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Introduction

Quantum chromodynamics as a field theory is far from being understood. At the
same time, QCD is being rightfully considered an intrinsic part of the established
“standard model”. This contradictory status is mostly derived from the predictive
power and successes of QCD in addressing short-distance phenomena where «; is
small, and the interaction between quarks and gluons can be treated perturbatively.

In these lectures we shall discuss some selected perturbative QCD (pQCD) topics
and try to lay a bridge between perturbative (PT) and some non-perturbative (NP)
phenomena.

It is commonly believed that the colour confinement implies strong NP interaction
at “large” space-time scales that exceed 1 fm. Phenomenology of multiparticle pro-
duction in hard processes, however, shows no sign of strong colour fields: confinement
appears to be soft and friendly. There are three aspects to this friendliness:

1. pQCD works from very where it should, from very large momentum transfer

scales (hundreds GeV) down to Q= 2 GeV;

2. it works even below () ~ 2 GeV where it did not have to, as it does, in particular,
for DIS structure functions at HERA (with hadronic decays of 7—lepton being
an extreme example);

3. moreover, sometimes pQCD surprisingly works down to ... k=w~mL. This
happens, notably, in describing inclusive energy and angular distributions of
hadrons produced in hard processes, the phenomenon known as LPHD (local
parton-hadron duality).



1 Bremsstrahlung and coherence

In the first lecture we shall recall the basic properties of accompanying radiation.
The gluon bremsstrahlung (off quarks and gluons) is not much different from the
photon emission off electric charges. Once the QED bremsstrahlung is understood as
an essentially coherent and, at the same time, intrinsically classical phenomenon, the
physics of gluon radiation readily follows suit. So, we shall start from the electromag-
netic radiation and turn to gluons only twice in this lecture, to discuss the physics of
J /1 and the pattern of hadron accompaniment in hadroproduction of the Higgs.

1.1 Photon Bremsstrahlung

Let us consider photon bremsstrahlung induced by a charged particle (electron) which
scatters off an external field (e.g., a static electromagnetic field). The derivation is
included in every textbook on QED, so we confine ourselves to the essential aspects.
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Figure 1: Photon Bremsstrahlung diagrams for scattering off an external field.

The lowest order Feynman diagrams for photon radiation are depicted in Fig. 1,
where py, py are the momenta of the incoming and outgoing electron respectively and
k represents the momentum of the emitted photon. The corresponding amplitudes,
according to the Feynman rules, are given in momentum space by
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Here V stands for the basic interaction amplitude which may depend in general on
the momentum transfer (for the case of scattering off the static e.m. field, V = 4°).

First we apply the soft-photon approximation, w < p?, pJ, to neglect ¥ terms in the
numerators. To deal with the remaining matrix structure in the numerators of (1.1)
we use the identity py* = —+* p + 2 p* and the Dirac equation for the on-mass-shell
electrons,
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Denominators for real electrons (p? = m?) and the photon (k* = 0) become m? —

(p1 — k)* = 2(p1k) and m? — (pz + k)* = —2(p2k), so that for the total amplitude we
obtain the factorized expression

M* =ejg" x M, . (1.2a)
Here M, is the Born matrix element for non-radiative (elastic) scattering,
Ma = (pz,s2) V(p2 — p1) u(py, 51) (1.2b)

(in which the photon recoil effect has been neglected, ¢ = p; + k — p1 ~ ps — p1), and
7* 1s the soft accompanying radiation current

i (k) = (;i) - (]fk). (1.2¢)

Factorisation (1.2a) is of the most general nature. The form of j# does not depend on
the details of the underlying process, neither on the nature of participating charges
(electron spin, in particular). The only thing which matters is the momenta and
charges of incoming and outgoing particles. Generalization to an arbitrary process is
straightforward and results in assembling the contributions due to all initial and final
particles, weighted with their respective charges.

The soft current (1.2¢) has a classical nature. It can be derived form the classical
electrodynamics by considering the potential induced by change of the e.m. current
due to scattering.

1.2 Soft radiation cross section

To calculate the radiation probability we square the amplitude projected onto a pho-
ton polarization state 52, sum over A and supply the photon phase space factor to
write down ,
2 A .
dW =€ Z ‘6#]# _77“ dWe] . (13)
A=1,2
The sum runs over two physical polarization states of the real photon, described by
normalized polarization vectors orthogonal to its momentum:

(k)€ (k) = =0, (k) Kk, =0; AN =1,2.

Within these conditions the polarization vectors may be chosen differently. Due to
the gauge invariance such an uncertainty does not affect physical observables. Indeed,
the polarization tensor may be represented as

Y ey’ = —g" + tensor proportional to k* and/or k¥ . (1.4)
A=1,2



The latter, however, can be dropped since the classical current (1.2c) is explicitly
conserving, (7#k,) = 0. Therefore one may enjoy the gauge invariance and employ an
arbitrary gauge, instead of using the physical polarizations, to calculate accompanying
photon production.

The Feynman gauge being the simplest choice, J\_; 5 €h6}” = —g", we get
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The latter expression corresponds to the relativistic approximation 1 —wvy, 1 —vy < 1:

2(p1p2) n O(m_Z) ~ i (1 =17y - 7p)
(prk)(p2k) po ) wr (L= i)l =iy - i)

it disregards the contribution of very small emission angles 07 < (1 —v?) = m?/p}; <
1, where the soft radiation vanishes (the so-called “Dead Cone” region).

If the photon is emitted at a small angle with respect to, say, the incoming particle,
ie. O; <€ Oy ~ Oy, the radiation spectrum (1.5) simplifies to

~() =

a sin®; dO; d_w N adO? dw

;(l—cos(ﬂl) w w0 w
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Two bremsstrahlung cones appear, centred around incoming and outgoing electron
momenta. Inside these cones the radiation has a double-logarithmic structure, ex-

hibiting both the soft (dw/w) and collinear (d®?/©?*) enhancements.

1.2.1 Low-Barnett-Kroll wisdom

Soft factorisation (1.2a) is an essence of the celebrated soft bremsstrahlung theorem,
formulated by Low in 1956 for the case of scalar charged particles and later generalized
by Barnett and Kroll to charged fermions. The very classical nature of soft radiation
makes it universal with respect to intrinsic quantum properties of participating objects
and the nature of the underlying scattering process: it is only the classical movement
of electromagnetic charges that matters.

It is interesting that according to the LBK theorem both the leading dw/w and
the first subleading, o dw, pieces of the soft photon spectrum prove to be “classical”.

For the sake of simplicity we shall leave aside the angular structure of the ac-
companying photon emission and concentrate on the energy dependence. Then, the
relation between the basic cross section o(®) and that with one additional photon with
energy w can be represented symbolically as

da(l)(pi,w) o gd_w [(1 — %) -O'(O)(pi) + <%)2 &(pi,w)] ) (1.6)
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The first term in the right-hand side is proportional to the non-radiative cross section
o(®. The second term involves the new w-dependent cross section & which is finite at
w = 0, so that this contribution is suppressed for small photon energies as (w/FE)*.

This general structure has important consequences, the most serious of which can
be formulated, in a dramatic fashion, as

1.2.2 Soft Photons don’t carry quantum numbers

We are inclined to think that the photon has definite quantum numbers (negative
C-parity, in particular). Imagine that the basic process is forbidden, say, by C-parity
conservation. Why not to take off the veto by adding a photon to the system? Surely
enough it can be done. There is, however, a price to pay: the selection rules cannot
be overcome by soft radiation. Since the classical part of the radiative cross section
in (1.6) is explicitly proportional to the non-radiative cross section o(® = 0, only
energetic photons (described by the & term) could do the job. The energy distribution

3

M| &k x wdw
w

is typical for a quantum particle, where the production matrix element M is finite
in the w — 0 limit, M = O(1). An enhanced radiation matrix element, M oc w™*
characterizes a classical field rather than a quantum object.

So, the price one has to pay to overrule the quantum-number veto by emitting a
soft photon with w < E is the suppression factor (w/E)* < 1. We conclude that
the photons that are capable of changing the quantum numbers of the system (be it
parity, C-parity or angular momentum) cannot be soft. Neither can they be collinear,
by the way, as it follows from the

1.2.3 Gribov Bremsstrahlung theorem

This powerful generalisation of the Low theorem states that a simple factorisation
holds at the level of the matriz element, provided the photon transverse momentum
with respect to the radiating charged particle is small compared to the momentum
transfers characterising the underlying scattering process:

(k- @) -

MW o 2 MO 4 M. (1.7)
kJ_

Here again M = const in the k; — 0 limit. This factorisation holds for hard photons
(w~ FE) as well as for soft ones.

Both the Low-Barnett-Kroll and the Gribov theorems hold in QCD as well. In
particular, it is the Gribov collinear factorisation that leads to the probabilistic evo-
lution picture describing collinear QCD parton multiplication which we shall briefly
discuss in the next lecture.



