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Abstract The QCD picture of multiparticle production in hard interactions is
reviewed. We illustrate the basic properties of high energy bremsstrah-
lung with practical examples such as hadroproduction of J/v, photon
radiation in W#* decays, hadronic accompanyment in Higgs production.
Special emphasis is given to coherence effects which determine the struc-
ture of particle multiplication in QCD jets (humpbacked plateau) and
the pattern of inter-jet hadron flows (QCD string/drag effects).

Introduction

I planned these lectures as a stress-lifting rather than fact-finding
mission. My aim is to convince you that the most simple calculations,
backed by a physical intuition, are capable of delivering many amusing
verifiable consequences. You will find some scattered formulae in the
text. They are all simple. Trust me. They are included not to scare
you away from reading but for the benefit of those (ideal) readers who
would like to see how things actually come about.

We shall play some selected themes: the concept of QCD partons,
physics of bremsstrahlung, conservation of color current, QCD coher-
ence, basics of multiparticle production in hard interactions. If, having
worked through these themes you will start hearing a symphony with
your inner ear, then the aim of the course will have been reached.

One confession is due before we start: you will find no bibliography
attached. This is because all the statements you will meet below fall
into two cathegories: they are either well-known or unpublished.



1. SMALL COUPLING, LARGE
LOGARITHMS AND EVOLUTION

QCD is a guantum theory; have no doubt about it. This very state-
ment seems to make the problem of describing parton systems involving
n > ng gluons and quarks (with the actual value of ng ~ 1 depending
on your computer) look hopeless: solving such a problem would call for
sorting out and calculating O((n!)?) Feynman diagrams.

Why should we worry about multiparton systems in the first place?
Is it not true that the squared matrix element in the n'" order of pertur-
bation theory is proportional to (/7)™ < (0.1)” and, thus, vanishingly
small for large n7 The answer to this (as to many other questions, ac-
cording to the celebrated Hegel’s dialectic wisdom) is: “Yes and No”.

Indeed,

Yes, it is very small, if we talk about a “multijet” configuration of 10
energetic quarks and gluons with large angles between them;

No, it is of order unity, if we address the total probability of having 8
extra gluons (and quarks) in addition to, say, a ¢g pair produced
in ete~ annihilation at LEP.

Allowing small relative angles between partons in a process with a large
hardness Q? results in a logarithmic enhancement of the emission prob-
ability:
2

oy —> as(i@% — aslogQQ. (1.1a)
As a result, the total probability of one parton (F) turning into two
(Ey ~ Ey ~ %E) may become of order 1, in spite of the smallness of the
characteristic coupling, a,(Q?) o 1/log@Q?. A typical example of such
a “collinear” enhancement — the splitting process ¢ — ¢7.

Moreover, when we consider the gluon offspring, another — “soft” —
enhancement enters the game, which is due to the fact that the gluon
bremsstrahlung tends to populate the region of relatively small energies
(E2E1>>EQEW)Z

dw dO?

oy = N FareTE

Thus the true perturbative “expansion parameter” responsible for par-

ton multiplication via ¢ — ¢qg and ¢ — gg may actually become much
larger that 1!

In such circumstances we cannot trust the expansion in as < 1 unless

the logarithmically enhanced contributions (1.1) are taken full care of in

all orders.

— aslog? Q*. (1.1b)
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Fortunately, in spite of the complexity of high order Feynman dia-
grams, such a programme can be carried out. There is a physical rea-
son for that: large contributions (1.1) originate from a specific region
of phase space, which can be viewed as a sequence of parton decays
strongly ordered in fluctuation times. Given such a separation in time,
successive parton splittings become independent, so that the emerging
picture is essentially classical. This is how the parton cascades described
by the classical equations of parton balance (evolution equations) come
about.

1.1. LOGARITHM IS NOT A FUNCTION

The very fact that the all-order logarithmic asymptotes can be written
down in a closed form and, more than that, that they a posteriori prove
to be quite simple, follows from the statement that constitutes a field-
theoretical “article of faith”:

Logarithm is not a function® but a signal of simple underlying physics.

In our context this simplicity has to do with the classical nature of

» soft enhancement of bremsstrahlung amplitudes (“infrared” singu-
larities) and

m  collinear enhancement of basic 1 — 2 parton splitting amplitudes
(or “mass” singularities).

As a result, the leading logarithmic asymptotes can be found without
performing laborious calculations. It suffices to invoke an intuitively
clear picture of parton cascades described in probabilistic fashion in
terms of sequential independent elementary parton branchings.

Whether the main enhanced terms are Double Logarithmic (DL) as
in (1.1b) or Single Logarithmic (SL), (1.1a), depends on the nature of
the problem under focus. The very distinction between DL and SL
asymptotic regimes is often elusive. To illustrate the latter statement
one may recall the QCD analysis of structure functions describing deep
inelastic scattering (DIS), the subject to be discussed in detail later on
in this lecture.

DIS (Q? large, x moderate) is a typical SL problem, with the following
perturbative (PT) expansion:

2 n
DM (x,QY) = Cu(z)- E [%ln Q—] + less sing. terms;  (1.2)
Q

lascribed to L.D.Landau



D(z,Q% = f:DW
n=0

Here z is the Bjorken variable and p? the finite initial virtuality of the
target parton A (quark, gluon).

In general, |C),(z)| ~ 1. However, in the quasi-elastic limit of z — 1,
when the invariant mass of the produced parton system becomes rela-
tively small, W2 = Q?(1—z)/z < @Q?, the expansion coefficients in (1.2)
take the form

Cp x [Cprln(l—2)]";

D(x,QQ) x (1—x)_lexp{cl;asln(l—x)lng—j}, (1.3a)

and the problem turns out to be DL. Another important example of such
a permutation has to do with the opposite limit of numerically small z.
In this region the dominant contribution comes from sea-quark pairs
copiously produced via gluon cascades, and the answer again exhibits
the DL asymptote:

[Nolnz™t)"
Cn(z) Wa

D(z,Q%) « z7'I (2\/Ncoes Inz=!ln Q—j) , (1.3b)

77 K
with I; the modified Bessel function.

1.2, PUZZLE OF DIS AND QCD PARTONS

Let us invoke the deep inelastic lepton-hadron scattering — a classical
example of a hard process and the standard QCD laboratory for carrying
out the perturbative resummation programme.

Here, the momentum ¢ with a large space-like virtuality Q% = |q2| is
transferred from an incident electron (muon, neutrino) to the target pro-
ton, which then breaks up into the final multiparton — multihadron sys-
tem. Introducing an invariant energy s = 2(Pgq) between the exchange
photon (Z°, W#) g and the proton with 4-momentum P (P? = MpQ), one
writes the invariant mass of the produced hadron system which measures
tnelasticity of the process as

W? = (q+P)* - M} =¢"+2(Pq) =s(1—x), T =
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The cross section of the process depends on two variables: the hardness
()? and Bjorken z. For the case of elastic lepton-proton scattering one
has =1 and it is natural to write the cross section as

do dory
P = aor A@) s, (1.4a)
Here oy < o?/Q* is the standard Rutherford cross section for e.m.
scattering off a point charge and f.; stands for the elastic proton form
factor.
For inclusive inelastic cross section one can write an analogous expres-
sion by introducing an inelastic proton “form factor” which now depends
on both the momentum transfer Q% and the inelasticity parameter z:

doi, dogutn 2

What kind of @?-behavior of the form factors (1.4) could one expect in
the Bjorken limit Q? — co? Quantum mechanics tells us how the Q%
behavior of the electromagnetic form factor can be related to the charge
distribution inside a proton:

fa(Q%) = /dg’r‘ p(7) exp {i@F}.

For a point charge p(F) = §(7), it is obvious that f = 1. On the contrary,
for a smooth charge distribution f(Q?) falls with increasing Q?, the
faster the smoother p is. Experimentally, the elastic e-p cross section
does decrease with Q2 much faster that the Rutherford one (f(Q?%)
decays as a large power of Q%). Does this imply that p(7) is indeed
regular so that there is no well-localized — point-charge inside a proton?
If it were the case, the inelastic form factor would decay as well in the
Bjorken limit: a tiny photon with the characteristic size ~ 1/Q — 0
would penetrate through a “smooth” proton like a knife through butter,
inducing neither elastic nor inelastic interactions.

However, as was first observed at SLAC in the late sixties, for a fixed
z, f2 stays practically constant with @2, that is, the inelastic cross sec-
tion (with a given inelasticity) is similar to the Rutherford cross section
(Bjorken scaling). It looks as if there was a point-like scattering in the
guts of it, but in a rather strange way: it results in inelastic break-
up dominating over the elastic channel. Quite a paradoxical picture
emerged; Feynman-Bjorken partons came to the rescue.

Imagine that it is not the proton itself that is a point-charge-bearer,
but some other guys (quark-partons) inside it. If those constituents were
tightly bound to each other, the elastic channel would be bigger than,



6

or comparable with, the inelastic one: an excitation of the parton that
takes an impact would be transferred, with the help of rigid links between
partons, to the proton as a whole, leading to the elastic scattering or
to the formation of a quasi-elastic finite-mass system (Nw, A7 or so),
-z« 1.

To match the experimental pattern f3(Q*) < f2(Q?) one has in-
stead to view the parton ensemble as a loosely bound system of quasi-
free particles. Only under these circumstances does knocking off one of
the partons inevitably lead to deep inelastic breakup, with a negligible
chance of reshuffling the excitation among partons.

The parton model, forged to explain the DIS phenomenon, was in-
trinsically paradoxical by itself. In sixties and seventies, there was no
other way of discussing particle interactions but in the field-theoretical
framework, where it remains nowadays. But all reliable (renormalizable,
4-dimensional) quantum field theories (QFTs) known by then had one
feature in common: an effective interaction strength (the running cou-
pling ¢2(Q?)) increasing with the scale of the hard process Q2. Actually,
this feature was widely believed to be a general law of nature, and for
a good reason®. At the same time, it would be preferable to have it the
other way around so as to be in accord with the parton model, which
needs parton-parton interaction to weaken at small distances (large Q?).

Only with the advent of non-Abelian QFTs (and QCD among them)
exhibiting an anti-intuitive asymptotic-freedom behavior of the coupling,
the concept of partons was to become more than a mere phenomenolog-
ical model.

1.3. QCD DIS MINUTES

Typical QCD graphs for DIS amplitudes are shown in Fig. 1.

