined constants (that depend on the multiplet). For example for
the baryon octet, one has the four particles NV, ¥, A and = for which (Y, I, I(I +1) — %lYQ) =
(1,3,3), (0,1,2), (0,0,0), (1,1, 3) respectively, hence satisfying

2 1272
1
MN =mqj + mo + §m3 MZ =mq + 2m3 (428)
1
MA = my ME =my— Mo + §M3 . (429)

Eliminating the three parameters my, my, m3 between these four relations leads to a sum rule

M=+ My . 3Mp + My,

2 B 4
which is experimentally well verified: one finds 1128,5 MeV/c? in the left hand side, 1136
MeV/c? in the rhsﬂ. For the decuplet, show that the same formula gives equal mass differences

(4.30)

between the four particles A, ¥*, = and Q~. The latter result led to an accurate prediction of
the existence and mass of the 2~ particle, which was regarded as one of the major achievments
of SU(3). For the octet of pseudoscalar mesons, the mass formula is empirically better verified

in terms of the square masses
,  3ml4m?2
mK - 1
4

4.2.5 Quarks

The representations 3 and 3 have been so far absent from the scene: among the observed par-

ticles, no “triplet” seems to show up. The Gell-Mann—Zweig model makes the assumption that

2The observed masses of these hadrons are My ~ 939 MeV/c?, My = 1116 MeV/c?, My, ~ 1195 MeV/c?,
Mz ~ 1318 MeV/c? ; those of pseudoscalar mesons m, &~ 137 MeV/c?, mx ~ 496 MeV/c* and m, =
548 MeV /c?. For the decuplet, Ma ~ 1232 MeV/c?, Mx« =~ 1385 MeV/c?, Mz~ ~ 1530 MeV/c?, Mg ~
1672 MeV /c2.
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Figure 4.4: The triplets of quarks and antiquarks.
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a triplet (representation 3) of quarks (u,d, s) (“up”, “down” and “strange”) and its conjugate
representation 3 of antiquarks (u,d, 5) encompass the elementary constituents of all hadrons

(known at the time). Their charges and hypercharges are respectively

Quarks u d S U d 5
Isospin I, T -3 0 -2 £ 0
Baryonic charge B | & 5 & —3 —3% —3
Strangeness S 0 0 -1 0 0 1
Hypercharge Y 3 -z 11 2
Electric charge @ | 2 —3 —% —%2 & &

Table 1. Quantum numbers of quarks u, d, s

One recalls (Chap. 3 § 3.4) that any irreducible representation of SU(3) appears in the
decomposition of iterated tensor products of representations 3 and 3 ; in particular, 3®3 = 138
and 3®3®3=1H8®8@ 10. Mesons and baryons observed in Nature and classified as above
in representations 8 and 10 of SU(3) are bound states of pairs ¢G or qqq, respectively. More
generally, one assumes that only representations of zero triality may give rise to observable

particles. Thus

p =uud, n =udd, € = sss, AT =wuu, -, AT =ddd, (4.31)
(uti — dd) (utt + dd — 2s5)
V2 V6 ’

+

7t =ud, ™= Kt =us, K°=ds5 etc.

,ﬂ_:dﬂ, nNg =

The quark model interprets the singlet that appears in the product 3 x 3 as a bound state 7; = %\/?S‘g).
The physically observed particles 1 (masse 548 MeV) and 7’ (958 MeV) result from a “mixing” (i.e. a linear
combination) due to SU(3) breaking interactions of these n; and ng. Exercise : complete on Fig. the
interpretations of baryons as bound states of quarks, making use of the knowledge of their charges and other

quantum numbers.
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4.2.6 Hadronic currents and weak interactions

The weak interactions are phenomenologically well described by an effective “current—current”
Lagrangian (Fermi)
G
Lrermi = ——=J"(z)J} (z 4.32
Fomi = == (@)1} (x) (4.32)

where G is the Fermi constant, whose value (in units where h = c=1) is
G = (1,026 +0,001) x 107°M, > . (4.33)

(This interaction Lagrangian has the major flaw of being non renormalisable, a flaw which will
be corrected by the gauge theory of the Standard Model. At low energy, however, Lgem; offers
a good description of physics, whence the name “effective”.) The current J, is the sum of a

leptonic and a hadronic contributions
Jy(@) = 1(2) + hy(a) (4.34)
The leptonic current

lp(x) = &e(m)Vp(l - 75)¢Ve + @Z_),u(x)lyp(l - 75)7;01/“ [+1ZT(I)/YP(]‘ - '75)¢VT]

is the sum of contributions of the lepton families (or generations), e, i (and 7 that we omit in

this first approach). The hadronic current, if one restricts to the first two generations, reads
h, = cos ¢ hE)ASZO) + sin0¢ h;AS:l) (4.35)

i.e. a combination of strangeness-conserving and non-conserving currents, weighted by the
Cabibbo angle 6 =~ 0,25. (This “mixing” extends to the introduction of the third generation,
see next Chapter.) Finally each of these currents A" h{*5=Y has the “V — A” form,

following an idea of Feynman and Gell-Mann, i.e. is a combination of vector and axial currents,

PAS=D = (V) V) — (AL —iA2) (4.36)
RAS=D = (VA iV5) — (AL —iAD) . (4.37)

The vector currents Vpl’2’3 are the Noether currents of isospin, the other components of V, are
those of the SU(3) symmetry. One shows that their conservation (exact for isospin, approximate
for the others) implies that in the matrix element G{p|hS>*="|n) = Gy7,(Gv (¢2) — G a(¢2)7s ) n
measured in beta decay at quasi-vanishing momentum transfer, the vector form factor Gy (0) =
G. On the contrary, the axial currents are non conserved and G 4(0) is “renormalized” (that is,
dressed) by strong interactions, G 4/Gy ~ 1.22. The electromagnetic current is nothing other
than the combination j, = 1/;,3 + \/%;VpS. In the quark model, these hadronic currents have the

form
a a

Veln) = ale) s pale)  ALr) = a(e) s ala) (4.38)

We will meet them again in the Standard Model.
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Figure 4.5: Mesons of spin J” = 0~ of the representation 15 of SU(4)

4.3 From SU(3) to SU(4) to six flavors

4.3.1 New flavors

The discovery in the mid 70’s of particles of a new type revived the game: these particles
carry another quantum number, “charm” (whose existence had been postulated beforehand
by Glashow, Iliopoulos and Maiani and by Kobayashi and Maskawa for two different reasons).
This introduces a third direction in the space of internal symmetries, on top of isospin and
strangeness (or hypercharge). The relevant group is SU(4), which is more severely broken than
SU(3). Particles fall into representations of that SU(4), etc. A fourth flavor, charm, is thus
added, and a fourth charmed quark ¢ constitutes with u, d, s the representation 4 of SU(4), as
inobservable as the 3 of SU(3), according to the same principle.

As of today, one believes there are in total six flavors, the last two being beauty or bottomness
and truth (or topness ?7), hence two additional quarks b and ¢. B mesons, which are bound
states ub, db etc, are observed in everyday experiments, in particular at LHCb, whereas the
experimental evidence for the existence of the ¢ quark is more indirect. The hypothetical flavor

group SU(6) is very strongly broken, as attested by masses of the 6 quarksﬂ

my, ~ 1.5 —4MeV , mg~4—8MeV, m,~ 80— 130 MeV (4.39)
m. ~ 1.15 — 1.35 GeV , my ~4—5GeV, m;~175GeV

and this limits its usefulness. One may however rewrite (4.12)) in the form

1
Q=§Y+L Y=B+S+C+B+T

with different quantum numbers contributing additively to hypercharge. The convention is that
the flavor S, C, B, T of a quark vanishes or is of the same sign as its electric charge (). Thus
C(c) =1, B(b) = —1 etc. Table 1 must now be extended as follows

30ne should of course make precise what is meant by mass of an invisible particle, and this may be done in

an indirect way and with several definitions, whence the range of given values.
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U

Quarks

[sospin I,

|
S| »
(@) S+~

Baryonic charge B

Strangeness S
Charm C'
Beauty B
Truth T
Hypercharge Y

Wik W, O O O O wik e

Wk W © O O = Wi

Wik wn O = O O w~ O o

W W~ O O O O w2
W wks O O R, O w- O

WD Wk = O O O wie

Electric charge @)

Table 2. Quantum numbers of quarks u, d, s, ¢, b, t

4.3.2 Introduction of color

Various problems with the original quark model have led to the hypothesis (Han-Nambu) that
each flavor comes with a multiplicity 3, which reflects the existence of a group SU(3), different
from the previous one, the color group SU(3)..

Considerations leading to that triplicating hypothesis are first the study of the A*™ particle, with spin 3/2,
made of 3 quarks u. This system of 3 quarks has a spin 3/2 and an orbital angular momentum L = 0, which
give it a symmetric wave function, in contradiction with the fermionic character of quarks. The additional
color degree of freedom allows an extra antisymmetrization, (which leads to a singlet state of color), and thus
removes the problem. On the other hand, the decay amplitude of 7% — 2 is proportional to the sum > Q*I,
over the set of fermionic constituents of the 7°. The proton, with its charge Q = 1 and I, = %, gives a value

in agreement with experiment. Quarks (u,d, s) with Q = (%, %, —%) and I, = (%, —%, 0) lead to a result three

times too small, and color multiplicity corrects it to the right value.