In the QCD context, our statement that “soft photons don’t carry quantum num-
bers” should be strengthened to even more provocative (but true)

1.2.4 Soft Gluons don’t carry away no colour

Don’t rush to protest. Just think it over. In more respectable terms this title can be
abbreviated as the NSFL (no-soft-free-lunch) theorem.

Imagine we want to produce a heavy quark Q@ bound state (“onium”) in a hadron-
hadron collision. The C-even (xg) mesons can be produced by fusing two quasi-real
gluons (with opposite colours) from the QCD parton clouds of the colliding hadrons:

(9+9) = Q+Q — xq- (1.8)

In particular, radiative decays of such y. mesons are responsible for about 40% of the
J /¢ yield. How about the remaining 60% ? To directly create a J/¢ (or o' — 25,
C-odd cc states) two gluons isn’t enough. A C-odd meson can decay into, or couple
to, three photons (like para-positronium does), a photon plus two gluons, or three
gluons (in a colour-symmetric dg;. state).

So, we need one more gluon to attach, for example, in the final state:

(9+9)s = (Q+Q), = /Y +g. (1.9)

To pick up an initial gg pair in a colour octet state is easier than in the singlet as
in (1.8). This, however, does not help to avoid the trouble: the perturbative cross
section turns out to be too small to meet the need. It underestimates the Tevatron
pp data on direct J/v and v’ production by a large factor (up to 50, at large p, ).

That very same effect that makes the J/¢¥ so narrow a meson with the small
hadronic decay width I';,, /M o o2(M), suppresses its perturbative production cross
section (1.9) as well.

Since the perturbative approach apparently fails, it seemed natural to blame the
non-perturbative physics. Why not to perturbatively form a colour-octet “J/v” and
then to get rid of colour in a smooth (free of charge) non-perturbative way? To
evaporate colour does not look problematic: on the one hand, the soft glue distribution
is dw/w = O(1), on the other hand, the coupling a/7 in the NP domain may be of
the order of unity as well. So why not?

The LBK theorem tells us that either the radiation is soft-enhanced, x dw/w =
O(1), and classical, or hard, « wdw and capable of changing the quantum state of
the system. Therefore, to rightfully participate in the J/v¢ formation as a quantum
field, a NP gluon with w ~ Agcp would have to bring in the suppression factor

(AQCD
M,

The language of the LBK is perturbative, ’tis true. The question is, and a serious
one indeed, whether the NP phenomena respect the basic dynamical features that its

2
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PT counterpart does? Or shall we rather forget about quantum mechanics, colour
conservation, etc. and accept an “anything goes” motto in the NP domain?

To avoid our discussion turning theological, we better address another verifiable
issue namely, photoproduction of J/¢» at HERA. Here we have instead of (1.9) the
fusion process of a real (photoproduction) or virtual (electroproduction) photon with
a quasi-real space-like gluon from the parton cloud of the target proton:

A 4g > (Q—|—@)(8) = J/v+g. (1.10)

If the final-state gluon were soft NP junk, the .J/¢¥» meson would have carried the
whole photon momentum and its distribution in Feynman z would peak at z = 1
as (1 —z)~'. The HERA experiments have found instead a flatish (if not vanishing)
z-spectrum at large z. The NSFL theorem seems to be up and running.

By the way, the conventional PT treatment of the photoproduction (1.10) is re-
portedly doing well. So, what is wrong with the hadroproduction then? Strictly
speaking, the problem is still open. An alternative to (1.9) would be to look for the
third (hard or hardish) gluon in the initial state'.

The NSFL QCD discourse has taken us quite far from the mainstream of the
introductory lecture. Let us return to the basic properties of QED bremsstrahlung
and make a comparative study of

1.3 Independent and coherent radiation

In the Feynman gauge, the accompanying radiation factor dN in (1.5) is dominated
by the interference between the two emitters:

2 .
pi s ] . 2(pp2)

(plk) N (ka) - (plk)(lbk) .

Therefore it does not provide a satisfactory answer to the question, which part of

dNoc—[

radiation is due to the initial charge and which is due to the final one?

There is a way, however, to give a reasonable answer to this question. To do
that one has to sacrifice simplicity of the Feynman-gauge calculation and recall the
original expression (1.3) for the cross section in terms of physical photon polarizations.
It is natural to choose the so-called radiative (temporal) gauge based on the 3-vector

potential /_X), with the scalar component set to zero, A9 = 0. Our photon is then
described by (real) 3-vectors orthogonal to one another and to its 3-momentum:

(&-&)=6bw, (&-k)=0. (1.11)

lan interesting, reliable and predictive model for production of onia in the gluon field of colliding

hadrons is being developed by Paul Hoyer and collaborators, see hep-ph/0004234 and references
therein



This explicitly leaves us with two physical polarization states. Summing over polar-
izations obviously results in

= > (k) [Sag — ilaiig] - j7(K) (1.12)

A=1,2 a,f=1..3

with «, [ the 3-dimensional indices. We now substitute the soft current (1.2¢) in the
3-vector form, p! — ¥;po;, and make use of the relations

ko k )
GAR l@w— E?ﬁ] (7)) = visin?@;, (1.13a)
N koz kﬁ N <
(V1) o [dap — P (V2)pg = wv1vz(cos O — cos O cos O3) , (1.13b)

to finally arrive at

dw dQ)

AN= 2 {R +Ry -2} 222 (1.14a)
T w Arm
Here
"2 in20@.
R, = - visin’O i=1,2, (1.14b)

(1 — v;cos ©;)%

D) (Cos ®5 — cos O cos @2)
7= (1 —v1cos O1)(1 —vycos0q) (1.14c)

The contributions R, 3 can be looked upon as being due to independent radiation off
initial and final charges, while the J-term accounts for interference between them.
The independent and interference contribution, taken together, describe the coherent
emission. It is straightforward to verify that (1.14) is identical to the Feynman-gauge
result (1.5):

Rcoher. = indep. ~ :Zj = _CUQ(]"U‘)Q ) Rindep = Rl —I_ RQ . (115)

1.3.1 The role of interference: strict angular ordering

In the relativistic limit we have

. 9 .
Ry o~ %:%—1, (1.16a)
T e ey~ e R (e
where we introduced a convenient notation
ay=1—nn;=1—cos®;, ay=1—cosOy,

- =

a1 =1—1ny =1—cos O .
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The variables a are small when the angles are small: a ~ %@2.
The independent radiation has a typical logarithmic behaviour up to large angles:
) d
leochsm@d@ocﬂ, a S 1.
ay
However, the interference effectively cuts off the radiation at angles exceeding the
scattering angle:
da da  dO©?

X — ,
ai1as a? o4

dN X Repner sin OdO = 244,

a=a; > day > dy .

To quantify this coherent effect, let us combine an independent contribution with a
half of the interference one to define

Vlle_j:;_Ch-l-aaza—am:a12‘|;6l;—€l17
1 102 102
1.17
%:RQ_jZE_M‘FGz—Gm:a12—|-611—€l2; ( a)
a2 a1a2 a1a2
Rcoher, = ‘/1 —I_ ‘/2 . (117b)

The emission probability V; can be still considered as “belonging” to the charge #:
(Vi is singular when a; — 0, and vice versa). At the same time these are no longer
independent probabilities, since V] explicitly depends on the direction of the partner-
charge #2; conditional probabilities, so to say.

It is straightforward to verify the following remarkable property of the “condi-
tional” distributions V: after averaging over the azimuthal angle of the radiated
quantum, 77, with respect to the direction of the parent charge, 7i;, the probability
Vi(7i, fiy; 7ig) vanishes outside the ©,-cone. Namely

27 d ‘nnl oL 2
Vi = [ Vi, i) = —d (@ —ar) . (L1S)

ay

It is only a3 that changes under the integral (1.18), while a;, and obviously a2, stay
fixed. The result follows from the angular integral

/27r dpp ., 1 1 1
0

21 ay  |cos©; — cos O - |ay — ay|

Naturally, a similar expression for V, emerges after the averaging over the azimuth
around 715 is performed.

We conclude that as long as the total (angular-integrated) emission probability is
concerned, the result can be expresses as a sum of two independent bremsstrahlung
cones centred around 7i; and iy, both having the finite opening half-angle ©;.

This nice property is known as a “strict angular ordering”. It is an essential part
of the so-called Modified Leading Log Approximation (MLLA), which describes the

internal structure of parton jets with a single-logarithmic accuracy.



1.3.2 Angular ordering on the back of envelope

What is the reason for radiation at angles exceeding the scattering angle to be sup-
pressed? Let us try our physical intuition and consider semi-classically how the
radiation process really develops.

A physical electron is a charge surrounded by its proper Coulomb field. In quan-
tum language the Lorentz-contracted Coulomb-disk attached to a relativistic particle
may be treated as consisting of photons virtually emitted and, in due time, reab-
sorbed by the core charge. Such virtual emission and absorption processes form a
coherent state which we call a physical electron (“dressed” particle).