For moderate z-values (say, # > 0.1) the process is dominated by
lepton scattering off a valence quark in the proton. The scattering cross
section has a standard energy behavior ¢ 27 2Uex=1) \here Joy is the
spin of the exchanged particle in the {-channel. It is the quark with
Jex :% in the left picture of Fig. 1, so that the valence contribution to
the cross section decreases at small z as ¢ < z.

For high-energy scattering, < 1, the Bethe-Heitler mechanism takes
over which corresponds to the t-channel gluon exchange: Jox =1, 0
2% =const (modulo logarithms).

In the Leading Logarithmic Approximation (LLA) one insists on pick-

ing up, for each new parton taken into consideration, a logarithmic en-

?relation between screening and unitarity
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Figure 1 Valence (left) and Bethe-Heitler mechanism (right) of DIS.

hancement factor oy, — oz log Q2. In this approximation the scattering
probability can be simply obtained by convoluting elementary probabil-
ities of independent 1 — 2 parton splittings.

To cut a long story short, the appearance of the log-enhanced contri-
butions in (1.1a) is due to the following structure

1 {a,, QF "
] l?ln p] (1.5)
B [%]n/cf dk? /kin dk? | /kis dk?, /1&2 dk? |

77 k1, k2,4 ki, Jwe KL

with kﬁ_z the squared transverse momenta of produced partons.

To contribute to the LLA, the transverse momenta of produced par-
tons should be strongly ordered, increasing up the “ladder”: k¥, <
.. < k2 < Q% (At the level of Feynman amplitudes the ladder di-
agrams dominate, provided a special physical gauge is chosen for gluon
fields.)

The expressions (1.2) and (1.3) exhibit an unpleasant (or wonderful,
according to taste) feature: they become senseless (diverge) in the zero-
quark-mass limit, g — 0. Well, when you see a nasty thing happen
beyond your reach, you can do no better than make use of it. This
“mass singularity”, according to (1.5), occurs in the lower limit of the
k. integration of the very first (and only!) parton branch. Let us drag
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this misbehaving integral to the left by rewriting (1.5) as

(1.5) Q2 )
_ o [ dR [%]n*/@z dk?, /’“in dii, /’“is dk?,
k

2 2 2 2
T Sz ki Q ki, ki, k1,

2
11

Q K’
_ % L1 [n-1]/2 7.2
= - (1. Q° k
T J2 kil ( 5) ( ’ J_1) ’

where we have combined the internal (n—1) integrals into the same
expression that corresponds to the previous order in «gz-expansion and
has a new lower limit kL substituted for the original p?. Now, we can
localize the py-dependence by evaluating the logarithmic derivative:
20 gy _% (g el
7 FRE (1.5) = - (1.5) .

This equation relates the n*® order of the PT expansion to the previous
one. To put this symbolic relation at work one first has to recall the
satellite z-dependence.

By extracting the first step one may look upon the rest as DIS off
a new “target” — the parton with transverse momentum kil and a
finite fraction z of the initial longitudinal momentum P. As a result,
there appears an additional integration with the probability of the first
splitting, ¢(z), and the differential equation for the resummed F(LLA)
takes the form

: 1

wias F e @) = = [ Zo 2 p (5,07 (6
Since a logarithm (like a stick) has two ends, differentiation over the
overall hardness scale (2 would do the same job, the result being the
evolution equation in a familiar form:

3] o Qs 2
g7 F @) = 6@ COF(E, Q). (1.6b)

where the symbol @ stands for convolution in the z-space.

Q2

1.4. LLA PARTON EVOLUTION

1.4.1 Space-like parton evolution. The decay phase space
for the space-like evolution determining the DIS structure functions is

dk? oy(k?) d
auAie = L aslk]) dz g (1.72)

K2 2m oz
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with z the longitudinal momentum fraction carried by the parton B.
The functions ® play the role of “Hamiltonian” (z-dependent kernels)
of the evolution equation (1.6) for the LLA parton distributions.

In the DIS environment the initial parton A with a negative (space-
like) virtuality decays into B[z] with the large space-like virtual momen-
tum |k%| > |k%| and a positive virtuality (time-like) C[1—2]. The parton
C' generates a subjet of secondary partons (— hadrons) in the final state.
Since no details of the final-state structure are measured in an inclusive
process, the invariant mass of the subjet C is integrated over. In the
dominant integration region k% < |k%| the parton C' looks quasi-real,
compared with the hard scale of |k%|. The same is true for the initial
parton A.

Splitting can be viewed as a large momentum-transfer process of scat-
tering (turnover) of a “real” target parton A into a “real” C' on the ex-
ternal field mediated by high-virtuality B. At the next step of evolution
it is B’s turn to play a role of a next target B = A’, “real” with respect
to yet deeper probe |k%| > |k%|, and so on.

Successive parton decays with step-by-step increasing space-like vir-
tualities (transverse momenta) constitute the picture of parton wave-
function fluctuations inside the proton. The sequence proceeds until the
overall hardness scale J? is reached.

1.4.2 Time-like parton cascades. A similar picture emerges
for the time-like branching processes determining the internal structure
of jets produced, for example, in ete™ annihilation. Here the flow of
hardness is opposite to that in DIS: evolution starts from a highly vir-
tual quark with positive virtuality, originating from the e.m. vertex,
while time-like virtualities of its products (“quasi-real” with respect to
predecessors; “high-virtuality” with respect to offspring) degrade.

In the time-like case the longitudinal phase space is symmetric in
offspring parton energy fractions, and the differential decay probability
reads

dO? o, (k?

dwA=BC = o 752(;‘) dz ®BY(2). (1.7b)
It is important to notice that the flow of energy (longitudinal momen-
tum) is governed, in the LLA, by the same functions @EC: it does
not matter that now, in contrast to space-like evolution, A is the “vir-
tual” one and B and C' are “real”. This relation (known as the Gribov-
Lipatov reciprocity) is one of many wonderful symmetries that our “par-
ton Hamiltonian” CI)EC obeys.
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1.4.3 Apparent and hidden in parton dynamics. When
studying inclusive characteristics of parton cascades, one traces a sin-
gle route of successive parton splittings. Having this in mind, we can
drop the label that marks partons C' whose fate does not concern us,
®BC(2) = ®F(2) (= Ppa in the standard Altarelli-Parisi notation).

For discussion of the relations between splitting functions it is conve-
nient to strip off color factors and introduce

Ci(z) =Cp Vi (),  @F(2) =CrVE(2), (1.8)
OG(2) =TrRVE (2),  @G(2) = Ne VG (2) .

Here C'r and N, are the familiar quark and gluon “color charges”, while
Tk is a scientific name for one half:

Ne
Tr(t*t?) = Y %41}, = Tré"™ = 16,
i,k=1

The splitting functions then read

z
1-=z 1+ 22
/() = 1.
VE@E) = (1.92)
1
z 1 5
—Z 1 1—-2
Ve = U= (1.9b)
1
© 1
—Z
VE(2) =224 (1-2)%, (1.9¢)
1
‘ 1
-z 1—
VE(z) =2 |2(1-2) + ~Z+1f—z . (1.9d)
1

They have the following remarkable symmetry properties.

Parton Exchange resultsin an obvious relation between probabilities
to find decay products with complementary momentum fractions:

vEO () = viB -z, (1.10a)
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Drell-Levy-Yan Crossing Relation emerges when one links to-
gether two splitting processes corresponding to opposite evolution “time”
sequences:

1
VA (2) = (=1)2at2em-1 B <;) (1.10D)

with s4 the spin of particle A. Strictly speaking, the crossing z — 1/z
relates the space-like and time-like evolution kernels, and vice versa,
V < V. Representing (1.10b) in terms of V relies upon an identity of
the LLA “Hamiltonians” mentioned above,

Gribov-Lipatov Reciprocity Relation:

V(Z)time—like — ‘/(Z)space—like . (110C)

As we see, these relations do not leave much freedom for splitting func-
tions. In fact, one could borrow Vﬁf from QED textbooks, reconstruct
VFG by exchanging the decay products (1.10a), and then obtain VCI; us-
ing the crossing (1.10b). This is the way to generate all three splitting
functions relevant for QED (1.9a)—(1.9c). The last gluon-gluon splitting
function (1.9d) transforms into itself under both (1.10a) and (1.10b).
The more surprising is the fact that the gluon self-interaction kernel
actually could have been obtained “from QED” using

the Super-Symmetry Relation:
VERD+VER) =VE ) +VE(2). (1.10d)

This relation exploits the existence of the supersymmetric QFT closely
related to real QCD. In the SUSY-QCD, “quark” and “gluon” belong
to the same (adjoint) representation of the color group, so that all color
factors become identical Cp = C'4 = T'r (cf. (1.8)). Bearing this in mind
one can spell out (1.10d) as an equality between the total probabilities
of “quark” and “gluon” decays. The fact that it holds identically in z
means that there is an infinite number of non-trivial conservation laws
in this theory!
Even this is not the end of the story.

Conformal Invariance leads to a number of relations (involving

derivatives) between splitting functions, the simplest of which reads

<zi — 2) VE(2) = (zi + 1) VE(2) (1.10e)
dz ¢ dz A '

The general character of the symmetry properties makes them prac-
tically useful when studying subleading effects in parton distributions
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where one faces technically difficult calculations. For example, the su-
persymmetric QCD analogue had been used to choose between two con-
tradictory calculations in the next-to-LLA (the two-loop anomalous di-
mensions). We illustrate the idea by another example of the most ad-
vanced next-to-next-to-leading result obtained by Gaffney and Mueller
for the ratio of mean parton multiplicities in gluon and quark jets, which
reads

Cr N,
N. N,

T T
~ 1—<1+ S _9 fCF)

L?VC LN(:.Q
asN. azN, <25 3T TfCF)

187 ' 187 \ 8 4N. NZ

(1.11)

Here Ty = 2nTR , with 2ns the number of fermions (quarks and anti-
quarks of ny flavours).

The symmetry between quarks (fermions) and gluons (bosons) is hid-
den in QCD. It becomes manifest in another QFT which is a super-
symmelric partner of QCD. In that theory fermions and vector bosons
have the same color properties (both correspond to the adjoint repre-
sentation). Equating the color factors, N. = Cr = Tg, and bearing in
mind another subtlety, ny = % (since the “quark” is a Majorana fermion
there), it is straightforward to verify that the ratio of multiplicities in
“quark” and “gluon” jets (1.11) indeed turns to unity, in all known (as

well as in all unknown) orders.