According to the confinement hypothesis, only states of the representation 1 of SU(3). are
observable. The other states, which are said to be “colored”, are bound in a permanent way
inside hadrons. This applies to quarks, but also to gluons, which are vector particles (spin 1)
transforming by the representation 8 of SU(3)., whose existence is required by the construction
of the gauge theory of strong interactions, Quantum Chromodynamics (QCD), see Chap. 5.

To be more precise, the confinement hypothesis applies to zero or low temperature, and quark or gluon
deconfinement may occur in hadronic matter at high temperature or high density (within the “quark gluon
plasma”).

The quark model with its color group SU(3). is now regarded as part of quantum chromo-
dynamics. The six flavors of quarks are grouped into three “generations”, (u,d), (c,s), (¢,b),
which are in correspondence with three generations of leptons, (e™,v.), (™, v,), (77,v;). That
correspondence is important for the consistency of the Standard Model (anomaly cancellation),

see next chapter.
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Further references for Chapter 4

On flavor SU(3), the standard reference containing all historical papers is
M. Gell-Mann and Y. Ne’eman, The Fightfold Way, Benjamin 1964.
In particular one finds there tables of SU(3) Clebsch-Gordan coefficients by J.J. de Swart.

In the discussion of SU(3) breakings, I followed
S. Coleman, Aspects of Symmetry, Cambridge Univ. Press 1985.

For a more recent presentation of flavor physics, see
K. Huang, Quarks, Leptons and Gauge Fields, World Scientific 1992.

All the properties of particles mentionned in this chapter may be found in the tables of
the Particle Data Group, on line on the site http://pdg.1bl.gov/2013/1listings/contents_
listings.html

Exercises and Problems for chapter 4

A. Sigma model and chiral symmetry breaking
Consider the Lagrangian (4.10) and define W = o + imT.
1. Compute det W. Show that one may write £ in terms of ¢y g and W as

L = Yrir + rigpr + gL Wir + brW L) + L — %mQ det W — g(det w)?

where Ly is the kinetic term of the fields (o,7). One may also give that term the form Lx = (det W —
E?Zl det 9;W) (which looks a bit odd, but which is indeed Lorentz invariant!).

2. Show that £ is invariant under transformations of SU(2) x SU(2) with ¢, — U4y, ¥r — Vg, provided
W transforms in a way to be specified. Justify the assertion made in § 4.1.2 : ¢, ¥vgp and W transform
respectively under the representations (3,0), (0,3) and (3, 3).

3. If the field W acquires a vev v, for example along the direction of o, (¢) = v, show that the field ¢

acquires a mass M = —gv.

B. Changes of basis in SU(3)

In SU(3), write the change of basis which transforms the weights A;, Ay of Chap. 3 into the axes used in
figures 4.2, 4.3 and 4.4. Derive the transformation of the coordinates (A1, A\2) (Dynkin labels) into the physical
coordinates (I,,Y). What is the dimension of the representation of SU(3) expressed in terms of the isospin and

hypercharge of its highest weight?

C. Gell-Mann—Okubo formula
Complete and justify all the arguments sketched in § 4.2.2, 4.2.3 and 4.2.4. In particular check that the formula
(4.27) does lead for the decuplet to constant mass splittings.

D. Counting amplitudes

How many independent amplitudes are necessary to describe the scattering BD — BD, where B and D refer to
the baryonic octet and decuplet ?
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Problems

1. SU(3) invariant four-field couplings
Consider a Hermitian, 3 x 3 and traceless matrix A.

a. Show that its characteristic equation
1
A® — (tr A)A% + 3 ((trA)? —trA*) A—det A=0

implies a relation between tr A% and (tr 42)2.

b. If the group SU(3) acts on A by A — UAUT, show that any sum of products of traces of powers of A is
invariant. We call such a sum an “invariant polynomial in A”. How many linearly independent such invariant
polynomials in A of degree 4 are there?

c. One then “polarises” the identity found in a., which means one writes A = Z?:l x;A; with 4 matrices
A; of the previous type and 4 arbitrary coefficients x;, and one identifies the coefficient of xyx2x3x4. Show that
this gives an identity of the form (Burgoyne’s identity)

Z tr (AplAPQAP3Ap4) =a Z tr (AplApg) tr (AP3AP4) (440)
P P

with sums over permutations P of 4 elements and a coefficient a to be determined. How many distinct terms
appear in each side of that identity?

d. How many polynomials of degree 4, quadrilinear in Ay, ---, Ay, invariant under the action of SU(3)
A; — UA;U' and linearly independent, can one write ? Why is the identity useful 7

2. Hidden invariance of a bosonic Lagrangian
One wants to write a Lagrangian for the field ® of the pseudoscalar meson octet, see (4.17)).

a. Why is it natural to impose that this Lagrangian be even in the field ® ?

b. Using the results of Problem 1., write the most general form of an SU(3) invariant Lagrangian, of degree
less or equal to 4 (for renormalizability) and even in ®.

c. One then writes each complex field by making explicit its real and imaginary parts, for example KT =
%(K1 —iKy), K~ = %(K1 + iKs), and likewise with K° K° and with 7*. Compute tr ®? with that
parametrization and show that one gets a simple quadratic form in the 8 real components. What is the
invariance group G of that quadratic form? Is G a subgroup of SU(3)?

d. Conclude that any Lagrangian of degree 4 in ® which is invariant under SU(3) is in fact invariant by

this group G.

3. Electromagnetic mass splittings in an SU(3) octet

Preliminary question.

Given a vector space E of dimension d, we denote E ® F the space of rank 2 tensors and (F ® E)g, resp.
(E ® E) 4, the space of symmetric, resp. antisymmetric, rank 2 tensors, also called (anti-)symmetrized tensor
product. What is the dimension of spaces EQ E, (E® E)g, (E® E)4 7 One assumes that SU(3) is an ezact

symmetry of strong interactions, and one wants to study mass splittings due to electromagnetic effects.

a. How many independent mass differences between baryons with the same quantum numbers I and Y but
different charges Q (or I, component), are there in the baryon octet JX = %Jr?

We admit that these electromagnetic effects result from second order perturbations in the Lagrangian Le,,(z) =

—qj"(z)A,(x). If |B) is a baryon state, one should thus compute
SMp = <B|(/ d*az Lom)?|B) . (4.41)

For lack of a good way of computing that matrix element, one wants to determine the number of independent
amplitudes that contribute.

b. Why does this calculation amounts to counting the number of invariants appearing in the tensor product of
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four representations 87 In view of the calculations done in sect. 4.2.2, what should be that number?

c. But caution ! the product of the two Lagrangians is symmetric. As for the product [ Lep, [ Lo, one must
decompose into irreducible representations the symmetrized tensor product (8 ® 8)g. Use the result of the
Preliminary question to calculate the number of independent symmetric rank 2 tensors in the representation 8.
Show that this number is consistent with the decomposition that we admit

B@8)s=1G8®27 . (4.42)

d. i) What is then the number of invariant amplitudes contributing to éMp?

d. ii) What is the number of invariant amplitudes contributing to 6 Mp — 6 Mp: for hadrons B and B’ with the
same quantum numbers, as discussed in a.?

d. iii) In the spirit of what is done in § 4.2.3 for magnetic moments, write a basis on invariants in terms of the
matrices ¥, ¥ and Q7

e. i) Show that the number of amplitudes determined in question d. ii) implies a priori one relation between
electromagnetic mass splittings within the baryon octet.

e. ii) Calculate A, M = atr WQ?V + Btr UWQ? + ytr WQWQ, (the use of Maple or of Mathematica may be
helpful. .. ), identify in that expression the coefficients A.,, M), of pp, Acy My, of fin, etc, and check the relation

Mz- — Mzo = My — Mg+ + M, — M, . (4.43)

The experimental values are M,, = 939,56 MeV /c?, M, = 938,27 MeV /c?, Mz- = 1321,71 MeV/c?, Mzo =
1314,86 MeV/c?, My,— = 1197,45 MeV /c?, Mso = 1192,64 MeV/c?, Myt = 1189,37 MeV /c?. Calculate the
values of the two sides of relation (4.43). Comment.

f. Octet of pseudoscalar mesons. Could one do a similar reasoning for pseudoscalar mesons?

g. What about the electromagnetic mass splittings within the (%)“‘ decuplet ?
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Chapter 5

Gauge theories. Standard model

Transformations considered so far were global, space-time independent, transformations. An-
other type of symmetry, which is restricting the dynamics of the system in a much more stringent
way, considers local transformations. At each point of space-time, acts a distinct copy of the
transformation group. Such a symmetry, called gauge symmetry, is familiar in electrodynamics.
Its extension by Yang and Mills to non-abelian transformation groups turned out to be one of
the most fruitful theoretical ideas of the second half of the XXth century. A full course should
be devoted to it. More modestly, the present chapter gives an elementary introduction and

overview.