This coherence is partially destroyed when the charge experiences an impact.
As a result, a part of intrinsic field fluctuations gets released in the form of real
photon radiation: the bremsstrahlung cone in the direction of the initial momentum
develops. On the other hand, the deflected charge now leaves the interaction region
as a “half-dressed” object with its proper field-coat lacking some field components
(eventually those that were lost at the first stage). In the process of regenerating
the new Coulomb-disk adjusted to the final-momentum direction, an extra radiation
takes place giving rise to the second bremsstrahlung cone.

Now we need to be more specific to find out which momentum components of the
electromagnetic coat do actually take leave.

A typical time interval between emission and reabsorption of the photon k by
the initial electron p; may be estimated as the Lorentz-dilated lifetime of the virtual
intermediate electron state (p; — k) (see the left graph in Fig.1),

" E1 . E1 1 . w
M mE— (=R 2pk w02 R

(1.19)

Here we restricted ourselves, for simplicity, to small radiation angles, k| ~w0O < k)~
w. The fluctuation time (1.19) may become macroscopically large for small photon
energies w and enters as a characteristic parameter in a number of QED processes.
As an example, let us mention the so called Landau-Pomeranchuk effect — suppres-
sion of soft radiation off a charge that experiences multiple scattering propagating
through a medium. Quanta with too large a wavelength get not enough time to be
properly formed before successive scattering occurs, so that the resulting bremsstrah-
lung spectrum behaves as dN o dw/\/w instead of the standard logarithmic dw/w
distribution.

The characteristic time scale (1.19) responsible for this and many other radiative
phenomena is often referred to as the formation time.

Now imagine that within this interval the core charge was kicked by some external
interaction and has changed direction by some O,. Whether the photon will be
reabsorbed or not depends on the position of the scattered charge with respect to the
point where the photon was expecting to meet it “at the end of the day”. That is, we
need to compare the spatial displacement of the core charge A7 with the characteristic
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size of the photon field, A ~w™', AL ~ kb

, 1 0\’
ATH ~ “UQH — Uy ‘ “Lues ™~ @S : 20?2 = <6> )\|| = )\H ;

1 G
MmOt~ 00— = () e AL
ry c fluct 20?2 2) L L
For large scattering angles, ©, ~ 1, the charge displacement exceeds the photon
wavelength for arbitrary ©, so that the two full-size bremsstrahlung cones are present.

(1.20)

For numerically small ©, < 1, however, it is only photons with ® < ©, that can
notice the charge being displaced and thus the coherence of the state being disturbed.
Therefore only the radiation at angles smaller than the scattering angle actually
emerges. The other field components have too large a wavelength and are easily
reabsorbed as if there were no scattering at all.

So what counts is a change in the current, which is sharp enough to be noticed
by the “to-be-emitted” quantum within the characteristic formation/field-fluctuation
time (1.19) of the latter.

Radiation at large angles has too short a formation time to become aware of the
acceleration of the charge. No scattering — no radiation.

The same argument applies to the dual process of production of two opposite
charges (decay of a neutral object, vacuum pair production, etc.). The only difference
is that now one has to take for A7 not a displacement between the initial and the
final charges, but the actual distance between the produced particles (spatial size of
a dipole), to be compared with the radiation wavelength.

1.4 QCD scattering and cross-channel radiation

Both the qualitative arguments of the previous sections and the quantitative analysis
of the two-particle antenna pattern apply to the QCD process of gluon emission in
the course of quark scattering. So two gluon-bremsstrahlung cones with the opening
angles restricted by the scattering angle ©; would be expected to appear.

There is an important subtlety, however. In the QED case it was deflection of
an electron that changed the e.m. current and caused photon radiation. In QCD
there is another option, namely to “repaint” the quark. Rotation of the colour state
would affect the colour current as well and, therefore, must lead to gluon radiation
irrespectively of whether the quark-momentum direction has changed or not.

This is what happens when a quark scatters off a colour field. To be specific,
one may consider as an example two channels of Higgs production in hadron-hadron
collisions.

At very high energies two mechanisms of Higgs production become competitive:
W*W~= — H and the gluon-gluon fusion gg — H (see Fig. 2).

Since the typical momentum transfer is large, of the order of the Higgs mass,
(—t) ~ M}, Higgs production is a hard process. Colliding quarks experience hard
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Figure 2: WW and gluon-gluon fusion graphs for Higgs production

scattering with characteristic scattering angles ©2 ~ [¢| /s ~ M#/s. As far as the
accompanying gluon radiation is concerned, the two subprocesses differ with respect
to the nature of the “external field”, which is colorless for the W-exchange and colorful
for the gluon fusion.

The gluon bremsstrahlung amplitudes for the second case are shown in Fig. 3. In
principle, a graph with the gluon-gluon interaction vertex should also be considered.
However, in the limit &, < ¢, with ¢, ~ ps; — pi1 the momentum transfer in
the scattering process, emission off the external lines dominates (the “soft insertion
rules”).

The accompanying soft radiation current j* factors out from the Feynman ampli-
tudes of Fig. 3, the only difference with the Abelian current (1.2¢) being the order of
the colour generators:

i = [tbta ((ka)) _ b ((Iii))] . (1.21)

Introducing the abbreviation A; = %, we apply the standard decomposition of the

product of two triplet colour generators,

1 .
tatb = W(Sab + % (dabc + lfabc) t° 5

k,a

P2

P1

Figure 3: Gluonic Bremsstrahlung diagrams for k; < ¢,. The characters a and b
denote the colours of the radiated and exchanged gluons.
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to rewrite (1.21) as
} 1 )
]u = %(Al — AQ) <—N (Sab —I‘ dabc tc) — %(Al —I‘ AQ) lfabc tc .

To find the emission probability we need to construct the product of the currents and
sum over colours. Three colour structures do not “interfere”, so it suffices to evaluate
the squares of the singlet, 8, and 8, structures:

E(L(S )2—<L)2(N2—1)— 1 Cp -
ON. ) T \2N ¢ —oN, T

a,b
N2 IN?*—4 ., N’-4
%(%dabct) = ;o ) =5 Cr;
. 02 1 c\2 _NC
%(%Zfabct) = ZNG (t) —ZCF

2
The common factor Cr = (tb) belongs to the Born (non-radiative) cross section, so
that the radiation spectrum takes the form

IN o Y0t = ( L N2_4) (A1 — Az) - (A1 — Ay)
Cr 52, 2N, 4N,
+%(A1—I-A2)-(A1—I-A2).
A simple algebra leads to
AN o Cp (Ay — Ag) - (A1 — As) + N Ay - Ay | (1.22)

Dots here symbolize the sum over gluon polarization states. To calculate the cross
section some care should be exercised: the current (1.21) does not conserve because of
non-commuting colour matrices. We would need to include gluon radiation from the
exchange-gluon line and from the source, to be in a position to use an arbitrary gauge
(e.g. the Feynman gauge) for the emitted gluon. The physical polarization technique
(1.11) simplifies our task. To obtain the true accompanying radiation pattern (in the
ki < g, region) it suffices to use the projectors (1.13) for the dots in (1.22). In
particular,

A Ay = Y (AeW) (A4eM) =T { # (AL Ay) sicl} .

A=1,2

Accompanying radiation intensity finally takes the form

AN & CpReper + N.T. (1.23)
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The first term proportional to the squared quark charge is responsible, as we al-
ready know, for two narrow bremsstrahlung cones around the incoming and outgoing
quarks, ©1,0,; < O,. On top of that an additional, purely non-Abelian, contribution
shows up, which is proportional to the gluon charge. It is given by the interference

distribution (1.14c), (1.16b),

7= 'il1-|-a2—6112_17
a1as
which remains non-singular in the forward regions ©; < 0, and ©, < 0,. At the
same time, it populates large emission angles © = ©; ~ 0, > O, where

2 de?
dN & dQ T  sin ©dO (——1) ~ (1.24)
a 0?2
Indeed, evaluating the azimuthal average, say, around the incoming quark direction
we obtain

d¢1j:i<1+M)_12319(@1_(95)_1_

277' aq |CL1 — CL12| aq

Thus we conclude that the third complementary bremsstrahlung cone emerges. It
basically corresponds to radiation at angles larger than the scattering angle and its
intensity is proportional to the colour charge of the ¢-channel exchange.

We could have guessed without actually performing the calculation that at large
angles the gluon radiation is related to the gluon colour charge. As far as large
emission angles © > O, are concerned, one may identify the directions of initial and
final particles to simplify the total radiation amplitude as

M wZ o
jM — TbTa . p_l _ TaTb i p_2 ~ (TbTa - TaTb) . P_ ‘
pik p2k pk

Recalling the general commutation relation for the SU(N,) generators,
[7°(R), T*(R)| = 1Y fure T(R). (1.25)

we immediately obtain the factor N, o (ifabc)2 as the proper colour charge. Since
(1.25) holds for arbitrary colour representation R, we see that the accompanying gluon
radiation at large angles © > O, does not depend on the nature of the projectile.

The bremsstrahlung gluons we are discussing transform, in the end of the day,
into observable final hadrons. We are ready now to derive an interesting physical
prediction from our QCD soft radiation exercise.

