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Abstract. In these lectures we first review an experimental evidence in favour of
small-distance quark-gluon dynamics as the basis for multiple hadron production in
hard interactions. Then, we discuss the basics of QCD parton picture. The emphasis
is given to the role of gluon coherence effects both in space- and time-like evolution.
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1. Preface

Our field has emerged as a result of the digression: natural philosophy
— physics — quantum physics — elementary particle physics. The
older generation participated in specifying elementary particle physics
— high energy physics. In the past 20 years, with an advent of Quantum
Chromodynamics, we have witnessed the final step after which QCD
has acquired its today’s split personality: high energy physics — soft
physics + hard physics. Both “hard’” and “soft” are hard subjects, and
the softer the harder.

Until recently QCD studies were concentrated on small-distance
phenomena, observables and characteristics that are as insensitive to
large-distance confinement physics as possible. This is the realm of
“hard processes” in which a large momentum transfer Q?, either time-
like Q% > 1 GeV?, or space-like Q? < —1 GeV?, is applied to hadrons
in order to probe their small-distance quark-gluon structure.

Perturbative QCD (pQCD) controls the relevant cross sections and,
to a lesser extent, the structure of final states produced in hard in-
teractions. Whatever the hardness of the process, it is hadrons, not
quarks and gluons, that hit the detectors. For this reason alone, the
applicability of the pQCD approach, even to hard processes, is far from
being obvious. One has to rely on plausible arguments (completeness,
duality) and look for observables that are less vulnerable towards our
ignorance about confinement.

To give an example, we cannot deduce from the first principles
parton distributions inside hadrons (PDF, or structure functions). How-
ever, the rate of their In Q?-dependence (scaling violation) is an exam-
ple of a Collinear-and-Infrared-Safe (CIS) measure and stays under
pQCD jurisdiction.
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Speaking about the final state structure, we cannot predict, say, the
kaon multiplicity or the pion energy spectrum. However, one can decide
to be not too picky and concentrate on global characteristics of the final
states rather than on the yield of specific hadrons. Being sufficiently
inclusive with respect to final hadron species, one can rely on a picture
of the energy-momentum flow in hard collisions supplied by pQCD —
the jet pattern.

There are well elaborated procedures for counting jets (CIS jet
finding algorithms) and for quantifying the internal structure of jets
(CIS jet shape variables). They allow the study of the gross features of
the final states while staying away from the physics of hadronisation.
Along these lines one visualizes asymptotic freedom, checks out gluon
spin and colour, predicts and verifies scaling violation pattern in hard
cross sections, etc. These and similar checks have constituted the basic
QCD tests of the past two decades.

This epoch is over. Now the High Energy Particle physics commu-
nity is trying to probe genuine confinement effects in hard processes
to learn more about strong interactions. The programme is ambitious
and provocative. Friendly phenomenology keeps it afloat and feeds our
hopes of extracting valuable information about physics of hadronisa-
tion.

2. Bremsstrahlung gluons at work

High-energy annihilation e e~ — hadrons, deep inelastic lepton-hadron
scattering (DIS), production in hadron-hadron collisions of massive
lepton pairs, heavy quarks and their bound states, large transverse
momentum jets and photons are classical examples of hard processes.

Copious production of hadrons is typical for all these processes. On
the other hand, at the microscopic level, multiple quark-gluon “pro-
duction” is to be expected as a result of QCD bremsstrahlung — gluon
radiation accompanying abrupt creation/scattering of colour partons.

Is there a correspondence between observable hadron and calculable
quark-gluon production?

2.1. SCALING VIOLATION PATTERN

An indirect evidence that gluons are there, and that they behave,
can be obtained from the study of the scaling violation pattern. QCD
quarks (and gluons) are not point-like particles, as the orthodox parton
model once assumed. Each of them is surrounded by a proper field coat
— a coherent virtual cloud consisting of gluons and “sea” ¢g pairs.
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A hard probe applied to such a dressed parton breaks coherence of
the cloud. Constituents of these field fluctuations are then released as
particles accompanying the hard interaction. The harder the hit, the
larger an intensity of bremsstrahlung and, therefore, the fraction of
the energy-momentum of the dressed parton that the bremsstrahlung
quanta typically carry away. Thus we should expect, in particular, that
the probability that a “bare” core quark carries a large fraction of the
energy of its dressed parent will decrease with increase of Q2. And so
it does.

The logarithmic scaling violation pattern in DIS structure functions
is well established and meticulously follows the QCD prediction based
on the parton evolution picture.
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Figure 1. Scaling violation rates in inclusive hadron distributions from gluon and
quark jets (Abreu et ab., 1999)

In DIS we look for a “bare” quark inside a target dressed one. In
ete™ hadron annihilation at large energy s = @? the chain of events is
reversed. Here we produce instead a bare quark with energy /2, which
then “dresses up”. In the process of restoring its proper field-coat our
parton produces (a controllable amount of) bremsstrahlung radiation
which leads to formation of a hadron jet. Having done so, in the end
of the day it becomes a constituent of one of the hadrons that hit the
detector. Typically, this is the leading hadron. However, the fraction
zg of the initial energy @Q/2 that is left to the leader depends on the
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amount of accompanying radiation and, therefore, on Q? (the larger,
the smaller). In fact, the same rule (and the same formula) applies to
the scaling violation pattern in ete™ fragmentation functions (time-like
parton evolution) as to that in the DIS parton distributions (space-like
evolution).

What makes the annihilation channel particularly interesting, is that
the present day experiments are so sophisticated that they provide us
with a near-to-perfect separation between quark- and gluon-initiated
jets (the latter being extracted from heavy-quark-tagged three-jet events).

In Fig. 1 a comparison is shown of the scaling violation rates in
the hadron spectra from gluon and quark jets, as a function of the
hardness scale x that characterizes a given jet (Abreu et ab., 1999).
For large values of gy ~ 1 the ratio of the logarithmic derivatives is
predicted to be close to that of the gluon and quark “colour charges”,
Ca/Cr = 9/4. Experimentally, the ratio is measured to be

Cy

ZA 293 £ 0.09a;, % 0.064ys1.. (1)
Cr

2.2. BREMSSTRAHLUNG PARTON AND HADRON MULTIPLICITIES

Since accompanying QCD radiation seems to be there, we can make
a step forward by asking for a direct evidence: what is the fate of
those gluons and sea quark pairs produced via multiple initial gluon
bremsstrahlung followed by parton multiplication cascades? Let us look
at the )-dependence of the mean hadron multiplicity, the quantity
dominated by relatively soft particles with zp < 1. This is the kine-
matical region populated by accompanying QCD radiation.

Fig. 2 demonstrates that the hadron multiplicity increases with the
hardness of the jet proportional to the multiplicity of secondary gluons
and sea quarks. The ratio of the slopes, once again, provides an inde-
pendent measure of the ratio of the colour charges, which is consistent
with (1) (Abreu et ab., 1999):

Ca

o = 2:246 £ 0.06250ar. % 0.008qy51. £ 0.095 b0 (2)
F

2.3. INCLUSIVE HADRON DISTRIBUTION IN JETS

Since the total numbers match, it is time to ask a more delicate ques-
tion about energy-momentum distribution of final hadrons versus that
of the underlying parton ensemble. One should not be too picky in
addressing such a question. It is clear that hadron-hadron correlations,
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Figure 2. Charged hadron multiplicities in gluon and quark jets
(Abreu et ab., 1999).

for example, will show resonant structures about which the quark-
gluon speaking pQCD can say little, if anything, at the present state of
the art. Inclusive single-particle distributions, however, have a better
chance to be closely related. Triggering a single hadron in the detector,
and a single parton on paper, one may compare the structure of the
two distributions to learn about dynamics of hadronisation.

Inclusive energy spectrum of soft bremsstrahlung partons in QCD
jets has been derived in 1984 in the so-called MLLA — the Modified
Leading Logarithmic Approximation (Dokshitzer&Troyan, Mueller).
This approximation takes into account all essential ingredients of par-
ton multiplication in the next-to-leading order. They are: parton split-
ting functions responsible for the energy balance in parton splitting,
the running coupling (k%) depending on the relative transverse mo-
mentum of the two offspring and exact angular ordering. The latter is
a consequence of soft gluon coherence and plays, as we shall discuss
below, an essential role in parton dynamics. In particular, gluon coher-
ence suppresses multiple production of very small momentum gluons.
It is particles with intermediate energies that multiply most efficiently.
As a result, the energy spectrum of relatively soft secondary partons
in jets acquires a characteristic hump-backed shape. The position of
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the maximum in the logarithmic variable £ = — Inz, the width of the
hump and its height increase with Q? in a predictable way.

The shape of the inclusive spectrum of all charged hadrons (domi-
nated by 7¥) exhibits the same features. This comparison, pioneered by
Glen Cowan (ALEPH) and the OPAL collaboration, has later become a
standard test of analytic QCD predictions. First scrutinized at LEP, the
similarity of parton and hadron energy distributions has been verified
at SLC and KEK ete™ machines, as well as at HERA and Tevatron
where hadron jets originate not from bare quarks dug up from the
vacuum by a highly virtual photon/Z° but from hard partons kicked
out from initial hadron(s).

In Fig. 3 (DELPHI) the comparison is made of the all-charged
hadron spectra at various annihilation energies () with the so-called
“distorted Gaussian” fit (Fong & Webber 1989) which employs the first
four moments (the mean, width, skewness and kurtosis) of the MLLA
distribution around its maximum.
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Figure 8. Inclusive energy distribution of charged hadrons in jets produced in ete™

annihilation

Shall we say, a (routine, interesting, wonderful) check of yet another
QCD prediction? Better not. Such a close similarity offers a deep puzzle,
even a worry, rather than a successful test. Indeed, after a little exercise
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in translating the values of the logarithmic variable & = In(Eje;/p) in
Fig. 3 into GeVs you will see that the actual hadron momenta at the
maxima are, for example, p=1Q - e fmax ~ (.42, 0.85 and 1.0 GeV for
Q=14, 35 GeV and at LEP-1, Q=91 GeV. Is it not surprising that
the pQCD spectrum is mirrored by that of the pions (which constitute
90% of all charged hadrons produced in jets) with momenta well below
1 GeV?

For this very reason the observation of the parton-hadron similarity
was initially met with a serious and well grounded skepticism: it looked
more natural (and was more comfortable) to blame the finite hadron
mass effects for fall-off of the spectrum at large ¢ (small momenta)
rather than seriously believe in applicability of the pQCD consideration
down to such disturbingly small momentum scales.