1.4.4 Fluctuation Time and Evolution Times: Coherence.

Once the Hamiltonian is known, it suffices to propagate it in time to
find all we want to know about the system. But was is the time in our
context?

An attentive reader has noticed that back in (1.7) we wrote the par-
ton splitting phase space differently: for the space-like case (1.7a) in
terms of transverse momentum k&, and for the time-like evolution (1.7b)
via the decay angle ©. Logarithmic differentials by themselves are iden-
tical, since k% and ©? are proportional for fixed z. We have made
this distinction to stress an important difference between a probabilistic
interpretation of DIS and the ete™ evolution: the different evolution
times.

To be honest, within the LLA framework it does not make much sense
to argue which of evolution parameters Ink?%,, In ©2 or In |k?| (with &2
the total parton virtuality) does a better job: these choices differ by
subleading terms. A mismatch is of the order of

o2z, (1.12)
™
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Strictly speaking, such contributions should be treated as O(a;) within
the LLA logic and neglected as compared to a;In Q) ~ 1. These nexi-to-
LLA terms become significant, however, and should be taken care of and
“resummed” in all orders when numerically small values of the Bjorken
x are concerned?® such that 2= In?z ~ 1.

In the DIS environment, the transverse momentum ordering proves to
be the one that takes care of potentially disturbing corrections (1.12) in
all orders, and in this sense becomes a preferable choice for constructing

the probabilistic scheme for space-like parton cascades (DIS structure

functions).
On the other hand, in the case of the time-like cascades — yes, you’ve
guessed it right from (1.7b)! — it is the relative angle between the

offspring partons which has to be kept ordered, decreasing along the
evolutionary decay chain.

What is the difference between the two prescriptions, and how do
they relate with the fluctuation time ordering which was claimed in the
beginning of the lecture to ensure the probabilistic picture?

The time ordering is there. Simply by examining the Feynman de-
nominators it is easy to see that the maximally enhanced contribution
— collinear logarithm per each splitting, as in the DIS “ladder” (1.5) —
implies the ordering in L

tauct ™~ J.
fluct ki
In the DIS kinematics the evolution goes from the proton side and, on the

way towards the virtual probe (2, parton fluctuations are successively
shorter-lived (the “probe” is faster than the lifetime of the “target”):

: deri Ry ki 13
time ordering —  ; = 2 liv1 = 2. (1.13a)
1z 1241
k, ordering — kii < kiiv1, (1.13b)
mismatch = z-k3; < k3, < ki, (1.13c)

In the case of a time-like jet the order of events is opposite. The process
starts from a large scale s = 9%, and the partons of the generation (i+1)
live longer than their parent (7):

kyji

_ ki
- 2
kJ_i

L2
kJ_i-}—l

time ordering — t; < tiv1 (1.14a)

3The word “numerically” stands here as a warning for not confusing this kinematical region
with a “parametrically” small z, such that aslnl/z ~ 1 — the Regge region — where
essentially different physics comes onto stage.
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ki; ki,
angular ordering — 0; = kL Oiv1 = kL +1 . (1.14b)
[é [[i+1
92
mismatch = 67 < 67, < ;Z (1.14c)

We see that in both situations the mismatch, (1.13c) and (1.14c), may
become significant in the case of a relatively soft decay,

that is, when soft gluon emission comes onto stage. Here we better be
careful: the catch is, to be emitted later does not guarantee being emit-
ted independently. Quantum mechanics, you know. The time-ordering
(1.13a), (1.14a) proves to be too liberal in both cases. In fact, the parton
multiplication in the regions (1.13c) and (1.14c) is suppressed. The sum
of the contributing Feynman diagrams vanish.

Let us sort out here the DIS puzzle (1.13), and leave the time-like
angular ordering phenomenon (1.14) to be slowly enjoyed in the next
lecture.

1.4.5 Vanishing of the forward inelastic diffraction. Con-
sider a bit of the DIS ladder — a two-step process shown by the first
graph in Fig. 2. Let the second decay be soft, z; < 1. (The first one
can be either soft or hard, z; £ 1.) In the kinematical region (1.13c),

2o ki < k3L < kL, (1.15)

the time-ordering is still intact, which means that the momentum #k,
is transferred fast as compared with the lifetime of the first fluctuation

P—}Pl—}-kl.
kg k2

kl P! k‘g kl

P P P kq P P
Figure 2 In the “wrong” kinematics k21 < k11, the sum of the two space-like evo-
lution amplitudes cancels against the final state time-like decay

Since k; is the softest, energy-wise, the process can be viewed as inelastic
relativistic scattering P — P’ + &y in the external gluon field (k3). The
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P2

P2+ k
P

Vv

Figure 3 Photon Bremsstrahlung diagrams for scattering off an external field.

transverse size of the field is p; ~ k;j The characteristic size of the fluc-
tuation P'+ ky, according to (1.15), is smaller: Argyy ~ kl_j < py. We
thus have a compact state propagating through the field that is smooth
at distances of the order of the size of the system. In such circumstances
the field cannot resolve the internal structure of the fluctuation. Com-
ponents of the fluctuation, partons P’ and k; in the first two graphs of
Fig. 2, scatter coherently, and the total amplitude turns out to be iden-
tical and opposite in sign to that for the scattering of the initial state P
(the last graph): inelastic breakup does not occur.

The cancellation between the amplitudes of Fig. 2 in the region (1.15),
and thus the k) ordering, is a direct consequence of the conservation of
current.

2. BREMSSTRAHLUNG, COHERENCE,
CONSERVATION OF CURRENT

The purpose of the second lecture is to recall the basic properties of
photon radiation. Once the QED bremsstrahlung is understood as an
essentially coherent and, at the same time, intrinsically classical phe-
nomenon, the physics of gluon radiation will readily follow suit. So, we
shall start from the electromagnetic radiation and turn to gluons only
once in this lecture, when there is something interesting to say in the
specific QCD context (.JJ/¢ production and the Low theorem).

2.1. PHOTON BREMSSTRAHLUNG

Let us consider photon bremsstrahlung induced by a charged particle
(electron) which scatters off an external field (e.g., a static electromag-
netic field). The derivation is included in every textbook on QED, so we
confine ourselves to the essential aspects.

The lowest order Feynman diagrams for photon radiation are depicted
in Fig. 3, where pq, p are the momenta of the incoming and outgoing
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electron respectively and k represents the momentum of the emitted
photon. The corresponding amplitudes, according to the Feynman rules,
are given in momentum space by

% 7" u(py, s1), (2.16a)

m+py, + ¥
mv(]h‘}‘k—pl) u(p1,s1). (2.16b)

Here V stands for the basic interaction amplitude which may depend
in general on the momentum transfer (for the case of scattering off the
static e.m. field, V = ~9).

First we apply the soft-photon approximation, w < p?, pJ, to neglect
¥ terms in the numerators. To deal with the remaining matrix structure
in the numerators of (2.16) we use the identity pv* = —y# p + 2 p* and
the Dirac equation for the on-mass-shell electrons,

(m+p,) 7" ulp) = 2py + [(m = ]) ulpr) = 207 w(pr)
u(p2) 7" (m+ ) = wlpz) ([(m = Py |+ 2Y) = 2p3 u(p2) -
Denominators for real electrons (p? = m?) and the photon (k* = 0)

become m* — (p; — k)? = 2(p1k) and m* — (pz + k)* = —2(p2k), so that
for the total amplitude we obtain the factorized expression

M* =ej# x Mg . (2.17a)

M! = eulps, s2) V(pa+k—p1)

My = eu(pa,s2) 7"

Here M, is the Born matrix element for non-radiative (elastic) scatter-
ing,
Me = u(pz, 52) V(p2 — p1) u(p1, s1) (2.17b)

(in which the photon recoil effect has been neglected, ¢ = pa + k — p; ~
p2 — p1), and j* is the soft accompanying radiation current

P it P} .

4 (k) k) ) (2.17¢)
Factorization (2.17a) is of the most general nature. The form of j#
does not depend on the details of the underlying process, neither on the
nature of participating charges (electron spin, in particular). The only
thing which matters is the momenta and charges of incoming and outgo-
ing particles. Generalization to an arbitrary process is straightforward
and results in assembling the contributions due to all initial and final
particles, weighted with their respective charges.

The soft current (2.17c) has a classical nature. It can be derived from

the classical electrodynamics by considering the potential induced by
change of the e.m. current due to scattering.



Bremsstrahlung 17

2.2. CLASSICAL CONSIDERATION

From classical field theory we know that it is the acceleration of a
charge that causes electromagnetic radiation. Electromagnetic current
participating in field formation in the course of scattering consists of two
terms (we suppress the charge e for simplicity)

L. Ch = 60183 (F—d1t) -9t — 1),
C=Ci+C, {f ao(r =) 9t ~1)

(2.18a)
CQ — ‘172 53(F— ‘172 t) : ﬁ(t - to) s

with @ the velocity of the initial (final) charge moving along the clas-
sical trajectory 7 = #;t. By ty we denote the moment in time when
the scattering occurs and the velocity abruptly changes. To achieve
a Lorentz-covariant description one adds to (2.18a) an equation for the
propagation of the charge-density D to be treated as the zero-component
of the 4-vector current C*,

ctw,r) = (D7), Gilt, 7)) = ot Dy, (2.18b)
with v/ the 4-velocity vectors

The emission amplitude for a field component with 4-momentum (w, E)
is proportional to the Fourier transform of the total current. For the
two terms of the current we have

Clk) = /dt/d%e”kvcﬂ _'—vl/ dr ¢ (to)=ilE3)r

_ Civeln 2,190
KO — (k- %)
[ole] .y + oo . e
’Lk to
_ 7 2.190)
kO —(k-ﬁ;))

The solution of the Maxwell equation for the field potential induced by
the current (2.19) reads

o d4k —izkk . 2 o
AP (z) :/(%)4 =i b [_2mis(k2)] - O (k)
d?’k ozl i s
_ —twz’+i(k-Z) | An

2w(27)3 ‘ A(E)

(2.20)
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where
At (k) = Ay (k) — AL (F) ;

u iwtg . . 221
Al (k) = Y '€ w=|k|, (k-7) =wv; cosB;. ( )

w(l—v;cos80;)’ ‘

Here ©; are the angles between the direction of the photon momentum
and that of the corresponding (initial/final) charge.
Rewriting (2.21) in the covariant form

ol ok I
vl E; v; P;

2

w— (k%) Ei(w-(k-5) (k)

we observe that the classical 4-vector “potential” (2.21), as expected,
is identical to the quantum amplitude j# (2.17c), apart from an over-
all phase factor exp(iwtg). The latter is irrelevant for calculating the
observable cross section (see, however, section 2.4.3).