Translating the emission angle into (pseudo)rapidity n = In©~!, the logarithmic
angular distribution (1.24) converts into the rapidity plateau. We conclude that in the
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case of the gluon fusion mechanism, the second in Fig. 2, the hadronic accompaniment
should form a practically uniform rapidity plateau. Indeed, the hadron density in the
centre (small 5, large c.m.s. angles) is proportional to the gluon colour charge N,
while in the “fragmentation regions” (Hmax > 7| > In O, or © < O,) the two quark-
generated bremsstrahlung cones give, roughly speaking, the density ~ 2 x Cr = N..

At the same time, the W W -fusion events (the first graph in Fig. 2) should have
an essentially different final state structure. Here we have a colorless exchange, and
the QED-type angular ordering, © < O, restricts the hadronic accompaniment to
the two projectile fragmentation humps as broad as An = Npax — In O ~ In My,
while the central rapidity region should be devoid of hadrons. The “rapidity gap” is
expected which spans over |n| < In(y/s/Mpy).

1.5 Conservation of colour current

In physical terms universality of the generator algebra is intimately related with
conservation of colour. To illustrate this point let us consider production of a quark-
gluon pair in some hard process and address the question of how this system radiates.
Let p and k£ be the momenta of the quark and the gluon, with b the octet colour
index of the latter. For the sake of simplicity we concentrate on soft accompanying
radiation, which determines the bulk of particle multiplicity inside jets, the structure
of the hadronic plateau, etc. As far as emission of a soft gluon with momentum
{ < k,p is concerned, the so-called “soft insertion rules” apply, which tell us that
the Feynman diagrams dominate where ¢ is radiated off the external (real) partons
— the final quark line p and the gluon k. The corresponding Feyman amplitudes are
shown in Fig. 4.
k(b) k(b)

la) |
LAY

(pl) S (K0)

Figure 4: Feynman diagrams for radiation of the soft gluon with momentum ¢ and
colour a off the gg system.

Do two emission amplitudes interfere with each other? It depends on the direction
of the radiated gluon ‘.
In the first place, there are two bremsstrahlung cones centred around the directions
of p and k:
quark cone: 0;=0;;, < O =0,

gluon cone: ©;=0;; < O~ 0;,,
with © the angle between p and E— the aperture of the gg fork. In these regions one

of the two amplitudes of Fig. 4 is much larger than the other, and the interference is
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negligible: the gluon 7 is radiated independently and participates in the formation of
the quark and gluon sub-jets.

If © is sufficiently large and the gluon k sufficiently energetic (relatively hard,
k ~ p), these two sub-jets can be distinguished in the final state. The particle
density in ¢ and ¢ jets should be remarkably different. It should be proportional
(at least asymptotically) to the probability of soft gluon radiation which, in turn, is
proportional to the “squared colour charge” of a the jet-generating parton, quark or

gluon:
dn\?’ dn '\’ N:-1 _ 4 9
(%) () —weNtenget

®Z<® ®Z<®

Multijet configurations are comparatively rare: emission of an additional hard
gluon k£ ~ p at large angles © ~ 1 constitutes a fraction a,/7 < 10% of all events.
Typically & would prefer to belong to the quark bremsstrahlung cone itself, that is
to have ©® < 1. In such circumstances the question arises about the structure of the
accompanying radiation at comparatively large angles

GZ = @Zﬁ ~ @Zic* > @ (1.26)

If the quark and the gluon were acting as independent emitters, we would expect the
particle density to increase correspondingly and to overshoot the standard quark jet
density by the factor

dn\ 7" dn\? N2 -1 1:
s o S\l (1.27)
de ©>0 0;>0 2NC 4

However, in this angular region our amplitudes start to interfere significantly, so that
the radiation off the gg pair is no longer given by the sum of probabilities ¢ — g(¢)
plus g — g(f). We have to square the sum of amplitudes instead.

This can be easily done by observing that in the large-angle kinematics (1.26) the
angle © between p and k can be neglected, so that the accompanying soft radiation
factors in Fig. 4 become indistinguishable,

p

kH

() — (KO)

Thus the Lorentz structure of the amplitudes becomes the same and it suffices to sum
the colour factors:

1 4 it = 1 [ 1] = (1.28)

We conclude that the coherent sum of two amplitudes of Fig. 4 results in radiation
at large angles as if off the initial quark, as shown in Fig. 5.
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*\é‘ﬁi@iﬁﬁ k(b) o %-tbt“

Figure 5: Soft radiation at large angles is determined by the total colour charge

This means that the naive probabilistic expectation of enhanced density (1.27) fails
and the particle yield is equal to that for the quark-initiated jet instead: 13/4 — 1.

It actually does not matter whether the gluon k was present at all, or whether
there was instead a whole bunch of partons with small relative angles between them.
Soft gluon radiation at large angles is sensitive only to the total colour charge of
the final parton system, which equals the colour charge of the initial parton. This
physically transparent statement holds not only for the quark as in Figs. 4, 5 but for an
arbitrary object R (gluon, diquark, ..., you name it) as an initial object. In this case
the matrices ¢ = T'(3) should be replaced by the generators T'(R) corresponding to
the colour representation R, and (1.28) holds due to the universality of the generator
algebra (1.25).

2 Coherence in QCD parton cascades

Allowing small relative angles between partons in a process with a large hardness Q*
results in a logarithmic enhancement of the emission probability:

2
a, = QS% — a,log Q*. (2.29a)
As a result, the total probability of one parton (F) turning into two (F; ~ FEy ~
%E) may become of order 1, in spite of the smallness of the characteristic coupling,
as(Q*) o 1/log @*. A typical example of such a “collinear” enhancement — the
splitting process g — ¢g.
Moreover, when we consider the gluon offspring, another — “soft” — enhancement
enters the game, which is due to the fact that the gluon bremsstrahlung tends to
populate the region of relatively small energies (E ~ F; > Ey = w):

dw dO©?
ay = Qy— —
w

or @ log” Q* . (2.29b)

Thus the true perturbative “expansion parameter” responsible for parton multiplica-
tion via ¢ — qg and g — gg may actually become much larger that 1!

In such circumstances we cannot trust the perturbative expansion in oy < 1 unless
the logarithmically enhanced contributions (2.29) are taken full care of in all orders.
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Fortunately, in spite of the complexity of high order Feynman diagrams, such a
programme can be carried out. The very fact that the all-order logarithmic asymp-
totes can be written down in a closed form and, more than that, that they a posteriori
prove to be quite simple, follows from the classical nature of

e soft enhancement of bremsstrahlung amplitudes (“infrared” singularities) and

e collinear enhancement of basic 1 — 2 parton splitting amplitudes (or “mass”
singularities).

As a result, the leading logarithmic asymptotes can be found without performing
laborious calculations. It suffices to invoke an intuitively clear picture of parton cas-
cades described in probabilistic fashion in terms of sequential independent elementary
parton branchings ordered in fluctuation times.

2.1 Puzzle of DIS and QCD partons

Let us invoke the deep inelastic lepton-hadron scattering — a classical example of a
hard process and the standard QCD laboratory for carrying out the PT-resummation
programume.

Here, the momentum ¢ with a large space-like virtuality Q? = |¢*| is transferred
from an incident electron (muon, neutrino) to the target proton, which then breaks
up into the final multiparton — multihadron system. Introducing an invariant energy
s between the exchange photon (Z° W#*) and the proton with 4-momentum P (P? =
M;), one writes the invariant mass of the produced hadron system which measures
inelasticity of the process as

2
¢ <1

wW? = Py — M?=¢*>+2(Pg) = s(1 —: =2(P =
(¢+ P) 2 =q¢"+2(Pq) =s(l —x), s=2(Pq), = 2pg =L

with x the Bjorken variable. The cross section of the process depends on two variables:
Q? and z. For the case of elastic lepton-proton scattering one has z =1 and it is
natural to write the cross section as

dael dURuth 2

dQ?[dz] —  dQ? 2(Q%) - [6(1 —2)]. (2.30a)

Here oruin o< @?/Q* is the standard Rutherford cross section for e.m. scattering off a
point charge and f,; stands for the elastic proton form factor.

For inclusive inelastic cross section one can write an analogous expression by intro-
ducing an inelastic proton “form factor” which now depends on both the momentum
transfer Q% and the inelasticity parameter z:

do-i n o do—Rut h 2

s = o ThE @), (2.30b)
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What kind of Q?*-behaviour of the form factors (2.30) could one expect in the Bjorken
limit Q% — o0? Quantum mechanics tells us how the Q*behaviour of the electro-
magnetic form factor can be related to the charge distribution inside a proton:

1a(@) = [ d'rp(7) exp{idr} . (2.31)

For a point charge p(r) = &°(7), it is obvious that f = 1. On the contrary, for a
smooth charge distribution f(Q?) falls with increasing Q?, the faster the smoother p
is. Experimentally, the elastic e-p cross section does decrease with Q? much faster
that the Rutherford one (f.(Q?) decays as a large power of @*). Does this imply
that p(7) is indeed regular so that there is no well-localized — point-charge inside
a proton? If it were the case, the inelastic form factor would decay as well in the
Bjorken limit: a tiny photon with the characteristic size ~ 1/0) — 0 would penetrate
through a “smooth” proton like a knife through butter, inducing neither elastic nor

inelastic interactions.
2

However, as was first observed at SLAC in the late sixties, for a fixed z, f;
stays practically constant with Q?, that is, the inelastic cross section (with a given
inelasticity) is similar to the Rutherford cross section (Bjorken scaling). It looks as
if there was a point-like scattering in the guts of it, but in a rather strange way: it
results in inelastic break-up dominating over the elastic channel. Quite a paradoxical
picture emerged; Feynman-Bjorken partons came to the rescue.