This worry has been recently answered. Andrey Korytov (CDF) was
the first to hear a theoretical suggestion (Dokshitzer et al., 1988) and
carry out a study of the energy distribution of hadrons produced inside
a restricted angular cone © around the jet axis. Theoretically, it is not
the energy of the jet but the maximal parton transverse momentum
inside it, k| max =~ FEjet sin %, that determines the hardness scale and
thus the yield and the distribution of the accompanying radiation.

This means that by choosing a small opening angle one can study
relatively small hardness scales but in a cleaner environment: due to the
Lorentz boost effect, eventually all particles that form a short small-Q?
QCD “hump” are now relativistic and concentrated at the tip of the
jet.

For example, selecting hadrons inside a cone © ~ (.14 around an
energetic quark jet with Eje; ~ 100 GeV (LEP-2) one should see that
very “dubious” @) = 14 GeV curve in Fig. 3 but now with the maximum
boosted from 0.45 GeV into a comfortable 6 GeV range.

In the CDF Fig. 4 (Korytov, 1996, Goulianos, 1997, Safonov, 1999)
a close similarity between the hadron yield and the full MLLA parton
spectra can no longer be considered accidental and be attributed to
non-relativistic kinematical effects.

2.4. BRAVE GLUON COUNTING

Modulo Aqcp, there is only one unknown in this comparison, namely,
the overall normalisation of the spectrum of hadrons relative to that of
partons (bremsstrahlung gluons).

Strictly speaking, there should/could have been another free pa-
rameter, the one which quantifies one’s bravery in applying the pQCD
dynamics. It is the minimal transverse momentum cutoff in parton
cascades, k; > Q. The strength of successive 1 — 2 parton splittings
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Figure 4. Inclusive energy distribution of charged hadrons in large—p, jets
(Goulianos, 1997).

is proportional to as(k%) and grows with &k, decreasing. The necessity
to terminate the process at some low transverse momentum scale where
the PT coupling becomes large (and eventually hits the formal “Landau
pole” at k| = Aqcp) seems imminent. Surprisingly enough, it is not.

Believe it or not, the inclusive parton energy distribution turns out
to be a CIS QCD prediction. Its crazy Qo = Aqcp limit (the so-called
“limiting spectrum”) is shown by solid curves in Fig. 4.

Choosing the minimal value for the collinear parton cutoff Qy can
be looked upon as shifting, as far as possible, responsibility for particle
multiplication in jets to the PT dynamics. This brave choice can be said
to be dictated by experiment, in a certain sense. Indeed, with increase of
Qo the parton parton distributions stiffen (parton energies are limited
from below by the kinematical inequality zEje; = k > ki > Qo). The
maxima would move to larger z (smaller ¢), departing from the data.
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Figure 5. The position of the maximum versus the analytic MLLA prediction
(Safonov, 1999).

A clean test of “brave gluon counting” is provided by Fig. 5 where
the position of the hump, which is insensitive to the overall normali-
sation, is compared with the parameter-free MLLA pQCD prediction
(Safonov, 1999).

To put a long story short, decreasing (Qy we start to lose control of
the interaction intensity of a parton with a given z and &, ~ Qo (and
thus may err in the overall production rate). However, such partons do
not branch any further, do not produce any soft offspring, so that the
shape of the resulting energy distribution remains undamaged. Colour
coherence plays here a crucial role.!

It is important to realize that knowing the spectrum of partons, even
knowing it to be a CIS quantity in certain sense, does not guarantee on
its own the predictability of the hadron spectrum. It is easy to imagine
a world in which each quark and gluon with energy k& produced at
the small-distance stage of the process would have dragged behind its
personal “string” giving birth to Ink hadrons in the final state (the

1A formal explanation of the tolerance of the shape of inclusive parton spectra
to the dangerous small-k1 domain will be given below in Sec. 4.4.
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Feynman plateau). The hadron yield then would be given by a convo-
lution of the parton distribution with a logarithmic energy distribution
of hadrons from the parton fragmentation.

If it were the case, each parton would have contributed to the
yield of non-relativistic hadrons and the hadron spectra would peak
at much smaller energies, &max ~ In @), in a spectacular difference with
experiment.

Physically, it could be possible if the non-perturbative (NP) hadro-
nisation physics did not respect the basic rule of the perturbative
dynamics, namely, that of colour coherence.

There is nothing wrong with the idea of convoluting time-like parton
production in jets with the inclusive NP parton—hadron fragmentation
function, the procedure which is similar to convoluting space-like par-
ton cascades with the NP initial parton distributions in a target proton
to describe DIS structure functions.

What the nature is telling us, however, is that this NP fragmentation
has a finite multiplicity and is local in the momentum space. Similar
to its PT counterpart, the NP dynamics has a short memory: the NP
conversion of partons into hadrons occurs locally in the configuration
space.

In spite of a known similarity between the space- and time-like par-
ton evolution pictures (z ~ 1), there is an essential difference between
small-z physics of DIS structure functions and the jet fragmentation. In
the case of the space-like evolution, in the limit of small Bjorken—z the
problem becomes essentially non-perturbative and pQCD loses control
of the DIS cross sections (Mueller, 1997, Camici&Ciafaloni, 1997). On
the contrary, studying small Feynman—x particles originating from the
time-like evolution of jets offers a gift and a puzzle: all the richness
of the confinement dynamics reduces to a mere overall normalisation
constant.

The fact that even a legitimate finite smearing due to hadroni-
sation effects does not look mandatory makes one think of a deep
duality between the hadron and quark-gluon languages applied to such
a global characteristic of multihadron production as an inclusive energy
spectrum.

The message is, that “brave gluon counting”, that is applying the
pQCD language all the way down to very small transverse momentum
scales, indeed reproduces the z- and ()-dependence of the observed
inclusive energy spectra of charged hadrons (pions) in jets.

Even such a tiny effect as an envisaged difference in the position of
the maxima in quark- and gluon-initiated humps (Fong&Webber, 1991)
has been verified, 15 years later, by DELPHI (Hamacher et al., 1999).
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Put together, the ideas behind the brave gluon counting are known
as the hypothesis of Local Parton-Hadron Duality (Dokshitzer& Troyan,
1984). Experimental evidence in favour of LPHD is mounting, and so is
list of challenging questions to be answered by the future quantitative
theory of colour confinement.

2.5. QCD RADIOPHYSICS

Even more striking is miraculously successful role of gluons in pre-
dicting the pattern of hadron multiplicity flows in the inter-jet regions
— realm of various string/drag effects.This is another class of multi-
hadron production phenomena speaking in favour of LPHD. It deals
with particle flows in the angular regions between jets in various multi-
jet configurations. These particles do not belong to any particular jet,
and their production, at the pQCD level, is governed by coherent soft
gluon radiation off the multi-jet system as a whole. The ratios of particle
(gluon) flows in different inter-jet valleys are given by parameter-free
pQCD predictions and reveal the so-called “string” or “drag” effects.
For a given kinematical jet configuration such ratios depend only on
the number of colours (N,).

It isn’t strange at all that with gluons one can get, e.g., 14+1 = 2
while 1+1 + 9/4 = 7/16, which is a simple radiophysics of composite
antennas, or quantum mechanics of conserved colour charges.

This particular example of “quantum arithmetics” has to do with
comparison of hadron flows in the inter-quark valleys in ggy and ggg
(3-jet) events. The first equation describes the density of soft gluon
radiation produced by two quarks in a ggv event, with 1 standing for
the colour quark charge.

Replacing the colour-blind photon by a gluon one gets an additional
emitter with the relative strength 9/4, as shown in the lLh.s. of the
second equation. The resulting soft gluon yield in the ¢g direction,
however, decreases substantially as a result of destructive interference
between three elements of a composite colour antenna. In Fig. 6 the
OPAL measurements are compared with the parameter-free theoretical
prediction (Azimov et al., 1985).

Another example is the ratio of the multiplicity flow between a
quark (antiquark) and a gluon to that in the ¢q valley in symmetric
(“Mercedes”) three-jet ggg e*e™ annihilation events:

dNS® 5N2-1 22 )

Emitting an energetic gluon off the initial quark pair depletes accom-
panying radiation in the backward direction: colour is dragged out of
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Figure 6. Comparison of particle flows in the ¢g valley in ¢gy and ggg 3-jet
events versus a parameter-free analytic prediction based on the soft gluon radiation
pattern. (Akers et al., 1995)

the gq valley. This destructive interference effect is so strong that the
resulting multiplicity flow falls below that in the least favourable direc-
tion transversal to the three-jet event plane. For symmetric “Mercedes”
events the expected ratio is

dN™  Ne+20p 17 n
chggqg) - 2(4CF — Nc) 14’

and tends to unity, in a predictable way, when the ¢gg ensemble be-
comes two-jet-like (Khoze et al., 1997). The hadron flow has been found,
once again, to obediently follow that of coherent soft gluon radia-
tion (DELPHI, 1999).

Nothing particularly strange, you might say. At the level of the PT
accompanying gluon radiation (QCD radiophysics) such predictions are
quite simple and straightforward to derive. Moreover, these predictions
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are quite robust since, due to QCD coherence, the inter-jet gluon ra-
diation is insensitive to internal structure of underlying jets. The only
thing that matters is the colour topology of the primary system of hard
partons and their kinematics.

What is rather strange, though, is that these and many similar
numbers are being seen experimentally. The inter-jet particle flows we
are discussing are dominated, at present energies, by very soft pions
with typical momenta in the 100-300 MeV range! The fact that even
such soft junk follows the pQCD rules is truly amazing.

What the nature seems to be telling us, is that

— The colour field that an ensemble of hard primary partons (par-
ton antenna) develops, determines, on the one-to-one basis, the
structure of final flows of hadrons.

— The Poynting vector of the colour field gets translated into the
hadron Poynting vector without any visible reshuffling of particle
momenta at the “hadronisation stage”.

When viewed globally, confinement is about renaming a flying-away
quark into a flying-away pion rather than about forces pulling quarks
together.

3. Basics of parton multiplication

In this lecture we shall recall the basic properties of accompanying
radiation. The gluon bremsstrahlung (off quarks and gluons) is not
much different from the photon emission off electric charges. So, we
shall start from the electromagnetic radiation and turn to gluons later.

3.1. PHOTON BREMSSTRAHLUNG

Let us consider photon bremsstrahlung induced by a charged particle
(electron) which scatters off an external field (e.g., a static electromag-
netic field). The derivation is included in every textbook on QED, so
we confine ourselves to the essential aspects.

The lowest order Feynman diagrams for photon radiation are de-
picted in Fig. 7, where p1,po are the momenta of the incoming and
outgoing electron respectively and k represents the momentum of the
emitted photon. The corresponding amplitudes, according to the Feyn-
man rules, are given in momentum space by

m+p —k

Ml = eu(pe,s2) Vipe +k—p1) m Y u(p1,s1), (3.5a)
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Figure 7. Photon Bremsstrahlung diagrams for scattering off an external field.

