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Status of hard /perturbative QCD phenomena is briefly reviewed. Landau-Pomeranchuk-
Migdal effect is discussed as a means for establishing links between particle and nuclear
high-energy physics.

1. MESSAGES FROM THE HEP WORLD

Quantum Chromodynamics is the strangest of theories. On one hand, it is beyond any
doubt the microscopic theory of the hadron world. Both the intrinsic beauty of QCD
and the striking successes of QCD-based phenomenology speak for that. On the other
hand, the depth of the conceptual problems that one faces in trying to formulate QCD as
a respectable Quantum Field Theory (QFT) has no precedent in the history of modern
physics. QCD nowadays has a split personality. It embodies “hard” and “soft” physics,
both being hard subjects, and the softer the harder. (For more details on the present
status of QCD, its problems and prospects, including nuclear issues, see [1].)

Until recently QCD studies were concentrated on small-distance phenomena, observ-
ables and characteristics that are as insensitive to large-distance confinement physics as
possible. This is the realm of “hard processes” in which a large momentum transfer
Q?, either time-like Q% > 1 GeV?, or space-like Q? < —1 GeV?, is applied to hadrons
in order to probe their small-distance quark-gluon structure. High-energy annihilation
ete” — hadrons, deep inelastic lepton-hadron scattering (DIS), production of massive
lepton pairs, heavy quarks and their bound states, large transverse momentum jets in
hadron-hadron collisions are classical examples of hard processes.

Perturbative QCD (pQCD) controls the relevant cross sections and, to a lesser extent,
the structure of final states produced in hard interactions. Whatever the hardness of the
process, it is hadrons, not quarks and gluons, that hit the detectors. For this reason alone,
the applicability of the pQCD approach, even to hard processes, is far from being obvious.
One has to rely on plausible arguments (completeness, duality) and often to substitute
Ideology for Theory.

Ideology is not necessarily a swear word (though my life-experience tends to tell me the
opposite). An example of a good and powerful ideological concept is that of Infrared- and
Collinear-Safety introduced by Sterman and Weinberg in the late 70’s [2]. An observable
is granted the status of infrared/collinear safety (ICS) if it can be calculated in terms of
quarks and gluons treated as real particles (partons), without encountering either collinear
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(f — 0) or infrared (kg — 0) divergences. The former divergence is a standard feature
of (massless) QFT with dimensionless coupling, the latter is typical for massless vector
bosons (photons, gluons). Given an ICS quantity, we expect its pQCD value predictable
in the quark-gluon framework to be directly comparable with its measurable value in the
hadronic world.

To give an example, we cannot deduce from the first principles parton distributions
inside hadrons (PDF, or structure functions). However, the rate of their In Q?-dependence
(scaling violation) is an example of an ICS measure and stays under pQCD jurisdiction.

Speaking about the final state structure, we cannot predict, say, the kaon multiplicity
of pion energy spectra. However, one can decide to be not too picky and concentrate on
global characteristics of the final states rather than on the yield of specific hadrons. Being
sufficiently inclusive with respect to final hadron species, one can rely on a picture of the
energy-momentum flow in hard collisions supplied by pQCD — the jet pattern.

There are well elaborated procedures for counting jets (ICS jet finding algorithms) and
for quantifying the internal structure of jets (ICS jet shape variables). They allow the
study of the gross features of the final states while staying away from the physics of
hadronisation. Along these lines one visualises asymptotic freedom, checks out gluon spin
and colour, predicts and verifies scaling violation pattern in hard cross sections, etc. These
and similar checks have constituted the basic QCD tests of the past two decades.

This epoch is over. Now the High Energy Particle physics community is trying to probe
genuine confinement effects in hard processes to learn more about strong interactions.
The programme is ambitious and provocative. Friendly phenomenology keeps it afloat
and feeds our hopes of extracting valuable information about physics of hadronisation|[1].