Imagine that it is not the proton itself that is a point-charge-bearer, but some
other guys (quark-partons) inside it. If those constituents were tightly bound to each
other, the elastic channel would be bigger than, or comparable with, the inelastic
one: an excitation of the parton that takes an impact would be transferred, with the
help of rigid links between partons, to the proton as a whole, leading to the elastic
scattering or to the formation of a quasi-elastic finite-mass system (Nw, A or so),
l—z < 1.

To match the experimental pattern f%(Q?) < f2,(Q?) one has instead to view the
parton ensemble as a loosely bound system of quasi-free particles. Only under these
circumstances does knocking off one of the partons inevitably lead to deep inelastic
breakup, with a negligible chance of reshuffling the excitation among partons.

The parton model, forged to explain the DIS phenomenon, was intrinsically para-
doxical by itself. In sixties and seventies, there was no other way of discussing particle
interactions but in the field-theoretical framework, where it remains nowadays. But
all reliable (renormalizable, 4-dimensional) quantum field theories (QFTs) known by
then had one feature in common: an effective interaction strength (the running cou-
pling ¢*(Q?)) increasing with the scale of the hard process Q*. Actually, this feature
was widely believed to be a general law of nature, and for a good reason 2. At the
same time, it would be preferable to have it the other way around so as to be in

2relation between screening and unitarity
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accord with the parton model, which needs parton-parton interaction to weaken at
small distances (large ?).

Only with the advent of non-Abelian QFTs (and QCD among them) exhibiting an
anti-intuitive asymptotic-freedom behaviour of the coupling, the concept of partons
was to become more than a mere phenomenological model.

2.2 QCD DIS minutes

Typical QCD graphs for DIS amplitudes are shown in Fig. 6.
lepton lepton

\/\/

\ \
AY AY

quark quark

Figure 6: Valence (left) and Bethe-Heitler mechanism (right) of DIS.

For moderate z-values (say, @ > 0.1) the process is dominated by lepton scattering
off a valence quark in the proton. The scattering cross section has a standard energy
behaviour o o< z=2%x=1) where Jo is the spin of the exchanged particle in the t-
channel. It is the quark with JeX:% in the left picture of Fig. 6, so that the valence
contribution to the cross section decreases at small x as o « .

For high-energy scattering, x < 1, the Bethe-Heitler mechanism takes over which
corresponds to the ¢-channel gluon exchange: Joy =1, o o< 2° =const (modulo loga-
rithms).

In the Leading Logarithmic Approximation (LLA) one insists on picking up, for
each new parton taken into consideration, a logarithmic enhancement factor a; —
aslog Q2. In this approximation the scattering probability can be simply obtained by
convoluting elementary probabilities of independent 1 — 2 parton splittings.

To cut a long story short, the appearance of the log-enhanced contributions in

(2.29a) is due to the following structure
1 las an—Qr _ [%]R/QQ dk? /kin dk3 . m/kis dk? /kiz dk? |
nl| 7 p? T k% k1 . ki, J2 K3

(2.32)

with k7, the squared transverse momenta of produced partons.
To contribute to the LLA, the transverse momenta of produced partons should be
strongly ordered, increasing up the “ladder”: ki, < ... < k2, < Q* (At the level
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of Feynman amplitudes the ladder diagrams dominate, provided a special physical
gauge is chosen for gluon fields.) This expression diverges in the zero-quark-mass
limit, g — 0. Well, when you see a nasty thing happen beyond your reach, you can do
no better than make use of it. This “mass singularity”, according to (2.32), occurs in
the lower limit of the k) integration of the very first (and only!) parton branch. Let
us drag this misbehaving integral to the left by rewriting (2.32) as

Q* dk3 a, 17 @ dk2 L, dEG Kla dk?
9 39 [Ml()2 2 :%/ Ll'[ S] / J_n/ n Ln—1”_/ 12
( 3 ) (Q v K ) 2 kil kﬁ_n k2 & kﬁ_Q

2
m m ln—1 11

as (¢ dkL 5 a9\ [n=1]7 2 7.2
= p —kil - (2.32) (Q°, k1),
where we have combined the internal (rn—1) integrals into the same expression that
corresponds to the previous order in o -expansion and has a new lower limit k7,
substituted for the original u?. Now, we can localize the y-dependence by evaluating

the logarithmic derivative:

20 2.32) = —Z2. (2.32) 1
ou? ™

This equation relates the n'® order of the PT expansion to the previous one. To put
this symbolic relation at work one first has to recall the satellite z-dependence.

By extracting the first step one may look upon the rest as DIS off a new “target”
— the parton with transverse momentum k7 | and a finite fraction z of the initial lon-
gitudinal momentum P. As a result, there appears an additional integration with the
probability of the first splitting, ¢(z), and the differential equation for the resummed
FLA) takes the form

e (e @) = - [ Coe 2 r(Lene). 2o

T

Since a logarithm (like a stick) has two ends, differentiation over the overall hardness
scale Q% would do the same job, the result being the evolution equation in a familiar
form:

QQa%QQF(:c,Q?) = %gﬁ(m)@F(z,Q?) : (2.33b)

where the symbol @ stands for convolution in the z-space.

2.3 LLA parton evolution
2.3.1 Space-like parton evolution

The decay phase space for the space-like evolution determining the DIS structure
functions is

K 2r oz

2 2
dwA—BHC — dky as (k1) dz dBC(2) (2.34a)
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with z the longitudinal momentum fraction carried by the parton B. The functions ®
play the role of “Hamiltonian” (2z-dependent kernels) of the evolution equation (2.33)
for the LLA parton distributions.

In the DIS environment the initial parton A with a negative (space-like) virtuality
decays into Bl[z] with the large space-like virtual momentum |k%| > |k%| and a
positive virtuality (time-like) C[1—z]. The parton C generates a subjet of secondary
partons (— hadrons) in the final state. As long as the process is inclusive, that is
that no details of the final-state structure are measured, integration over the subjet
mass is due, dominated in LLA by the region k% < |k%|. The latter condition makes
C look quasi-real, compared with the hard scale of |k%|. The same is true for the
initial parton A.

Splitting can be viewed as a large momentum-transfer process of scattering (turn-
over) of a “real” target parton A into a “real” C on the external field mediated by
high-virtuality B. At the next step of evolution it is B’s turn to play a role of a next
target B = A’, “real” with respect to yet deeper probe |k%3| > |k%], and so on.

Successive parton decays with step-by-step increasing space-like virtualities (trans-
verse momenta) constitute the picture of parton wave-function fluctuations inside the
proton. The sequence proceeds until the overall hardness scale ()? is reached.

2.3.2 Time-like parton cascades

A similar picture emerges for the time-like branching processes determining the in-

*te~ annihilation. Here the flow of

ternal structure of jets produced, for example, in ¢
hardness is opposite to that in DIS: evolution starts from a highly virtual quark with
positive virtuality, originating from the e.m. vertex, while time-like virtualities of its
products (“quasi-real” with respect to predecessors; “high-virtuality” with respect to
offspring) degrade.

It is important to notice, however, that the flow of energy (longitudinal momen-
tum) is governed, in the LLA, by the same functions ®§¢: it does not matter that
now, in contrast to space-like evolution, A is the “virtual” one and B and C are
“real”.

In the time-like case the longitudinal phase space is symmetric in offspring parton

energy fractions, and the differential decay probability reads

2 2
duwA=BIC — d@% a’éiﬁ dz ®5°(2). (2.34b)

2.3.3 Fluctuation Time and Evolution Times: Coherence

An attentive reader has noticed that we wrote the phase space differently: for the
space-like case (2.34a) in terms of transverse momentum k; and for the time-like
evolution (2.34b) via the decay angle ©. Logarithmic differentials by themselves are
identical, since k% and ©? are proportional for fixed z. We have made this distinction
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to stress an important difference between a probabilistic interpretation of DIS and
the ete™ evolution: the different evolution times.

An appearance of the angle as a proper evolution parameter in (2.34b) is readily
understood: it is a consequence of the Angular Ordering. In the DIS case, (2.34a) we
aim at describing, in probabilistic terms, the inclusive cross section, a quantity that
could not care less about the finite-state structure and that of soft accompaniment
in particular.