% V(p2 +k — p1) ulp1, s1). (3.5b)

M{' = eu(pz,s2) "
Here V stands for the basic interaction amplitude which may depend
in general on the momentum transfer (for the case of scattering off the
static e.m. field, V = 70).

First we apply the soft-photon approximation, w < pY, p3, to neglect
 terms in the numerators. To deal with the remaining matrix structure
in the numerators of (3.5) we use the identity py* = —y*p + 2pH and
the Dirac equation for the on-mass-shell electrons,

(m + ) v ulpr) = (201 + [(m — p, ) u(p1) = 2p7 u(p1)
u(p2)y” (m+ py) = a(p2) ([(m — Py ] + 2p7) = 2p5 u(p2) -

Denominators for real electrons (p? = m?) and the photon (k? = 0)
become m? — (p; — k)% = 2(p1k) and m? — (p2 + k)? = —2(p2k), so that
for the total amplitude we obtain the factorized expression

MF=ejt x My. (3.6a)

Here M, is the Born matrix element for non-radiative (elastic) scat-
tering,

Mg = u(pa, s2) V(p2 — p1) u(p1, $1) (3.6b)

(in which the photon recoil effect has been neglected, ¢ = po +k —p; ~
p2 — p1), and j* is the soft accompanying radiation current

wy _ PP

I0) = k) k) (3.6¢)
Factorisation (3.6a) is of the most general nature. The form of j# does
not depend on the details of the underlying process, neither on the
nature of participating charges (electron spin, in particular). The only
thing which matters is the momenta and charges of incoming and outgo-
ing particles. Generalization to an arbitrary process is straightforward
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and results in assembling the contributions due to all initial and final
particles, weighted with their respective charges.

The soft current (3.6¢) has a classical nature. It can be derived form
the classical electrodynamics by considering the potential induced by
change of the e.m. current due to scattering.

3.2. SOFT RADIATION CROSS SECTION

To calculate the radiation probability we square the amplitude pro-
jected onto a photon polarization state 8,’), sum over A and supply the
photon phase space factor to write down
2 w? dw d)
AW = ¢ enit| Sy AW 3.7
)\gz nl 2w (2m)3 el (3:7)

The sum runs over two physical polarization states of the real pho-
ton, described by normalized polarization vectors orthogonal to its
momentum:

e (k) - e (k) = =6 ei(k) - ky = 0; AN =1,2.

Within these conditions the polarization vectors may be chosen dif-
ferently. Due to the gauge invariance such an uncertainty does not
affect physical observables. Indeed, the polarization tensor may be
represented as

Z éhex” = —g" + tensor proportional to k# and/or k. (3.8)
A=1,2

The latter, however, can be dropped since the classical current (3.6¢)
is explicitly conserving, (j#k,) = 0. Therefore one may enjoy the gauge
invariance and employ an arbitrary gauge, instead of using the physical
polarizations, to calculate accompanying photon production.
The Feynman gauge being the simplest choice, > y_; o eher’ =
—g" | we get
dw o

dN = — = — i")2 @ dw dQ
Wy~ a2 ) wdwdily

- gd_wdﬂ7 1 — cos©
T 1w 21 (1—cosO1)(1—cosOy)

(3.9)

The latter expression corresponds to the relativistic approximation 1 —
v, —vy L 1:

a2 2(pip2) m*\ 2 (1 — 7y - 7lp)
) (Plk)(p2k)+o<p§>_w2(1—ﬁl-ﬁ)(1—ﬁ2-ﬁ)’
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16 Yuri Dokshitzer

it disregards the contribution of very small emission angles ©? < (1 —
v?) = m?/p3, < 1, where the soft radiation vanishes (the so-called
“Dead Cone” region).

If the photon is emitted at a small angle with respect to, say, the
incoming particle, i.e. ©; € Oy ~ O, the radiation spectrum (3.9)
simplifies to

IN ~ a sin®;dO; dw N ad@% dw
T r(l—cosO) w  wO? w
Two bremsstrahlung cones appear, centred around incoming and out-
going electron momenta. Inside these cones the radiation has a double-
logarithmic structure, exhibiting both the soft (dw/w) and collinear
(d©?/©?) enhancements.

3.2.1. Low-Barnett-Kroll wisdom

Soft factorisation (3.6a) is an essence of the celebrated soft brems-
strahlung theorem, formulated by Low in 1956 for the case of scalar
charged particles and later generalized by Barnett and Kroll to charged
fermions. The very classical nature of soft radiation makes it universal
with respect to intrinsic quantum properties of participating objects
and the nature of the underlying scattering process: it is only the
classical movement of electromagnetic charges that matters.

It is interesting that according to the LBK theorem both the leading
dw/w and the first subleading, o< dw, pieces of the soft photon spectrum
prove to be “classical”.

For the sake of simplicity we shall leave aside the angular structure
of the accompanying photon emission and concentrate on the energy
dependence. Then, the relation between the basic cross section o(®)
and that with one additional photon with energy w can be represented
symbolically as

4o (pi, ) oc 2% [(1 - 2) o) + (%) a<pz-,w)] . (3.10)

The first term in the right-hand side is proportional to the non-radiative
cross section o(?). The second term involves the new w-dependent cross
section ¢ which is finite at w = 0, so that this contribution is suppressed
for small photon energies as (w/FE)2.

This general structure has important consequences, the most serious
of which can be formulated, in a dramatic fashion, as

3.2.2. Soft Photons don’t carry quantum numbers

We are inclined to think that the photon has definite quantum numbers
(negative C-parity, in particular). Imagine that the basic process is

yd_cr.tex; 4/12/2001; 12:30; p.16



QCD for beginners 17

forbidden, say, by C-parity conservation. Why not to take off the veto
by adding a photon to the system? Surely enough it can be done. There
is, however, a price to pay: the selection rules cannot be overcome by
soft radiation. Since the classical part of the radiative cross section
in (3.10) is explicitly proportional to the non-radiative cross section
o = 0, only energetic photons (described by the & term) could do
the job. The energy distribution

d*k
|M|? - & wdw

is typical for a quantum particle, where the production matrix element
M is finite in the w — 0 limit, M = O(1). An enhanced radiation
matrix element, M o w™! characterizes a classical field rather than a
quantum object.

So, the price one has to pay to overrule the quantum-number veto by
emitting a soft photon with w < E is the suppression factor (w/E)? <«
1. We conclude that the photons that are capable of changing the
quantum numbers of the system (be it parity, C-parity or angular
momentum) cannot be soft. Neither can they be collinear, by the way,
as it follows from the

3.2.3. Gribov Bremsstrahlung theorem

This powerful generalisation of the Low theorem states that a simple
factorisation holds at the level of the mairiz element, provided the
photon transverse momentum with respect to the radiating charged
particle is small compared to the momentum transfers characterising
the underlying scattering process:

MO (%g) -M© 4 M. (3.11)
1

Here again M = const in the k&, — 0 limit. This factorisation holds for

hard photons (w ~ E) as well as for soft ones.

Both the Low-Barnett-Kroll and the Gribov theorems hold in QCD
as well. In particular, it is the Gribov collinear factorisation that leads
to the probabilistic evolution picture describing collinear QCD parton
multiplication which we shall briefly discuss in the next lecture.

In the QCD context, our statement that “soft photons don’t carry
quantum numbers” should be strengthened to even more provocative
(but true)

3.2.4. Soft Gluons don’t carry away no colour

Don’t rush to protest. Just think it over. In more respectable terms
this title can be abbreviated as the NSFL (no-soft-free-lunch) theorem.
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18 Yuri Dokshitzer

Imagine we want to produce a heavy quark Q@ bound state (onium)
in a hadron-hadron collision. The C-even (x¢) mesons can be produced
by fusing two quasi-real gluons (with opposite colours) from the QCD
parton clouds of the colliding hadrons:

(9+9)a) = Q+Q — xe- (3.12)

In particular, radiative decays of such x. mesons are responsible for
about 40% of the J /1 yield. How about the remaining 60% 7 To directly
create a J/4 (or ¢’ — 381 C-odd c¢ states) two gluons isn’t enough.
A C-odd meson can decay into, or couple to, three photons (like para-
positronium does), a photon plus two gluons, or three gluons (in a
colour-symmetric dgp. state).

So, we need one more gluon to attach, for example, in the final state:

(9+9)e = (R+Q), — /¥ +g. (3.13)

To pick up an initial gg pair in a colour octet state is easier than in the
singlet as in (3.12). This, however, does not help to avoid the trouble:
the perturbative cross section turns out to be too small to meet the
need. It underestimates the Tevatron pp data on direct J/9 and o'
production by a large factor (up to 50, at large p ).

That very same effect that makes the J/1 so narrow a meson with
the small hadronic decay width I/, /M o a(M), suppresses its per-
turbative production cross section (3.13) as well.

Since the perturbative approach apparently fails, it seemed natural
to blame the non-perturbative physics. Why not to perturbatively form
a colour-octet “J/1” and then to get rid of colour in a smooth (free
of charge) non-perturbative way? To evaporate colour does not look
problematic: on the one hand, the soft glue distribution is dw/w = O(1),
on the other hand, the coupling a;/7 in the NP domain may be of the
order of unity as well. So why not?

The LBK theorem tells us that either the radiation is soft-enhanced,
x dw/w = O(1), and classical, or hard, x wdw and capable of changing
the quantum state of the system. Therefore, to rightfully participate
in the J/1 formation as a quantum field, a NP gluon with w ~ Aqcp
would have to bring in the suppression factor

AQCD)2
2Qcb 1.
(Mc <

The language of the LBK is perturbative, 'tis true. The question is,
and a serious one indeed, whether the NP phenomena respect the basic
dynamical features that its PT counterpart does? Or shall we rather
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forget about quantum mechanics, colour conservation, etc. and accept
an “anything goes” motto in the NP domain?

To avoid our discussion turning theological, we better address an-
other verifiable issue namely, photoproduction of J/v at HERA. Here
we have instead of (3.13) the fusion process of a real (photoproduction)
or virtual (electroproduction) photon with a quasi-real space-like gluon
from the parton cloud of the target proton:

7 +g = (Q+Q)(8) — Jjp+g. (3.14)

If the final-state gluon were soft NP junk, the J/1 meson would have
carried the whole photon momentum and its distribution in Feynman
z would peak at z = 1 as (1—2)~!. The HERA experiments have found
instead a flatish (if not vanishing) z-spectrum at large z. The NSFL
theorem seems to be up and running.