5.1 Gauge invariance. Minimal coupling. Yang—Mills
Lagrangian

5.1.1 Gauge invariance

The study of electrodynamics has introduced the notion of local invariance. The Lagrangian
(g 1 L AV VAR
L=9(d —ed —m)— Z(E)MAV —0,A,)(0"A” — 0" AM) (5.1)
is invariant under infinitesimal gauge transformations

0A,(x) = —0,0a(x)
p(x) = ieda(x)y(z) , (5.2)

since the electromagnetic field tensor

FMV = (auAV - aVAu)

is invariant, and the combination

() = (i — ef)y ()
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also transforms as 1. The finite form of these transformations is readily written

Ap(x) = Ay(z) = Gua(x)
U(@) e @y(a) (5.3)

which shows that the transformations give a local (i.e. x dependent) version of those of the
group U(1) or R (see below). The corresponding global transformations are those leading to a
conserved Noether current, which implies the conservation of electric charge. The Lagrangian
displays the “minimal coupling” of the field ¥ to the electromagnetic ﬁeldE|. Any other charged
field of charge ¢ couples to the electromagnetic field through a term involving the “covariant
derivative” 10, — qA,(x).

This is for example the case of a charged, hence complex, boson field ¢, whose contribution

to the Lagrangian reads

0L = [(0 —iqAL) o] (9" +iqAu) 0] — V(¢79) (5.4)

which is indeed invariant under ¢(z) — €@ ¢(x), A,(z) — A, (x) — o ().

Note that if the A field is coupled to several fields of charges q1, qo,. .., to demand that the gauge group be
U(1) (rather than R), i.e. to identify a(x) and a(x)+ 27z (x some fixed real), imposes that zq;, gz, - - - € Z and
thus that charges g1, qa,. . . be commensurate. This may be an explanation of the charge quantization observed

in Nature.

5.1.2 Non abelian Yang—Mills extension

Following the brilliant observation of Yang and Mills (1954), this construction may be trans-
posed to the case of a non-abelian Lie group GG, with however a few interesting modifications. ..
Let ¢ be a field (which we denote as a fermion field, but this is irrelevant) transforming under
G by some representation D. Let T, be the infinitesimal generators in that representation,

which we assume antihermitian: [T, T3] = C,,“T,; the infinitesimal transformation thus reads

() = Tyoa Y (z) . (5.5)

(In this section, we denote t, the corresponding matrices in the adjoint representation.) To
extend the notion of local transformation, we need a gauge field A,, which allows to construct
a covariant derivative D 1. It is natural to consider that A, lives in the Lie algebra of G, as
it is associated with infinitesimal transformations of the group, and hence it carries indices of

the adjoint representation
Apx) = { A ()} (5.6)

or equivalently, A, is represented in any representation by the antihermitian matrixﬂ

Au(x) = T, Al (z) . (5.7)

I An additional term in the Lagrangan like zZ['yw YW EF* would be gauge invariant but non minimal.
2Caution! this convention implies that some expressions differ by a factor ¢ from the abelian case.
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The covariant derivative reads

Dyip(x) := (0 — Au(x))¥(2) (5.8)

or, componentwise
Dytpa(x) == (04045 — Al(x) (T.) ) ¥p(x) . (5.9)
That covariant derivative does transform as ), just like in the abelian case, provided one

imposes that A, transforms according to
0AL(r) = 0y 6a"(x) + Cy. 000 () (5.10)
= (0% — A(x)(te),) 60’ (z) = (Dyder)* () -
The term J,0a%(z) notwithstanding, one sees that {Af%} transforms as the adjoint representa-

tion (whose matrices are (¢.)% = —C,.%). Lastly a field tensor transforming in a covariant way

(i.e. without any inhomogeneous term in dda“(z)) may be constructed
F.=0,A,—0A,—[A,A] (5.11)
or in components
Fi, = 0,A% — 9,A% — C, " AL AS (5.12)
One proves, after some algebra and using the Jacobi identity, that
OF;, (x) = C’bcaéab(x)F/fV(x) , (5.13)

which is indeed an infinitesimal transformation in the adjoint representation.
It is in fact profitable, and maybe more enlightening, to look at the effect of a finite local

transformation g(x) of the group G,
U(z) = D(g(x))(z)
Ay = AT, = D(g(2)) (=0, + Au(2))D(g™'(2)) (5.14)

(with D the representation carried by 1), and for the covariant derivative acting on 1,

Dyp(x) = D(g(x)) Dyt (x) (5.15)

or equivalentlyﬂ
D, D(g(x))D, Dy (x)) (5.16)

Now one verifies easily that in a given representation

D, D)) = —F,, = —F; T, (5.17)
from which follows that F,,(z) — D(g(x))F,,D(¢ *(z)), and in particular, in the adjoint
representation, the finite transformation of F,, = Fjjt, is

Fuw(@) = g(2)Fu(2)g ™ (2) | (5.18)
of which (5.13)) is the infinitesimal version.

3Beware of the notations! In that equation (5.16]), which deals with a differential operator, the derivative 9,
contained in D,, acts on everything sitting on its right, whereas in the second equation ([5.14), it acts only on

D(g~"(x)).
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Pure gauge

If the tensor F),, vanishes in the neighbourhood of a point zy, one may write locally (i.e. in

that neighbourhood) A,(x) as a “pure gauge”, i.e.

Fu=0 <= A,2) = @u9(0) g~ (). (5.19)

(The naming “pure gauge” is justified by the fact that such an A, (x) = (9,9(x)) g~ *(z) is the
gauge transform of a vanishing gauge field! Proving < is a trivial calculation, as for =, see a

few lines below...) We insist on the local character of that property.

Parallel transport along a curve

Another interesting object is the group element attached to a curve C' going from z to x

¥(C) := Pexp ( /C d:c“AM(x)> (5.20)

where the symbol P means that a parametrization z(s) of the curve being chosen, and terms
in the expansion of the exponential are ordered from right to left with increasing s (compare

with the T-product in quantum field theory). One shows that under the gauge transformation
(5.14))

Y(C) = g(z)7(C)g~ (o) - (5.21)

More generally, for any representation D and with A = A*T,, defines a yp(C) in the
representation D that transforms as yp(C) — D(g(z))vp(C)D(g7 (x0)).

Exercise. Prove that statement by first considering an infinitesimal path from x to z+dx, hence
Y(C) =~ 1+ A,(x)dz", and by performing a finite gauge transformation A,(z) — g(x)(—0, +
A, (z))g (), show that v(C) — g(x + dz)y(C)g ' (x). The result for a finite curve follows by
recombining these infinitesimal elements.

Given an objet, like the field 1), transforming by some representation D, the role of yp(C)
is to “transport” 1(xo) into an object denoted ‘)(z) transforming like ¢)(x). Show that for an
infinitesimal curve (z,z + dz) the difference “o)(z + dz) — (x + dx) is expressed in a natural
way in terms of the covariant derivative.

Consider then the case where z = z( in . From , it follows that for a closed loop
C, v(C) transforms in a covariant way, 7(C') — g(z0)7(C)g ' (x¢). Let us examine again the
case of an infinitesimal closed loop. One finds that then

v(C) = exp %/Sd:c” Ndx"F,, , (5.22)
where the integration is carried out on an infinitesimal surface S of boundary C.

Exercise: Prove that statement by considering an elementary square circuit extending from x
along the coordinate axes p and v: (x — x+da* — x+da* +dx¥ — x+dz¥ — x), and expand
to second order in dz to find v(C') ~ 1 + dax*dz” F),,, (with no summation over y, v). Hint: use
of the commutator formula of Chap. 1 simplifies the computation a great deal!
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This has an immediate consequence. If F' = 0, any v(C') of the form is insensitive to
small variations of the curve C' with fixed end points xy and x, hence depends only on these
end-points zy and x. The element g(x, z) := ¢(C) that follows satisfies (9, — A,)g(z,z) =0,
(check!), thus completing the proof of (5.19).

Wilson loop

Return to the case of a closed loop C' with x = zy in (5.20). As just mentionned, v(C)

transforms in a covariant way, v(C) — g(xo)v(C)g (o). Its trace
W(C) = tr 1(C) = tr Pexp 7{ dat A () (5.23)

is thus invariant. We postulate that any physical quantity in a gauge theory must be “gauge
invariant”, i.e. invariant under a gauge transformation. This is the case of tr F},, F*, (i) —A)
etc. The interest of W(C) is that it is a non local invariant quantity, which depends on the
contour C'. Note that it depends on the representation in which A = A%T, is evaluated.

This Wilson loop was proposed by Wilson and Polyakov as a way to measure the interaction
potential between particles propagating along C', and as a good indicator of confinement. See
below § and the Problem at the end of this Chapter for a discrete version of that quantity.

5.1.3 Geometry of gauge fields

The previous considerations show that the theory of gauge fields has a strong geometric content. The appropriate
language to discuss these matters is indeed the theory of fiber bundles, principal fiber bundle for the gauge group
itself, vector bundle for each matter field like 1, above the base space which is space-time. The gauge field is
a connection on the fiber bundle, which permits to define a parallel transport from point to point. The tensor
F,, is its curvature, as expressed by or . All these notions are defined locally, in a system of local
coordinates (a chart), and changes of chart imply transformations of the form . This language becomes
particularly useful when one looks at topological (instantons etc) or global (“Gribov problem”) properties of
gauge theories. For a mere introduction to properties of local symmetry and the perturbative construction of

the standard model, we won’t need it.