To be honest, within the LLA framework it does not make much sense to argue
which of evolution parameters In k%, In ©% or In |k?| (with k* the total parton virtu-
ality) does a better job: these choices differ by subleading terms formally negligible
from the LLA point of view. A mismatch is of the order of

~ agln’z . (2.35)

It becomes significant, however, and should be “resummed” when numerically small
values of the Bjorken z are concerned.?

The k,-ordering proves to be the one that takes care of potentially disturbing
corrections (2.35) in all orders, and in this sense becomes a preferable choice for
constructing the probabilistic scheme for single-inclusive parton distributions in DIS.

It is instructive to see how this comes about.

Let us introduce two light-like vectors p{, py and write down the Sudakov (light-
cone) decomposition of momenta:

k" = Bpy + aph + ki *. (2.36)

For ki’ 4+ k5 + k5 = 0 the general relation holds:

5 TR A

5 (2:37)

= — 2
KKK @ﬂQ(hL mL)

Each parton cell in Fig. 6 involves a space-like parton A decaying into B[z]+ C[1l —z].
Relation (2.37) applied to our basic space-like splitting A — B[z]C[l — z] gives

WML R, R
_ 2.38
z 1 l—z z(1-2)’ (2.38)
with z the longitudinal momentum fraction — the ratio of the Sudakov light-cone

variables 3. (We have chosen the direction of p; such that gAL = 0, so that EBL =
—kcy =k, is the relative transverse momentum in the splitting.)

3The word “numerically” stands here as a warning for not confusing this kinematical region with
a “parametrically” small 2, such that asIln1/2 ~ 1 — the Regge region — where essentially different
physics comes onto stage.
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Since the 4-momenta of A and B are space-like, all terms in (2.38) are positive.
B being an intermediate virtual state, k% enters in the Feynman denominators in
the matrix element. The collinear-log contribution arises upon integration over k7,
over the region where the last term dominates in the r.h.s. of (2.38), that is from the
region , , ,
kBl K K ko
z z(1—z) 1 -z
The physical origin of this strong inequality becomes transparent in terms of lifetimes
of virtual states

(2.39)

k9
L= L 2.40
"k 240
namely 73 < 74, 7¢. This shows that the LLA contributions originate from the
sequence of branchings well separated in the fluctuation time (2.40). Invoking the

local-scattering analogy (recall A — C on the “external field” B), we can say that

the classical picture naturally implies “fast scattering”: probing time 75 much smaller
than the lifetime(s) of the “target” before (74) and after the scattering occurs (7¢).

Assembling a “ladder” of successive parton splittings ¢ = 1,2...,n, and trac-
ing the space-like parton state the n'h-order LLA contribution ~ [a;In(Q?/u?)]" is
expected to come from time-ordered kinematics

P xP

?>>7'1 >T > ... >>Tn>>@-
Let us now dig into the k7 against ©* problem. Equation (2.39) relates virtuality
and transverse momentum of the “¢-channel” parton after the i*h splitting with the
relative longitudinal momentum (3-) fraction z;:

~ e m kD (2.41)

The latter approximation is made by remembering that, because of cancellation be-
tween real and virtual contributions in inclusive parton distributions (DIS structure
functions), the soft s-channel radiation 1 — z; < 1 does not matter (as long as we
stay away from the quasi-elastic kinematics, | — « < 1, where it does).

The two-dimensional emission angle (the angle between C' and A) can be written

and estimated as (cf. (2.37))

—

o her ke R —Ky B | K

"TBcP T BaP Bia(l—z)P  BiaP | B P’

We are now in a position to compare different orderings. It is straightforward to get

(2.42)

Fluctuation times = k7 > z -kl , (2.43a)

Emission angles = k7 > 27 -k}, , (2.43b)

k3
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to be compared with
Transverse momenta — ki > kf_u. (2.43c¢)

For @ = zy - z3- ... z, ~ 1 prescriptions (2.43) are essentially equivalent since each
decay fraction stays finite, z; ~ 1, and may be neglected in the logarithmic integral
over kZ, .

For small =, however, the Bethe-Heitler mechanism of DIS off sea quarks dominates
(see Fig.6b). The multigluon “ladders” provide longitudinally enhanced contributions
x Inz;, which combine with the Inz; factors from the collinear-integration phase
space to produce, at the end of the day, the “DL” mismatch [o, In® ]2 between the
different options (2.43).

So, which one of the possible orderings (2.43) is correct? The first two prescrip-
tions are more liberal than the last one: they both allow for disordered transverse
momentum configurations. For example, the fluctuation-time ordering (2.43a) em-
bodies the region

zikiy < kY <KLy, (2.44)

which may be quite broad for z; < 1 and where the k, -ordering is violated. The truth
is, this region does not contribute to the answer, so that the k, -ordering (2.43c) proves
to be the correct one. The reason is quantum mechanical coherence.

2.3.4 Vanishing of the forward inelastic diffraction

Consider a two-step process shown by the first graph in Fig.7. Let the second decay
be soft in the t-channel direction, that is zo = (2/81 < 1. (The first one can be either
soft, zy = B1/Bo < 1 or hard, z; ~ 1.) In the kinematical region (2.44),

2 kD < ki < ki, (2.45)

the time-ordering is still intact, which means that the momentum k, is transferred
fast as compared with the lifetime of the first fluctuation P — P’ + k;.

]CQ k‘g
ky P’ ky ky

P PP k1 P P’

Figure 7: In the “wrong” kinematics k3, < ki, the sum of the two space-like evolu-
tion amplitudes cancels against the final state time-like decay

Since 35 is small, the process can be viewed as inelastic relativistic scattering P —
P’ + k; in the external gluon field. The transverse size of the field is p; ~ k.
The characteristic size of the fluctuation P’ + k;, according to (2.45), is smaller:
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Argry ~ ki < p1. We thus have a compact state propagating through the field that
is smooth at distances of the order of the size of the system. In such circumstances
the field cannot resolve the internal structure of the fluctuation. Components of the
fluctuation, partons P’ and k; in the first two graphs of Fig. 7, scatter coherently
with the total amplitude identical and opposite in sign to that for scattering of the
initial state P (the last graph): inelastic breakup does not occur.

This general physical phenomenon is due to Gribov, who has proved that the
diffractive deuteron disintegration process vanishes in the forward kinematics. He

then used this observation to argue in favour of the so-called weak-Reggeon-coupling
regime based on the vanishing of inelastic processes in the £, — 0 limit. In our
context the cancellation between the amplitudes of Fig. 7 in the region (2.45) is a
direct consequence of the conservation of the colour current.

2.4 Humpbacked plateau and LPHD

QCD coherence is crucial for treating particle multiplication inside jets, as well as
for hadron flows in-between jets.

Here we are going to derive together the QCD “prediction” of the inclusive energy
spectrum of relatively soft particles from QCD jets. I put the word prediction in
quotation marks on purpose. This is a good example to illustrate the problem of
filling the gap between the QCD formulae, talking quarks and gluons, and phenomena
dealing, obviously, with hadrons.

Let me first make a statement:

It is QCD coherence that allows the prediction of the inclusive soft particle
yield in jets practically from the “first principles”.

2.4.1 Solving the DIS evolution

You have all the reasons to feel suspicious about this. Indeed, we have stressed above
the similarity between the dynamics of the evolution of space-like (DIS structure
functions) and time-like systems (jets). On the other hand, you are definitely aware
of the fact that the DIS structure functions cannot be calculated perturbatively. There
are input parton distributions for the target proton, which have to be plugged in as
an initial condition for the evolution at some finite hardness scale Qo = O(1 GeV).
These initial distributions cannot be calculated “from first principles” nowadays but
are subject to fitting. What pQCD controls then, is the scaling violation pattern.
Namely, it tells us how the parton densities change with the changing scale of the
transverse-momentum probe:

0 ag(ky) [tdz x _
s D) = 22 [ Sren (;,h). (2.46)
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It is convenient to present our “wavefunction” D and “Hamiltonian” P in terms of
the complex moment w, which is Mellin conjugate to the momentum fraction z:

1 d
Dw:/o de z¥ - D(z), D(;v):x_l/(F)%x_w-Dw; (2.47a)
P /ld “.P(z), P(2) —1/ o~ p (2.47b)
) = z 2% P(z), z) ==z -z - Py, :
0 T) 2mi

where the contour I' runs parallel to the imaginary axis, to the right from singularities
of D, (P,). It is like trading the coordinate (Inz) for the momentum (w) in a
Schrodinger equation.

Substituting (2.47) into (2.46) we see that the evolution equation becomes alge-
braic and describes propagation in “time” dt = 2=dInk, of a free quantum mechanical
“particle” with momentum w and the dispersion law E(w) = F,:

as(kyL) ‘ 5 0
T +Po Dok d olnk,

To continue the analogy, our wavefunction D is in fact a multi-component object. It
embodies the distributions of valence quarks, gluons and secondary sea quarks which

d Dy(ky) = (2.48)

evolve and mix according the 2 x 2 matrix LLA “Hamiltonian” ®%.