By the way, the conventional PT treatment of the photoproduction
(3.14) is reportedly doing well. So, what is wrong with the hadroproduc-
tion then? Strictly speaking, the problem is still open. An alternative
to (3.13) would be to look for the third (hard or hardish) gluon in the
initial state?.

The NSFL QCD discourse has taken us quite far from the main-
stream of the introductory lecture. Let us return to the basic properties
of QED bremsstrahlung and make a comparative study of

3.3. INDEPENDENT AND COHERENT RADIATION

In the Feynman gauge, the accompanying radiation factor dN in (3.9)
is dominated by the interference between the two emitters:

1

_ P’f D
o l(plk) (p2k)

~ 2(p1p2)
(p1k)(p2k)

Therefore it does not provide a satisfactory answer to the question,
which part of radiation is due to the initial charge and which is due to
the final one?

There is a way, however, to give a reasonable answer to this question.
To do that one has to sacrifice simplicity of the Feynman-gauge calcula-
tion and recall the original expression (3.7) for the cross section in terms
of physical photon polarizations. It is natural to choose the so-called
radiative (temporal) gauge based on the 3-vector potential A, with the

2 an interesting, reliable and predictive model for production of onia in the

gluon field of colliding hadrons is being developed by Paul Hoyer and collaborators
(Hoyer, Marchal & Peigne, 2000)
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scalar component set to zero, Ag = 0. Our photon is then described by
(real) 3-vectors orthogonal to one another and to its 3-momentum:

(&-ev)=0w, (&n-k)=0. (3.15)

This explicitly leaves us with two physical polarization states. Summing
over polarizations obviously results in

dN o< S [{k)-@&] = 3 Fk)-[dap — laiis]-FP(K), (3.16)
A=1,2 a,B=1...3

‘ 2

with a, 8 the 3-dimensional indices. We now substitute the soft current
(3.6¢) in the 3-vector form, p!' — ipp;, and make use of the relations

. ka kgl . :

(@ )a [m _ %Qﬂ] (@) = vPsin?@;, (3.17a)
ko k

(1) a [6@ - %2ﬂ] (T2)p = wv1v2(cos ©12 — cos Oy cos Oy) , (3.17b)

to finally arrive at

o dw d)
N = — -2 N 1
d W{R1+R2 J} w An (3 8&)
Here
2 sin2@.
Ry = iSO gy (3.18b)

(1 —v;co80;)2’
v109 (cos O19 — cos ©1 cos O)
(1 —v1cos0O1)(1 —vyco803)

The contributions R 2 can be looked upon as being due to independent
radiation off initial and final charges, while the J-term accounts for
interference between them. The independent and interference contri-
bution, taken together, describe the coherent emission. It is straight-
forward to verify that (3.18) is identical to the Feynman-gauge result
(3.9):

7?’coher. = 7?'indep. - 2‘-7 - _w2(ju)27 Rindep. = Rl +R2 . (319)

J = (3.18¢)

3.3.1. The rdle of interference: strict angular ordering
In the relativistic limit we have
Sil’l2 @1 2
(1 —cos®;)? T a
cosO12 —cos©1¢c08O2 a1 +az —air

7= (1 —cosO1)(1 —cosOg) a0z —1 (3.20b)

Ry =~ ~1, (3.20a)
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where we introduced a convenient notation

a1 =1—-1711=1—cosOy1, as=1—cosOy,

algzl—ﬁlfig:l—cos(as.

The variables a are small when the angles are small: a ~ %@2.
The independent radiation has a typical logarithmic behaviour up
to large angles:
: da;
dN1 < Rqsin©®d® x —, a1 S1.
a
However, the interference effectively cuts off the radiation at angles
exceeding the scattering angle:

da da dO?

X — OC ——
aias  a? e’

AN X R oher. SINOdO = 2a19 a=a;~ay>> ag.

To quantify this coherent effect, let us combine an independent contri-
bution with a half of the interference one to define

VIZRI_J:;_G1+GCL2G—G12 _ a12-|;a;—a1’
1 102 102
3.21a)
2 a1 +ax—a a2 +air—a (
Vo=Ry—J =2 — 1 2 12 _ a12 1 2;
as a;ag a;ag
Rcoher. — V1+‘/2 (3.21b)

The emission probability V; can be still considered as “belonging” to
the charge #i (Vi is singular when a; — 0, and vice versa). At the
same time these are no longer independent probabilities, since V; ex-
plicitly depends on the direction of the partner-charge #2; conditional
probabilities, so to say.

It is straightforward to verify the following remarkable property of
the “conditional” distributions V': after averaging over the azimuthal
angle of the radiated quantum, 7, with respect to the direction of the
parent charge, 71, the probability Vi (7, 71;72) vanishes outside the
Os-cone. Namely

rd L 2
<1/1>azimuth = / q;n,nl ‘/i(,n/’ nl’ ’n’2) = _119 (0;12 - all) . (322)
0 m al

It is only a2 that changes under the integral (3.22), while a;, and
obviously aq9, stay fixed. The result follows from the angular integral

/2” dpnn, 1 1 1
0

21 ay  |cos©1 — cos O - a2 —a1|
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Naturally, a similar expression for V, emerges after the averaging over
the azimuth around 7is is performed.

We conclude that as long as the total (angular-integrated) emission
probability is concerned, the result can be expresses as a sum of two
independent bremsstrahlung cones centred around 7; and 72, both
having the finite opening half-angle ©;,.

This nice property is known as a “strict angular ordering”. It is an
essential part of the so-called Modified Leading Log Approximation
(MLLA), which describes the internal structure of parton jets with a
single-logarithmic accuracy.

3.3.2. Angular ordering on the back of envelope

What is the reason for radiation at angles exceeding the scattering
angle to be suppressed? Let us try our physical intuition and consider
semi-classically how the radiation process really develops.

A physical electron is a charge surrounded by its proper Coulomb
field. In quantum language the Lorentz-contracted Coulomb-disk at-
tached to a relativistic particle may be treated as consisting of photons
virtually emitted and, in due time, re-absorbed by the core charge.
Such virtual emission and absorption processes form a coherent state
which we call a physical electron (“dressed” particle).

This coherence is partially destroyed when the charge experiences an
impact. As a result, a part of intrinsic field fluctuations gets released in
the form of real photon radiation: the bremsstrahlung cone in the direc-
tion of the initial momentum develops. On the other hand, the deflected
charge now leaves the interaction region as a “half-dressed” object with
its proper field-coat lacking some field components (eventually those
that were lost at the first stage). In the process of regenerating the
new Coulomb-disk adjusted to the final-momentum direction, an extra
radiation takes place giving rise to the second bremsstrahlung cone.

Now we need to be more specific to find out which momentum
components of the electromagnetic coat do actually take leave.

A typical time interval between emission and re-absorption of the
photon k£ by the initial electron p; may be estimated as the Lorentz-
dilated lifetime of the virtual intermediate electron state (p1 — k) (see
the left graph in Fig. 7,

t 1?1 . 1?1 1 . w
et m2 — (pr — k)2 2mk w2 g2
1

(3.23)

Here we restricted ourselves, for simplicity, to small radiation angles,
k1 ~wO < k) ~w. The fluctuation time (3.23) may become macroscop-
ically large for small photon energies w and enters as a characteristic
parameter in a number of QED processes. As an example, let us men-
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tion the so called Landau-Pomeranchuk effect — suppression of soft
radiation off a charge that experiences multiple scattering propagat-
ing through a medium. Quanta with too large a wavelength get not
enough time to be properly formed before successive scattering occurs,
so that the resulting bremsstrahlung spectrum behaves as dN o« dw//w
instead of the standard logarithmic dw/w distribution.

The characteristic time scale (3.23) responsible for this and many
other radiative phenomena is often referred to as the formation time.

Now imagine that within this interval the core charge was kicked
by some external interaction and has changed direction by some ©;.
Whether the photon will be re-absorbed or not depends on the position
of the scattered charge with respect to the point where the photon
was expecting to meet it “at the end of the day”. That is, we need
to compare the spatial displacement of the core charge A7 with the
characteristic size of the photon field, A ~ w AL~k 7

1 0,\?
Ary N\%n—vln\'tﬂuct“’@? = <—) Al A

T2
. w® g (3.24)
Ar| ~ C@s-tﬂuctNGS-@ :<68)>\J_ S N,

For large scattering angles, ©; ~ 1, the charge displacement exceeds
the photon wavelength for arbitrary ©, so that the two full-size brems-
strahlung cones are present. For numerically small ©, < 1, however, it
is only photons with © < ©4 that can notice the charge being displaced
and thus the coherence of the state being disturbed. Therefore only the
radiation at angles smaller than the scattering angle actually emerges.
The other field components have too large a wavelength and are easily
re-absorbed as if there were no scattering at all.

So what counts is a change in the current, which is sharp enough to
be noticed by the “to-be-emitted” quantum within the characteristic
formation/field-fluctuation time (3.23) of the latter.

Radiation at large angles has too short a formation time to become
aware of the acceleration of the charge. No scattering — no radiation.

The same argument applies to the dual process of production of two
opposite charges (decay of a neutral object, vacuum pair production,
etc.). The only difference is that now one has to take for A7 not a
displacement between the initial and the final charges, but the actual
distance between the produced particles (spatial size of a dipole), to be
compared with the radiation wavelength.
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3.4. QCD SCATTERING AND CROSS-CHANNEL RADIATION

Both the qualitative arguments of the previous sections and the quan-
titative analysis of the two-particle antenna pattern apply to the QCD
process of gluon emission in the course of quark scattering. So two
gluon-bremsstrahlung cones with the opening angles restricted by the
scattering angle ©; would be expected to appear.

There is an important subtlety, however. In the QED case it was
deflection of an electron that changed the e.m. current and caused
photon radiation. In QCD there is another option, namely to “repaint”
the quark. Rotation of the colour state would affect the colour current
as well and, therefore, must lead to gluon radiation irrespectively of
whether the quark-momentum direction has changed or not.

This is what happens when a quark scatters off a colour field. To
be specific, one may consider as an example two channels of Higgs
production in hadron-hadron collisions.

Figure 8. WW and gluon-gluon fusion graphs for Higgs production

At very high energies two mechanisms of Higgs production become
competitive: WTW ™~ — H and the gluon-gluon fusion gg — H (see
Fig. 8).

Since the typical momentum transfer is large, of the order of the
Higgs mass, (—t) ~ M#%, Higgs production is a hard process. Colliding
quarks experience hard scattering with characteristic scattering angles
02 ~ |t| /s ~ M%/s. As far as the accompanying gluon radiation is
concerned, the two subprocesses differ with respect to the nature of
the “external field”, which is colorless for the W-exchange and colorful
for the gluon fusion.