We conclude that the classical consideration gives the correct accom-
panying radiation pattern in the soft-photon limit. This is natural be-
cause in such circumstances (negligible recoil) it is legitimate to keep
charges moving along their classical trajectories, which remain unper-
turbed in the course of sending away radiation.

2.3. SOFT RADIATION CROSS SECTION

To calculate the radiation probability We square the amplitude pro-
jected onto a photon polarization state €2, sum over A and supply the
photon phase space factor to write down

dW = €? Z ‘5

A=1,2

wr

2 w? dw dS,
7d ol - 2.22
‘ 2w (27)3 We (222)

The sum runs over two physical polarization states of the real photon,
described by normalized polarization vectors orthogonal to its momen-
tum:

(k) - (k) = =0, €\(k) -k, =0; AN =1,2.

Within these conditions the polarization vectors may be chosen differ-
ently. Due to the gauge invariance such an uncertainty does not affect
physical observables. Indeed, the polarization tensor may be represented
as

Z ke’ = —g¢g"” + tensor proportional to k* and/or k¥ . (2.23)
A=1,2
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The latter, however, can be dropped since the classical current (2.17¢)
is explicitly conserving, (j#k,) = 0. Therefore one may enjoy the gauge
invariance and employ an arbitrary gauge, instead of using the physical
polarizations, to calculate accompanying photon production.

The Feynman gauge being the simplest choice,

woky v
Z EXEX — _g# ’

A=1,2
we arrive at
av = W@ i dwde,
dWy 472 9.94
gd_wde 1 —cos®; (2.24)

12

T w 21 (1—cosO;)(1—cosOy) "

The latter expression corresponds to the relativistic approximation 1 —
v, 1 — vy L 1:

vz 2(pip2) m’\ 2 (1 — 7y - 7y)
0= (p1k)(p2k) +O( )

Twr(l-d A (1-ny-R) ]
it disregards the contribution of very small emission angles ©? < (1 —
v?) = m?/p; < 1, where the soft radiation vanishes (the so-called “Dead
Cone” region).
If the photon is emitted at a small angle with respect to, say, the
incoming particle, i.e. ©; € O3 ~ O, the radiation spectrum (2.24)

simplifies to

»

a sin®,dO; dw « d@r‘{ dw
dN >~ ———— — v ——— —
T(l—cos©) w 70 w
Two bremsstrahlung cones appear, centered around incoming and out-
going electron momenta. Inside these cones the radiation has a double-
logarithmic structure, exhibiting both the soft (dw/w) and collinear
(d©?/6?) enhancements.

2.3.1 Low-Barnett-Kroll wisdom. Soft factorization (2.17a)
is an essence of the celebrated soft bremsstrahlung theorem, formulated
by Low in 1956 for the case of scalar charged particles and later gen-
eralized by Barnett and Kroll to charged fermions. The very classical
nature of soft radiation makes it universal with respect to intrinsic quan-
tum properties of participating objects and the nature of the underlying
scattering process: it is only the classical movement of electromagnetic
charges that matters.
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It is interesting that according to the LBK theorem both the leading
dw/w and the first subleading, o dw, pieces of the soft photon spectrum
prove to be “classical”.

For the sake of simplicity we shall leave aside the angular structure
of the accompanying photon emission and concentrate on the energy
dependence. Then, the relation between the basic cross section o(©)
and that with one additional photon with energy w can be represented
symbolically as

do™ (p;, w) o %djw l(l - %) 0O (pi) + (%)2 5(pi,w)] - (2:25)

The first term in the right-hand side is proportional to the non-radiative
cross section ¢(9). The second term involves the new w-dependent cross
section ¢ which is finite at w = 0, so that this contribution is suppressed
for small photon energies as (w/FE)2.

This general structure has important consequences, the most serious
of which can be formulated, in a dramatic fashion, as

2.3.2 Soft Photons don’t carry quantum numbers. We
are inclined to think that the photon has definite quantum numbers
(negative C-parity, in particular). Imagine that the basic process is
forbidden, say, by C-parity conservation. Why not to take off the veto
by adding a photon to the system? Surely enough it can be done. There
is, however, a price to pay: the selection rules cannot be overcome by soft
radiation. Since the classical part of the radiative cross section in (2.25)
is explicitly proportional to the non-radiative cross section o(®) = 0,
only energetic photons (described by the ¢ term) could do the job. The
energy distribution

d3k
IM* — x wdw
w

is typical for a quantum particle, where the production matrix element
M is finite in the w — 0 limit, M = O(1). An enhanced radiation matrix
element, M o w™! characterizes a classical field rather than a quantum
object.

So, the price one has to pay to overrule the quantum-number veto by
emitting a soft photon with w < F is the suppression factor

2
w
-] <1
()
We conclude that the photons that are capable of changing the quantum
numbers of the system (be it parity, C-parity or angular momentum)
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cannot be soft. Neither can they be collinear, by the way, as it follows
from the

2.3.3 Gribov Bremsstrahlung theorem. This powerful gen-
eralisation of the Low theorem states that a simple factorization holds at
the level of the matriz element, provided the photon transverse momen-
tum with respect to the radiating charged particle is small compared to
the momentum transfers characterizing the underlying scattering pro-
cess: .

20 o B g0y g (2.26)

L

Here again M = const in the k; — 0 limit. This factorization holds for
hard photons (w ~ F') as well as for soft ones.

Both the Low-Barnett-Kroll and the Gribov theorems hold in QCD
as well. In particular, it is the Gribov collinear factorization that leads
to the probabilistic evolution picture describing collinear QCD parton
multiplication we have discussed in the first lecture.

In the QCD context, our statement that “soft photons don’t carry
quantum numbers” should be strengthened to even more provocative
(but true)

2.34 Soft Gluons don’t carry away no color. Don’t rush
to protest. Just think it over. In more respectable terms this title could
be abbreviated as the NSFL (no-soft-free-lunch) theorem.

Imagine we want to produce a heavy quark QQ bound state (“onium”)
in a hadron-hadron collision. The C-even (xg) mesons can be produced
by fusing two quasi-real gluons (with opposite colors) from the QCD
parton clouds of the colliding hadrons:

(9+9)1) = Q+Q = xq- (2.27)

In particular, radiative decays of such y. mesons are responsible for
about 40% of the J/¢ yield. How about the remaining 60% ? To
directly create a J/¢ (or ' — 35; C-odd ce states) two gluons isn’t
enough. A (C-odd meson can decay into, or couple to, three photons
(like para-positronium does), a photon plus two gluons, or three gluons
(in a color-symmetric d,p. state).

So, we need one more gluon to attach, for example, in the final state:

(9+9) s — (Q+@)(8) - J/b+g. (2.28)

To pick up an initial gg pair in a color octet state is easier than in the
singlet as in (2.27). This, however, does not help to avoid the trouble:
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the perturbative cross section turns out to be too small to meet the need.
It underestimates the Tevatron pp data on direct .J/¢ and ¢’ production
by a large factor (up to 50, at large p, ).

That very same effect that makes the .J/¢ so narrow a meson with
the small hadronic decay width I'j/, /M o?(M), suppresses its per-
turbative production cross section (2.28) as well.

Since the PT approach apparently fails, it seemed natural to blame the
non-perturbative (NP) physics. Why not to perturbatively form a color-
octet “J/1¢” and then to get rid of color in a smooth (free of charge)
non-perturbative way? To evaporate color does not look problematic:
on the one hand, the soft glue distribution is dw/w = O(1), on the other
hand, the coupling a;/7 in the NP domain may be of the order of unity
as well. So why not?

The LBK theorem tells us that either the radiation is soft-enhanced,
x dw/w = O(1), and classical, or hard, x wdw and capable of changing
the quantum state of the system. Therefore, to rightfully participate in
the J /9 formation as a quantum field, a NP gluon with w ~ Aqcp would
have to bring in the suppression factor

Aqep \?
(Pe2) <1
The language of the LBK is perturbative, ’tis true. The question is,
and a serious one indeed, whether the NP phenomena respect the basic
dynamical features that its PT counterpart does? Or shall we rather
forget about quantum mechanics, color conservation, etc. and accept an
“anything goes” motto in the NP domain?

To avoid our discussion turning theological, we better address another
verifiable issue namely, photoproduction of J/¢ at HERA. Here we have
instead of (2.28) the fusion process of a real (photoproduction) or virtual
(electroproduction) photon with a quasi-real space-like gluon from the
parton cloud of the target proton:

Y® g - (Q+@)(8) = J/v+g. (2.29)

If the final-state gluon were soft NP junk, the .J/¢ meson would carry
the whole photon momentum and its distribution in Feynman z would
peak at z = 1 as (1 — 2)~!. The HERA experiments have found instead
a flatish (if not vanishing) z-spectrum at large z. The NSFL theorem
seems to be up and running.

By the way, the conventional PT treatment of the photoproduction
(2.29) is reportedly doing well. So, what is wrong with the hadropro-
duction then? Strictly speaking, the problem is still open. An alternative
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to (2.28) would be to look for the third (hard or hardish) gluon in the
initial state.?

The NSFL QCD discourse has taken us quite far from the mainstream
of the introductory lecture. Let us return to the basic properties of QED
bremsstrahlung and make a comparative study of

2.4. INDEPENDENT AND COHERENT
RADIATION

In the Feynman gauge, the accompanying radiation factor dN in
(2.24) is dominated by the interference between the two emitters:

i Py L 2pp)
AN o l@ (P2k)] T (pk) (pak)

Therefore it does not provide a satisfactory answer to the question, which
part of radiation is due to the initial charge and which is due to the final
one?