At small z, however, the picture simplifies. Here the valence distribution is negli-
gible, O(x), while the gluon and sea quark components form a system of two coupled
oscillators which is easy to diagonalise. What matters is one of the two energy eigen-
values (one of the two branches of the dispersion rule) that is singular at w = 0. The
problem becomes essentially one-dimensional. Sea quarks are driven by the gluon
distribution while the latter is dominated by gluon cascades. Correspondingly, the
leading energy branch is determined by gluon-gluon splitting ¢ — gg, with a sublead-
ing correction coming from the ¢ — ¢(¢) — ¢ transitions,

2N, 11N, n
P, = " —a+ Olw), a= 6 —I—SZ\J;C2
The solution of (2.48) is straightforward:

D) = D@ e { [ Fotati), (250)

0

(2.49)

Vw(as) = %Pw . (250b)

7T

The structure (2.50a) is of the most general nature. It follows from renormalizability
of the theory, and does not rely on the LLA which we used to derive it. The function
y(as) is known as the “anomalous dimension”.* It can be perfected by including

4The name is a relict of those good old days when particle and solid state physicists used to have
common theory seminars. If the coupling a; were constant (had a “fixed point”), then (2.50a) would
produce the function with a non-integer (non-canonical) dimension D(Q) x Q" (analogy — critical
indices of thermodynamical functions near the phase transition point).
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higher orders of the PT expansion. Actually, modern analyses of scaling violation are
based on the improved next-to-LLA (two-loop) anomalous dimension, which includes

a? corrections to the LLA expression (2.50b).

The structure (2.50a) of the z-moments of parton distributions (DIS structure
functions) gives an example of a clever separation of PT and NP effects; in this par-
ticular case — in the form of two factors. It is the w-dependence of the input function
D, (Qo) (“initial parton distributions”) that limits predictability of the Bjorken-z de-
pendence of DIS cross sections.

So, how comes then that in the time-like channel the PT answer turns out to be

more robust?

2.4.2 Coherent hump in ete™ — h(z) + ...

We are ready to discuss the time-like case, with D?(aj, () now the inclusive distribu-
tion of particles h with the energy fraction (Feynman-z) # < 1 from a jet (parton j)
produced at a large hardness scale Q).

Here the general structure (2.50a) still holds. We need, however, to revisit the
expression (2.50b) for the anomalous dimension because, as we have learned, the
proper evolution time is now different from the case of DIS.

In the time-like jet evolution, due to Angular Ordering, the evolution equation
becomes non-local in k; space:

O Dok = M/; % pyp <f . z@) . (2.51)

Jdlnk, T z z
Indeed, successive parton splittings are ordered according to

ki
f=— >1¢
Ky

_ KL
K

Differentiating D(k, ) over the scale of the “probe”, k, , results then in the substitution

/

k;:k—::-zﬁ =2k,

in the argument of the distribution of the next generation D(E' ).
The evolution equation (2.51) can be elegantly cracked using the Taylor-expansion
trick,

D(z kL) =exp {lnzalnkL

}D(zﬂ) = 275 . D(ky). (2.52)

Turning as before to moment space (2.47), we observe that the solution comes out
similar to that for DIS, (2.50), but for one detail. The exponent d of the additional
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z-factor in (2.52) combines with the Mellin moment w to make the argument of the
splitting function P a differential operator rather than a complex number:

. o
d-D,=-—P :-D,. 2.53
T w+d ( )
This leads to the differential equation
-1 5 Qs -1 Qs . ¢

Recall that, since we are interested in the small-z region, the essential moments are
small, w < 1.

For the sake of illustration, let us keep only the most singular piece in the “disper-
sion law” (2.49) and neglect the commutator term in (2.54) generating a subleading
correction o das ~ a?. In this approximation (DLA),

P, ~ 2N , (2.55)

w

(2.54) immediately gives a quadratic equation for the anomalous dimension,’

2N, 0, 2
(W + %)y — Wa +O(%) = 0. (2.56)

The leading anomalous dimension following from (2.56) is

8Nc s
%:fi(—ur 1+ O‘). (2.57)

2 T w?

When expanded to first order in ay, it coincides with that for the space-like evolution,
Yo =~ a/m - P,, with P given in (2.55). Such an expansion, however, fails when
characteristic w ~ 1/|In z| becomes as small as /a5, that is when

8N,

™

Inz 2 1.

This inequality is an elaboration of the heuristic estimate (2.35).

Now what remains to be done is to substitute our new weird anomalous dimension
into (2.50a) and perform the inverse Mellin transform to find D(z). If there were no
QCD parton cascading, we would expect the particle density xD(x) to be constant
(Feynman plateau). It is straightforward to derive that plugging in the DLA anoma-
lous dimension (2.57) results in the plateau density increasing with ¢ and with a

°It suffices to use the next-to-leading approximation to the splitting function (2.49) and to keep
the subleading correction coming from differentiation of the running coupling in (2.54) to get the
more accurate MLLA anomalous dimension 7, .
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maximum (hump) “midway” between the smallest and the highest parton energies,

namely, at Tpmax >~ 1/Qo/Q. The subleading MLLA effects shift the hump to smaller
parton energies,

1 :1HQ<%+C.\/OTS+...) :0.651%%

Lmax QO 0

In

with ¢ a known analytically calculated number. Moreover, defying naive probabilistic
intuition, the softest particles do not multiply at all. The density of particles (partons)
with  ~ o/ stays constant while that of their more energetic companions increases
with the hardness of the process Q).

This is a powerful legitimate consequence of pQCD coherence. We turn now to
another, no less powerful though less legitimate, consequence.

2.4.3 Coherent damping of the Landau singularity

The time-like DLA anomalous dimension (2.57), as well as its MLLA improved ver-
sion, has a curious property. Namely, in sharp contrast with DIS, it allows the
momentum integral in (2.50) to be extended to very small scales. Even integrating
down to Qg = A, the position of the “Landau pole” in the coupling, one gets a fi-
nite answer for the distribution (the so-called limiting spectrum), simply because the
v/ as(k) singularity happens to be integrable!

It would have been poor taste to trust this formal integrability, since the very
PT approach to the problem (selection of dominant contributions, parton evolution
picture, etc.) relied on a; being a numerically small parameter. However, the im-
portant thing is that, due to time-like coherence effects, the (still perturbative but
“smallish”) scales, where a4(k) > w?, contribute to v basically in a w-independent

way, 7 + w/2 x yJas(k) # f(w). This means that “smallish” momentum scales k
affect only an overall normalization without affecting the shape of the z-distribution.

Since this is the role of the “smallish” scales, it is natural to expect the same for
the truly small — non-perturbative — scales where the partons transform into the
final hadrons. This idea has been formulated as a hypothesis of local parton-hadron
duality (LPHD). Mathematically, this hypothesis reduces to the statement (guess)
that the NP factor in (2.50a) has a finite w — 0 limit:

Db(uh)(Qo) — K" =const, w—0.

Thus, according to LPHD, the z-shape of the so-called “limiting” parton spectrum
which is obtained by formally setting (Jo = A in the evolution equations, should be
mathematically similar to that of the inclusive distribution of hadrons (h). Another
essential property is that the “conversion coefficient” K" should be a true constant
independent of the hardness of the process producing the jet under consideration.
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Figure 8: Inclusive distribution of charged hadrons produced in e*e™ annihilation

2.4.4 Brave gluon counting

The comparison of the limiting spectrum with the inclusive spectrum of all charged
hadrons (dominated by 7*) was pioneered by Glen Cowan (ALEPH) and by the
OPAL collaboration, and has become a standard test of analytic QCD predictions.

In Fig. 8 (DELPHI), the comparison is made of the all-charged hadron spectra
at various annihilation energies () with the so-called “distorted Gaussian” fit which
employs the first four moments (the mean, width, skewness and kurtosis) of the MLLA
distribution around its maximum.

Is it nothing but one more test of QCQ? Not quite. Such close similarity is deeply
puzzling, even worrysome, rather than a successful test.

Indeed, after a little exercise in translating the values of the logarithmic variable
£ = In(Fjet/p) in Fig. 8 into GeV you will see that the hadron momenta at the maxima
are, for example, p= %Q ce"tmax ~ (.42, 0.85 and 1.0 GeV for Q=14, 35 and 91 GeV,
respectively.

Is it not surprising that the pQCD spectrum is mirrored by that of the pions
(which constitute 90% of all charged hadrons produced in jets) with momenta well
below 1 GeV?!

For this very reason, the observation of the parton-hadron similarity was initially
met with serious and well-grounded scepticism: it looked more natural (and was more
comfortable) to blame the finite hadron mass effects for the falloff of the spectrum
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Figure 9: Inclusive energy distribution of charged hadrons in large—p, jets.

D.Goulianos, Proceedings 32nd Recontres de Moriond, Les Arcs, France, March 1997.

at large ¢ (small momenta) rather than seriously believe in the applicability of the
pQCD consideration down to such disturbingly small momentum scales.