1.1. THERE ARE GLUON OUT THERE, AND THEY BEHAVE

LEP and SLAC ete experiments have reached a high level of sophistication. These
days they study identified hadrons in identified (heavy quark-, light quark- or gluon-
generated) jets by taking advantage of the prominent Z° — hadrons peak. Another
QCD-factory is provided by the Fermilab pp Tevatron with its unique handle on jets with
up to few-hundred-GeV transverse momenta. DESY HERA experiments scrutinise etp
and e~ p DIS with an emphasis on small-x physics, which is bound to shed light on the
transition region between hard and soft hadron phenomena.

pQCD does a spectacular job by covering many orders of magnitude in the basic jet
production cross sections. Concerning the internal structure of jets, as well as multi-
jet ensembles, the main message is that the perturbatively controlled secondary gluon
radiation plays a crucial role. The bulk of final particle multiplicity is due to multiple
radiation of “soft” gluons with relatively small momentum fractions z < 1. The structure
of this radiation is determined by the geometry and colour topology of the underlying hard
parton ensembles — the QCD antennae.

Gluons should produce soft gluon radiation more intensively than quarks, according to
the celebrated ratio of “colour charges”, C4/Cr = (N2 —1)/2N, = 9/4. As a result,
the energy spectra of particles from gluon jets are expected to be softer, and the angular
distributions broader as compared to quark-generated jets. These expectations are met
by experiment. In Fig. 1 the angular profile of quark jets (DIS ZEUS, ete™ OPAL) is
compared with that for gluon jets which dominate in pp (CDF, DO).
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Figure 1. “Energy profile” of HERA quark jets. CDF/DO0 (gluon) jets are broader.

Given the perfect identification of jets achieved by eTe™ experiments, the C'4/CF ratio
was recently extracted from a comparative study of the scaling violation pattern in the
fragmentation of quark and gluon jets. It can also be read out directly from the rate of
growth of particle multiplicities with jet hardness, as shown in Fig. 2.
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Figure 2. Charged hadron multiplicity from quark and gluon jets.



1.2. COHERENCE, LPHD AND SOFT CONFINEMENT

QCD coherence is essential in multi-gluon radiation. In order to formulate the parton
multiplication processes in terms of probabilistic evolution, it is necessary to take into
full account destructive interference effects. Coherence suppresses soft gluon emission at
angles larger than the angular aperture of a bunch of hard radiating partons. With proper
respect being payed to quantum-mechanical nature of radiation, the emerging cascade
picture is based on the so-called angular ordering prescription for successive emissions of
soft gluons [3].

Intra-jet coherence effects (angular ordering) are taken care of by smart MC event
generators. At the level of analytic predictions, the corresponding technique is known as
the modified leading logarithmic approximation (MLLA). It represents, in a certain sense,
the resummed next-to-leading-order approximation. This step is necessary for deriving
asymptotically correct predictions concerning multiple particle production in jets. This
means that the MLLA parton-level predictions become exact in the Q? — oo limit.

Gluon coherence inside jets leads to the so-called “hump-backed” plateau in one-particle
inclusive energy spectra. The prediction was made (and the corresponding MLLA spec-
trum calculated with use of a 200-step Hewlett-Packard calculator) in 1983-84. Since then
it has survived the LEP-1 scrutiny; more recently, it has been confirmed by the detailed
CDF analysis; these days it is seen at HERA in the current fragmentation region formed
by a struck quark in DIS.
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Figure 3. Hump-backed hadron spectrum, and predicted behaviour of its maximum.

Does the observation of the hump-backed plateau constitute a QCD test? Yes and no.
On one hand, we do check the small-distance dynamics of coherent parton multiplication



(this being in fact an expensive test of quantum mechanics). On the other hand, we gain
important additional information about the non-perturbative dynamics of hadronisation:
the similarity between the calculated parton and observed hadron spectra tells us that
there is essentially no re-shuffling of momenta at the transformation stage from partons to
hadrons. Such a property was envisaged and formulated as a hypothesis of local parton-
hadron duality (LPHD, another example of an “ideological concept”).

If the LPHD concept is correct, that is if hadronisation is local in configuration space,
then the spectra of all hadron species should become asymptotically similar to each other
and to that of partons (the bulk of which are relatively soft gluons). This leaves us with
two global parameters to describe energy spectra of hadrons with z, = p/E;¢ < 1 at any
sufficiently large /s =Q =2E}.;. They are: the scale of the perturbative QCD coupling
Aqcp and the overall normalisation parameter K 5 to recalculate the number of hadrons
of a given species h from that of gluons. LPHD predicts, and experiments confirm, that
the non-perturbative “conversion coefficients” K" are true constants, depending neither
on () nor on the energy-momentum of the triggered hadron, z,,.

In Fig. 3 inclusive energy spectra of charged hadrons at different annihilation energies
are shown (£, =1n1/z,).