The gluon bremsstrahlung amplitudes for the second case are shown
in Fig. 9. In principle, a graph with the gluon-gluon interaction vertex
should also be considered. However, in the limit &, < ¢, with §; ~
Poi — P11 the momentum transfer in the scattering process, emission
off the external lines dominates (the “soft insertion rules”).

The accompanying soft radiation current j* factors out from the
Feynman amplitudes of Fig. 9, the only difference with the Abelian
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current (3.6¢c) being the order of the colour generators:

- b ia plf __ga4b pg
! ltt ((plk)> o ((p2k)>

"
Introducing the abbreviation 4; = i+, we apply the standard decom-
oducing ~ k)
position of the product of two triplet colour generators,

(3.25)

tlltb —

1 .
2Nc 5ab + % (dabc + lfabc) t¢ )

to rewrite (3.25) as
1
gt = %(Al — Aa) (N 6% 4 qobe tc) - %(Al + A9) ifabc A

To find the emission probability we need to construct the product of
the currents and sum over colours. Three colour structures do not
“interfere”, so it suffices to evaluate the squares of the singlet, 8, and
8, structures:

a,b
1 N2—4 N2 -4
c\2 c c\2 [
1 = = C
;(2dabct) 4 Nc ( ) 4NC F
1
(ngabctc) = ZNc (tc)2 === CF
a,b

2
The common factor Cp = (tb) belongs to the Born (non-radiative)
cross section, so that the radiation spectrum takes the form

dN o Ci Zj“-(ju)*=< - +N3_4> (A1 = As) - (A1 — 42)

9N. | 4N,

colour

N,
+TC(A1+A2)'(A1+A2)-

k,a
p2 P2

b1 b1

Figure 9. Gluonic Bremsstrahlung diagrams for k1 < ¢i. The characters a and b
denote the colours of the radiated and exchanged gluons.
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A simple algebra leads to
dN x Cr (A1 — AQ) . (A1 — A2) + N, A -As. (326)

Dots here symbolize the sum over gluon polarization states. To calcu-
late the cross section some care should be exercised: the current (3.25)
does not conserve because of non-commuting colour matrices. We would
need to include gluon radiation from the exchange-gluon line and from
the source, to be in a position to use an arbitrary gauge (e.g. the Feyn-
man gauge) for the emitted gluon. The physical polarization technique
(3.15) simplifies our task. To obtain the true accompanying radiation
pattern (in the k; < ¢, region) it suffices to use the projectors (3.17)
for the dots in (3.26). In particular,

A A= Y (AeW) (AQeW)* =TJ  {# — (A A) sicl} .

Accompanying radiation intensity finally takes the form
dN 0.8 CF 7?’coher. + ch (327)

The first term proportional to the squared quark charge is responsi-
ble, as we already know, for two narrow bremsstrahlung cones around
the incoming and outgoing quarks, ©1,05 < O,. On top of that an
additional, purely non-Abelian, contribution shows up, which is propor-
tional to the gluon charge. It is given by the interference distribution

(3.18c), (3.20b),
7= a1 + a2 — a2 ~1,
a1a9
which remains non-singular in the forward regions 01 € ©; and O, K
O,. At the same time, it populates large emission angles ©® = 0] =

©9 > O, where

2 de?

dN x dQ? J x sin©dO (— — 1) ~ —. (3.28)
a

Indeed, evaluating the azimuthal average, say, around the incoming
quark direction we obtain

1 —
déy (1_|_ a1 — a2

2
= — —1=—9 — —-1.
2T a1 \al —a12\> aj (61 @s)

Thus we conclude that the third complementary bremsstrahlung cone
emerges. It basically corresponds to radiation at angles larger than the
scattering angle and its intensity is proportional to the colour charge
of the ¢-channel exchange.
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We could have guessed without actually performing the calculation
that at large angles the gluon radiation is related to the gluon colour
charge. As far as large emission angles © > ©; are concerned, one may
identify the directions of initial and final particles to simplify the total
radiation amplitude as

pﬂ

I I
ju=rbpa. PL_qpapb P2 (T — T°T*) -
p

pik p2k

Recalling the general commutation relation for the SU(N,.) generators,
[T°(R), T*(R) | =i} fure T*(R), (3:29)
c

we immediately obtain the factor N, o (i fabc)2 as the proper colour
charge. Since (3.29) holds for arbitrary colour representation R, we see
that the accompanying gluon radiation at large angles ©® > O, does
not depend on the nature of the projectile.

The bremsstrahlung gluons we are discussing transform, in the end
of the day, into observable final hadrons. We are ready now to derive an
interesting physical prediction from our QCD soft radiation exercise.

Translating the emission angle into (pseudo)rapidity n = In©~%
the logarithmic angular distribution (3.28) converts into the rapidity
plateau. We conclude that in the case of the gluon fusion mechanism,
the second in Fig. 8, the hadronic accompaniment should form a practi-
cally uniform rapidity plateau. Indeed, the hadron density in the centre
(small n, large c.m.s. angles) is proportional to the gluon colour charge
N, while in the “fragmentation regions” (Nmax > |n| > InO, !, or
O < O;) the two quark-generated bremsstrahlung cones give, roughly
speaking, the density ~ 2 X Cr = N,.

At the same time, the WW -fusion events (the first graph in Fig. 8)
should have an essentially different final state structure. Here we have
a colorless exchange, and the QED-type angular ordering, ©® < O,
restricts the hadronic accompaniment to the two projectile fragmenta-
tion humps as broad as An = fyax — InO4 ~ In My, while the central
rapidity region should be devoid of hadrons. The “rapidity gap” is
expected which spans over || < In(y/s/Mpg).

3.5. CONSERVATION OF COLOUR CURRENT

In physical terms universality of the generator algebra is intimately re-
lated with conservation of colour. To illustrate this point let us consider
production of a quark-gluon pair in some hard process and address the
question of how this system radiates. Let p and k£ be the momenta of the
quark and the gluon, with b the octet colour index of the latter. For the
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sake of simplicity we concentrate on soft accompanying radiation, which
determines the bulk of particle multiplicity inside jets, the structure
of the hadronic plateau, etc. As far as emission of a soft gluon with
momentum ¢ < k,p is concerned, the so-called “soft insertion rules”
apply, which tell us that the Feynman diagrams dominate where £ is
radiated off the external (real) partons — the final quark line p and the
gluon k. The corresponding Feynman amplitudes are shown in Fig. 10.

k(b) k(b)

(a) . tla) ko
u@-t £ (XW'Ifbact

p

Figure 10. Feynman diagrams for radiation of the soft gluon with momentum ¢ and
colour a off the gg system.

Do two emission amplitudes interfere with each other? It depends
on the direction of the radiated gluon 2.

In the first place, there are two bremsstrahlung cones centred around
the directions of p and k:

quark cone: 0;=0;. < O=0;;

D Lk
gluon cone: ©;= GZE < Ox G)Zﬁ’

with © the angle between p and k — the aperture of the qg fork.
In these regions one of the two amplitudes of Fig. 10 is much larger
than the other, and the interference is negligible: the gluon £ is radiated
independently and participates in the formation of the quark and gluon
sub-jets.

If © is sufficiently large and the gluon k sufficiently energetic (rel-
atively hard, k ~ p), these two sub-jets can be distinguished in the
final state. The particle density in ¢ and g jets should be remarkably
different. It should be proportional (at least asymptotically) to the
probability of soft gluon radiation which, in turn, is proportional to
the “squared colour charge” of a the jet-generating parton, quark or
gluon:

dn\Y dn\1? N2 -1 4 9
E—) :(ﬁ—) = N,: £ =3:-=-.
( dt ) e,<0 dt)e.<e ‘7 2N, 3

Multi-jet configurations are comparatively rare: emission of an ad-

ditional hard gluon k ~ p at large angles ©® ~ 1 constitutes a fraction
as/m S 10% of all events. Typically & would prefer to belong to the
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quark bremsstrahlung cone itself, that is to have ® < 1. In such cir-
cumstances the question arises about the structure of the accompanying
radiation at comparatively large angles

If the quark and the gluon were acting as independent emitters, we
would expect the particle density to increase correspondingly and to
overshoot the standard quark jet density by the factor

dn\ 914 dn\ 1 N2 -1 13
N : J— = N: ¢ 1:— ].
(gcw)eﬁe (£d4>@[>e o, t1eae BV

However, in this angular region our amplitudes start to interfere sig-
nificantly, so that the radiation off the gg pair is no longer given by
the sum of probabilities g — g(£) plus g — g(¢). We have to square the
sum of amplitudes instead.

This can be easily done by observing that in the large-angle kine-
matics (30) the angle © between 7 and k can be neglected, so that the
accompanying soft radiation factors in Fig. 10 become indistinguish-
able,

ph kM

(w0) — (ke)
Thus the Lorentz structure of the amplitudes becomes the same and it
suffices to sum the colour factors:

1+ ifpacte = 10104 [10, 10 = hee. (32)

We conclude that the coherent sum of two amplitudes of Fig. 10 results
in radiation at large angles as if off the initial quark, as shown in
Fig. 11.

Figure 11. Soft radiation at large angles is determined by the total colour charge

This means that the naive probabilistic expectation of enhanced
density (31) fails and the particle yield is equal to that for the quark-
initiated jet instead: 13/4 — 1.

It actually does not matter whether the gluon k£ was present at all,
or whether there was instead a whole bunch of partons with small
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relative angles between them. Soft gluon radiation at large angles is
sensitive only to the total colour charge of the final parton system,
which equals the colour charge of the initial parton. This physically
transparent statement holds not only for the quark as in Figs. 10, 11
but for an arbitrary object R (gluon, diquark, ..., you name it) as an
initial object. In this case the matrices ¢ = T'(3) should be replaced by
the generators T'(R) corresponding to the colour representation R, and
(32) holds due to the universality of the generator algebra (3.29).

4. Coherence in QCD parton cascades

Allowing small relative angles between partons in a process with a
large hardness Q2 results in a logarithmic enhancement of the emission
probability:
6?2 9
a; = asﬁ — aslog Q. (4.33a)

As a result, the total probability of one parton (F) turning into two
(E1 ~ E ~ $FE) may become of order 1, in spite of the smallness of
the characteristic coupling, as(Q?) o 1/log @%. A typical example of
such a “collinear” enhancement — the splitting process g — 7.

Moreover, when we consider the gluon offspring, another — “soft”
— enhancement enters the game, which is due to the fact that the
gluon bremsstrahlung tends to populate the region of relatively small
energies (E ~ E; > Ey = w):

— — aslog?Q?. (4.33Db)

Thus the true perturbative “expansion parameter” responsible for par-
ton multiplication via ¢ — ¢gg and ¢ — g¢g may actually become much
larger that 1!