There is a way, however, to give a reasonable answer to this question.
To do that one has to sacrifice simplicity of the Feynman-gauge calcu-
lation and recall the original expression (2.22) for the cross section in
terms of physical photon polarizations. It is natural to choose the so-
called radiative (temporal) gauge based on the 3-vector potential fY, with
the scalar component set to zero, Ag = 0. Our photon is then described
by (real) 3-vectors orthogonal to one another and to its 3-momentum:

(& -&v)=0b0w, (&-k)=0. (2.30)

This explicitly leaves us with two physical polarization states. Summing
over polarizations obviously results in

AN o« 3 [k @ = D0 k) [bap — Aaiip] - P (R), (2.31)
A=1,2 a,f=1...3

‘ 2

with «, § the 3-dimensional indices. We now substitute the soft current
(2.17¢) in the 3-vector form, p! — Tipo;, and make use of the relations

GAR [m - kifﬁ ] (7)s = vlsin®O;, (2.32a)
- koz kﬁ -~
(T1)a [0ap — o (U2)p = wv1v2(cosOq3 — cos O cosOz) , (2.32b)

4an interesting, reliable and predictive model for production of onia in the gluon field of
colliding hadrons is being developed by Paul Hoyer and collaborators, see hep-ph/0004234
and references therein
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to finally arrive at

« dw d©2
Here
H2 20,
Ry = SO g, (2.33b)

(1 - v;co80;)?’
v103 (cos O12 — cos Oy cos O3)

T s (1 —wicosO;1)(1—vac0807) (2.33¢)

The contributions Ry 2 can be looked upon as being due to independent
radiation off initial and final charges, while the J-term accounts for
interference between them. The independent and interference contribu-
tion, taken together, describe the coherent emission. It is straightforward
to verify that (2.33) is identical to the Feynman-gauge result (2.24):

Rewr = Rivaey — 27 = —w°(j*)?, Ruu = R1+R2.  (2.34)

2.4.1 The role of interference: strict angular ordering.
In the relativistic limit we have

sin? O 2
Ri =~ —m———=—-1 2.35
! (1—cosO1)? oy ’ (2.352)
cos O3 — cos O cos Oy a1+ ay — ays
~ = -1 (2.35b
J (1 —cos®q)(1 — cosOy) aia; (2:35b)

where we introduced a convenient notation

ap=1—-7M =1—cosO1, ay=1-cosOy,

algzl—ﬁlﬁgzl—COSGS.

The variables a are small when the angles are small: a ~ %@2.
The independent radiation has a typical logarithmic behavior up to
large angles a; < 1:

d
dN; x Rq sin©dO® ﬂ.

a1

However, the interference effectively cuts off the radiation at angles ex-
ceeding the scattering angle:

da ~ d_a ~ de?
1G9 a? et "’

dN < R_.,.. sin ©@dO = 2a;-

a1:a2>>a12.
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To quantify this coherent effect, let us combine an independent contri-
bution with a half of the interference one to define

VieRy— T = 2 aytay—ap _ a2+ ax — aq 7
a1 a1a2 a1a2 (2 36&)
2 a1 +ay —a a9+ a; —a )
Vo= Ry J = = — 1 2 12 _ G12 1 2;
as ajasg a1a9
R = V1 + V5. (2.36b)

The emission probability V; can be still considered as “belonging” to the
charge #1 (V7 is singular when a; — 0, and vice versa). At the same time
these are no longer independent probabilities, since V; explicitly depends
on the direction of the partner-charge #2; conditional probabilities, so
to say.

It is straightforward to verify the following remarkable property of the
“conditional” distributions V': after averaging over the azimuthal angle
of the radiated quantum, 7, with respect to the direction of the parent
charge, 7y, the probability Vi (7, @i;;72) vanishes outside the ©;-cone.
Namely

27rd o oL 2 _
(V1) = /0 LVl(n,nl;n;)) = —V(a12 —a1) . (2.37)

azimuth 27T al

It is only ag that changes under the integral (2.37), while a;, and obvi-
ously ayq, stay fixed. The result follows from the angular integral

/% dfpm 1 1 1
0

21 ay  |cos©p — cos O - lals — ay|

Naturally, a similar expression for V, emerges after the averaging over
the azimuth around 75 is performed.

We conclude that as long as the total (angular-integrated) emission
probability is concerned, the result can be expressed as a sum of two in-
dependent bremsstrahlung cones centered around 7y and iy, both having
the finite opening half-angle O;.

This nice property is known as a “strict angular ordering”. It is
an essential part of the so-called Modified Leading Log Approximation
(MLLA), which describes the internal structure of parton jets with a
single-logarithmic accuracy.

2.4.2 Angular ordering on the back of envelope. What
is the reason for radiation at angles exceeding the scattering angle to
be suppressed? Let us try our physical intuition and consider semi-
classically how the radiation process really develops.
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A physical electron is a charge surrounded by its proper Coulomb field.
In quantum language the Lorentz-contracted Coulomb-disk attached to
a relativistic particle may be treated as consisting of photons virtually
emitted and, in due time, reabsorbed by the core charge. Such virtual
emission and absorption processes form a coherent state which we call a
physical electron (“dressed” particle).

This coherence is partially destroyed when the charge experiences an
impact. As a result, a part of intrinsic field fluctuations gets released in
the form of real photon radiation: the bremsstrahlung cone in the direc-
tion of the initial momentum develops. On the other hand, the deflected
charge now leaves the interaction region as a “half-dressed” object with
its proper field-coat lacking some field components (eventually those
that were lost at the first stage). In the process of regenerating the
new Coulomb-disk adjusted to the final-momentum direction, an extra
radiation takes place giving rise to the second bremsstrahlung cone.

Now we need to be more specific to find out which momentum com-
ponents of the electromagnetic coat do actually take leave.

A typical time interval between emission and reabsorption of the pho-
ton k by the initial electron p; may be estimated as the Lorentz-dilated
lifetime of the virtual intermediate electron state (p; — k) (see the left
graph in Fig.3),

E1 E1 1 w

otuce ™ = ~ ~ . 2.38
|m? — (p1 — k)?|  2pik wO? T k2 (2:38)

Here we restricted ourselves, for simplicity, to small radiation angles,
k1 ~wO < k= w. The fluctuation time (2.38) may become macro-
scopically large for small photon energies w and enters as a character-
istic parameter in a number of QED processes. As an example, let us
mention the so called Landau-Pomeranchuk effect — suppression of soft
radiation off a charge that experiences multiple scattering propagating
through a medium. Quanta with too large a wavelength get not enough
time to be properly formed before successive scattering occurs, so that
the resulting bremsstrahlung spectrum behaves as dN « dw/+/w instead
of the standard logarithmic dw/w distribution.

The characteristic time scale (2.38) responsible for this and many
other radiative phenomena is often referred to as the formation time.

Now imagine that within this interval the core charge was kicked
by some external interaction and has changed direction by some O;.
Whether the photon will be reabsorbed or not depends on the position
of the scattered charge with respect to the point where the photon was
expecting to meet it “at the end of the day”. That is, we need to compare
the spatial displacement of the core charge A7 with the characteristic



Bremsstrahlung 27

size of the photon field, A ~ wl A~k
1 CAY

2 5 )

Ay~ fo = o1y | e~ ©F - 207 = (5) Al S A

1 O,
ATJ_N C@S'tﬂ“ctNGS‘w—GQ :<6)AJ— <~ AJ_.

(2.39)

For large scattering angles, ©5 ~ 1, the charge displacement exceeds the
photon wavelength for arbitrary ©, so that the two full-size bremsstrah-
lung cones are present. For numerically small ©; < 1, however, it is
only photons with ©® < ©; that can notice the charge being displaced
and thus the coherence of the state being disturbed. Therefore only the
radiation at angles smaller than the scattering angle actually emerges.
The other field components have too large a wavelength and are easily
reabsorbed as if there were no scattering at all.

So what counts is a change in the current, which is sharp enough
to be noticed by the “to-be-emitted” quantum within the characteristic
formation/field-fluctuation time (2.38) of the latter.

Radiation at large angles has too short a formation time to become
aware of the acceleration of the charge. No scattering — no radiation.

The same argument applies to the dual process of production of two
opposite charges (decay of a neutral object, vacuum pair production,
etc.). The only difference is that now one has to take for A7 not a
displacement between the initial and the final charges, but the actual
distance between the produced particles (spatial size of a dipole), to be
compared with the radiation wavelength.

2.4.3 Time delay and decoherence effects. Till now we
were dealing with particle scattering/production as instant processes.
Such they usually are (as compared with typical formation times). Nev-
ertheless, let us imagine that our electron in Fig. 3 is delayed by some
finite At = 7 “in the V-vertex”. For example, as if some metastable
state was formed with characteristic lifetime 7 = I'~!.

In such a case one would have to take into consideration an extra
longitudinal charge displacement due to a finite delay, and (2.39) would
be modified as

(o) 2
ATH ~ (6) /\H +cr & /\H ~wl
Now the condition Arj| < A for the radiation at © >©; to be coherently

suppressed implies an additional restriction 7 < w™!. For large enough
values of the delay time, 7 > E~!, this new condition seriously affects
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radiation with comparatively large energies w > 77! (but still soft in
the overall energy scale, w < Ej;). Such photons acquire sufficiently
large resolutions for coherence to be completely destroyed by the delay.
Therefore they are bound to form two independent bremsstrahlung cones
even for ©,=0.

So we would expect the accompanying radiation pattern to be that
of the coherent antenna R._,.. for softer radiation, 77! > w, and, on
the contrary, a sum of two independent sources Ry + R4 for relatively
hard photons, 77! < w < E. This qualitative expectation has a nice
quantitative approval.

The initial and final electron currents in (2.17¢) now acquire different
phases due to the difference between the Freeze! and Move! times tg;
and oy (cf. (2.19)):

PL Py it
jt = gk (k) = —= ¥ — —=_ ¥z 2.40
Now we should be careful when calculating the radiation probability,
since the new current (2.40) is no longer conserved: (j*aa.k,) # 0. In
particular, we cannot use the Feynman-gauge square of this current. The
conservation could be formally rescued by adding the term describing our
charge being frozen within the time interval {go — to1, namely

6 ' k _ 50# iwt01 iwtog

Jdel.()——j{e —€ }

However, we can still use the physical polarization method which remains
perfectly applicable. The relative phase enters in the interference term,

so that the soft radiation pattern gets modified according to
dw dQ

. 2.41
w 4w ( )

a .
AN = Z{Ri+Ry—27 - Re | elelior=toa) |
T
To make our pedagogical setup more realistic, imagine that it was the
formation of a meta-stable (resonant) state that caused the delay. In
such a case the delay-time 7 = {1 — tpo is distributed according to the
characteristic decay exponent

[r/ooo dre—”] :

Averaging (2.41) with this distribution immediately results in a simple
I'-dependent expression, namely,

o dw dQ
dNI;{Rl—FRQ—QjXF(W) _—

w 4m
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7
W- ,L e

Figure 4 Leptonic decay of a WTW ™ pair as an illustration of time-dependent de-
coherence effects.

with the profile factor

F] r?