What makes the story really surprising is that the pQCD spectrum is followed by pions
(constituting 90% of charged hadrons in jets) with momenta well below 1 GeV!

A similar message comes from the study of coherent drag effects (“string effects”)
dealing with angular distributions of particle flows (multiplicity flows) between jets in
hard events with non-trivial geometry/colour topology (inter-jet coherence). In particular,
pQCD provides parameter-free predictions for the ratios of particle densities in different
inter-jet valleys. At present energies these observables are dominated by pions in the 100
300 MeV momentum range. Amagzingly, the distributions of this soft junk follow closely
the coherent pQCD gluon radiation pattern. In other words, the pattern of the colour
field that the underlying jet ensembles (hard parton antennae) develop.

We must conclude that hadronisation is a surprisingly soft phenomenon. As far as the
global characteristics of final states are concerned, such as inclusive energy and angular
distributions of particle flows, there is no visible change in particle momenta when the
transformation from coloured quarks and gluons to blanched hadrons occurs.

A recent review of these and related topics can be found in [4].

2. LPM EFFECT: A BRIDGE BETWEEN HEP- AND HEN-PHYSICS

For many years QQCD ideas have been used to picture high-energy scattering phenomena
in nuclear matter. QCD-motivated constructions include the small-distance core of the
intra-nuclear potential, modelling excitations of a nuclear target in terms of a colour tube,
quark-gluon plasma, percolating strings, physics or chiral condensate, etc.

Historically, the nucleus has always been a primary source of inspiration for High Energy
Particle (HEP) physics. Gribov’s paper “Interaction of photons and electrons with nuclei
at high energies” [5] laid a cornerstone for the concept of partons. Diffractive phenomena
in hadron-nucleus scattering, and inelastic diffraction in particular, shed light on many
a subtle problem of hadron interactions at high energies [6,7]. Multiple interactions in
nuclear matter probe the internal structure of hadronic matter and make a nucleus serve as



“colorometer” [8]. Thus, understanding High Energy Nuclear (HEN) phenomena is vitally
important for developing QCD as a theory of the microscopic dynamics of hadrons.

In spite of this, rigorous applications of QCD to scattering in media are scarce, in the
first place because of the complexity of the problems involved. The Landau-Pomeranchuk-
Migdal effect is an example of such an application which addresses the issue of QCD
processes in media “from the first principles” (if such a notion can be applied to QCD in
its present state).

LPM is about radiation induced by multiple scattering of a projectile in a medium.
In the QED context, Landau and Pomeranchuk noticed [9] that the energy spectrum of
photons caused by multiple scattering of a relativistic charge in a medium is essentially
different from the Bethe-Heitler radiation pattern. A few years later a quantitative anal-
ysis of the problem was carried out by Arkady Migdal [10]. Symbolically, the photon
radiation intensity per unit length reads

dl « w w FE
e B . 1
wdw dz x A g2 MM E < Erpm o

Here FE is the energy of the projectile, and Eppj, is the energy parameter of the problem,
built up of the quantities characterising the medium. They are the mean free path of the
electron, A, and a typical momentum transfer in a single scattering, p (of the order of the
inverse radius of the scattering potential):

Erpyn =My’ (2)

In QED the parameter E; py, is in a ball-park of 10* GeV. Such an enormously large value
explains why it took four decades to experimentally verify the LPM phenomenon [11].
The LPM spectrum should be compared with the standard Bethe-Heitler formula

dl o} 3
Ydwdz TN (3)
which corresponds to independent photon emission for each successive scattering act.

Contrary to (3), the LPM spectrum (1) is free from an “infrared catastrophe”: small
photon frequencies are relatively suppressed, so that the energy distribution is propor-
tional to dw//w. Integrating (1) over photon energy (w < E in the E — oo limit), one
deduces the radiative energy loss per unit length to be proportional to v/F,

dt. o ——

In the QCD framework, expectations about energy losses due to gluon radiation off a
colour charge propagating through a QCD medium were ranging, until recently, from
constant, E°, up to E?.

The true answer is still v/E (for an “infinite” medium), as in the QED case, though
the differential gluon energy spectrum proved to be very different from that of the LPM
photons. In both problems the LPM phenomenon suppresses medium-induced radiation:
a group of N, scattering centres, N, > 1, acts as a single source of radiation.