In such circumstances we cannot trust the perturbative expansion
in as < 1 unless the logarithmically enhanced contributions (4.33) are
taken full care of in all orders.

Fortunately, in spite of the complexity of high order Feynman dia-
grams, such a programme can be carried out. The very fact that the
all-order logarithmic asymptotes can be written down in a closed form
and, more than that, that they a posteriori prove to be quite simple,
follows from the classical nature of

— soft enhancement of bremsstrahlung amplitudes (“infrared” singu-
larities) and
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— collinear enhancement of basic 1 — 2 parton splitting amplitudes
(or “mass” singularities).

As a result, the leading logarithmic asymptotes can be found without
performing laborious calculations. It suffices to invoke an intuitively
clear picture of parton cascades described in probabilistic fashion in
terms of sequential independent elementary parton branchings ordered
in fluctuation times.

4.1. PuzzLE OF DIS AND PARTONS

Let us invoke the deep inelastic lepton-hadron scattering — a classi-
cal example of a hard process and the standard QCD laboratory for
carrying out the PT-resummation programme.

Here, the momentum ¢ with a large space-like virtuality Q% = |q
is transferred from an incident electron (muon, neutrino) to the target
proton, which then breaks up into the final multi-parton — multi-
hadron system. Introducing an invariant energy s between the exchange
photon (Z°, W¥) and the proton with 4-momentum P (P? = M?2),
one writes the invariant mass of the produced hadron system which
measures inelasticity of the process as

’|

2
Q<1

W? = (¢+P)*—M; = ¢*+2(Pq) = s(1-x),s = 2(Pg), = = 2(Pg) ~ 7

with x the Bjorken variable. The cross section of the process depends on
two variables: Q% and z. For the case of elastic lepton-proton scattering
one has £=1 and it is natural to write the cross section as

doe;  doruth

dQ?[dz] ~  dQ? fe2l(Q2) - [6(1 —=2)]. (4.34a)

Here oRyin o< @?/Q* is the standard Rutherford cross section for e.m.
scattering off a point charge and f¢; stands for the elastic proton form
factor.

For inclusive inelastic cross section one can write an analogous ex-
pression by introducing an inelastic proton “form factor” which now
depends on both the momentum transfer Q? and the inelasticity pa-
rameter :

doin doRuth 2 2
= fin(x, Q7). 4.34b
dQ2 l dQ2 zn( ? ) ( 3 )

What kind of Q?-behaviour of the form factors (4.34) could one expect
in the Bjorken limit Q? — 00? Quantum mechanics tells us how the
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Q?*-behaviour of the electromagnetic form factor can be related to the
charge distribution inside a proton:

fal@) = [ drp(ir) exp (i} (4.35)

For a point charge p(¥) = &§3(7), it is obvious that f = 1. On the
contrary, for a smooth charge distribution f(Q?) falls with increasing
Q?, the faster the smoother p is. Experimentally, the elastic e-p cross
section does decrease with Q? much faster that the Rutherford one
(fo1(Q?) decays as a large power of Q?). Does this imply that p(7) is
indeed regular so that there is no well-localized — point-charge inside
a proton? If it were the case, the inelastic form factor would decay
as well in the Bjorken limit: a tiny photon with the characteristic size
~ 1/Q — 0 would penetrate through a “smooth” proton like a knife
through butter, inducing neither elastic nor inelastic interactions.

However, as was first observed at SLAC in the late sixties, for a
fixed z, f2, stays practically constant with Q?, that is, the inelastic
cross section (with a given inelasticity) is similar to the Rutherford cross
section (Bjorken scaling). It looks as if there was a point-like scattering
in the guts of it, but in a rather strange way: it results in inelastic break-
up dominating over the elastic channel. Quite a paradoxical picture
emerged; Feynman-Bjorken partons came to the rescue.

Imagine that it is not the proton itself that is a point-charge-bearer,
but some other guys (quark-partons) inside it. If those constituents
were tightly bound to each other, the elastic channel would be bigger
than, or comparable with, the inelastic one: an excitation of the parton
that takes an impact would be transferred, with the help of rigid links
between partons, to the proton as a whole, leading to the elastic scat-
tering or to the formation of a quasi-elastic finite-mass system (N,
Am or s0), 1—z < 1.

To match the experimental pattern f3(Q?) < f2(Q?) one has
instead to view the parton ensemble as a loosely bound system of quasi-
free particles. Only under these circumstances does knocking off one of
the partons inevitably lead to deep inelastic breakup, with a negligible
chance of reshuffling the excitation among partons.

The parton model, forged to explain the DIS phenomenon, was in-
trinsically paradoxical by itself. In sixties and seventies, there was no
other way of discussing particle interactions but in the field-theoretical
framework, where it remains nowadays. But all reliable (renormalisable,
4-dimensional) quantum field theories (QFTs) known by then had one
feature in common: an effective interaction strength (the running cou-
pling ¢?(Q?)) increasing with the scale of the hard process Q2. Actually,
this feature was widely believed to be a general law of nature, and for
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a good reason 3. At the same time, it would be preferable to have it the
other way around so as to be in accord with the parton model, which
needs parton-parton interaction to weaken at small distances (large
Q?).

Only with the advent of non-Abelian QFTs (and QCD among them)
exhibiting an anti-intuitive asymptotic-freedom behaviour of the cou-
pling, the concept of partons was to become more than a mere phe-
nomenological model.

4.2. QCD PARTON PICTURE

Typical QCD graphs for DIS amplitudes are shown in Fig. 12.

lepton lepton

\\/V

\ \
\ \

quark quark
Figure 12. Valence (left) and Bethe-Heitler mechanism (right) of DIS.

For moderate z-values (say, z > 0.1) the process is dominated by lepton
scattering off a valence quark in the proton. The scattering cross section
has a standard energy behaviour ¢ z72Uex=1)  where J is the spin
of the exchanged particle in the t-channel. It is the quark with Jex=1
in the left picture of Fig. 12, so that the valence contribution to the
cross section decreases at small z as o « z.

For high-energy scattering, x < 1, the Bethe-Heitler mechanism
takes over which corresponds to the t-channel gluon exchange: Jex =1,
o «x z° =const (modulo logarithms).

In the Leading Logarithmic Approximation (LLA) one insists on
picking up, for each new parton taken into consideration, a logarithmic
enhancement factor ay; — a4log@?. In this approximation the scat-
tering probability can be simply obtained by convoluting elementary
probabilities of independent 1 — 2 parton splittings.

3 relation between screening and unitarity
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To cut a long story short, the appearance of the log-enhanced con-
tributions in (4.33a) is due to the following structure

1las, @ ":[%]n/wﬁ"/ki"dki"1.._
nl | p? T K3 k2.
/kia dk? /’ﬂiQ dk?% |
ki2 p? ki1 ’

(4.36)

with kﬁ_ ; the squared transverse momenta of produced partons.

To contribute to the LLA, the transverse momenta of produced
partons should be strongly ordered, increasing up the “ladder”: k? | <
... < k2 < Q% (At the level of Feynman amplitudes the ladder
diagrams dominate, provided a special physical gauge is chosen for
gluon fields.) This expression diverges in the zero-quark-mass limit,
u — 0. Well, when you see a nasty thing happen beyond your reach,
you can do no better than make use of it. This “mass singularity”,
according to (4.36), occurs in the lower limit of the k; integration of
the very first (and only!) parton branch. Let us drag this misbehaving
integral to the left by rewriting (4.36) as

p _ 2
(4.36) (@2, u?) = = / o %]nl T / e Bl
TSz ki Lw ki, L

(4.36) "~1(Q%, k2 ),

-”/kis dk?, _as Q? dk? |
2 = 2
K, Ky o mJw k1
where we have combined the internal (n—1) integrals into the same
expression that corresponds to the previous order in a-expansion and
has a new lower limit kil substituted for the original 2. Now, we can
localize the p-dependence by evaluating the logarithmic derivative:

9 0

9 36l — %5 (436 1]
po (436) " (4.36)

This equation relates the n' order of the PT expansion to the previous
one. To put this symbolic relation at work one first has to recall the
satellite z-dependence.

By extracting the first step one may look upon the rest as DIS off
a new “target” — the parton with transverse momentum kﬁ_l and a
finite fraction z of the initial longitudinal momentum P. As a result,
there appears an additional integration with the probability of the first
splitting, ¢(z), and the differential equation for the resummed F(LLA)
takes the form

;ﬁa% F(o@tu?) = - [ & #:) 2 F (2, Q702) . (437

z
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Since a logarithm (like a stick) has two ends, differentiation over the
overall hardness scale ? would do the same job, the result being the
evolution equation in a familiar form:
2 2y = 0‘5 2)
Q5 Q2F(m ,Q%) () (X) F(z,Q%) (4.37b)

where the symbol @ stands for convolution in the z-space.

4.3. LLA PARTON EVOLUTION

4.3.1. Apparent and hidden symmetries of the QCD evolution
Since (4.37b) reminds of a Schrodinger (diffusion) equation (with dt =
%dQQ/Q2 as the “evolution time” differential), we can refer to the
kernels ¢(z) as the matrix elements of the “evolution Hamiltonian” in
the (F,G) space, where F marks a spin-; quark (fermion) and G a
vector gluon.

To discuss the relations between kernels it is convenient to extract
colour factors

tet% = Cr ik, ththi =Tr6 = 16",  fade fode = Neap;

O5(z) =Cp- Vi (2)  ®F(2) = Cr-VE (2), (4.38)
G(2) =Tr -V (2)  ®G(2) = Ne -V (2).

The splitting functions then take the form (Altarelli&Parisi; Dokshitzer,
1977)

z 1—=z
1 VE(z) = 2 1;:2

(4.392)
z 1—=2
) %7 VE(z) =2 4=z (i_z)2

(4.39b)
z 1—=z
1 g VE(z) =2 [z2 +(1 z)2]

(4.39¢)
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z 1-=2
é 1_
VE(z) =4 z(l—z)+—z+i .

z 1—2
1 g (4.39d)

The most important symmetry properties of the LLLA parton split-
ting functions are:
Parton Exchange results in an obvious relation between probabili-
ties to find decay products with complementary momenta, fractions:

VEC(2) =V{B(1-2). (4.40)

A Crossing Relation (Bukhvostov, Lipatov& Popov, 1975) emerges
when one links together two splitting processes corresponding to oppo-
site evolution “time” sequences:

vE (%) = (—1)2sat2s5-1 % Vi(z) (4.41)

with s4 the spin of the particle A.
The Super-Symmetry Relation (Dokshitzer, 1977)  exploits the
existence of the super-symmetric field theory closely related to real
QCD:

VE(2) +VE(2) = VE(2) + VE(2). (4.42)

Conformal Invariance (Bukhvostov et al., 1985) of the leading twist
approximation leads to a number of relations between splitting func-
tions, the simplest of which reads

23y V& (2) = 24 VE(2) . (4.43)
dz dz

As we see, these relations leave not much freedom for splitting func-
tions. In fact, one could borrow Vlf from a QED text book and recon-
struct successively Vi (with use of (4.40)), V£ (4.41), and then even
the gluon selfinteraction V,§ from (4.42).