5.1.4 Yang—Mills Lagrangian

The Lagrangian describing a gauge field coupled to a matter field like ¢ via the minimal coupling

reads

£ = 5t (Fu ™)+ 00 =) = m)o (5.24)

with a parameter, the coupling constant g. The value of that coupling depends of course on
the normalization of the matrices 7, that appear in F,, = Fj,T,. One proves (see Exercise B
at the end of this chapter) that for any simple Lie algebra one may choose a basis such that
in any representation R, trT,T, = —TRrd., with T a real positive coefficient that depends on
the group and on the representation. We will choose for F),, the fundamental representation

of lowest dimension, (the defining representation of dimension N in the case of SU(N)) with
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a normalization Ty = %, hence tr 1,1, = —%5@- To the Lagrangian £, one may add the
contribution of other fermion fields or of boson fields. Note that the representations “carried” by
the fermions and other matter fields, that appear in their covariant derivatives D, = 9, — A{Ty,,
may differ from the fundamental representation.

As such, £ of ressembles very much the Lagrangian of the abelian case (.1)), after a
change iA — gA has been carried out.

Let us review the most salient features of that construction:

e like in the abelian case, the gauge invariance principle implies a minimal coupling of a
universal type, namely through the covariant derivative; (of course, adding non minimal gauge

invariant terms like z/?ale‘“’w should be possible but is limited by the requirement of renormalizability);

e contrary to the abelian case where each charge is independent and unquantized (at least
if the gauge group is R rather than U(1)), the coupling constant g of all fields to the
gauge fields is the same, within each simple component of the gauge group; (for example,
the standard model, based on the group U(1)xSU(2)xSU(3) possesses three independent

couplings, see below.)

e like in the abelian case, the gauge field comes naturally without a mass term: a mass
term %M 2A, A" does break gauge invariance. This looks most embarrassing for physical
applications, since the massless vector fields (of spin 1) are quite exceptional in Nature
(the electromagnetic field and its photonic excitations being the basic counter-example);
this will lead us either to introduce “soft” mechanisms of (spontaneous) breaking of gauge

invariance to remedy it, or to invoke confinement to hide the unseen massless gluons;

e contrary to the abelian case, the gauge field itself “carries a charge of the group”: we saw
that for global (i.e. z independent) transformations of the group G, A, transforms by the
adjoint representation. The property of the gauge field to be charged has important im-
plications in many phenomena, from the infrared effects (confinement), to the ultraviolet

ones (sign of the § function), as we shall see below.

5.1.5 Quantization. Renormalizability

The quantization of the Yang—Mills theory requires to overcome serious difficulties that we only

briefly evoke. As in electrodynamics, the quadratic form in the gauge field in £, namely
(0,A, — 0,A,)% or in Fourier space A, (—k)(k"k" — k*g")A, (k)

is degenerate, thus non invertible, which reflects gauge invariance. Consequently the propagator
of the field A, is a priori undefined. One must first “fix the gauge”, by imposing a non-invariant
“gauge condition” (like the Coulomb gauge in QED), and the Faddeev and Popov procedure,
justified by their general study of constrained systems leads to the introduction of auxiliary
fields and to explicit Feynman rules, (see for example [IZ, chap. 12| and the courses of the

second semester).
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Figure 5.1: Some one-loop diagrams in a gauge theory

One then proves, and that was a decisive step in the building of the Standard Mode]ﬁ, that
the theory so quantized is renormalizable: all ultraviolet divergences appearing in Feynman
diagrams may, at any finite order of perturbation theory, be absorbed into a redefinition of
parameters —couplings, field normalization, masses— of the Lagrangian. This renormalization
procedure preserves gauge invariance.

Thus, to the one loop order, diagrams of Fig. have divergences that may be absorbed
into a change of normalization of the A field (“wave function renormalization”) and a renor-

malization of the coupling constant g

2 11 4 A
g gy = (1—057)2(?02—5 f) 108;;)8;, (5.25)

where A is a scale of ultraviolet “cutoff” and p a mass scale which must be introduced for a
definition of the renormalisation procedure. 7'y has been defined just below , whereas Cs
is the value of the quadratic Casimir operator in the adjoint representation, CyeyCheq = C2 dup,
hence Cy = ¢5(adj) in the notations of exercise A.1, and Cy = N for SU(N), see exercise A.2.

5.2 Massive gauge fields

5.2.1 Weak interactions and intermediate bosons
We saw in Chap. 4 (equ. (4.32)) that the Fermi Lagrangian

G P
Lermi = —EJ (z)J}(x) (5.26)

gives a good description of the low energy physics of weak interactions: leptonic processes like
Vee~ — Dee” or U,pu~, semi-leptonic ones like 7t — ptv, or the § decay n — pe™ 7., or non-
leptonic ones : A — pr~, K° — 7w, etc. But this Lagrangian is theoretically unsatisfactory,
since it leads to a non renormalizable theory, making impossible any calculation beyond the
“Born term”, the first order of perturbation theory, which violates unitarity.

4 G. ’t Hooft and M. Veltman, Nobel prize 1999
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The violation of unitarity appears in the calculation of the total cross section ¢ of any process, to first order of

the perturbation series. A simple dimensional argument gives at high energy
o ~ const. G%s

where s is the square center-of-mass energy. But that behavior contradicts general results based on unitarity
that predict that o must decrease in each partial wave like 1/s. A violation of unitarity by the Born term is
thus expected at an energy of the order of /s ~ G ~2 ~ 300 GeV. And the non-renormalisability of the theory
precludes an improvement of that Born term by the computation of higher order terms (“radiative corrections”)

of the perturbative series.
The idea is thus to regard Lgemi as an approximation of a theory where the charged current
J? is coupled to a charged vector field W of mass M, in the large mass limiiﬂ Consider the

new Lagrangian
1 14
LManng@ﬂW@g+ho—Zagw-+M%WWW. (5.27)

In the large mass M limit, one may neglect the kinetic term —}lF w " with respect to the mass
term, the field W becomes a simple auxiliary field with no dynamics, that one may integrate
out by “completing the square”, and one recovers Lpem; provided
G g*
V2 M2
which relates the new coupling g to the Fermi constant G. Is the theory (5.27) with its

“intermediate boson” W, vector of weak interactions, a good theory of weak interactions? In

(5.28)

fact the propagator of the massive W field reads

_ kuky

my p)

which has a bad behavior as k >> M and makes again the theory non-renormalizable : the

problem has just been shifted! The solution stems from a soft and subtle (!) way to introduce

the mass of the W field, via a spontaneous breaking of gauge symmetry.

5.2.2 Spontaneous breaking in a gauge theory. Brout—Englert—Higgs

mechanism

Let us return to the abelian case described by (j5.1)), (5.4) and suppose now that the potential
V' has a minimum localized at a non—zero value of ¢*¢. Consequently, the field ¢ acquires a
vev (¢) = v/v/2 # 0. Reparametrizing the field ¢ according to

iqf(z) /v ¥ + 90(93)
with v real and ¢ hermitian, and accompanying it by a U(1) gauge transformation
v+ ()

V2

5The inverse mass M ~! represents the range of weak interactions, which is known to be short, and the mass
M is thus high (of the order of 100 GeV, as we see below).

o(z) — () =e "D g(x)
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Ayr) — AL(I)—AH(x)—l—%@#@(x) (5.31)

together with the corresponding transformation of other charged fields (¢ ...), one sees that
the Lagrangian L of (5.4]) reads

0L = (0, —iqAl)¢ (0" +iqA,)¢ — V(¢")

= 510, = in)o 4 g A v (G0t o?) (5.32
Finally, one sees that the spontaneous breaking of the U(1) symmetry by the boson field ¢ leads
to the appearance of a mass term for the gauge field A:L ! One also notes that the field # which,
in the absence of a gauge field, would be the Goldstone field, has completely disappeared, being
“swallowed” by the new massive (“longitudinal”) mode of the vector field A,, ; the total number
of degrees of freedom of these fields is thus not modified: we started with 2 transverse modes
of the massless electomagnetic field + 2 modes of the charged field (its real and its imaginary
parts, say) and we end up with 3 + 1. This is the Brout—Englert—Higgsﬁ mechanism, in its
abelian version. If the boson ¢ is coupled to a fermion field ¥ by a term of the type ¢, the
appearance of its “vev” gives rise to a mass term \q/—%iﬁw for the 1.

Important remark. Note that although the global symmetry has been spontaneoulsy
broken, the theory maintains an exact gauge invariance. Indeed the direction in which the
scalar fields “points” is not observable (gauge invariance), and one only knows that its length
v is non vanishing (spontaneous breaking).

This Brout-Englert—-Higgs (B-E-H) mechanism extends to a non-abelian group. The details
depend on the scheme of breaking and on the choice of representation for the boson field. (See
the courses of second semester for a detailed analysis.) In general, if the group G is broken into
a subgroup H, the r = dim G — dim H would-be Goldstone bosons, that are in correspondence
with generators of the “coset” G/ H, become longitudinal massive modes of r vectors. It remains
dim H massless vector fields. Example : in the electro-weak standard model of § 5.3.2 below :
G =SU(2) x U(1), H = U(1) (not the U(1) factor of G!), three gauge fields become massive,
one remains massless.

A crucial step in the construction of the standard model was to understand that this spon-
taneous symmetry breaking in a gauge theory, that we just described at the classical level, is
compatible with the quantization of the theory. Renormalizability in 4 dimensions of the gauge
theory is not affected by that breaking, and the resulting theory is unitary: only physical states
(massive gauge fields, remaining bosons after the symmetry breaking, etc) contribute to the

sum over intermediate states in the unitarity relation.