— ~ —I'r iwr | _
XFzRe[F/O dr e -e ]_RQ[F R CETCE

—iw

The answer can be written as a mizture of independent and coherent
patterns with the weights depending on the ratio w/I" via the profile
function yr,

o

4 o Xr @) ] Ruvao@) 4 41 () - R} - (242)

w o

dN =

AR

X(w) acts as a “switch”: for long-wave radiation y(w < I') — 1, the
standard coherent antenna pattern appears; vice versa, for large fre-
quencies x(w > I') — 0, the coherence between charges is dashed away,
as we expected.

Example: soft photons and the W-width. This simple phe-
nomenon finds an intriguing and important practical implication in the
dual channel. Suppose that in the eTe™ annihilation process a pair of
non-relativistic WTW~ is produced. An intermediate boson has a fi-
nite life-time, I' ~ 2 GeV, and decays either leptonically or into a quark
pair that produces two hadron jets at the end of the day. Thus, the
Wt and W~ decay independently of one another and produce ultra-
relativistic electromagnetic currents within a characteristic time interval
|Atg| ~ T'~L. The process is displayed in Fig. 4.

Therefore one meets exactly the same “delayed acceleration” scenario
as applied to the final-state currents. As a result, (2.42) describes the
photon radiation accompanying leptonic decays of non-relativistic W+

and W~.
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Integrating over photon emission angles we derive the total photon
multiplicity:

dN 2 2 1—cosOqz
waoc 1n1_1U1+1n1_v2—4]—|—2Xr(w) [lnf—}—l .
(2.43)

where vy and v, are velocities of final charged leptons (e, or 7). The
main “collinear” contributions ~ In(1 — v;)™ > 1 are naturally w- and
©12-independent.

A non-trivial w-dependence of the profile function yr comes together
with the functional dependence on the angle ©15 between the leptons.
The w-dependent term in (2.43) enhances the accompanying photon
multiplicity for large values of @15 and, vice versa, acts destructively if
the angle between leptons happens to be below the critical value

cosO,, =1—2exp(—1) = 0.264,
5 2.44
0., ~1.30 ~ 2L =75°. (2.44)
12

This suggests a programme of measuring the W-width 'y by studying
the variation of the radiation yield with Oqs.

3. BACK TO QCD

3.1. QCD SCATTERING AND
CROSS-CHANNEL RADIATION

Both the qualitative arguments of the previous lecture and the quan-
titative analysis of the two-particle antenna pattern apply to the QCD
process of gluon emission in the course of quark scattering. So two
gluon-bremsstrahlung cones with the opening angles restricted by the
scattering angle ©; would be expected to appear.

There is an important subtlety, however. In the QED case it was
deflection of an electron that changed the e.m. current and caused photon
radiation. In QCD there is another option, namely to “repaint” the
quark. Rotation of the color state would affect the color current as well
and, therefore, must lead to gluon radiation irrespectively of whether
the quark-momentum direction has changed or not.

This is what happens when a quark scatters off a color field. To be
specific, one may consider as an example two channels of Higgs produc-
tion in hadron-hadron collisions.

At very high energies two mechanisms of Higgs production become
competitive: WTW~ — H and the gluon-gluon fusion gg — H (see
Fig. 5).
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Figure 5 WW and gluon-gluon fusion graphs for Higgs production

Since the typical momentum transfer is large, of the order of the
Higgs mass, (—t) ~ M}, Higgs production is a hard process. Colliding
quarks experience hard scattering with characteristic scattering angles
©% ~ |t| /s ~ M%/s. As far as the accompanying gluon radiation is
concerned, the two subprocesses differ with respect to the nature of the
“external field”, which is colorless for the W-exchange and colorful for
the gluon fusion.

The gluon bremsstrahlung amplitudes for the second case are shown
in Fig. 6. In principle, a graph with the gluon-gluon interaction vertex
should also be considered. However, in the limit &, < ¢, with §, =~
Pat — P11 the momentum transfer in the scattering process, emission off
the external lines dominates (the “soft insertion rules”).

The accompanying soft radiation current j# factors out from the Feyn-
man amplitudes of Fig. 6, the only difference with the Abelian current
(2.17¢) being the order of the color generators:

jH = [tbt“ ((fk)) —agh ((fi))] . (3.45)

k,a

k,a
P2 P2

P1 P1

Figure 6 Gluonic Bremsstrahlung diagrams for k3 < gqi. The characters a and b
denote the colors of the radiated and exchanged gluons.
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i
Introducing the abbreviation A4; = (;ffik)v we apply the standard decom-
position of the product of two triplet color generators,

1

tatb —
2L7VC

5ab + % (dabc + ifabc) te ’
to rewrite (3.45) as
(A1 — Ag) {tb7ta} + £ (A1 + Ay) {tbia}

1 : £aoc 4C
(A; — Ay) (ﬁ 5ab+dab0t0) —L(A + Ay)iftere .

LS.
=
Il
L=

[y

To find the emission probability we need to construct the product of the
currents and sum over colors. Three color structures do not “interfere”,
so it suflices to evaluate the squares of the singlet, 8, and 8, structures:

L N2 /1N\* 1
§:<EE%Q _<2N)(N“_”_2NQC%’

a,b
N2 1 NZ—4 NZ -4 .
%b:(%dabct) =1 N () = AN, -CF;
1 N,
Y (ifawer) = N =TEC
a,b

2
The common factor Cr = (tb) belongs to the Born (non-radiative)
cross section, so that the radiation spectrum takes the form

AN o o Y0 ()" = ( x +N3‘4) (A1 = Az) - (4 = Ay)
Cp & 2N, T 4N,
PO (A A (A1t ).
Simple algebra leads to
AN x Cp (Ay — As) - (A1 — Ag) + No Ay - As . (3.46)

Dots here symbolize the sum over gluon polarization states. Similar to
the case of “delayed scattering” discussed above, the current (3.45) is
not conserved because of non-commuting color matrices. We would need
to include gluon radiation from the exchange-gluon line and from the
source, to be in a position to use an arbitrary gauge (e.g. the Feynman
gauge) for the emitted gluon. Once again, the physical polarization
technique (2.30) simplifies our task. To obtain the true accompanying
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radiation pattern (in the k; < ¢, region) it suffices to use the projectors
(2.32) for the dots in (3.46). In particular,

Ar-Ay= Y (A€W (AeW) =T {# — (A1 Ay) sic!} .

Accompanying radiation intensity finally takes the form
dN « CF Rcoher + chj . (347)

The first term proportional to the squared quark charge is responsible,
as we already know, for two narrow bremsstrahlung cones around the
incoming and outgoing quarks, 01,02 < O,. On top of that an addi-
tional, purely non-Abelian, contribution shows up, which is proportional
to the gluon charge. It is given by the interference distribution (2.33c),
(2.35b),

ke Tkl
a|ay
which remains non-singular in the forward regions ©; € O, and 0, K
O;. At the same time, it populates large emission angles © = 0, ~

Oy > O, where

de?
02
Indeed, evaluating the azimuthal average, say, around the incoming
quark direction we obtain

dN xd?J xsin© dO <g - 1) x (3.48)
a

%j:i<1+w) =20 -0,)-1.
27 ay |a1 — a12| ay

Thus we conclude that the third complementary bremsstrahlung cone
emerges. It basically corresponds to radiation at angles larger than the
scattering angle and its intensity is proportional to the color charge of
the {-channel exchange.

We could have guessed without actually performing the calculation
that at large angles the gluon radiation is related to the gluon color
charge. As far as large emission angles © > ©; are concerned, one may
identify the directions of initial and final particles to simplify the total
radiation amplitude as

1 m u
G =Tb17 . Pr_pagb P2 (TbT“ _ TaTb) R
pik p2k pk

Recalling the general commutation relation for the SU(N,) generators,

[T(R) T (R) | =53 fane T(R) (3.49)
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we immediately obtain the factor N, (ifabc):) as the proper color
charge. Since (3.49) holds for arbitrary color representation R, we see
that the accompanying gluon radiation at large angles ® > O, does not
depend on the nature of the projectile.

The bremsstrahlung gluons we are discussing transform, in the end of
the day, into observable final hadrons. We are ready now to derive an
interesting physical prediction from our QCD soft radiation exercise.

Translating the emission angle into (pseudo)rapidity n = In©71,
the logarithmic angular distribution (3.48) converts into the rapidity
plateau. We conclude that in the case of the gluon fusion mechanism,
the second in Fig. 5, the hadronic accompaniment should form a practi-
cally uniform rapidity plateau. Indeed, the hadron density in the center
(small 7, large c.m.s. angles) is proportional to the gluon color charge N.,
while in the “fragmentation regions” (fmax > 7| > In©;1, or © < O;)
the two quark-generated bremsstrahlung cones give, roughly speaking,
the density ~ 2 x Cr =~ N..

At the same time, the WW-fusion events (the first graph in Fig. 5)
should have an essentially different final state structure. Here we have
a colorless exchange, and the QED-type angular ordering, © < Oy, re-
stricts the hadronic accompaniment to the two projectile fragmentation
humps as broad as An = fmax — In O5 ~ In My, while the central rapid-
ity region should be devoid of hadrons. The “rapidity gap” is expected
which spans over || < In(y/s/Mg).

3.2. CONSERVATION OF COLOR AND QCD
ANGULAR ORDERING

In physical terms universality of the generator algebra is intimately
related with conservation of color. To illustrate this point let us consider
production of a quark-gluon pair in some hard process and address the
question of how this system radiates. Let p and k& be the momenta of the
quark and the gluon, with b the octet color index of the latter. For the
sake of simplicity we concentrate on soft accompanying radiation, which
determines the bulk of particle multiplicity inside jets, the structure
of the hadronic plateau, etc. As far as emission of a soft gluon with
momentum ¢ < k,p is concerned, the so-called “soft insertion rules”
apply, which tell us that the Feynman diagrams dominate where £ is
radiated off the external (real) partons — the final quark line p and the
gluon k. The corresponding Feynman amplitudes are shown in Fig. 7.