The general character of the symmetry properties makes them prac-
tically useful when studying next-to-leading corrections to anomalous
dimensions and coefficient functions where one faces technically diffi-
cult calculations. For example, the super-symmetric QCD analog had
been used to choose between two contradictory calculations for the
two-loop anomalous dimensions see, e.g. (Altarelli, 1982). We illus-
trate the idea by another example of the next-to-leading result, e.g.
the ratio of parton multiplicities in gluon and quark jets which reads
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(Gaffney&Mueller, 1985)

Rﬁ/—;’ =1- %{1 +T(1 - 2R)}
1 (4.44)

1 () 2\2
+3 (?) {—25(58R —19)T + (6 — 4R — 16R°)T }

with 79 = /2N.as/7 the characteristic PT expansion parameter. R
and T in (4.44) are the following ratios of the colour factors:

R =
N’ N,

In susy-QCD “quark” and “gluon” belong to the same (adjoint) rep-
resentation of the color group, so that all color factors (4.38) become
equal: Cr = N, = Tg. Moreover, the “quark” here is the Majorana
fermion (identical to the “antiquark”), so that the total number of
qq flavor states becomes 2n; = 1. Then, as one can easily check, all
corrections to the multiplicity ratio Ny/N; = 1 in (4.44) vanish at
R=T=1.

4.3.2. Space-like parton evolution
The decay phase space for the space-like evolution determining the DIS
structure functions is

BiC dk? ag(k?) dz
L

with z the longitudinal momentum fraction carried by the offspring
parton B.

In the DIS environment the initial parton A with a negative (space-
like) virtuality decays into B[z] with the large space-like virtual mo-
mentum |k%| > |k%| and a positive virtuality (time-like) C[1—z]. The
parton C generates a subjet of secondary partons (— hadrons) in the
final state. As long as the process is inclusive, that is that no details
of the final-state structure are measured, integration over the subjet
mass is due, dominated in LLA by the region k% < |k%|. The latter
condition makes C look quasi-real, compared with the hard scale of
|k%|. The same is true for the initial parton A.

Splitting can be viewed as a large momentum-transfer process of
scattering (turnover) of a “real” target parton A into a “real” C on
the external field mediated by high-virtuality B. At the next step of
evolution it is B’s turn to play a role of a next target B = A’, “real”
with respect to yet deeper probe |k2| > |k%]|, and so on.
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Successive parton decays with step-by-step increasing space-like vir-
tualities (transverse momenta) constitute the picture of parton wave-
function fluctuations inside the proton. The sequence proceeds until
the overall hardness scale Q? is reached.

4.3.3. Time-like parton cascades

A similar picture emerges for the time-like branching processes deter-
mining the internal structure of jets produced, for example, in eTe™
annihilation. Here the flow of hardness is opposite to that in DIS:
evolution starts from a highly virtual quark with positive virtuality,
originating from the e.m. vertex, while time-like virtualities of its prod-
ucts (“quasi-real” with respect to predecessors; “high-virtuality” with
respect to offspring) degrade.

It is important to notice, however, that the flow of energy (longitu-
dinal momentum) is governed, in the LLA, by the same functions ®5¢:
it does not matter that now, in contrast to space-like evolution, A is
the “virtual” one and B and C are “real”.

In the time-like case the longitudinal phase space is symmetric in
offspring parton energy fractions, and the differential decay probability
reads

2 2
dwA=BC = d@% %ﬁ?‘) dz 8 (2) . (4.45D)

4.3.4. Fluctuation Time and Evolution Times: Coherence

An attentive reader has noticed that we wrote the phase space differ-
ently: for the space-like case (4.45a) in terms of transverse momentum
k, and for the time-like evolution (4.45b) via the decay angle ©. Log-
arithmic differentials by themselves are identical, since k% and ©2 are
proportional for fixed z. We have made this distinction to stress an
important difference between a probabilistic interpretation of DIS and
the eTe™ evolution: the different evolution times.

An appearance of the angle as a proper evolution parameter in
(4.45Db) is readily understood: it is a consequence of the Angular Order-
ing. In the DIS case, (4.45a) we aim at describing, in probabilistic terms,
the inclusive cross section, a quantity that could not care less about
the finite-state structure and that of soft accompaniment in particular.

To be honest, within the LLA framework it does not make much
sense to argue which of evolution parameters Ink?,, In©? or In|k?|
(with k? the total parton virtuality) does a better job: these choices
differ by subleading terms formally negligible from the LLA point of
view. A mismatch is of the order of

~asln’z. (4.46)
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It becomes significant, however, and should be “resummed” when nu-
merically small values of the Bjorken z are concerned.*

The k) -ordering proves to be the one that takes care of potentially
disturbing corrections (4.46) in all orders, and in this sense becomes a
preferable choice for constructing the probabilistic scheme for single-
inclusive parton distributions in DIS.

It is instructive to see how this comes about.

Let us introduce two light-like vectors p/’, p4 and write down the
Sudakov (light-cone) decomposition of momenta:

k= Bpl + aph + kL " (4.47)

For kY + kb + k4 = 0 the general relation holds:
M T R ) S
pr B2 Ps Pz \ Br P2

Each parton cell in Fig. 12 involves a space-like parton A decaying into
B[z]+ C[1 — z]. Relation (4.48) applied to our basic space-like splitting
A — B[z]C[1 — z] gives

- L2
kK kK Bibe (ku ku) ' (4.48)

—kp _ k4 K il
= 4.4
z 1 +1—z+z(1—z)’ (4.49)

with z the longitudinal momentum fraction — the ratio of the Su-
dakov light-cone variables 3. (We have chosen the direction of p; such
that l_c;u_ = 0, so that EBJ_ = —EC’J_ = EL is the relative transverse
momentum in the splitting.)

Since the 4-momenta of A and B are space-like, all terms in (4.49)
are positive. B being an intermediate virtual state, k% enters in the
Feynman denominators in the matrix element. The collinear-log con-
tribution arises upon integration over k2, over the region where the
last term dominates in the r.h.s. of (4.49), that is from the region

L7 il

z  z(l-—2z

| ~

k¢
T (4.50)

)>>‘k?4

The physical origin of this strong inequality becomes transparent in
terms of lifetimes of virtual states
kp
Ti = 57 (4.51)
- k7|
4 The word “numerically” stands here as a warning for not confusing this kine-

matical region with a “parametrically” small z, such that asIn1/z ~ 1 — the Regge
region — where essentially different physics comes onto stage.
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namely 75 < 74, Tc- This shows that the LLA contributions originate
from the sequence of branchings well separated in the fluctuation time
(4.51). Invoking the local-scattering analogy (recall A — C on the “ex-
ternal field” B), we can say that the classical picture naturally implies
“fast scattering”: probing time 7p much smaller than the lifetime(s) of
the “target” before (74) and after the scattering occurs (7¢).
Assembling a “ladder” of successive parton splittings ¢ = 1,2...,n,
and tracing the space-like parton state the n'-order LLA contribution
~ [as In(Q?/pu?)]" is expected to come from time-ordered kinematics

zP
Q2

Let us now dig into the k% against ©2 problem. Equation (4.50) relates
virtuality and transverse momentum of the “¢-channel” parton after the
ith splitting with the relative longitudinal momentum (8-) fraction z;:

P
F>>T1>>Tz>> . DT >

k2
~ Lo~ k2 (4.52)

k2
1—2

(3

The latter approximation is made by remembering that, because of
cancellation between real and virtual contributions in inclusive parton
distributions (DIS structure functions), the soft s-channel radiation 1 —
z; < 1 does not matter (as long as we stay away from the quasi-elastic
kinematics, 1 — z < 1, where it does).

The two-dimensional emission angle (the angle between C and A)
can be written and estimated as (cf. (4.48))

- - - -

5 _ koo kaL _ ki ki Ry ki
" BcP  BaP  Biai(l—z)P PP Bi-1P

We are now in a position to compare different orderings. It is straight-
forward to get

(4.53)

Fluctuation times = k > z-k* ., (4.54a)
Emission angles = k2 > 22 -k} |, (4.54b)

to be compared with
Transverse momenta =—> k2, > k2 || . (4.54c)

For z = z1-29-... 2, ~ 1 prescriptions (4.54) are essentially equivalent
since each decay fraction stays finite, z; ~ 1, and may be neglected in
the logarithmic integral over k2, .

For small z, however, the Bethe-Heitler mechanism of DIS off sea
quarks dominates (see Fig. 12b). The multi-gluon “ladders” provide
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longitudinally enhanced contributions o In z;, which combine with the
In z; factors from the collinear-integration phase space to produce, at
the end of the day, the “DL” mismatch [asIn? z]"~? between the dif-
ferent options (4.54).

So, which one of the possible orderings (4.54) is correct? The first
two prescriptions are more liberal than the last one: they both allow
for disordered transverse momentum configurations. For example, the
fluctuation-time ordering (4.54a) embodies the region

Zio ki < kj < Ky, (4.55)

which may be quite broad for z; < 1 and where the k| -ordering is
violated. The truth is, this region does not contribute to the answer, so
that the k| -ordering (4.54c) proves to be the correct one. The reason
is quantum mechanical coherence.

4.3.5. Vanishing of the forward inelastic diffraction

Consider a two-step process shown by the first graph in Fig. 13 Let the
second decay be soft in the t-channel direction, that is zo = 82/81 < 1.
(The first one can be either soft, z; = 1/6y < 1 or hard, z; ~ 1.) In
the kinematical region (4.55),

ZQ']C%L <<k%J_ <<k%J_, (456)

the time-ordering is still intact, which means that the momentum ko
is transferred fast as compared with the lifetime of the first fluctuation
P — P+ k.

ko ko
k1 P! ko k1

P / /
Figure 13. In the “wrong” kinematics koy < k1., ghe sum of the two space—l@
evolution amplitudes cancels against the final state time-like decay

Since By is small, the process can be viewed as inelastic relativistic
scattering P — P’ + k; in the external gluon field. The transverse
size of the field is p; ~ kg j The characteristic size of the fluctuation
P’ + ky, according to (4.56), is smaller: Argy; ~ kil < p1. We thus
have a compact state propagating through the field that is smooth at
distances of the order of the size of the system. In such circumstances
the field cannot resolve the internal structure of the fluctuation. Com-
ponents of the fluctuation, partons P’ and k; in the first two graphs
of Fig. 13, scatter coherently with the total amplitude identical and
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opposite in sign to that for scattering of the initial state P (the last
graph): inelastic breakup does not occur.