5.3 The standard model

What is presently called the standard model of particle physics is a gauge theory based on a
non simple gauge group: SU(3) x SU(2) x U(1), in which the different factors play distinct

SF. Englert and P. Higgs, Nobel prize 2013
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roles. As the group has three simple factors, the theory depends a priori on three independent
coupling constants, with gauge fields for each, that are coupled to matter fields, quarks and

leptons, as well as to boson fields that play an auxiliary but crucial role!

5.3.1 The strong sector

The group SU(3) = SU(3). is the gauge group of color (see Chap. 4, § [£.3.2). The gauge fields
A, have indices of the adjoint representation (of dimension 8). The associated particles, called
gluons, with spin 1 and zero mass, have never been directly observed so far. The gluon fields
are coupled to color degrees of freedom of fermionic quark fields, 1) 4;, which carry an index A
of the representation 3 (or 3 for the ¢) (and also a flavor index i = u,d, s, ¢, b, t, on which the
color group SU(3). does not act). The theory so defined is Quantum Chromodynamics (QCD
in short). It describes the physics of all strong interactions. Its Lagrangian is of the type ,
with fermionic mass terms depending on flavor, generated by the electroweak sector.

Asymptotic freedom

Knowing the coupling constant renormalization, ((5.25]), one may compute the corresponding
beta function. One find{]
0 g3 <11 4

B(g) = _Aﬁg(A”go = e 302 - ng) +0(g”) (5.33)

It thus appears that this beta function is negative in the vicinity of g = 0, as long as the coef-

ficient %C’g — %Tf > 0 (not too many matter fields!), in other words that g = 0 is an attractive

ultraviolet fixed point of the renormalization group: fﬁzg < 0= g?(\) ~ (2blog\)™' — 0 as

A — 00, with b = coefficient of the term —g? in (5.33). This is asymptotic freedom, a funda-
mental property of strong interactions. Exercise : how many triplets of quarks are compatible
with asymptotic freedom of QCD 7

This non-abelian gauge theory is the only local and renormalizable theory in 4 dimensions that possesses
that property of asymptotic freedom. As such, it is the only one consistent with results of deep-inelastic
scattering experiments of leptons off hadrons, that reveal the internal structure of the latter as made, at very

short distances, of quasi-free point-like constituents (see the second-semester lectures on QCD).

This SU(3). gauge group is not broken, either explicitly, or spontaneously. This is essential
for the consistency of the scenario imagined to account for the quark confinement of quarks
and gluons (see Chap. 4, § 3.2.) : non singlet particles of the gauge group are supposed to
be inobservable, as bound to one another inside singlet states and being submitted to forces of

growing intensity as one attempts to pull them apart.

This “infrared slavery” (infrared = large distance) is the reciprocal of asymptotic freedom. It shows that
confinement is a strong coupling phenomenon, which is by essence non perturbative, namely inaccessible to
perturbative calculations.

A non-perturbative approach that has provided many qualitative and quantitative results is the discretiza-
tion of QCD into a lattice gauge theory. This opened the possibility to use methods borrowed from Statistical

Mechanics of lattice models, either analytical (strong coupling or high temperature calculations, mean field,

"David J. Gross, H. David Politzer, Frank Wilczek, Nobel prize 2004
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etc) or numerical (Monte-Carlo). The confinement scenario seems confirmed in that approach by the study of
the expectation value of the Wilson loop defined above (§ 5.1.2). Following the idea of Wilson and Polyakov,
for a rectangular loop C' of dimensions 7' x R, T >> R and carrying the representation o of the gauge group,
W) (C) describes the evolution during time T of a pair of static particles (of very high mass), belonging to
representation o, and “frozen” at a relative distance R. One wants to compute the potential between these

static charges
1
Vo(R) = = lim —log w ().

T—oo

If the Wilson loop has an “area law”, log W (C') ~ —kRT, the potential between static charges grows linearly
at large distance, V' ~ kR, which is accord with the idea of confinement. This is what happens in general
in a lattice gauge theory at strong coupling, see the Problem at the end of this chapter. The Monte-Carlo
computations confirm that this behavior persists at weak couplings, which are relevant for making contact with
the continuous theory (the coupling of the lattice theory must be thought of as the effective coupling at the
scale of the lattice spacing a, thus, according to asymptotic freedom, g2 = g?(A = 1/a) — 0). These Monte

Carlo computations allow to determine numerically the coefficient « in V', or string tension.

QCD is still a very active research field. Strong interactions are indeed ubiquitous in particle
physics and the observation of any other interaction, of any other effect, assumes a knowledge as
precise as possible of the strong contribution. In the analyis of LHC data, precise calculations of
QCD contributions are of fundamental importance: “new physics” may be identified only if the
background of the Standard Model is perfectly known. Moreover the study of hadronization of
quarks and gluons, of high energy “deep inelastic” scattering and of other hadronic phenomena

remains a very hot subject and a crucial point where experiment confronts theory.

5.3.2 The electro-weak sector, a sketch

The gauge theory based on the group SU(2) x U(1) describes the electro-weak interactions
(Glashow-Salam-Weinberg mode[f]). Generators of these groups SU(2) and U(1) are referred
to as weak isopin and weak hypercharge. We present only the main lines of that construction,
without explaining the details nor the reasons that led to choices of groups, of representations
etc.

Call A7, WZL and B, the gauge fields of SU(3), SU(2) and U(1) respectively. The left-handed,
Yp, = %(1 —v5)%, and right-handed, Vg := %(1 +75)1, quarks and leptons are coupled to fields
W, and B, in a different way. One writes the covariant derivative of one of these fields as

Dyip = (0, — gsAST, — goaWit; — iEyBM)@z) (5.34)

where T,, resp. t; denote the infinitesimal anti-Hermitian generators of SU(3) and SU(2) in
the representation of v; the representations assigned to each field, either lepton or quark, left
or right, are the triplet representation of SU(3). for quarks and the trivial one for leptons, of

course, and for the electroweak part, are given in Table 1.

A remarkable consequence of the use of SU(2) as a symmetry group of weak interactions
is that, beside the two charged currents Jﬁ’Q (or Jj) of Fermi theory, a third component Ji’

appears. This neutral current, which is not the electromagnetic current and which is coupled

8S. Glashow, A. Salam, S. Weinberg, Nobel prize 1979
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to the gauge field Wj’, is necessarily present and contributes for example to the e”v, — e7v,
scattering which is forbidden in Fermi theory. The experimental discovery of these neutral
currents (1973)E| was the first confirmation of the validity of the Standard Model.

Quarks & Leptons (ve,er) vy er (up,dp) ugp dg
Weak isospin ¢, 3,-%H 0 0 (.- 0 o0
Weak hypercharge y (-1,-1) 0 -2 (%, %) % _§
Electric charge @ =iy +t.| (0,-1) 0 -1 (¢,-4) 2 -1

Table 1. Weak quantum numbers of leptons v¢ and e and of quarks u, d.

Things repeat themselves identically in the next generations.

The group U(1).,, of electromagnetism will now be identified thanks to the charges of the
fields. There is a “mixing” of the initial U(1) factor and of a U(1) subgroup of SU(2). This
mixing is characterized by an angle 0y, called Weinberg angle: if the U(1) and SU(2) gauge fields
are denoted B), and W, respectively, the electromagnetic field is AJ™ = cos 6y B), + sin HWWE,

while the orthogonal combination corresponds to another neutral vector field called Z°.
Let us examine the “neutral current” terms that couple for example the electron and its neutrino to neutral
boson vectors W3 and B. They are read off the covariant derivatives (5.34) with quantum numbers of Table 1

1. _ _ .
oK (e (=W, — g1 Bu)y"er + er(—281Bu)y"er + ve(g2aW,) — 81 Bu)y"ve)

The rotation W3 = cos @y Z° + sinfy A, B = —sin Oy Z° + cos Oy A must be such that the electric charge e

(coupling to A) is the same for ey, and er and zero for v.. One finds
2e = gosin By + g1 cos by = 2g1 cosby et gosinby — gy cosfy =0
which are indeed compatible and give

tan Oy = i—l e =gicosBy = gosinbOy . (5.35)
2

The result of this calculation does not of course depend on the representation in which it is carried. At this

stage we have just made a change of parameters, (g1,g2) — (e, fy) but the latter are physically observable.

The Lagrangian contains also a coupling to a boson field of spin 0, assumed to be a complex

¢+

doublet of SU(2): & = <¢0>, of weak isospin % and weak hypercharge y = +1, and thus

Dy® = (9, — igaW\i % — £21B,)®. The field ® is endowed with a potential V(®) with a
“mexican hat” shape, which is responsible of the spontaneous breaking of SU(2) x U(1) into
U(1)em, and hence of the generation of the masses of vector fields according to the mechanism
described in § 5.2.2; and also of those of fermions. This field (2 complex components, hence 4
Hermitian ones) has three of its components that disappear, traded for longitudinal modes of
massive gauge fields. Only one of these four components remains, and it is the Higgs boson that
this ¢ component creates that has been discovered in 2012 in the ATLAS and CMS experiments
at LHC. In parallel, three of the four gauge fields, the W= and the Z°, become massive, whereas

the fourth, the electromagnetic field A remains massless.