In particular, the coherent LPM spectrum in QED can be presented as

dI(LPM) dI(BH) 1 E?
y _, L een [ B )
dwdz dw dz Nc(gz ) wErpm




To make a long story short, the QCD spectrum, amazingly enough, can be obtained from
that for QED via a simple reciprocity relation [12], namely w/E = E/w. This gives

NG =\ [ === > 1, (6)
LPM

where Erpny (2) is now of the order of 1 GeV. The gluon spectrum comes out to be
E-independent and over-singular at small frequencies:

dl o 1 _a, [Erpy w2
wdwdzdjw—j " = Q4 7'&) ; CL)>ELPM. (7)

Co.

At a semi-quantitative level, this result was obtained in [12] where the Gyulassy-Wang
model for a QCD medium [13] was adopted. Further development [14] (BDMPS) included
a treatment of finite-length media and the relation between the energy loss and jet broad-
ening, apart from fixing the errors of the original treatment. The latter issue proved to be
painful and slow a process. The final debugged set of the BDMPS predictions will soon
become available, converging with that independently obtained by Bronislav Zakharov in
the framework of an elegant functional integral technology [15].

Leaving the technical details aside, it is important to stress the main message that the
study of the LPM phenomenon is sending us. Namely, that the physics of multiple inter-
action is infested with quantum mechanics, which makes the results often anti-intuitive
and hardly accessible by means of classical probabilistic considerations.

First, and simplest of all, the fact that the formation time is finite plays a crucial
role in the game. It is easy to accept that one should not treat multiple interaction of
secondaries with the target as independent before a certain time ¢t =24, elapses. What
is more difficult to digest, is that the very value of ¢,,,,. depends on this interaction which
cannot be modelled classically.

Imagine a relativistic quark traversing a QCD medium. The characteristic coherent
length for induced gluon radiation, £ = X - Ny, can be obtained from the following
simple consideration. On one hand, the formation time of the radiation is

w
Rl 8
k2’ (8)

which is nothing but the time it takes to leave a “wave zone”, in the language of the
classical radiation theory. On the other hand, large formation times exceeding the mean
free path, tform. > A, are essential for the LPM effect. This implies a random walk in the
gluon transverse momentum, from one scattering centre to another,

t ) k2
ki =~ ,U2 : Ncoh. = /«62 : fo% ; tform. = /J,—QJ_ . (9)

tform. =

Equating these two expressions for t o, we arrive at the correct expression (6) for Ny :

2 |wp? _jwA | w w
kJ_ - T ) tform. - F 3 Ncoh. — \/A,U,Q = \/ELPM 1. (10)

The transverse separation between a primary quark and a secondary gluon remains small
as compared with the size of the scattering potential, Ap, < ! for ¢ < ¢sorm.. Therefore




the quark-gluon system interacts with the medium as a whole, with the quark scattering
cross section. Nevertheless, we have to treat the gluon transverse momentum as being
accumulated in a course of successive independent scatterings of the gluon in the medium.
To confuse you still more, the whole LPM spectrum emerges as a result of interference
between the amplitudes of gluon emission at different times, say, at t=1%o and t=2%+%sopm.
This means that during the formation time we have a quark-gluon pair in the amplitude,
and a bachelor quark in the conjugate amplitude; so, is there a gluon or there is no? It is
not a gluon but rather “to-be-a-gluon” that we are dealing with.

Another anti-intuitive prediction emerges when one takes into consideration the finite
size of the medium [14]. Moving from the BH to the LPM spectrum we sliced a “brick”
into groups consisting of N, scattering centres, each group acting coherently as an
effective single centre. This implies that the longitudinal size of the medium, L, is large
enough to embody at least one such a group:

By 2
L>tf07‘m.:)\'Ncoh.:“c;—2; w < %LZ (11)

For a long medium, L > L., with

\/% ) (12)

this does not affect the energy loss. However, for a finite medium, L < L., the situation
changes. The largest medium-induced gluon energy becomes L-dependent, and we obtain
the energy loss per unit length to be proportional to the size of the medium, instead of VE.
Integrating over z leads to the total loss growing as L?, a purely coherent enhancement
effect which is difficult to digest “classically”.