This worry has recently been answered by CDF.

Theoretically, it is not the energy of the jet but the maximal parton transverse
momentum inside it, Kimax =~ Ejet sin%, that determines the hardness scale and
thus the yield and the distribution of the accompanying radiation. This means that
by choosing a small opening angle © around the jet axis one can study relatively
small hardness scales but in a cleaner environment: due to the Lorentz boost effect,
eventually all particles that form a short small-Q? QCD hump become relativistic
and concentrate at the tip of the jet.

For example, by selecting hadrons inside a cone ©® ~ (.14 around an energetic
quark jet with Fje ~ 100 GeV (LEP-II), one should see the very same curve that
corresponds to () = 14 GeV in Fig. 8. Its maximum, however, will now be boosted
from dubious 450 MeV into a comfortable 6 GeV range in Fig. 9.

A close similarity between the hadron yield and the full MLLA parton spectra
(Fig. 9, CDF) can no longer be considered accidental or attributed to non-relativistic
kinematical effects.

The fact that even a legitimate finite smearing due to hadronization effects does
not look mandatory, suggests a deep duality between the hadron and quark-gluon
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languages, as applied to such a global characteristic of multihadron production as an
inclusive energy spectrum.

2.5 QCD Radiophysics

Another class of multihadron production phenomena that speak in favor of LPHD
is the so-called inter-jet physics. It deals with particle flows in the angular regions
between jets in various multi-jet configurations. These particles do not belong to any
particular jet, and their production, at the PT level, is governed by coherent soft
gluon radiation off the multi-jet system as a whole. Due to QCD coherence, these
particle flows are insensitive to internal structure of underlying jets. The only thing
that matters is the color topology of the primary system of hard partons and their
kinematics.

The ratios of particle flows in different inter-jet valleys are given by parameter-
free PT predictions and reveal the so-called “string” or “drag” effects. For a given
kinematical jet configuration, such ratios depend only on the number of colors (N.).

For example, the ratio of the multiplicity flow between a quark (antiquark) and a
gluon to that in the ¢g valley in symmetric (“Mercedes”) three-jet ggg ete™ annihi-
lation events is predicted to be

949 2 96
quEg) ~ _5Nc -2 (2.58)
dN79) T 2N2 4 7

a9

Comparison of the denominator with the density of radiation in the ¢q valley in ggy
events with a gluon jet replaced by an energetic photon results in

AN T N2 -2 T '

Emitting an energetic gluon off the initial quark pair depletes accompanying radiation
in the backward direction: color is dragged out of the gq valley. This destructive
interference effect is so strong that the resulting multiplicity flow falls below that in
the least favorable direction transverse to the three-jet event plane:

ANY™ Ne+20F 17

(2.60)

At the level of the PT accompanying gluon radiation (QCD radiophysics), such pre-
dictions are quite simple and straightforward to derive. The strange thing is, that
these and many similar numbers are observed in experiments. The inter-jet parti-
cle flow we are discussing is dominated, at present energies, by pions with typical
momenta in the 100-300 MeV range! The fact that even such soft junk follows the
pQCD rules is truly amazing.
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Since, starting from the LEP-1 epoch, the “predictions” of the humpbacked plateau
and of the coherent string/drag effects stood up to scrutiny in ete™, DIS and Tevatron
experiments, we gained an important information about the physics of hadronization,
about confinement and thus about QCD.

3 Probing NP dynamics with PT tools

3.1 Soft confinement

Honestly speaking, it makes little sense to treat few-hundred- MeV gluons as PT
quanta. What hadron energy spectra and string/drag phenomena are trying to tell
us is that the production of hadrons is driven by the strength of the underlying color
fields generated by the system of energetic partons produced in a hard interaction.
Pushing PT description down into the soft gluon domain is a mere tool for quantifying
the strengths of the color field. We conclude:

e The color field that is developed by an ensemble of hard primary partons
determines the structure of the final flow of hadrons.

e The Poynting vector of the color field translates into the hadron Poynting vector
without visible reshuffling of particle momenta.

Mathematical similarity between the parton and hadron energy and angular distribu-
tions means that confinement is very soft and gentle. As far as the global characteris-
tics of final states are concerned, there is no sign of strong forces at the hadronization
stage.

When viewed globally, confinement is about renaming a flying-away quark into a
flying-away pion rather than about forces pulling quarks together. To preserve this
delicate correspondence is a challenge for the future quantitative theory of hadrons.

3.2 Ideology of Collinear-and-Infrared Safety

Whatever the hardness of the process, it is hadrons, not quarks and gluons, that hit
the detectors. For this reason alone, the applicability of the pQCD approach, even
to hard processes, is far from being obvious. One has to rely on plausible arguments
(completeness, duality) and look for observables that are less vulnerable towards our
ignorance about confinement.

In particle physics a discovery of a class of animals that are more equal than the
others is due to Sterman & Weinberg (1977). They introduced an important notion
of Collinear-and-Infrared Safety.

An observable is granted the CIS status if it can be calculated in terms of quarks
and gluons treated as real particles (partons), without encountering either collinear
(0 — 0) or infrared (ko — 0) divergences. The former divergence is a standard feature
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of (massless) QFT with dimensionless coupling, the latter, as we have seen, is typical
for massless vector bosons (photons, gluons).

This classification is more than mere zoology. Given CIS quantity, we expect its
PT QCD value predictable in the quark-gluon framework to be directly comparable
with its measurable value in the hadronic world. For this reason the CIS observables
are the preferred pets of QCD practitioners.

There are well elaborated procedures for counting jets (CIS jet finding algorithms)
and for quantifying the internal structure of jets (CIS jet shape variables). They allow
the study of the gross features of the final states while staying away from the physics of
hadronization. Along these lines one visualizes asymptotic freedom, checks out gluon
spin and colour, predicts and verifies scaling violation pattern in hard cross sections,
etc. These and similar checks have constituted the basic QCD tests of the past two
decades. This epoch is over. Now the High Energy Particle Physics community is
trying to probe genuine confinement effects in hard processes to learn more about
strong interactions. The programme is ambitious and provocative.

3.3 Gluers and power-suppressed NP corrections

Can one use the quark-gluon language, talk about QCD coupling a; at small momen-
tum scales? To answer such a question positively is not easy. Apart from courage, one
needs to design some more or less definite prescription for quantifying an interaction
strength at large distances where the very objects that are supposed to interact kind
of don’t exist! The best collection of arguments I could come up with, convincing or
not, can be found in the proceedings of the HEP Vancouver conference—1998.

In recent years first steps have been made towards a joint technology for triggering
and quantifying non-perturbative effects in CIS observables. It employs the basic PT
language to look for an impact of gluons with £, of the order of the confinement
scale (gluers) upon a given observable, be it “Euclid-translatable” cross sections or
essentially Minkowskian characteristics of hadronic final states.

The fact that the CIS observables are calculable in pQCD (that is, remain finite
when the collinear QCD cutoff u is set to zero) does not imply that they are completely
insensitive to NP dynamics. This only means that the genuine NP effects in CIS
quantities manifest themselves as finite power suppressed corrections proportional to
(n?/Q%)? log?(Q?/p*) with p > 0.

Simply by examining PT Feynman diagrams, one can find the exponents p, ¢ for
different observables. Knowing the leading power p is already useful: it tells us how
(in)sensitive to confinement physics a given observable is.

More ambitious a programme aims at the magnitudes of power-suppressed contri-
butions to hard cross sections and jet shape variables. (For references and a history
of insights, phenomenological achievements and conceptual and numerical mistakes,
this young subject is so rich with, the reader is invited to look into the proceedings
of the Vancouver—1998 and Blois—1999 conferences.)
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The magnitudes of the power-suppressed terms can be related with the behaviour
of the coupling a; in the infrared. Whatever the definition, it is thought to be a
universal function that characterizes, in an effective way, the strength of the QCD
interaction all the way down to small momentum scales. Given this universality,
it becomes possible to predict the ratios of the Q%" contributions to observables
belonging to the same class p.

In particular, the characteristic NP parameter

I
ag =t ! dk as(k*), (p1 =2 GeV) (3.61)

0
is conveniently used to quantify the NP hadronization effects in CIS jet shapes, many
of which belong to the p = % class, i.e. exhibit large 1/Q) power corrections. These
include the thrust 7', the so called C-parameter, invariant jet masses M; and My
(heavy-jet mass), the jet broadenings By and By (wide-jet broadening). Fig. 3.3
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Figure 10: ap from the means of jet shape variables (Salam & Wicke 2000)

verifies the (in)consistency of independent experimental determinations of the PT
and NP coupling from a variety of jet shapes, as it looks today (Salam & Wicke
2000). Given the relative weight of wishful thinking substituted for rigorous proofs
in formulating theoretical rules of the game, you would agree that the hypothesis of
universality (or, in other words, the notion of the universal infrared coupling) is not
ruled out, to say the least. (NB: two of the displayed jet shapes, namely My and By,
include jet selection, are therefore less inclusive and may have a reason to misbehave.)
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