9The history of that discovery may be read in http://cerncourier.com/cws/article/cern/29168
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The symmetry breaking of SU(2) x U(1) by the field ® occurs in a direction that preserves U(1)ey,. (Or
more exactly the direction of that breaking determines what is called U(1).y,.) One writes, by generalizing
1) to the SU(2) group of generators z% (77 = Pauli matrices)

e ()2 0
<I>(ac) :elfg( )% <v+<p(w)> ,
V2

which is accompanied by a gauge transformation, which causes the fields {; to disappear and gives the fields W

and B the quadratic mass terms
1 .
L) = gv*[(1B = g2W?)" + 3 (W* + (W9)?)]

As expected the component Z° = (g1 B — g2W?3)//g? + g5 becomes massive, and so do W2 whereas the
orthogonal combination A = (goB + g1W?3)/+/g? + g3 remains massless. One finds

1 1
My+ = 5082 Myo = §v\/g% + g2 (5.36)

2
and using ([5.35]), the relation % = 81%/[23{/

read off the Lagrangian and the experimental values of e and of

G = 10_5mfJ7 one computes

38 M, 38
My:r~ ———GeV My =—2 ~ — GeV .
sin Oy cosfBy  sin By cos Oy

These expressions then undergo small perturbative corrections. Lastly the mass of the famous Higgs boson ¢
is mot predicted by the theory. Successive experiments have excluded wider and wider regions, leaving for the
possible values of the mass more and more narrow ”windows”, from the range 100-200 GeV down to a window
between 120 and 130 GeV. The results of summer 2012 have identified a particle of mass 125.9 + 0.4 GeV.
Further experiments seem to confirm that this particle qualifies as the Higgs boson —as for spin, decay modes,

etc. See the second-semester lectures by P. Binétruy and P. Fayet for more details.

The “intermediate bosons” associated with the massive vector fields W+ and Z° have been
discovered experimentally at the end of the seventieﬂ; their masses Myy+ = 80.4 GeV and
Mzo = 91.2 GeV are compatible with the following value of the Weinberg angle

sin? Oy ~ 0.23 (5.37)

which is also compatible with all the other experimental results.

To summarize, the Lagrangian that describes all interactions but gravitation has a remark-

ably simple and compact form

1 _
L= F,F"+ > ¢y'Du+|DPP — V(®)+ Higgs — fermions couplings , (5.38)

left and right
quarks & leptons

where F,, denote the gauge field tensors of A, W and B. Note that the SU(2) x U(1) invariance
forbids couplings between left and right fermions (which transform under different representa-
tions), and thus forbids fermionic mass terms. The only mass scale lies in V' (®), and it is the
Higgs mechanism and the coupling of ® to fermions —leptons and quarks— which give rise to
the masses of fermions and of (some of) vector bosons. This coupling, called after Yukawa, has

the general form (written here for quarks),

Ly = Y@ dp; — Y. @ up; + hec. (5.39)

J

10Carlo Rubbia and Simon van der Meer, Nobel prize 1984
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with a priori arbitrary matrices 3/@'?7 Y5 1,7 = 1,2,3 are generation indices, the dot denotes
0f

the scalar product of isospin doublets ® and Pt = ( ¢ T

(0,00

Couplings of the same type appear between leptons and scalar fields.

) with quark doublets

The vev v/v/2 of ¢° then gives rise to a “mass matrix”. A complication of the theory
described by is that the diagonalization of that quark mass matrix involves a unitary
rotation of (up,cr,tr) and of (dp,sp,br) with respect to the basis coupled to gauge fields in
(5.38)) : if (ur,cr,tr) and (dp, sg, br) now stand for the mass eigenstates, the charged hadronic
current coupled to the field W is

d
J, = (uet) v, M | s (5.40)

b L

with M the unitary Cabibbo-Kobayashi-Maskawa matrifl| This mechanism generalizes to 3
generations the mixing with the Cabibbo angle encountered in Chap. 4, (equ. (4.35))) in the

case of 2 generations. The matrix M is written as

—is
Via Vus Vap C12€13 S$12C13 S13€
_ _ i5 i
= c cs Ve | = | —S12C23 — C12523813€" 1223 — S12823513€" 23C13
M Vea Ves Vi S12C C12593513€ C12C 512523513€ S93C
i5 i5
¢ ts Vit 12523 — C12C23513€" —C12823 — S12C23513€" 23C13
Vie Vie Vg $128 C12C23513€ C128 S19C93513€ Co3C

with 4 angles 0 and 6;;, (¢;; = cosf;; and s;; = sin6;;), and 65 = 0 = Cabibbo angle.
Experimentally, 0 < 013 < 03 < 612 < 7/2 . The accurate measure of the matrix elements
of M is presently the object of an intense experimental activity, in connection with the study
of violations of the C'P symmetry (due to a large extent to the phase €¥) and of “flavor
oscillations”.

For a much more comprehensive discussion of details and achievments of the standard model,

see the courses of the 2nd semester.

5.4 Complements

5.4.1 Standard Model and beyond

The Standard Model is both remarkably well verified and not very satisfactory. Beside massive
neutrinos, whose existence is now beyond any doubt, and which require little amendments
to the Lagrangian ([5.38), no significative disagreement has been found to this day between

experimental results and predictions of the model. Still, the non satisfactory aspects of the

M. Kobayashi, T. Maskawa, Nobel prize 2008, with Y. Nambu
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A
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10 10> massscale u (GeV)

Figure 5.2: Schematic evolutions of the three effective couplings of the standard model and of that

of a grand-unified theory

standard model are numerous: the excessively large number (about twenty) of free parameters
in the model, the lack of “naturalness” in the way certain terms have to be tuned in a very fine
way; the question of the B-E-H mechanism which seems to have been confirmed by the discovery
of the Higgs boson at LHC, but that many physicists still regard as an ad hoc construction;
etc.

Attempts at improving the standard model by fusing the three gauge groups within a larger
group, in a “grand-unified” (GUT) theory should be mentionned. The next susbsection is
devoted to that issue.

The currently most popular extensions of the standard model are those based on super-
symmetry. The “MSSM”, (“Mazimally Supersymmetric (extension of the) Standard Model”),
or the “NMSSM” (“Next-to ...”), resolve the hierarchy problem, predict a convergence of
electro-weak and strong couplings at high energy (see next subsection) and also the existence
of supersymmetric partners for all known particles. On that issue too, results from LHC might

confirm or infirm different scenarii.

5.4.2 Grand-unified theories or GUTs

An empirical observation is that the three coupling constants gy, g, g3, starting from their value experimentally
values measured at current energies, seem to converge under the renormalization group flow to a common value
at some energy of the order of 10'® °* 16GeV. This was a very strong incentive towards a grand-unification, see
Fig. [5.2l The resulting grand-unified theory should not only be a gauge theory with a single coupling if the
unification group G is simple, but also be capable of predicting the matter field and particle content according
to the representations of SU(3)x SU(2)x U(1) from some representations of the group G. For various reasons,
the group SU(5) turns out to be the best candidate. This GUT possesses dim SU(5)= 24 gauge fields.

The main reason of that choice of SU(5) comes from the number of chiral fermions per generation. Each
generation of the standard model contains two quark flavors coming each in 3 colors, plus one lepton, and

each of these 641 fields may have two chiralities, plus a neutrino assumed to be massless and chiral. In total
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there are 15 chiral fermions per generation. (Remember that the antiparticle of a right fermion is left-handed:
it is thus sufficient to consider left fermions.) One thus seeks a simple group G possessing a representation
(reducible or irreducible) of dimension 15, that may accomodate all left-handed fermions of each generation.
The only candidate is finally the group SU(5) which has representations of dimension 15 : the symmetric tensor
representation, and representations sums of 5 (or 5) and 10 (or 10).

The group SU(5) of unitary 5 x 5 matrices contains a SU(3) subgroup (3 x 3 submatrices of the upper left

corner, say) and a SU(2) subgroup (2 x 2 blocks of the lower right corner), which give the corresponding genera-
1 1 11 l)

tors of SU(3) x SU(2) ; the U(1) subgroup is generated by the diagonal traceless matrix diag (—3,—3,—3, 5, 3)-

It is clear that these three subgroups commute with one another.

One must then decompose all fields (in representations 5, 10, 15 and 24) into representations of SU(3) x
SU(2). This exercise shows that representation 15 must be discarded and that the reducible representation
5@®10 is the appropriate one for fermion fields: the 5 decomposes into representations (3,1)®(1,2) and contains
antiquarks dy, and left leptons e} and v, ; the 10 decomposes into (1,1)® (3,2)@ (3, 1) containing the left lepton
e}, singlet of SU(2) and of SU(3), the two left quarks uy,,d;, which form a doublet of SU(2) and the antiquarks
ar.

Likewise, the 24 gauge fields include the 8 gluon fields, the 341 vectors of the electroweak sector, plus 12
supplementary fields, which acquire a very large mass at the expected breakdown of SU(5) — SU(3) x SU(2) x
U(1).

The breakdown SU(5) — SU(3) x SU(2) x U(1) should take place at a grand-unification energy of the order
of 10 or 10'® GeV, an energy where couplings g3, g2,g; of SU(3), SU(2) and U(1) seem to converge (Fig.
. The infinitesimal generators being now rigidly bound within the simple group SU(5), one may relate the
couplings to the U(1) and SU(2) gauge fields and predict the Weinberg angle: one finds sin?§ = %, ... but this
calculation applies to the unification energy ! The angle is renormalized between that energy and energies of
current experiments.