The ultimate trick that quantum mechanics plays with us in the LPM problem can
be looked upon as an unexpected gift. One starts from an entirely “soft” environment:
momentum transfer in a single scattering is small, and the very applicability of the per-
turbative consideration is far from secure. In spite of this, the result proves to stay
under perturbative control: it is multiple scattering which ensures the dominance of
small distances, and thus the applicability of pQCD. What matters in the problem is the
accumulated transverse momentum, k% = p? - N, > p?, which stays large provided
w > ELPM ~1 GeV

To see how this actually happens, let us write down the full answer for the differential
radiative energy loss (L < L, ):

dE _ oy(B*) N, 1 9(B?)

LC’I‘

o L. 13

dz 8 A (13)
Here B is the impact parameter inverse proportional to the accumulated &,

A
B2:E-L1<<(1fm)2. (14)
The dimensionless factor v characterises the scattering potential:
1 B do

5(B?) = — dQ? Q? — 15



where do/d@? is the differential single scattering cross section for a given momentum
transfer (). We notice that all three entries, i.e. the mean free path A, the radius of the
potential y~! and the total scattering cross section ¢ in ¥ are ill-defined quantities, since
they are determined by soft physics (properties of finite-momentum-transfer scattering in a
medium). However, they enter in (13) (and into the differential gluon energy distribution)
in a combination which is dominated by small distances. Indeed, invoking the definition
of the mean free path, A=' = po, with p the density of centres, we arrive at
25 2 1/B2
0 Q)

A
In QCD the integral on the right-hand-side is logarithmically enhanced, being dominated
by large momentum transfers,

(16)

dr o
dQ? — Q*’
and therefore stays under pQCD control (at least in the logarithmic approximation).
Finally, let us mention an interesting relation between the radiative energy loss and the
“broadening” of the transverse momentum distribution of the projectile due to scattering
in a medium. The width of the transverse momentum distribution, p? ;, is proportional
to L (random walk) and is determined by the same parameter (16). Therefore the fol-
lowing relation between the density of energy loss and the jet broadening holds, which is
noticeably independent of the interaction dynamics and of the colour of the projectile[14]:

dFE oas Ne o
_ _ s''¢ ] 1
dz 3 Piw ( 8)

L
for ) < Q< B?=p"7, (17)

This result is in accord with a general inequality derived earlier by Brodsky and Hoyer|[16].

Induced radiation should affect propagation of partons both in the initial and in the
final states of hard interactions in a medium.

At present there seems to be a problem of reconciliation of experimental findings: the
A-dependent transverse momentum received by incoming partons [17] appears to be much
smaller than that received by outgoing ones [18]. Broadening of Drell-Yan lepton pairs (IS
effect) points at a value of the parameter (16), for cold nuclear matter, 10-15 times smaller
than the corresponding value characterising FS effects. The latter was extracted by Luo,
Qiu and Sterman [19] from the analysis of the p,-disbalance of two jets produced in
vA — 2 jets at Fermilab. One thing seems however certain: in a hot QGP the expected
broadening and energy loss are still bigger. In particular, a QGP with temperature
T'=250 MeV should produce LPM gluons with energies and transverse momenta up to

L \? L
Wmax =~ 250 GeV (wﬁ) : (ki)max ~p2, ~ 5GeV? TR (19)
while the corresponding values for cold nuclear matter are estimated to be at least twice
(more realistically, by a factor 20-30) smaller.

LPM physics supplies QCD jets produced inside, and propagating through, a medium,
with extra gluons with a quite narrow, and weird, angular distribution © ~ (wy/w)3/*
(wo =~ 500 MeV for the hot matter). It also forces initial partons to lose energy prior to
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engaging into a hard interaction (to produce a Drell-Yan pair, large-p, jets, etc.). The
former effect makes the jets softer, broader and more populated. The latter should cause
a medium-dependent “factorisation breaking” by driving the hard cross sections away
from the A' regime. Medium-induced scaling violation effects will be more pronounced
near the phase space boundaries where a relatively small energy loss matters.

Study of these issues has begun. We can expect the present-day discrepancy to be
clarified in a foreseeable future, and more reliable estimates of the QCD LPM effects to
become available, in particular, concerning the comparison of cold and hot media.

3. FEEDBACK: HEN — HEP

There is no doubt that the HEN physics should, and eventually will, teach its HEP
counterpart. We cannot expect HEN physics to be able to clarify many a smoking-gun
issue, which is necessary to combat our ignorance about the hadron dynamics. However,
some specific HEN phenomena should provide indispensable tools for digging out crucial
information about the structure of hadrons and their interactions, inaccessible otherwise.
The only problem is, how to locate such specific phenomena. To this end, an obvious
strategy would be to concentrate on unexpected/unexplained things happening.