Do two emission amplitudes interfere with each other? It depends on
the direction of the radiated gluon ‘.
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A b I lfbac

Figure 7 Feynman diagrams for radiation of the soft gluon with momentum ¢ and
color a off the gg system.

In the first place, there are two bremsstrahlung cones centered around
the directions of p"and k:

ék’
gluon cone: ©;=0;; < O=0O;,

quark cone: ©;= ®Zp <L O=0;;

with © the angle between pand k — the aperture of the ¢gg fork. In these
regions one of the two amplitudes of Fig. 7 is much larger than the other,
and the interference is negligible: the gluon ¢ is radiated 1ndependently
and participates in the formation of the quark and gluon sub-jets.

If © is sufficiently large and the gluon k sufficiently energetic (rela-
tively hard, k ~ p), these two sub-jets can be distinguished in the final
state. The particle density in ¢ and g jets should be remarkably different.
It should be proportional (at least asymptotically) to the probability of
soft gluon radiation which, in turn, is proportional to the “squared color
charge” of the jet-generating parton, quark or gluon:

m\ 4 2 _
(Ed—n) :(Ed—n) :NC:NC 1:3:é:g.

Multijet configurations are comparatively rare: emission of an addi-
tional hard gluon k& ~ p at large angles ©® ~ 1 constitutes a fraction
as/m S 10% of all events. Typically k& would prefer to belong to the
quark bremsstrahlung cone itself, that is to have ©® < 1. In such cir-
cumstances the question arises about the structure of the accompanying
radiation at comparatively large angles

@Z = GZﬁ ~ GZ,E > 0. (3.50)

If the quark and the gluon were acting as independent emitters, we would
expect the particle density to increase correspondingly and to overshoot
the standard quark jet density by the factor

dn\ 9+ dn\? N: -1 13
{— = = N,:—=< 1=—. 51
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However, in this angular region our amplitudes start to interfere signif-
icantly, so that the radiation off the gg pair is no longer given by the
sum of probabilities ¢ — g({) plus g — ¢g(¢). We have to square the sum
of amplitudes instead.

This can be easily done by observing that in the large-angle kinemat-
ics (3.50) the angle ©® between p and k can be neglected, so that the
accompanying soft radiation factors in Fig. 7 become indistinguishable,

Pt AT

(pt) — (k)

Thus the Lorentz structure of the amplitudes becomes the same and it
suffices to sum the color factors:

1980 i foat® = 1720 + [tb, t“} = thye, (3.52)

We conclude that the coherent sum of two amplitudes of Fig. 7 results
in radiation at large angles as if off the initial quark, as shown in Fig. 8.

Figure 8 Soft radiation at large angles is determined by the total color charge

This means that the naive probabilistic expectation of enhanced den-
sity (3.51) fails and the particle yield is equal to that for the quark-
initiated jet instead:

(gluon+quark) % +1= % = 1 (quark).

It actually does not matter whether the gluon & was present at all, or
whether there was instead a whole bunch of partons with small relative
angles between them. Soft gluon radiation at large angles is sensitive
only to the total color charge of the final parton system, which equals
the color charge of the initial parton. This physically transparent state-
ment holds not only for the quark as in Figs. 7, 8 but for an arbitrary
object R (gluon, diquark, ..., you name it) as an initial object. In this
case the matrices ¢ = T'(3) should be replaced by the generators T'(R)
corresponding to the color representation R, and (3.52) holds due to the
universality of the generator algebra (3.49).
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3.3. HUMPBACKED PLATEAU AND LPHD

QCD coherence is crucial for treating particle multiplication inside
jets, as well as for hadron flows in-between jets.

For dessert, we are going to derive together the QCD “prediction” of
the inclusive energy spectrum of relatively soft particles from QCD jets.
I put the word prediction in quotation marks on purpose. This is a good
example to illustrate the problem of filling the gap between the QCD
formulae, talking quarks and gluons, and phenomena dealing, obviously,
with hadrons.

Let me first make a statement:

It is QCD coherence that allows the prediction of the inclusive soft
particle yield in jets practically from the “first principles”.

3.3.1 Solving the DIS evolution. You have all the reasons
to feel suspicious about this. Indeed, in the first lecture we stressed the
similarity between the dynamics of the evolution of space-like (DIS struc-
ture functions) and time-like systems (jets). On the other hand, you are
definitely aware of the fact that the DIS structure functions cannot be
calculated perturbatively. There are input parton distributions for the
target proton, which have to be plugged in as an initial condition for
the evolution at some finite hardness scale Qo = O(1 GeV). These ini-
tial distributions cannot be calculated “from first principles” nowadays
but are subject to fitting. What PT QCD controls then, is the scaling
violation pattern. Namely, it tells us how the parton densities change
with the changing scale of the transverse-momentum probe:

alkaD(x’kL):@/ﬂ;dtzp(zwg,h). (3.53)

~

It is convenient to present our “wavefunction” D and “Hamiltonian” P
in terms of the complex moment w, which is Mellin conjugate to the
momentum fraction z:

1
D, = / dzz¥-D(z), D(z)= x_l/ — 7% -D,; (3.54a)
0 ()

1
PW:/dzz‘”-Pz, Pz:z_l/ — 2z Y. P,, 3.54b
0 B PE== [ 52 (3.54b)
where the contour I' runs parallel to the imaginary axis, to the right
from singularities of D, (F,). It is like trading the coordinate (Inz) for
the momentum (w) in a Schrédinger equation.
Substituting (3.54) into (3.53) we see that the evolution equation be-

comes algebraic and describes propagation in “time” d¢ = Z=dInk, of a
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free quantum mechanical “particle” with momentum w and the disper-
sion law E(w) = P,:

. (K . 9
dDy(ky) = 2 (WL) P, Dy(ky); d T

(3.55)

To continue the analogy, our wavefunction D is in fact a multi-component
object. It embodies the distributions of valence quarks, gluons and sec-
ondary sea quarks which evolve and mix according the 2 X 2 matrix LLA
Hamiltonian (1.9).

At small z, however, the picture simplifies. Here the valence distribu-
tion is negligible, O(z), while the gluon and sea quark components form
a system of two coupled oscillators which is easy to diagonalise. What
matters is one of the two energy eigenvalues (one of the two branches
of the dispersion rule) that is singular at w = 0. The problem becomes
essentially one-dimensional. Sea quarks are driven by the gluon distribu-
tion while the latter is dominated by gluon cascades. Correspondingly,
the leading energy branch is determined by gluon-gluon splitting (1.9d),
with a subleading correction coming from the g — ¢(g) — ¢ transitions,

2N,

11‘VC nf
F, = ” —a+ Ow), a= e 3N

(3.56)

The solution of (3.55) is straightforward:

Dolki) = DW(QO)-exp{/hi—k'yw(as(k))}, (3.57a)

Qo

%u(as) = %Pw . (357b)

The structure (3.57a) is of the most general nature. It follows from
renormalizability of the theory, and does not rely on the LLA which
we used to derive it. The function v(ay) is known as the “anomalous
dimension”.> It can be perfected by including higher orders of the PT
expansion. Actually, modern analyses of scaling violation are based
on the improved next-to-LLA (two-loop) anomalous dimension, which
includes a? corrections to the LLA expression (3.57b).

The structure (3.57a) of the z-moments of parton distributions (DIS
structure functions) gives an example of a clever separation of PT and

5This nice name is a relict of those good old days when particle and solid state physicists used
to have common theory seminars. If the coupling o5 were constant (had a “fixed point”), then
(3.57a) would produce the function with a non-integer (non-canonical) dimension D(Q) o« Q7
(analogy — critical indices of thermodynamical functions near the phase transition point).
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NP effects; in this particular case — in the form of two factors. It is
the w-dependence of the input function D, (Qp) (“initial parton distri-
butions”) that limits predictability of the Bjorken-z dependence of DIS
cross sections.

So, how comes then that in the time-like channel the PT answer turns
out to be more robust?

3.3.2 Coherent hump. We are ready to discuss the time-like
case, with D;‘(x,Q) now the inclusive distribution of particles h with
the energy fraction (Feynman-z) z < 1 from a jet (parton j) produced
at a large hardness scale ().

Here the general structure (3.57a) still holds. We need, however, to
revisit the expression (3.57b) for the anomalous dimension because, as
we have learned, the proper evolution time is now different from the case
of DIS.

In the time-like jet evolution, due to Angular Ordering, the evolution
equation becomes non-local in &k space:

d as(ky) [ldz (x )
Dz, k))=——=| —PE)D|—,z-k]. 3.58
dlnk, (2,k1) T /1, z (2) PR ( )
Indeed, successive parton splittings are ordered according to
ki K
f=-—=>60=-=L.
) B

Differentiating D(k, ) over the scale of the “probe”, k|, results then in
the substitution ,
k;:k—”-h =zk
I
in the argument of the distribution of the next generation D(k' ).
The evolution equation (3.58) can be elegantly cracked using the
Taylor-expansion trick,

D(z k1) = exp {lnz }D(m — 2L D(ky).  (3.59)

0
Jdln k‘J_
Turning as before to moment space (3.54), we observe that the solution
comes out similar to that for DIS, (3.57), but for one detail. The ex-
ponent d of the additional z-factor in (3.59) combines with the Mellin
moment w to make the argument of the splitting function P a differential
operator rather than a complex number:

aS
d-Dy="F, ;Do (3.60)
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This leads to the differential equation

-1 5 O -1 % _
T BTN PR P P

Recall that, since we are interested in the small-z region, the essential
moments are small, w < 1.

For the sake of illustration, let us keep only the most singular piece in
the “dispersion law” (3.56) and neglect the commutator term in (3.61)
generating a subleading correction o dag ~ a?. In this approximation
(DLA),

2N,
P, ~ , (3.62)
w

(3.61) immediately gives a quadratic equation for the anomalous dimen-
Y
sion,

2Nc s 2
@+ T — +O(%) = 0. (3.63)
™ w

The leading anomalous dimension following from (3.63) is

S Y . G (3.64)
Te =75 Tw? |’ ’

When expanded to first order in ay, it coincides with that for the space-
like evolution, v, ~ a,/7-F,, with P given in (3.62). Such an expansion,
however, fails when characteristic w ~ 1/|In x| becomes as small as ,/a,
that is when

8N, .o
T

Inz 2 1.