A striking consequence of the quarks—leptons unification within SU(5) multiplets is a violation of separate
conservations of lepton and baryon numbers (alias leptonic and baryonic charges. In particular the existence
of interaction terms, for example X?(dv,et + @y,u), with one of the new gauge fields (the
matrices of the generators have been omitted), allows proton decay p = duu — dde* = w%*,
and by other channels as well. The decay rate must be carefully computed to see if it is

032i1

consistent with experimental data on proton lifetime (present bound 1 years), ...which is

not the case !

One should also show to which representation the Higgs boson fields belong to permit a
two-step breaking SU(5) — SU(3) x SU(2) x U(1) — SU(3) x U(1) at two very different
scales. . .

Finally, the SU(5) GUT
e incorporates by construction the structure of fermion generations;

e puts leptons and quarks in the same representation and explains the commensurability

of their electric charges and the cancellation of anomalies (see discussion below);

e reduces the number of parameters in the standard model and predicts the value of the

Weinberg angle (at the unification scale);
but

e does not explain the why of the three observed generations;
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e does not elucidate the question of “naturalness” (just evoked above), nor the related issue

of “hierarchy” (why is the ratio Mgyr/My so large?) ;

e last but not least, fatal disease, predicts effects such as the proton decay at rates seemingly

inconsistent with observation.

This is the latter point that led to abandon this unification scheme and to favor supersym-

metric routes to unification.

5.4.3 Anomalies
(5)

We mentioned in Chap. 4 the existence of chiral anomalies, that affect the axial current J, " of the classical
U(1) symmetry. In the gauge theory of the Standard Model, the electroweak gauge fields are coupled differently

to left-handed and right-handed fermions, more precisely, they are coupled to axial currents, see the Lagrangian
- 1—s)
=i -1y

which contains a term A4 J,, with J,, = IZTa(l_T%)?ﬂ- Classically that current J,, should have a vanishing
covariant derivative (in the adjoint representation) if the fermions are massless. One may again compute the

(covariant) divergence of that current to the one-loop order, and one finds that

1
Dyd¥ = 50, e Tu( A9y As + S A AN AG) |

2472 H
Curiously the right hand side is not gauge invariant, but its forms is not arbitrary and is dictated by geometric
considerations (“descent equations”) that are beyond the scope of the present discussion. The anomaly of
this “non-singlet” current (i.e. carrying a non-trivial representation of the gauge group) thus breaks gauge
invariance. As such, it jeopardizes all the consistency, renormalisability and unitarity, of the theory. One
conceives that controlling this anomaly is crucial for the construction of a physically sensible theory.

Then one observes that the “group theoretical coefficient” of the anomaly is proportional to

dape = tr (Ta{Tb7 Tc})

where {Ty,T.} is the anticommutator of infinitesimal generators, see Exercise B.3.

In practice one ensures the anomaly cancellation in two cases:

e a) Suppose that the fermions all belong to real or pseudoreal representations. One recalls (see Chap 2)
that this refers to situations where the representation is (unitarily) equivalent to its complex conjugate
representation, 7 = CT,C~!. In unitary representations the T, are antihermitian, T, = —7T = —T7 *.
One then verifies (see Exercise B.3) that the group theoretical factor dgp. = —dape = 0 vanishes and so
does the anomaly. Thus (4-dimensional) theories with gauge group SU(2) (in which all representations

are real or pseudoreal) have no anomaly.

e b) Another situation is that there is cancellation of anomalies coming from different fermion represen-
tations. This is what takes place in the standard model. According to the argument of a), there is no
anomaly associated with the weak isospin currents, coupled to an SU(2) gauge field. But there may a
priori be some with weak hypercharge currents (U(1) group), as well as mixed anomalies, for example
one U(1) current and two SU(2) etc. One must thus check that for all choices of three generators labelled
by a,b, c, the constant d,;. vanishes when one sums over all fermion representations. Finally one shows
that it reduces to the vanishing of tr (¢3Q) for each generation, which is indeed satisfied in the Standard
Model. This is also what happens for the SU(5) theory discussed in the previous section: one shows that

for each generation, contributions of representations 5 and 10 cancel one another.

December 10, 2013 J.-B. Z M2 ICFP/Physique Théorique 2012



170 Chap.5. Gauge theories. Standard model

Further references for Chapter 5

On geometric aspects of gauge theory and an introduction to the theory of fiber bundles, see
for example M. Daniel and C. Viallet, The geometric setting of gauge theories of the Yang-Mills
type, Rev. Mod. Phys. 52 (1980) 175-197.

On gauge theories, Yang-Mills, the standard model, etc, one may consult any book of
quantum field theory posterior to 1975, for example [IZ], [PS], [Wf], [Z-]].

On group theoretical aspects of gauge theories, voir L. O’Raifeartaigh, op. cit..

A very good review of grand-unification is given in Introduction to unified theories of weak,
electromagnetic and strong interactions - SU(5), A. Billoire and A. Morel, rapport Saclay DPh-
T/80/068 (available on the ICFP Master website).

For a detailed review of the Standard Model and a compilation of all known properties of
elementary particles, see The Review of Particle Physics, on
http://pdg.1bl.gov/ already cited in Chap. 4.
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Exercises and Problems for chapter 5

A. Non abelian gauge field
1. Complete the proofs of (5.21)) and (5.22).

2. Let A be a non abelian gauge field and F' its field tensor. Show that the covariant derivative of F' is such
that
DMabFupbta = [DM’FVP] = 8MFVP - [Au’ FVp] .

Prove the identity
[DM’FVP] + [DwFpu] + [DvauV] =0.

Recall what is the abelian version of that identity and its interpretation.
3. Consider the operator ) = @ — A acting on Dirac fermions in a representation R. One wants to compute 2.

Writing D, D, y*~" = %DHDV{’W, i+ %[DH, D,]v"~", show that one may write )? as a sum of D? = D, D

and of a term of the form aF),o"”, where o"* = L[y* ~"]. Compute a.

B. Group theoretical factors. ..

1. Casimir operators

Let G be a simple compact Lie group of dimension d, R one of its representations, that one may assume
irreducible and unitary. Let t, be a basis of the Lie algebra g of G, T, its representatives in representation R.

The t, and T, are chosen antihermitian. One then considers the bilinear form on the Lie algebra defined by
(X, V) B = tr (T, Tp) %"
if X = 2%, and Y = y’t;, € g (with summation over repeated indices).
a) Prove that this form is invariant in the sense that

VZeg (X,2),Y)® +(X,[v,2)® =0.

One recalls that any invariant bilinear form on a simple Lie algebra is a multiple of the Killing form.

b) Prove that one may choose a basis of ¢, and hence of T, such that
tr (TaTb) = —Tgrow
with Tr a coefficient that depends on the representation.

¢) What is the sign of Tg ?

d) Consider then the quadratic Casimir operator

O3 = =3 (T2

(e}

On how many values of a does one sum in that expression?

e) Recall why CéR) is a multiple of the identity in the representation space of R
B = e, (R)T.
f) Why are the assumptions of simplicity of G and of irreductibility of R important for that result?

g) What is the sign of ca(R) 7 Justify.

h) Show that Tg is related to the value ca(R) of the quadratic Casimir operator. For that purpose, one may

compute in two different ways the quantity

tr Y (T)* .
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i) To what does this relation boil down for the adjoint representation adjoint of G 7

j) Normalize the (antihermitian) generators of SU(NNV) in such a way that in the defining representation,
tr 1,1, = —%6,11,, thus Ty = % Is this verified by infinitesimal generators % of SU(2) 7 What is then

the value of ¢y in that defining representation?

2. Computation of traces and of Casimir operators in representations of SU(N )
a) Show that the expression (3.50) of Chap. 3, c2(A) = L(A,A + 2p), may be rewritten as co(A) =
T((A+p,A+p)—{(p,p))), thus for SU(N), using expressions (3.48) and (3.61) of the same chapter

N-1 N-1

ca(A) = % Sl +12 = 1N —i)+2 > (A + DA +1) = 1Ji(N - j)
i=1 j=i+1

b) Compute that expression for the defining representation. Does the result agree with that found in

question 1.j) above?

¢) Recall why the highest weight of the adjoint representation is the highest root (denoted 6 in Appendix F

of Chap 3). Is the expression § = A; + Ay _; in accord with what is known on the adjoint representation?
d) Calculate the value of c3(A) for the adjoint representation.
e) Check this value for SU(2) by a direct calculation of ¢z (adj).
f) What is the value of T,q; in SU(N), that follows as a consequence of question 1.i) ?
3. Anomaly coefficients
We keep the same notations and conventions as above.

a) In the computation of some Feynman diagrams in a gauge theory of group G, one encounters the coefficient
dapy = tr (To(TpTy + T,T3)) .
Show that d,g is completely symmetric in its three indices.

b) We recall that a representation is said to be real or pseudoreal if it is (unitarily) equivalent to its complex
conjugate, hence if in a basis where the T, are antihermitian, one may find a unitary matrix U such that

the complex conjugate of each T, verifies
(T)*=UT, U .

Show that if that condition is satisfied, dng, vanishes identically. That condition is important to ensure

the consistency of gauge theory, this is the condition of anomaly cancellation.
¢) Is the spin % representation of SU(2) real or pseudoreal ? That of spin j ? Justify your answer.

d) Give two examples of (non necessarily irreducible) non trivial representations of SU(3) that are real or

pseudoreal, and two that are not.

e) What is the coefficient d for the U(1) group and a representation of charge g ?