To name a few, an excess of small-mass lepton pairs [20], Hagedorn-type particle abun-
dances [21], baryon stopping, large A/p and, especially, A/p ratios [22], not to mention
jumpy J/v nuclear absorption [23,24].

3.1. SOME MODERATELY NASTY REMARKS

As an ignorant outsider, I am allowed a couple of heretic comments concerning the ways
some of the above-mentioned puzzles are being discussed.

To start with, the LPM physics sends a warning message: a classical Monte-Carlo
modelling of intra-nuclear particle multiplication at very high energies is like robbing
banks — tempting but dangerous.

Two more comments are of purely linguistic nature. First, I would restrain from using
the word “temperature” in the discussion of the famous exponential fit to hadron abun-
dances, N o exp(—m/T), or exp(—m_/T), if that matters. The relative hadron yields
from ete”™ — hadrons satisfy the same phenomenological law, p : K : 7 ~ 1 : 2 : 20.
However, the ete™ final states are anything but “thermal”: produced secondaries are far
apart in configuration space and get no chance to talk to each other. At least in this
clear case, the Hagedorn “temperature” is a universal property of the vacuum, of the
parton—hadron transition, rather than a thermal characteristic of a particle ensemble.

Finally, the sacred “deconfinement” itself. To avoid confusion we’d rather call it an
“ultimate confinement”. Indeed, if we define confinement as a problem of preventing
massless colour fields from appearing in the physical spectrum of the theory, than the
plasma phase does the job. Massless gluons disappear due to complete colour screening.
In other words, gluons are “confined” simply because they have no chance to propagate
freely, being scattered off the colour charges in a medium. Photons acquire mass in metals
because they are screened (“confined”, if you wish) not because they are “deconfined”.
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3.2. LOOKING INTO PUZZLES

From the study of diffractive pA phenomena we have learnt that the proton projectile
can be caught in a “squeezed”, “transparent” state which penetrates a nucleus (for more
details, see [1]). Its counterpart — a swollen proton — can be characterised as a config-
uration with larger than typical relative distances between the quarks. In such a state
“strings” are stretched, colour (or, pion) fields are stronger, the vacuum is virtually bro-
ken. This is the proton-“perpetrator” which, contrary to the proton-“penetrator”, should
willingly interact with the target.

Along these lines, a nice physical explanation of baryon stopping and hyperon pro-
duction phenomena was suggested by Kharzeev [25]. “Baryon junction” is the name of
the game [26], however we can do without. To understand the physics of the matter it
suffices to keep in mind that 1) each constituent quark sits in a colour-triplet state, and
2) high-energy scattering is a coherent phenomenon.

The proton as a QFT object is a coherent sum of various configurations. The quantum
portrait of a projectile, its field fluctuation, stays frozen in the course of interaction at
high energies, so that each fluctuation scatters independently [6]. A minimum-bias pp
scattering is normally a peripheral process, in which one of the constituent quarks in the
proton is hit. Coherence between a struck quark and the rest of the projectile gets broken,
and the system decays. Roughly 2/3 of the initial proton momentum goes into the forward
baryon, the remaining 1/3 being shared, successively, by secondary mesons and baryons
(in the ratio ~ 8 : 1) which form a hadron plateau. The latter can be viewed as breaking
of a standard 3 ® 3 “colour string”. It is important to stress that the coherence between
the two spectator quarks is undisturbed, so that a peculiar 3 ® 3 ® 3 colour structure of
the proton remains hidden (the diquark acting coherently as 3 ® 3 = 3).

Eventually, with a probability of about 1/8, the first breakup of the string produces a
sea diquark—anti-diquark dd instead of a ¢g pair. In such a case a baryon emerges that
contains the struck quark with 1/3 momentum fraction, By/3 = ¢1/3q0go. The rest of the
system has a q1/3q1/3¢oqo content and predominantly decays into two mesons, M3+ M 3.
The By/3 + B, option is formally open as well. However, this channel should be strongly
suppressed, the reason being the statistics of the energy levels which a coherent quantum
mechanical system chooses to occupy (recall the “Hagedorn exponent”).