This general physical phenomenon is due to Gribov, who has proved
that the diffractive deuteron disintegration process vanishes in the for-
ward kinematics. He then used this observation to argue in favour of
the so-called weak-Reggeon-coupling regime based on the vanishing of
inelastic processes in the k; — 0 limit. In our context the cancella-
tion between the amplitudes of Fig. 13 in the region (4.56) is a direct
consequence of the conservation of the colour current.

4.4. HUMPBACKED PLATEAU AND LPHD

QCD coherence is crucial for treating particle multiplication inside
jets, as well as for hadron flows in-between jets.

Here we are going to derive together the QCD “prediction” of the
inclusive energy spectrum of relatively soft particles from QCD jets.
I put the word prediction in quotation marks on purpose. This is a
good example to illustrate the problem of filling the gap between the
QCD formulae, talking quarks and gluons, and phenomena dealing,
obviously, with hadrons.

Let me first make a statement:

It is QCD coherence that allows the prediction of the inclusive soft
particle yield in jets practically from the “first principles”.

4.4.1. Solving the DIS evolution

You have all the reasons to feel suspicious about this. Indeed, we have
stressed above the similarity between the dynamics of the evolution of
space-like (DIS structure functions) and time-like systems (jets). On the
other hand, you are definitely aware of the fact that the DIS structure
functions cannot be calculated perturbatively. There are input parton
distributions for the target proton, which have to be plugged in as an
initial condition for the evolution at some finite hardness scale Q¢ =
O(1GeV). These initial distributions cannot be calculated “from first
principles” nowadays but are subject to fitting. What pQCD controls
then, is the scaling violation pattern. Namely, it tells us how the parton
densities change with the changing scale of the transverse-momentum
probe:

Qg 1 z x
alfle(x’kL):¥/4v ng(z)D(;,kL) (4.57)

It is convenient to present our “wavefunction” D and “Hamiltonian”
P in terms of the complex moment w, which is Mellin conjugate to the
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momentum fraction z:

dw
2mi
dw
) 2

1
D, = / dr z¥ - D(z), D(x)= xl/( : x Y- -D,; (4.58a)
0 r

1
P, = / dz 2% - P(z), P(z)=z"" / z7%.P,, (4.58b)
0 T
where the contour I' runs parallel to the imaginary axis, to the right
from singularities of D,, (P,). It is like trading the coordinate (Inz) for
the momentum (w) in a Schrédinger equation.

Substituting (4.58) into (4.57) we see that the evolution equation
becomes algebraic and describes propagation in “time” dt = S=dInk,
of a free quantum mechanical “particle” with momentum w and the
dispersion law E(w) = P,:

P 0
dD,(kL) = - P, Dy(k1); d ok,

(4.59)

To continue the analogy, our wavefunction D is in fact a multi-component
object. It embodies the distributions of valence quarks, gluons and
secondary sea quarks which evolve and mix according the 2 X 2 matrix
LLA “Hamiltonian” <I>§ .

At small z, however, the picture simplifies. Here the valence distri-
bution is negligible, O(x), while the gluon and sea quark components
form a system of two coupled oscillators which is easy to diagonalise.
What matters is one of the two energy eigenvalues (one of the two
branches of the dispersion rule) that is singular at w = 0. The prob-
lem becomes essentially one-dimensional. Sea quarks are driven by the
gluon distribution while the latter is dominated by gluon cascades.
Correspondingly, the leading energy branch is determined by gluon-
gluon splitting g — gg, with a subleading correction coming from the
g — q(q) — g transitions,

9N, 11N,  ny
P, = ——a + Ow), a= G SNZ- (4.60)
The solution of (4.59) is straightforward:

kL dk

Du(ki) = Du(Qp) - exp /Q Cules®) p,  (461a)
0

a
Yolas) = ?st. (4.61b)

The structure (4.61a) is of the most general nature. It follows from
renormalisability of the theory, and does not rely on the LLA which
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we used to derive it. The function y(«;) is known as the “anomalous
dimension”.? It can be perfected by including higher orders of the PT
expansion. Actually, modern analyses of scaling violation are based
on the improved next-to-LLA (two-loop) anomalous dimension, which
includes o? corrections to the LLA expression (4.61b).

The structure (4.61a) of the z-moments of parton distributions (DIS
structure functions) gives an example of a clever separation of PT
and NP effects; in this particular case — in the form of two factors.
It is the w-dependence of the input function D, (Qp) (“initial parton
distributions”) that limits predictability of the Bjorken-z dependence
of DIS cross sections.

So, how comes then that in the time-like channel the PT answer
turns out to be more robust?

4.4.2. Coherent hump in ete” — h(z) + ...
We are ready to discuss the time-like case, with D;-L(LE,Q) now the
inclusive distribution of particles h with the energy fraction (Feynman-
z) x < 1 from a jet (parton j) produced at a large hardness scale Q.
Here the general structure (4.61a) still holds. We need, however, to
revisit the expression (4.61b) for the anomalous dimension because, as
we have learned, the proper evolution time is now different from the
case of DIS.
In the time-like jet evolution, due to Angular Ordering, the evolution
equation becomes non-local in k; space:

0 _as(ky) [tdz (ac )
alnkLD(x,kL)_T/m ZPeD(Lak). @462

Indeed, successive parton splittings are ordered according to

kl
_ Ry
H—kH > 0 k""

Differentiating D(k, ) over the scale of the “probe”, k, , results then in
the substitution
!
Ki=—k =2k
i E i i

in the argument of the distribution of the next generation D(k').

® The name is a relict of those good old days when particle and solid state physi-
cists used to have common theory seminars. If the coupling o were constant (had
a “fixed point”), then (4.61a) would produce the function with a non-integer (non-
canonical) dimension D(Q) o< Q" (analogy — critical indices of thermodynamical
functions near the phase transition point).
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The evolution equation (4.62) can be elegantly cracked using the
Taylor-expansion trick,

D(z- k) :exp{lnz }D(kL) = zﬁ -D(k1). (4.63)

0
dlnk,
Turning as before to moment space (4.58), we observe that the so-
lution comes out similar to that for DIS, (4.61), but for one detail.
The exponent d of the additional z-factor in (4.63) combines with the
Mellin moment w to make the argument of the splitting function P a
differential operator rather than a complex number:

5 o
d-Dw:waJr(i-Dw. (4.64)
This leads to the differential equation
-1 5 (eF 1 G _
(Pwdd— ?—[wa,?]zaw&)-p_o. (4.65)

Recall that, since we are interested in the small-z region, the essential
moments are small, w < 1.

For the sake of illustration, let us keep only the most singular piece in
the “dispersion law” (4.60) and neglect the commutator term in (4.65)
generating a subleading correction o dog ~ a?. In this approximation

(DLA),

2N,
P~ == (4.66)
w

(4.65) immediately gives a quadratic equation for the anomalous di-
mension,

™ w

2N, 2
(@ + Y)Y — +o(%) — 0. (4.67)

The leading anomalous dimension following from (4.67) is

w 8N .o
=—|-1 H 1 ] 4,
’YUJ 2 ( + + 7TU.)2 ) ( 68)

When expanded to first order in «s, it coincides with that for the
space-like evolution, 7, ~ as/7 - P,, with P given in (4.66). Such an
expansion, however, fails when characteristic w ~ 1/|Inz| becomes as
small as /a;, that is when

8N g

In’z 2 1.

5 It suffices to use the next-to-leading approximation to the splitting function
(4.60) and to keep the subleading correction coming from differentiation of the
running coupling in (4.65) to get the more accurate MLLA anomalous dimension 7, .

yd_cr.tex; 4/12/2001; 12:30; p.45



46 Yuri Dokshitzer

This inequality is an elaboration of the heuristic estimate (4.46).

Now what remains to be done is to substitute our new weird anoma-
lous dimension into (4.61a) and perform the inverse Mellin transform
to find D(z). If there were no QCD parton cascading, we would expect
the particle density xD(x) to be constant (Feynman plateau). It is
straightforward to derive that plugging in the DLA anomalous dimen-
sion (4.68) results in the plateau density increasing with @ and with
a maximum (hump) “midway” between the smallest and the highest
parton energies, namely, at Tmax ~ /Qo/Q. The subleading MLLA
effects shift the hump to smaller parton energies,

:an

Tmax QO

(%—I—c-\/OTs-F---) :0'65111@2’

0

In

with ¢ a known analytically calculated number. Moreover, defying naive
probabilistic intuition, the softest particles do not multiply at all. The
density of particles (partons) with z ~ Qy/Q stays constant while that
of their more energetic companions increases with the hardness of the
process Q.

This is a powerful legitimate consequence of pQCD coherence. We
turn now to another, no less powerful though less legitimate, conse-
quence.

4.4.3. Coherent damping of the Landau singularity

The time-like DLA anomalous dimension (4.68), as well as its MLLA
improved version, has a curious property. Namely, in sharp contrast
with DIS, it allows the momentum integral in (4.61) to be extended
to very small scales. Even integrating down to Q9 = A, the position
of the “Landau pole” in the coupling, one gets a finite answer for
the distribution (the so-called limiting spectrum), simply because the

a, (k) singularity happens to be integrable!

It would have been poor taste to trust this formal integrability, since
the very PT approach to the problem (selection of dominant contribu-
tions, parton evolution picture, etc.) relied on «a; being a numerically
small parameter. However, the important thing is that, due to time-
like coherence effects, the (still perturbative but “smallish”) scales,
where (k) > w?, contribute to  basically in a w-independent way,
v+ w/2 x \Jas(k) # f(w). This means that “smallish” momentum
scales k affect only an overall normalization without affecting the shape
of the z-distribution.

Since this is the role of the “smallish” scales, it is natural to expect
the same for the truly small — non-perturbative — scales where the
partons transform into the final hadrons. This hypothesis (LPHD) re-
duces, mathematically, to the statement (guess) that the NP factor in
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(4.61a) has a finite w — 0 limit:
D&h)(QO) — K" =const, w—0.

Thus, according to LPHD, the z-shape of the so-called “limiting” par-
ton spectrum which is obtained by formally setting Q9 = A in the
evolution equations, should be mathematically similar to that of the
inclusive distribution of hadrons (h). Another essential property is that
the “conversion coefficient” K" should be a true constant independent
of the hardness of the process producing the jet under consideration.
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