This inequality is an elaboration of the estimate (1.12), which we ob-
tained from heuristic arguments in the first lecture.

Now what remains to be done is to substitute our new weird anoma-
lous dimension into (3.57a) and perform the inverse Mellin transform to
find D(z). If there were no QCD parton cascading, we would expect the
particle density xD(z) to be constant (Feynman plateau). It is straight-
forward to derive that plugging in the DLA anomalous dimension (3.64)
results in the plateau density increasing with ¢ and with a maximum

61t suffices to use the next-to-leading approximation to the splitting function (3.56) and to
keep the subleading correction coming from differentiation of the running coupling in (3.61)
to get the more accurate MLLA anomalous dimension -y, .
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(hump) “midway” between the smallest and the highest parton ener-
gies, namely, at Zmax >~ /Qo/Q. The subleading MLLA effects shift the
hump to smaller parton energies,

1 | Q

= |ln —

Tmax QO
with ¢ a known analytically calculated number. Moreover, defying naive
probabilistic intuition, the softest particles do not multiply at all. The
density of particles (partons) with z ~ Qg/@Q stays constant while that
of their more energetic companions increases with the hardness of the
process ().

This is a powerful legitimate consequence of PT QCD coherence. We
turn now to another, no less powerful though less legitimate, conse-
quence.

(3+evat.) =0,

0

In

3.3.3 Coherent damping of the Landau singularity. The
time-like DLA anomalous dimension (3.64), as well as its MLLA im-
proved version, has a curious property. Namely, in sharp contrast with
DIS, it allows the momentum integral in (3.57) to be extended to very
small scales. Even integrating down to (Jo = A, the position of the “Lan-
dau pole” in the coupling, one gets a finite answer for the distribution
(the so-called limiting spectrum), simply because the y/a(k) singularity
happens to be integrable!

It would have been poor taste to trust this formal integrability, since
the very PT approach to the problem (selection of dominant contri-
butions, parton evolution picture, etc.) relied on ;s being a numeri-
cally small parameter. However, the important thing is that, due to
time-like coherence effects, the (still perturbative but “smallish”) scales,
where a;(k) > w?, contribute to v basically in a w-independent way,
v+ w/2 x yas(k) # f(w). This means that “smallish” momentum
scales k affect only an overall normalization without affecting the shape
of the z-distribution.

Since this is the role of the “smallish” scales, it is natural to expect
the same for the truly small — non-perturbative — scales where the
partons transform into the final hadrons. This idea has been formulated
as a hypothesis of local parton-hadron duality (LPHD). Mathematically,
this hypothesis reduces to the statement (guess) that the NP factor in
(3.57a) has a finite w — 0 limit:

D(Qo) — K" =const, w—0.

Thus, according to LPHD, the z-shape of the so-called “limiting” parton
spectrum which is obtained by formally setting (Jg = A in the evolution
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equations, should be mathematically similar to that of the inclusive dis-
tribution of hadrons (k). Another essential property is that the “con-
version coefficient” K% should be a true constant independent of the
hardness of the process producing the jet under consideration.

3.3.4 Brave gluon counting. The comparison of the limiting
spectrum with the inclusive spectrum of all charged hadrons (dominated
by %) was pioneered by Glen Cowan (ALEPH) and by the OPAL col-
laboration, and has become a standard test of analytic QCD predictions.

In Fig. 9 (DELPHI), the comparison is made of the all-charged hadron
spectra at various annihilation energies ) with the so-called “distorted
Gaussian” fit which employs the first four moments (the mean, width,
skewness and kurtosis) of the MLLA distribution around its maximum.

Is it nothing but one more test of QCQ? Not quite. Such close simi-
larity is deeply puzzling, even worrysome, rather than a successful test.

9
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Figure 9 Inclusive distribution of charged hadrons produced in ete™ annihilation
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Indeed, after a little exercise in translating the values of the loga-
rithmic variable & = In(Ej./p) in Fig. 9 into GeV you will see that the
hadron momenta at the maxima are, for example, p= %Q e fmax v (.42,
0.85 and 1.0 GeV for =14, 35 and 91 GeV, respectively.

Is it not surprising that the PT QCD spectrum is mirrored by that
of the pions (which constitute 90% of all charged hadrons produced in
jets) with momenta well below 1 GeV?!
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Figure 10 Inclusive energy distribution of charged hadrons in large—p; jets.
D.Goulianos, Proceedings 32nd Recontres de Moriond, Les Arcs, France, March 1997.

For this very reason, the observation of the parton-hadron similarity
was initially met with serious and well-grounded scepticism: it looked
more natural (and was more comfortable) to blame the finite hadron
mass effects for the falloff of the spectrum at large £ (small momenta)
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rather than seriously believe in the applicability of the PT QCD consid-
eration down to such disturbingly small momentum scales.

This worry has recently been answered by CDF.

Theoretically, it is not the energy of the jet but the maximal parton
transverse momentum inside it, k| max = Fje; sin %, that determines the
hardness scale and thus the yield and the distribution of the accompa-
nying radiation. This means that by choosing a small opening angle ©
around the jet axis one can study relatively small hardness scales but
in a cleaner environment: due to the Lorentz boost effect, eventually all
particles that form a short small-Q? QCD hump become relativistic and
concentrate at the tip of the jet.

For example, by selecting hadrons inside a cone © ~ (.14 around
an energetic quark jet with Ej; ~ 100 GeV (LEP-1I), one should see
the very same curve that corresponds to ) = 14 GeV in Fig. 9. Its
maximum, however, will now be boosted from dubious 450 MeV into a
comfortable 6 GeV range.

A close similarity between the hadron yield and the full MLLA par-
ton spectra (Fig. 10, CDF) can no longer be considered accidental or
attributed to non-relativistic kinematical effects.

The fact that even a legitimate finite smearing due to hadronization
effects does not look mandatory, suggests a deep duality between the
hadron and quark-gluon languages, as applied to such a global charac-
teristic of multihadron production as an inclusive energy spectrum.

3.4. QCD RADIOPHYSICS

Another class of multihadron production phenomena that speak in
favor of LPHD is the so-called inter-jet physics. It deals with particle
flows in the angular regions between jets in various multi-jet configu-
rations. These particles do not belong to any particular jet, and their
production, at the PT level, is governed by coherent soft gluon radiation
off the multi-jet system as a whole. Due to QCD coherence, these par-
ticle flows are insensitive to internal structure of underlying jets. The
only thing that matters is the color topology of the primary system of
hard partons and their kinematics.

The ratios of particle flows in different inter-jet valleys are given by
parameter-free PT predictions and reveal the so-called “string” or “drag”
effects. For a given kinematical jet configuration, such ratios depend only
on the number of colors (N,).

For example, the ratio of the multiplicity flow between a quark (anti-
quark) and a gluon to that in the ¢g valley in symmetric (“Mercedes”)
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three-jet qgg ete™ annihilation events is predicted to be

AN 5sN2-1 22
qu(gfig) T2N2—4 T

(3.65)

Comparison of the denominator with the density of radiation in the ¢g
valley in qgv events with a gluon jet replaced by an energetic photon
results in
(aq)
dNy; N 2(N2-1) 16

gNG) T ONZ_2 T (3.66)
q9

Emitting an energetic gluon off the initial quark pair depletes accompa-
nying radiation in the backward direction: color is dragged out of the
qq valley. This destructive interference effect is so strong that the re-
sulting multiplicity flow falls below that in the least favorable direction
transverse to the three-jet event plane:

dNUT) Not20F 1T
AN~ 2(4CF = Ne) S

(3.67)

At the level of the PT accompanying gluon radiation (QCD radiophysics),
such predictions are quite simple and straightforward to derive. The
strange thing is, that these and many similar numbers are observed in
experiments. The inter-jet particle flow we are discussing is dominated,
at present energies, by pions with typical momenta in the 100-300 MeV
range! The fact that even such soft junk follows the PT QCD rules is
truly amazing.

Since, starting from the LEP-I epoch, the “predictions” of the hump-
backed plateau and of the coherent string/drag effects stood up to scrutiny
in ete~, DIS and Tevatron experiments, we gained an important piece
of knowledge. And this is not that theorists are capable of calculating
things, even in the presence of quantum-mechanical effects (see below, in
the Acknowledgements). More importantly, we have learned something
interesting about the physics of hadronization, about confinement and

thus about QCD.

3.5. SOFT CONFINEMENT

Honestly speaking, it makes little sense to treat few-hundred-MeV
gluons as PT quanta. What hadron energy spectra and string/drag phe-
nomena are trying to tell us is that the production of hadrons is driven
by the strength of the underlying color fields generated by the system of
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energetic partons produced in a hard interaction. Pushing PT descrip-
tion down into the soft gluon domain is a mere tool for quantifying the
strengths of the color field. We conclude:

m The color field that is developed by an ensemble of hard primary
partons determines the structure of the final flow of hadrons.

s The Poynting vector of the color field translates into the hadron
Poynting vector without visible reshuflling of particle momenta.

Mathematical similarity between the parton and hadron energy and an-
gular distributions means that confinement is very soft and gentle. As
far as the global characteristics of final states are concerned, there is no
sign of strong forces at the hadronization stage.

When viewed globally, confinement is about renaming a flying-away
quark into a flying-away pion rather than about forces pulling quarks
together. To preserve this delicate correspondence is a challenge for the
future quantitative theory of hadrons — the “whole QCD?”.

First steps have been made in this direction in recent years. But this
is another story (see below, in the Complaints).

Acknowledgements and Complaints

Particle physics community consists of smart and clever people.

Theorists have to be clever to do the job. They should be clever
enough to understand what their colleagues have measured, and doubly-
clever to predict what they will be measuring. Triply-clever to suggest
what experimenters should measure.

Experimenters not only need to be clever to do the job, they ought
to be smart. They have to be smart to measure, doubly-smart not to
listen to what they will be measuring, and triply-smart — to what they
should measure.

Still, I dare to come up with a suggestion.

Organization of the ASI-2000 was perfect, thanks to Harrison Pros-
per, Misha Danilov and the ASI godfather Tom Ferbel. There is one
serious complaint, however. It would be better if the Institute ran (at
least) annually. The ASI would run out of popular lecturers faster, which
would offer a chance to tell more interesting stories. Particularly on such
a facinating subject as the physics of hadrons.