C. Spontaneous breaking in an SU(2) gauge theory
Consider an SU(2) gauge theory coupled to a boson field & of spin 1, considered as a vector of dimension 3.
The potential of that field is denoted V (®2).
1. Write the Lagrangian and the gauge transformations of the fields /_fu and ®.
2. We suppose that the symmetry is spontaneously broken: the field ® acquires a vev v along some direction,
0
say 3 : ((I_5> = | 0 |. What is the residual group of symmetry? What will be the effect of the field A4, 7 Give

v
a description of the fields and physical particles after symmetry breaking.
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Problem I. Lattice gauge theory

In the following, G denotes a compact Lie group, x(¥) the character of its irreducible unitary representation p.
1. Show that the orthogonality relations of D) imply the following formulas:

dp(g) (o) 1 L0 (g 1)
g1-9~ .g2) = — E.41
/G o(G) X (9.91.97".92) o, X (91X (g2) , (E.41)
and an(g) 5
FA9) | (p) @) (g7 1. g5) = 227 (P) E.42
/G (G X (9-91)x*7 (97" -92) n, X (91-92) - (E.42)
Recall why a representation of G may always be regarded as unitary and show that then
X (g7 =xP(g) = (x(9)" , (E.43)

where p is the complex conjugate representation of p.
We make a frequent use of these three relations in the following.

2. Let x be the character of a real representation r (not necessarily irreducible) of G, § a real parameter.

a) Show that one may expand exp Sx(g) on characters of irreducible representations of G according to

eBx(9) — anbpx(p) (9) ,
P

with functions b, ().

Express the function b,(3) in terms of a group integral.

Using , show that the functions b,(5) are real, b,(8) = (b,(5))* = b5(B).

b) Show that b, is non vanishing provided representation p appears in some tensor power r®™.

¢) For G = SU(2) and r = (j = 3), the representation of spin 3, is condition b) satisfied for any p ? Why ?

If = (j = 1), what are the representations for which b, is a priori zero ?

d) For G =SU(3) and x = x® + x®), show that b, is non zero for all p.

For 8 — 0, what is the leading behaviour of b,(5) when 8 — 0 if a denotes the adjoint representation of
SU(3) 7 More generally what is the leading behaviour of b,(5) where p is the representation of highest weight
A=(A1,)) 7

3. One defines a model of statistical mechanics in d dimensions in the following way. On a hypercubic
lattice of dimension d and of lattice spacing a, the degrees of freedom are attached to links (edges) between
neighbouring sites and take their value in the compact group G. With each oriented link ¢ = z} one associates
the element of G denoted g, = g;;, with —¢ = ﬂ, one associates gj; = g[l. With each elementary square (alias

“plaquette”) p = ijkl, one associates the product of the link elements :

9p = Gij-95k-9kl-gli

and the “energy” of a configuration of these variables is given by
E=— > x(o) (E.44)
plaquettes p

where x is, like in question 2, the character of some real representation r of the group. The Boltzmann weight
is thus

e BE _ H ePx(gp) ’ 8= i
P

and the partition function reads

_ dp(ge) Bx(ay)
Z = H/G o) 11 . (E.45)

links £ plaquettes

a) Show that the energy E is invariant by redefinition of g;; as g;; — gi.gl—j.gjfl, where g; € G, (this is a local

invariance, the analogue in that discrete formalism of the gauge invariance studied in this chapter), and that F
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AO

L,

Figure 5.3: Square lattice in 2 d

does not depend on the orientation of plaquettes.
b) One wants to understand the relation with the formalism of § The degrees of freedom g;; represent the
path-variables defined in (5.20)), g;; = g(j,¢) along the edge from % to site j

gij = Pexp A, dxt
I1=ij
e For a small lattice spacing a, show, by using for example the BCH formula and by expanding to the first
non vanishing order that
gp = exp (aZFW + o(az))

where p and v denote the directions of the edges of plaquette p. (One is here interested in an Euclidean
version of gauge theory, and position of indices y, v is irrelevant.) Show then that the energy E,
reads

E, ~ const. a*(F),,)? + const.’

where the first constant will be determined as a function of the representation r chosen for .

e Explain why the parameter 3 identifies (up to a factor) with the inverse of coupling g2 in the continuous

gauge theory. In fact this is rather the “bare” (or unrenormalized) coupling constant, why ?

One first restricts oneself for simplicity to d = 2 dimensions. For a finite lattice of A/ plaquettes, for example
a rectangle of size Ly x Ly (see Fig. 7 one wants to calculate Z. One chooses “free boundary conditions”,
in other words variables gy on the boundary of the rectangle are independent. One is also interested in the
expectation value W () (C) of x(?)(g,,) where g, is the ordered product of g, along a closed oriented curve C
for some irreducible representation o of G

WC) = () = 5 TT [ %)

v
liens ¢

X(o) ( H ge> H eBx(gn) (E.46)
teC p

c) Using the results of question 2 show that one may expand each exp Sx(gp) on characters of irreducible

representations of G according to

eBxlon) — Z b, X (gp) - (E.47)
o

d) One inserts in (E.45]) or (E.46) the expansion (E.47) for each plaquette. Show that if two plaquettes share one
link ¢, formulas of part 1 permit an integration over the variable g, of that link and that the two representations
carried by the two adjacent plaquettes are then identical.

Using repeatedly these formulas of part 1, show that one may integrate over all variables g, and that

A
Z=vY wW(C) =n, (Z") (E.48)
1

where A is the area of the curve C, i.e. the number of plaquettes it encompasses, and the index 1 refers to the

identity representation.
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Figure 5.4: A tubular configuration contributing to the Wilson loop

e) One now consider the case of dimension d = 3. Variables g, are attached to links of a cubic lattice.
Energy is again given , where the sum runs over all plaquettes of this 3-dimensional lattice. As before,
W@N(C) = (x7)(g.)) receives contributions from plaquette configurations that form a surface bounded by C.
Let us show that contributions to the Wilson loop W(")(C) may also come from plaquette configurations
forming a tube resting on the contour C' (Fig. [5.4]).
— Show that for such a configuration, the repeated application of formulas and on all variables g,
leads to the following expression
P
wee) = Epj (Zf) /G Cffg(cf))x(”)(g)x(”) (97)x(9) (E.49)

where P is the number of plaquettes making the tube.

— Under which condition C on representation o of the loop C' is the contribution of representation p to the right
hand side of non vanishing?
— Give an example for G = SU(2) of representations ¢ for which this condition C is never satisfied for any p,
and hence these tubular configurations do not contribute.
— Inversely give an example (again for SU(2)) of a possible choice of o which satisfies it.

We admit that at high temperature, (small 3), the dominant contribution to W(?)(C) is of type (E.49) if
condition C may be satisfied, and of type in the opposite case.

4. The evaluation of the expectation value of the Wilson loop W(")(C) in the limit of a large loop C' which
is a rectangle R x T allows to compute the potential V,(R) between two static “charged” particles separated by
distance R, one carrying representation o of the group and the other one being its antiparticle. More precisely
we admit that )

V,(R) = — lim —log W(C) .
(R) =~ lim —log (©)

Evaluate the dependence of V,(R) in R which follows either from (E.48)), or from the contribution to due
to representation p. What do you conclude on the interaction between the two particles in those two situations?

Physically, this kind of considerations gives a discrete (lattice) and simplified (2 or 3 dimensions) model
of QCD. One may repeat these calculations in higher dimension, where the above result appear as the leading
term in a small 3 (“high temperature”) expansion. The fact that W) (C) decays like 2 (z = b, /by < 1 for
0 small enough) for large areas is a signal of quark confinement in that theory, that is of the impossibility to

separate a pair quark-antiquark at large distance ...

Problem II. B-E-H mechanism

I. The Georgi-Glashow model.
In an article of 1972, H. Georgi and S. Glashow proposed a model of electro-weak interactions based on the

gauge group SO(3) with a Higgs field transforming as a triplet under that group.
a) How many gauge fields does this model possess?

b) The Higgs triplet ® = (¢T, ¢", ¢7) is supposed to develop a “vev”
(®) =v(0,1,0).

What is the group H of residual symmetry?
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c¢) What can we say about the mass spectrum of the theory, after the symmetry breaking SO(3)— H 7
What is its physical interpretation?

d) What is the major difference between this model an what is now called the standard model, as far as
the weak interactions are concerned? Can you name an experimental discovery which enabled to discard

rapidly this model?
II. Gauge group SU(n)
One now considers a gauge theory based on the group SU(n), with gauge fields coupled to a scalar field ®.
a) What can be said about the residual group of symmetry and about the masses of vector fields when
(a) thescalar field transforms under a fundamental n-dimensional representation and (®) = v (0,0,---,0,1)?
(b) the scalar field transforms under the adjoint representation and
(®) = vdiag (1,1, -+ ,1,—n+1)?

b) One then introduces a fermion field ¥ transforming also as the n-dimensional representation (or its

conjugate). Which invariant mass terms are possible for the fermions?
¢) Suppose that the scalar field transforms under the adjoint representation.
(a) How many independent invariant Yukawa-type couplings WW¥® are possible ?
(b) Write the possible invariant couplings between this multiplet of fermions and the scalar field.

(¢) Which additional mass terms for the fermions result from the symmetry breaking considered in

question 1. 7
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