Turning to a nuclear target we get a chance to successively scratch two constituents in a
swollen proton configuration, provided the energy is large enough so that the two scatter-
ings occur within a Lorentz-dilated life-time of the fluctuation. By doing so we fully break
the coherence of the initial system. In such circumstances we have to consider breakup of
three independent 3 ® 3 strings attached to a common “junction point” somewhere inside
the proton. With probability ~ (7/8)% ~ 67% such a system will decay into three leading
mesons, each carrying roughly a third of the proton momentum, M, 3+ M;/3+ M3 and a
“stopped” baryon, +Bj. Moreover, a simple quark-pickup picture enriches the A/p ratio
for the latter: combinatorially, the probability to have at least one strange quark in the
“centre” can be estimated as 1 — (2/3)® ~ 70%.

This simple picture produces the most spectacular prediction for the central yield of
anti-baryons. By allowing one string to break up “baryonically”, that is via dd, we shall
have By/3 + My/3 + M3 as leading hadrons. An adjacent central quark soup consisting
of ¢0q0GoQo is no longer coherent, contrary to the single-scratch pp case discussed above.
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Therefore, there is no reason to expect a By + By channel to be exponentially smaller
than the meson one. (Moreover, the colour structure of the soup, ¢® ¢ =3, ¢ ® ¢ = 3,
cries for the creation of a baryon pair!) Leaving aside an open question of the absolute
yield of central anti-baryons, let us concentrate on the statistics of strangeness.

Three vacuum-produced quarks (suppressing the prefix anti-) form 27 flavour combi-
nations falling into 8 + 12 4+ 6 + 1 states with strangeness 0,1,2 and 3, respectively. The
SU(3) figvour nomenclature of these states is

# of states  decuplet octet singlet || final state —n | —=>p| = A
8=ATTATA'A~ +2.(pn) 2+2 | 242 | 040

12= $t¥0%-  42.(Bt¥Y0%-) +43-A 0+3 | 0+1 | 3+5

6= =0=- +2-(2027) 0+0 | 0+0 | 2-+4

1= Q- 0+0 | 0+0 | 140

The right half of the table describes the approximate n,p, A composition of the final
state after (strong, weak, radiative) decays. The first components in the three rightmost
columns separate the yields from the decuplet states A, $(1385), Z(1530) and Q.

These statistics apply both to the A/p and A/p ratios. In the former case the observed
value will be smaller because of stopped initial protons feeding the denominator. The
anti-baryon ratios come out clean,

S 649

245
Aj ~ 20 ~ _
/P =5

~ ——=14.
243

3, n/p
(Note that the first ratio does not depend on the relative weight of the decuplet states.)

4. INSTEAD OF CONCLUSION

QCD at present is still in rather limited, tough no longer a primitive, stage of develop-
ment. It is bound to use the language of quarks and gluons, that is to talk perturbatively,
and is trying to extend its grip, from the solid base of hard processes, to the realm of soft
hadron interactions. On an A-B plot, pQCD is steadily gaining grounds in the origin,
A-B =1, and tries to crawl along the A - B = A line. How about a big jump into the
A~ B ~ 10? spot?

The physics of ion-ion high energy collisions being so abundantly rich, the only hope of
a big success lies within a clever strategy for extracting a needle from a hay-stack. What
one desperately needs here is a constructive way of moving from a b-strategy (sit upon,
and try to feel) to the m-strategy (make use of a magnet).

One obvious magnet is QGP searches (whether you believe this particular needle being
in there or not). The QGP state is usually thought to be formed in the collision, which
provides a melting pot for individual nucleons. A large Ej;-yield, for example, is considered
to be a sign of the phase transition into such a state, in the course of the collision.

There is however an alternative way of looking upon things. Studying the ta:ls of various
distributions, small cross sections, we start probing rare configurations of colliding objects.
Thus, very large E; may be looked upon as a precondition for the collision, rather than the
result of it: to observe a larger than typical transverse energy yield, we catch the colliding
nuclei pre-prepared in a rare, confinement-perpetrating, virtually melted configuration a
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la the desired plasma state. In such configurations the yield of lepton pairs should be
higher (extra pions, or antiquarks, around); a reduced yield of J/v¢ (heavy traffic) is to
be expected, strangeness may start to “misbehave”, etc.

The word coherence has been haunting us through the text. Quantum mechanics cannot
be understood. The best one can do is to get used to it. The HEP community rediscovered
quantum mechanics, in the QCD context, at the beginning of 80’s [3]. It is never too late.

I am deeply grateful to the organisers of the Conference for offering me a chance to
convert to the exciting Quark Matter faith.
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